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Receiver function techniques

Lecture notes by Lev Vinnik

Institute of Physics of the Earth, Moscow, Russia

1 Introduction

Most techniques for imaging subsurface structures, like seismic tomography, re-
quire a network of seismograph stations. Receiver functions are exceptions: they
can be used with the data of a single station. The idea is to replace the network
of stations by a network of seismic events. Seismic phases of body waves that are
present in the seismogram can be classified into primary and secondary phases.
For example, the primary P wave that arrives first is followed by secondary (re-
flected and converted) phases that are generated by this wave in the crust and
mantl in a vicinity of the station. In order to detect the secondary phases in noise
and to investigate the corresponding discontinuities, one should inspect a number
of recordings of the same station. This is difficult, because source function of each
event is usually different from the others, and the corresponding waveforms of
secondary phases are different, as well. However, using a special kind of digital
filtering (deconvolution), the primary waveform of each event can be transformed
into a standard ‘spike’ or ‘bump’. The deconvolution transforms into a standard
form every secondary phase, as well, and then they can be detected by stacking
the deconvolved traces with appropriate time-shift {moveout) corrections. Re-
ceiver functions and similar techniques play an important role in the present-day
global and regional studies of the interior of the Earth.

2 Receiver functions in a narrow sense

The term “receiver function” was introduced for the radial component of the
initial part of the seismogram R(t) deconvolved by the vertical component Z(t).
Instead of these two components, we use L (or P) component corresponding to
the principal motion direction of the P wave, and H {or SV') component, perpen-
dicular to L in the wave propagation plane (Figure 1). H(t) deconvolved by L(t)
can be termed receiver function, as well. Assuming that the P wave propagates
in a horizontally layered isotropic medium, for every discontinuity there are three
secondary phases in the H component, with comparable amplitudes (Figure 2):



Ps (converted from P to S). Ppps (transmitted as P, reflected from the free
surface as P. and reflected from the discontinuity as S) and Ppss (transmitted
as P, reflected from the free surface as S and reflected from the discontinuity
as ). The multiple reflections of the higher order are much weaker and can be
neglected. Ps, Pppps and Ppss are strong in the A component and missing in
the L component. The only significant secondary phase in L{t} is Pppp (P once
reflected from the free surface and once from the discontinuity), but this phase
is much weaker than the parent P.

2.1 Deconvolution

Deconvolution can be performed either in time or frequency domain. Frequency
domain deconvolution can be performed as follows. For the L and H components,
neglecting the instrument response, we can write in time domain

L(t) = S(1),
H(t) = S(t) * E(t),

Where * denotes convolution, S(t) is source function, and E(t) can be written as
E(t) = 0115(t - Tl) + Odgé‘(t - Tg) +...

Here o; are amplitudes of the secondary phases, and 7; are their delays relative
to P. In frequency domain we can write

L(w) = S{w),
Hw) = S(w)E(w),
E(w) = H{w}/L{w)

Dividing the spectrum of the H component by the spectrum of the L component
for extracting information on crustal structure is the essence of the spectral ratio
technique, which was known prior to receiver function technique. The idea of the
receiver function approach is to bring the spectral ratio in the time domain by
inverse Fourier transformation. To avoid large errors caused by small values of
the denominator, the spectral ratio to be Fourier transformed is modified as

oy = HW)L(w)

where

®(w) = max{L(w)L{w), c max[L(w)L(w)]}.

The bar over L denotes the complex conjugate, and G(w) = exp(—w?4a?). Con-
stant ¢ is called “water level” and is selected empirically. G(w) is required to



suppress high frequencies and is also determined empiricallyv. E'(#) is recovered
by inverse Fourier transformation.

The time domain deconvolution can be carried out as follows. Let the discrete
representations of the actual P waveform and the desired waveform he s, and z.
The desired waveform is usually assumed to be d-function: it is different from 0
only for a certain value of k£ = K.

s — seismic waveform

2 — desired wa.veform} k=0,£1,£2,...

