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NEW PERSPECTIVES OPENED BY GEOPHYSICAL MODELLING AND
BY CONSTRAINTS.FROM THE GRAVITY AND.DEFORMATION. FIELDS.

In the following decades, the major advancements in our understanding of the
dynamics-and time evolution. of the Earth. as-an.integrated system, including a.variety.
of geophysical processes that affect the life of the human beings, will come from joint
efforts in geophysics and geodesy, from a tight link between the mathematical
modelling of the geophysical phenomena. and.the constraints provided by the gravity
field, of its time dependent and static components, long and short wavelengths, and by
geodetically detected crustal deformation rates.
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Normal Mode Model 11

with gp denoting the component in the initial state and g1 in the perturbed state.
The stress tensor o can also be split into an initial part and incremental part,
with, taking advection of initial (hydrostatic) pre-stress into account, reads:

oij = Oij0 + % - 0gdij + 0451 (3.6)
with the initial hydrostatic stress condition o; 0 given by:
75,0 = —Podi; 3.7

and ;1 a tensor which describes the acquired, generally non-hydrostatic,
stress. Combining (3.2) - (3.7) with (3.1) gives the following linearized balance
of forces in the deformed situation:

—Vpo+ V- gy —Vipogt-é;) + pﬁ =0 (3.8)

The force F can generally be split into gravity and all kind of other forcings
and loads (e.g. tidal forces, centrifugal forces, loads due to ice-water redis-
tribution, earthquake forcings, etc.). Let us, for the moment, assume that the
force F is the gravity (so essentially the condition of a free, self-gravitating
Earth with no other forcings or loads acting on its surface or interior) and that,
as it is a conservative force, it can be expressed as the negative gradient of the
potential field ¢:

F=-V¢ (3.9)
The potential field ¢ can be written as
¢ =¢o+¢1 (3.10)

with ¢g the field in the initial state and ¢ the infinitesimal perturbation.
Combining (3.4) with (3.9) - (3.10) and inserting this in (3.8) leads to the
following linearized equation of momentum:

V.01 - Vipoq1i- &) — poVér — prgoér =0 (3.11)
whereby use is made of the fact that, according to (3.1), in the initial state
V-ao + poFy =0 (3.12)

with Fy = go the volume force in the initial state. Note that there is not a
term with p; in the advective term of (3.8), as this would combine with ¢ to a
second-order term. For the same reason the term p; ¢ does not occur in (3.11).
Note also that the first term of (3.8) is canceled by the term —pgV g, as

Vpo = poVo (3.13)
according to (3.2) and (3.9).
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12 EARTH ROTATION, SEA LEVEL AND GEODYNAMICAL PROCESSES

The first term of (3.12) describes the contribution from the stress, the second
term the advection of the (hydrostatic) pre-stress, the third term the changed
gravity (self-gravitation) and the fourth term the changed density (compress-
ibility). In cases where self-gravitation is neglected, the third term will be zero,
while in the case of incompressibility the fourth term will be zero.

The perturbed gravitational potential ¢, satisfies the Poisson equation

Vi, = —47Gpy (3.14)

with & the universal gravitational constant. In the case of incompressibility the
right-hand term will be zero and (3.14) reduces to the Laplace equation

Vig =0 (3.15)

Equations (3.11) and (3.14) (or (3.15) for incompressible deformation) need
to supplemented with a constitutional equation describing how stress and strain
(or strain rate) are related to each other, and for this we can, for instance, use
the MaxweHl model.

For the 3-D Maxwell model, stress and strain rate are related by

: 1 : 2
di; + %(Uij - E E Jkkéij) = Z#Eij + A E Ekk5'ij (3.16)
k=1 k=1

0.1 FUNDAMENTAL SOLUTIONS IN THE LAPLACE
DOMAIN

In principle, deformation, stress field and gravity field for free Earth models
can be solved by means of numerical integration techniques from the three
equations (2.8), (2.10) or (2.11), and (2.12) with appropriate initial, boundary
and continuity conditions. However, we will see that it is al<o possible to solve
these equations virtually completely analytically by means of normal model
modeling in the Laplace transformed domain. This analytical way of solving
has a few great advantages: it leads us to a deeper insight in "he mechanisms of
the relaxation process with additional checking possibilitie:, and certainly for
spherical (global) models they often prove easier to use than numerical integra-
tion techniques. Numerical integration techniques have also their advantages.
For instance, they can generally easier deal with more elab rate models (e.g.,
those that use non-linear rheologies or lateral variations) and often prove sim-
pler to use in half-space (regional) models. So the numerical and analytical
models are more to be appreciated as being complimentary than redundant.

The Laplace transform F'(s) of a function f(¢) is defined by

F(s) = /_OO flt)estdt (3.17)
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Normal Mode Model 17

d? d
E@EH(B) + cotB-JéP;(B) = ~l(l + 1)P(8) (3.51)
It is also necessary to make use of the derivative of the Legendre equation
d [d—zP ) +c tGiP(B) +Il{+1)P(8)) =0 (3.52)
6 agz 110 + ot R N = '
—d—s——P+d—chotB—iP[1+cot29+£(l+1)]-0 (3.53)
dg3"' " dg? ! 6" - '

—(%)[2!(5 +1)v + 1] (3.54)

From the expression of the divergence V- in spherical coordinates it is
possible to express A in terms of the harmonic components of the displacement
vector. From A =V -u

xi=Ui+2r7 0 — I + 1)Vpr? (3.55)

The solution vector is defined by

n = U

_ rUj+2U
v2 = ")
ys=T;, =1L + 20U}
Y4 = Tifo = u(V& _v + {_,{L) (3.56)

ys = —
Yo = —y — &;Lufﬁz +4nGpol

where II; = Ax;. The quantity yg is for obvious reasons sometimes nick-
named the potential stress. Why this parameter () is chosen rather than d¢/dr
will become clear when the boundary conditions are discussed in the next
section.