If the actual P waveform is filtered with the filter /,, the resulting waveform is

-1

U = Z [iSkfi.
i—0

We are looking for the filter, which provides minimum difference min ¢J between
the filtered and desired waveforms

£ = Vg — 2k,

Q=> ¢k
%

The coefficients of this filter satisfy the condition

i .

I 20, j=041,42,...n—1,

a, ~ ! ! "

a n—1

559 = 2 Z (lisk_lsk_j — ZkSk—j)-
i k=0

Here C3_; = 3 g Sk—iSkj I8 autocorrelation of s and R}* = 3 2xs¢ 5 IS cross-
correlation of z and s. This systemn can be written in the matrix form as

[C*[L] = [R*].

Here [L] is the column vector with elements {;, [[?*] is the column vector with
elements R;, and [C?] is the matrix with elements €7 ;. It is assumed that the
actual waveform consists of signal a and noise &

S5k = Oy + bk.

We assume that the signal and noise are not correlated. Then matrix [C*} can
be written as

a b 0 b @ b
ey + 4 ¢l + 0 P S B NS
3 d + b A SRR c
[C°] =
ot + b o 4 b ot Cb
n—1 Cn.a1 “—2 G2 e 0 )
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The elements of this matrix are autocorrelations of @ and b. In practice, the
noise is assumed to be white, which means that its autocorrelation differs from 0
only for diagonal elements of the matrix. The presence of noise is accounted for
by presenting the diagonal elements in the form ¢o(t + A). The choice of this
parameter, like waterlevel parameter, is arbitrary. When it is close to 0, the
resulting “spike” is very sharp, but the inversion is unstable. When A is large
(say, 100), the deconvolved waveform is close to the autocorrelation function of
the actual waveform. The optimum values are in the intermediate range. The
deconvolution filter transforms the actual P waveform into “spike” or “bump”. In
first approximation the transformed P waveforms are similar for different seismic
events, and the same is true with respect to the waveforms of various secondary
phases.

Instead of deconvolving every record separately, one can find a multichannel
deconvolution filter for the set of records of many events. Single-channel decon-
volution for continuous functions of time can be expressed as

o(t) = f_:os(r)t(t ),

where s(7) is the actual waveform, {(7) is the deconvolution filter, v(#} is close to
the desired waveform. Multichannel deconvolution for N records is expressed as

Nl otoo
oty = ¥ [+ s (It — ™) dr.

In case of multichanne! deconvolution, the filter for each record should be
found by considering the other records. The calculations of multichannel decon-
volution filter are in principle similar to the single-channel case, but require more
algebra. The elements of [C], [L] and [R] for multichannel deconvolution are
matrices.

Figure 3 shows an example of multichannel deconvolution. In the left column
there are three waveforms and their amplitude spectra. The dominant frequencies
of the waveforms are strongly different. The results of single-channel and multi-
channel deconvolution of these waveforms with the same damping are shown in
the middle and right column, respectively. The resulting “spike” in case of multi-
channel deconvolution is much sharper than in single-channel case. Multichannel
deconvolution is superior to single-channel deconvolution if the amplitude spectra
of the input waveforms are strongly different, like in the example in Figure 3.

2.2 Stacking receiver functions with moveout corrections

To detect weak converted and reflected phases that are present in the receiver
functions, one should stack receiver functions for many events. The delay of the



converted phase relative to the parent P wave is given by

tH{Ps) = f ’ (\/US_Q — pPre? — \/'U‘;‘z — pire? ) dr,

where p is ray parameter, r is the radial distance of the discontinuity, r¢ and ry
correspond to free surface and depth of conversion, v, and v, are P and S ve-
locities. The time of the converted phase (its delay relative to P) is increasing
with the increasing ray parameter value (or decreasing epicentral distance). For
660 km discontinuity, the difference at epicentral distances around 30 and 90 de-
grees is close to 10 s. To detect the converted phase, the receiver functions should
be stacked with moveout travel time corrections, which depend on the ray pa-
rameter (or epicentral distance) of event and the depth of the discontinuity. In
practice the stack is calculated for many assumed depths of conversion. The real
signals (the converted phases) are focused at depths, which are close to depths
inferred from the travel times of these phases.

Contrary to the converted phases, multiply reflected phases have an oppo-
site dependence of travel time on the ray parameter: the delay relative to P is
increasing with increasing epicentral distance. In principle, for detecting the mul-
tiples one should calculate their theoretical delays and to introduce the moveout
corrections in the same way, as it was made for the converted phases. Instead,
one can apply slant stacking. The moveout corrections are calculated as a dif-
ferential slowness (relative to P) multiplied by differential distance. This kind
of stacking implies that the delay of the signal relative to > depends linearly on
epicentral distance. Strictly speaking, this is not correct, but can be used as a
first approximation. Then the converted and the multiply reflected phases can
be detected in the negative and positive differential slowness range, respectively.
Since slowness is proportional to wavenumber, stacking the receiver functions is
very similar to the conventional wavenumber-frequency filtering with the receiver
array. The properties of the wavenumber filter are determined by the distribu-
tion of the seismic events with epicentral distance in about the same way, as
the performance of a receiver array depends oun the array aperture. If the events
are concentrated in a narrow distance range, this implies filtering with a poor
resolution.

Figure 4 shows the results of both kinds of stacking for a few seismograph
stations. In the left column the receiver functions are stacked with moveout cor-
rections for converted phases which are formed in the depth range between 0 and
800 km. In the right column, the same receiver functions are stacked for differen-
tial slowness between —0.30 and 0.30 s/deg. The data for station YAK contain
the phases converted from the Moho (at about 5 s) and from discontinuities at
about 410 km and 660 km. Time interval between 5 and 30 s is dominated by
crustal multiples. The data for station SCZ in addition contain strong multiples,
which arrive at about 50 s. In the data of station PAS, the multiples are dominant
in the whole time window of interest. Differential slowness is the most impor-
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tant (if not the only) criterion for discriminating between the signals (converted
phases) and noise.

While the receiver function technique was developed for a single station, it
can also be applied to seismic arrays. In that case, the receiver functions can be
stacked not for separate stations, but for separate conversion points. This kind
of imaging has much in common with migration in seismic exploration.

Signal/noise ratio enhancement by stacking depends on the degree of corre-
lation between the signals in the individual traces. The effect of scatter in the
traveltimes is quantified with the expression:

E/Ey=1/n+[(n—1}/n] exp{—oZw?),

where E is the actual energy in the stack, Eq is the maximum possible energy,
n is the number of stacked traces, w is angular frequency of the signal, and o is
the rms value of the traveltime fluctuations. There are examples of detection of
phases with a frequency of 1 Hz. Such observations are only possible if ¢ is not
much larger than 0.1 s.

While stacking of the receiver functions is essentially a linear procedure, there
are nonlinear detection techniques, like n-th root method. Instead of the initial
trace, the N-th root of it with the sign preserved is taken, and the transformed
traces are stacked:

En(t) = 37 3 16O sign{l(t)),

The stack is raised to the N-th power, with the sign preserved

n(t) = [En(t)]" sign{Ew()}.

There are examples when this method or equivalent techniques were used for
stacking the receiver functions, but, generally, the benefits of this are not evident.
First, this method distorts waveforms, and since it has no strong theoretical
background, the magnitude of distortion is hard to estimate. And second, like
other nonlinear techniques, it suppresses weak signals and enhances strong ones.
The interest of the seismologist is usually opposite.

2.3 Inverse problem for receiver function

The secondary phases, which are present in receiver function, have different sen-
sitivities to the properties of subsurface structure. Multiply reflected phases are
sensitive to both velocity and density contrasts at the discontinuities. If the width
of the discontinuity exceeds quarter of the wavelength, the reflection coefficient
becomes very small. The converted phases are strongly sensitive practically only
to the S velocity contrast. The transmission coefficient of the converted phase is



reduced significantly relative to the maximum value, if the width of the disconti-
nuity is around the § wavelength or larger.

Inverse problem for receiver functions was approached in several studies deal-
ing with crustal structures. The best way of inverting receiver functions for
crustal structure would be to separate and investigate all secondary (reflected
and converted) phases. This, however, is usually difficult, because they interfere
with each other, and their differences in slowness are small. Therefore, generally,
the wavefield should be interpreted without separating the constituent phases.
Meaningful results can be obtained for planc-layered models. At high frequencies
(around 1 Hz), the wavefield is dominated by scattered rather than reflected and
converted phases, and the technique is applicable starting from about 0.5 Hz.
Stacking the receiver functions is necessary in order to suppress scattered waves
and other random features of the wavefield. In the algorithm developed in the [PE
(Moscow), the synthetic SV component is calculated by using the expression

Svsyn (t: U(d)a C)

1 /.+oo Hsv(w, ’U(d), C) L(w) exp(zwt) dwu

T2 ) Hy(w,o(d),c)

where v(d) is a vector of the variable model parameters, ¢ is the apparent velocity,
Hgv{w,v(d),c) and Hy(w,v(d}, ¢) are the SV and L components of the theoret-
ical frequency response of the layered structure, and L(w) is the spectrum of the
stack of deconvolved L components. The theoretical response is computed using
Thomson-Haskell matrix method. To test the model, the synthetic SV compo-
nent is compared with the stack of the receiver functions. The inversion procedure
is based on the general method of solving ill-posed inverse problems. The op-
timum parameters of the model can be found by iterative minimization of the
smoothing functional:

F(u(d), ¢) = [[SVops(t) — SVsyn(t, v(d), o}l + ag(d)[lv{d) — vo(d}],

where vo{d) is the starting velocity model, ¢(d) is the weight functions and « is
the damping parameter. The parameter & changes during the inversion procedure
as app1 = 0p Acv, where a, is the value of « in the preceding iteration, and Aw
is less than 1.0. The second terin of this expression keeps the solution near the
starting model. Usually the result depends on the starting model, and in order
to find robust features of the solution, many experiments with different starting
models are required.

The highest accuracy of the inversion is achieved in the high gradient zones,
because these zones produce the converted phases, and the solution appears to be
well constrained. Therefore, the best results arc usually obtained for the upper
and the lower crust, but not for the middle crust with a nearly constant velocity.
There is a trade-off between the average velocity above the discontinuity and
its depth. Using receiver functions in a broad range of epicentral distance can
decrease the uncertainty.



3 Other kinds of receiver functions

There are other seismic techniques with a very similar approach to the data treat-
ment. For example, studies of the mantle discontinuities, which are based on
observations of precursors to S5, use a similar technique. Teleseismic 5S phase
(S wave reflected from the Earth’s surface in the midpoint between the source
and the receiver) is preceded by weak phases (precursors), which are reflected
(or scattered) from the underside of the mantle discontinuities. In this case the
parent phase is SS, and SH component of the record is deconvolved by the
SH component of §S. The deconvolved records of many events at many stations
with the bouncing points within certain regions are stacked. The times of the
precursors relative to SS depend on the S velocity in the mantle and depths of
the discontinuities. With this technique, the depths of the major mantle discon-
tinuities (those at about 410 km and 660 km depths) were mapped worldwide.
However, the accuracy of these estimates is disputable, and later I will compare
them with the results of observations of the Ps converted phases at the same
locations.

A similar approach was used in the analysis of multiple ScS reverberation.
The coefficients of reflection of SH from the Earth’s surface and the core-mantle
boundary are close to unity, and the recordings of strong deep events contain a
sequence of clearly visible waves reflected a few times from the free surface and
the core-mantie boundary. Weaker phases, reflected from the mantle disconti-
nuities accompany these strong ones. To detect the phases reflected from the
mantle discontinuities, recordings of many events are deconvolved by ScS and
the deconvolved traces are stacked with appropriate moveout corrections.

The best data on discontinuities in subduction zones are provided by observa-
tions of phases, which are converted from S to P in the source region and arrive
in the tail of the P wave. In short-period frequency range these phases some-
times are detected in array recordings of deep events. Now, the receiver function
technique is extended for detecting these phases in the broadband recordings of
conventional seismograph stations. The idea is to deconvolve the vertical com-
ponent of the teleseismic record by the S waveform in the same record and to
stack the deconvolved vertical components of many records. This technique has
been recently used in the search for discontinuities in the lower mantle, and some
results will be shown at the end of the lecture.

Finally, reliable detection of the Ps converted phases corresponding to the
uppermost mantle is hampered by arrivals of crustal multiples (see Figure 4). A
possible solution of this problem is to use phases converted from S to P rather
than from P to S, because the mantle converted phases Sp arrive earlier than
the crustal multiples. The appropriate technique (S recetver function technique)
has been introduced recently. Examples of application of this technique will be
shown later. They include analysis of structure of the upper layer of the Moon.



4 Receiver functions for anisotropic media

In the isotropic, laterally homogeneous medium the P wave is coupled only
with SV. In anisotropic medium, all three components of motion (vertical 7,
radial R and transverse T') are coupled.

One of the most useful techniques for measuring azimuthal anisotropy in
the mantle is closely related to the receiver function technique. In azimuthally
anisotropic medium, 5 wave with a nearly vertical direction of propagation splits
into two quasi-shear waves, which propagate with different velocities, and po-
larizations of which are perpendicular to the wave propagation direction and to
each other. Assume that on its way to the Earth's surface the S wave propagates
through an anisotropic layer. Neglecting the vertical component, the relation-
ship between the radial (R) and transverse (I') components of this wave above
the layer and its SV and SH components beneath the layer can be described in
frequency domain by matrix equation

[A{wW)] = [F()[S ()],

where [A(w)] is column vector with the elements R(w) and T'(w}); [S(w)] is col-
umn vector with elements SVp(w) and SHy(w); matrix [F(w)] contains transfer

functions
Rsv(w) Hsp(w)
Tsv(w) Tsu(w)]’

Approximate expressions for the transfer functions can be obtained by using
Figure 5. Incoming S wave in Figure 5 is SV with the vertical incidence and unit
amplitude. In anisotropic layer with a horizontal symmetry axis the incoming
wave splits into the fast and slow quasi-shear waves. Polarization of the fast
wave is parallel to the crystallographic axis a in olivine. Fast direction forms
angle § with direction R. Arrows show amplitudes of the incoming and split
waves. Amplitudes of the split waves are equal to cos 8 and sin g for the fast
and slow split waves, respectively. Amplitudes of the transfer functions can be
obtained by projecting the amplitudes of the split waves on the axes R and 1"
The resulting expressions for the transfer functions are

Rsy(w) = cos® 8 + sin® F exp(—iw ),
Tsv(w) &~ Rsg(w) = —0.5sin 231 — exp(—iw 8t}],
Tsu(w) = sin® 8 + cos* Bexp(—iw 6t).

Here 6t is the traveltime delay of the slow split wave relative to the fast one. Thus,
the effect of azimuthal anisotropy can be described by two parameters: (1) fast
direction (polarization direction of the fast split wave) and (2) delay of the slow
wave relative to the fast one. First parameter is controlled by the direction of
symmetry axis in the anisotropic layer. Second parameter is proportional to the



strength of anisotropy {(difference between the fast and slow velocity) and the
thickness of the layer.

Measurements of the parameters of anisotropy beneath the seismograph sta-
tion are based on the recordings of seismic phase SKS. This phase propagates
as the S wave in the mantle and as P wave in the liquid core of the Earth. Due
to coupling between SV and P at the core/mantle boundary SK.S in isotropic
Earth should be polarized as SV. Putting SHy(w) = 0 in the expressions for
R{w) and T(w), we get

SVo(w) = R(w)/Rsv(w)

and
T(w) = Tsv(w)R(w)/Rsv (w).

Using last expression we can find the theoretical T'(w) for any pair of the
parameters of anisotropy and (by inverse Fourier transformation of T(w)) the
related synthetic seismogram of the T component of SKS phase. The opti-
mum pair provides minimum rms difference between the observed and synthetic
T components. This approach has much in common with the receiver function
inversion: in both cases one component of wave moton is used to synthesize the
other component. In both cases the optimum model minimizes the difference
between the observed and synthetic components.

At long periods (w8t < 1) the harmonic components of SKS are related as

R(t) =~ coswt,
T(t) =~ 0.5w 8t sin 23 sin wt.

This means that the T component of SK S is shifted in time with respect
to the R component by a quarter period, and its amplitude is proportional to
frequency. In other words, the T component is proportional to the derivative of
the R component. This relation between the R and T components of SK S allows
to recognize the effect of azimuthal anisotropy and to distinguish it from lateral
heterogeneity. The term sin 23 means that T/R amplitude ratio is a harmonic
function of azimuth with a period of 7.

These properties suggest an alternative technique for processing SKS record-
ings. Contribution of azimuthal anisotropy to the T component of SK.S can
be retrieved by deconvolving the T component of many recordings by the re-
spective R component and stacking the deconvolved T' components with weights
depending on back azimuth of the event. The weight W; is defined as

13
Wi = cos 2000 — 1) | 3 cos® 20 = )
i=1
where ¢; is back azimuth of the i-th event, n is the number of events, and ¢ 15
a variable parameter. The stacking allows to isolate second azimuthal harmonic

(with a period of 7). The value of i, which provides maximum amplitude of
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the stack has meaning of phase of this harmonic. This value differs from the
fast direction of anisotropy by =15 degrees. The value of éf corresponds to the
maximum amplitude of the stack.

Observations of SKS provide excellent lateral resolution but they are in-
sensitive to depth of anisotropy. Distribution of anisotropy with depth can be
constrained with the aid of receiver functions. In an isotropic laterally homoge-
neous Earth, secondary (converted and reflected) phases are polarized strictly in
the vertical plane containing the source and the receiver, and their amplitudes
are independent of the azimuth. In the presence of azimuthal anisotropy, an
appreciable amount of energy of the secondary phases is contained in the T' com-
ponent, and the amplitude of the SV component depends on the azimuth. There
are two different mechanisms responsible for the T" component of the Ps phases.
If this phase is converted from the boundary between two isotropic media, the
T component can arise from the splitting of §V'. This mechanism is exploited in
the SK S techniques. If the phase is converted from the discontinuity between
anisotropic media with different anisotropies or from the discontinuity between
isotropic and anisotropic media, the T component, like SV, is generated directly
by conversion from P. In the process of further propagation, both the SV and
T component are modified by shear wave splitting.

Figure 6 demonstrates synthetic seismograms for a medium with azimuthal
anisotropy. Anisotropy is hexagonal with a horizontal axis of symmetry. This
is the simplest kind of anisotropy that is consistent with the properties of crust
and mantle rocks. Anisotropy is in the layer between 30 and 180 km depths, fast
direction of anisotropy is 0 degrees, velocities of the fast and slow split waves
differ by 3%. Isotropic discontinuity is placed at a depth of 410 km. The only
strong wave in the L component is P wave at a time of 0 s. It is followed by
arrival at a time of 3 s, which is seen in both H and T components. This phase
is formed by conversion from P to S at the upper boundary of the anisotropic
layer. Two phases which arrive at a time around 10-12 s are multiple reflections
(from the free surface and the upper boundary of the anisotropic layer). Tho
phases that arrive at a time around 18 s are formed by conversion from P to S
at the lower boundary of the anisotropic layer and by subsequent splitting of the
S wave in this layer. Finally, the phases that arrive at a time ariund 40 s are
formed by conversion from P to S at a depth of 410 km and splitting of 5 in the
anisotropic layer. There are strong differences between polarities and amplitudes
of differet phases in the same component and between those of the same phasc
in different components.

We filtered H and T components of this wavefield in azimuth domain by
stacking the traces with weights W; depending on their azimuths. The weights
are different for the H and T" components and are defined as

II;I((;') = sin 2(’(," - 595)/ Z Sinz Q(Ir/) - (\QJ)’

11



WH(p) = —cos 2(zp — {pi)/ > cos® 2(¢ — ¢;),
=1

where ¢ is back azimuth of the i-th trace, and # is a variable parameter. These
filters isolate second azimuthal harmonic with a period of 7 and introduce a
phase shift between the stacks of H and T components in azimuth domain. The
results of azimuthal filtering of traces in Figure 6 are presented in Figure 7. In
spite of differences between the initial H and T components, the stacked traces are
remarkably similar. This similarity presents an important criterion to distinguish
azimuthal anisotropy from lateral heterogeneity. The actual receiver functions in
a broad range of azimuths should be stacked with the azimuth-dependent weights
like synthetics in Figure 6. The results of stacking can be inverted for subsurface
structure by comparing them with the synthetics that are processed like the actual
recordings. The optimum model should also be consistent with the observations
of SK S at the same station. Examples of processing and interpreting the actual
data will be demonstrated.

Processing of the secondary phases related to the P wave can be comple-
mented by analysis of precursors to the teleseismic S. The precursors contain
waves converted from S to P in a vicinity of the station but no crustal multiples.
To detect the Sp phases and their azimuthal variations caused by azimuthal
anisotropy we have developed a stacking technique, which can be termed the
S receiver function technique. We decompose the three-component seismogram
is decomposed into P, SV and T" components. SV corresponds to the principal
particle motion direction in the wave propagation plane. The P axis is perpen-
dicular to the SV axis in the same plane. Orthogonality of the SV and P axes
allows to observe the Sp phases in the P component without interference with
the stronger S wave. The P component of every recording is deconvolved by the
principal (M) component of the § wave motion.

The deconvolved recordings are separated into groups. Back azimuths of the
events of one group are close to each other, whereas their focal mechanisms are
different. For each group we can derive the P component (observed at the free
surface) corresponding to the incident SV in the isotropic half-space (beneath
the anisotropic layers) and deconvolved by the SV observed at the free surface.
This component can be obtained by stacking the deconvolved P components with
weights depending on the level of noise and the angle between the M direction
and backazimuth of the event. Various models can be tested by comparing this
component with the corresponding synthetics. The technique was tested and
allowed to detect, among other phases of interest, the Sp phase related to Lehman
discontinuity at a depth of 230 km.

12



5 Examples of applications of the receiver func-
tion techniques

Applications of the receiver function techniques will be illustrated with results of
several recent studies. The geophysical problems to be addressed are as follows:

1. Detailed structure of the upper mantle discontinuities in the Kuril-Japan
subduction zone.

2. Topography of the upper mantle discontinuities on a global scale.

3. Teleseismic travel-time residuals in North America, as derived from receiver
functions, and anelasticity of the asthenosphere.

4. Search for discontinuities in the lower mantle.

5. Depth dependent anisotropy in central Europe by P and S receiver func-
tions.

6. Seismic evidence of flow at the base of the upper mantle.

7. Crustal structure of the Moon.

13
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