Exercise. Prove that with the above definition of solution vector, the mo-
mentum and Laplace equations can be cast in the matrix form

d
—y=A'y {(3.57
dr

where
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18 EARTH ROTATION, SEA LEVEL AND GEODYNAMICAL PROCESSES
2X H{1+1)A 1
[ & e 50 0 o
-1 ! 0 f 0 0
477 _ 1) f2y _dp Ui+l) p(i4l)
Ag(?‘ s) = r (r pg) r T P9 ar T r
! 1 (2 2u—{{1+1)(v+ X 3
~1(Z - ) S R  —y 0
—4nGp 0 1] 1] _HTI 1
4rGo(l+1 anGpl{i+1) 11
\ - j:'( : - pr 0 0 0 T
(3.58)
with
B(s) = A(s) + 2u(s) (3.59)
o0 3A(s) + 2u(s)
5) + 8
Y(s) = p(s) S (3.60)

A(s) + 2u(s)

In the incompressible case the Lamé parameter A becomes infinitely large
in such a way that AV - u(s) is finite and equal in magnitude to the isotropic
pressure. For the incompressible case. (2.17) results in A(s) — oc. implying

that (=« - ~ uaccording to 2.37). und LCoeniing 10 (238
With thi-. e matriv - 2.36) be ymes for G0 e caie
[ 2 l{i+1) o o 0
_i i L 0 0
’ 1(1+1) (6 zgtilg (1+1)
4(3p _ - St _ 0 p -
Ayr,s) = Tl( o " 2r2£2+(2;1 ,upg) L3 P
—H (% e) MG L3 e
—4nGp 0 0 0 ﬁ% 1
\ _47er;(!+1) 41:Gpi(l+1) 0 0 o l;l }
(3.61)
3. ANALYTICAL SOLUTION FOR THE
INCOMPRESSIBLE CASE
From the condition of incompressibility
xt=0 (3.62)
and homogeneity of each layer
oo =0 (3.63)
we obtain for the Laplace and momentum equations
DRAFT September 7, 2000, 5:41lpm D RAF T




Normal Mode Model 19

.2 W+
e 2o 4 . Jp=0 (3.64)
r r
0 = podt — podr(goU) + B (I + 2uU) 365
+5{4U, —4U + 1l + 1)(-U — rV +3V)}
0 = pod — pogol + I+ pré.(V = ¥ + ¥)
o 0?0 pron( e (3.66)
+E{5V +3rV -V - 2( + 1)V}
By definition
V=82 + 25, - 1 +2 ) (3.67)
r T

From () deriving ()with respect to », summing and subtracting (} we obtain
VZ(po# — pogolU +1I) = 0 (3.68)

From (), collecting the derivative with respectto r

8, (pod — pogol +10) = —2ul — %{4Ur»4v+z(z+ 1)(=U -V +3V)}
(3.69)
The right hand side can be put in the form

2ull — :‘—2[4(11» —4U 1+ WU — A+ DV + 3L+ V] (3.70)
that becomes with () and ()
—ul —42u - 2Eu + g+ o (3.71)
r r I

Multiplying by r? () becomes

ur?U + 4urlU + 2uU — pl(l+ DU = por?d.(goU — 1 — ¢) (3.72)

We define

pogolU —pop — 11 =T (3.73}
Exercise. Show that the solution of the Laplace equation takes the form

It is possible to demonstrate that the solution of () takes the following form

DRAFT September 7, 2000, 5:41lpm D R A F T
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20 EARTH ROTATION, SEA LEVEL AND GEODYNAMICAL PROCESSES

¢ = cyrt + cjr (D (3.74)

where r! denotes the regular solution in r = 0 and »~(+1) denotes the
singular one.

I takes the following form, with the same dependence of ¢ with respect to r

T = peyrt + pcir=(HD (3.75)

The homogeneous equation

r2U + 40U +2U0 - 11+ 1)U =0 (3.76)
obtained from (52) has two solutions, a regular one
cor~ (1) (3.77)
and a singular one
() = % (3.78)
2 r+2)

A particular solution for the regular component can be obtained substituting
the regular component of I, providing

r2U + 4rl +2U — I(1 + 1)U = rlcylr®-1 (3.79)
The regular solution is thus
_al 3.80
202 +3) 3-80)
The singular component of the solution becomes, with the same procedure
(i+1)
AL 3.81
“oar—1)" 8D
Summing up all the contributions we obtain
eylr(+1) oy, Al+D) L e
U= —— e 3.82
Taay e T taaroyy T 582
From () and () we obtain
. 143 I+t | ey i—1
V= ammsen Tt
) (3.83)
w20 1 _ 3 (42
+Clm1" - ﬂ_%f‘ (+2)
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Normal Mode Model 21

Exercise. Verify that with the definitions of the solution vector, y3, y4 and
ys take the form

¢ 1+2
— [2FI(I+12)(;Ii§(;Alr ] + 62[,00/11”1 + 2u(l - 1)1‘1_2]

« [ =20+ 1)U+ A{I+1) - {+1)
+e3[—port] + ¢} [ e+l 2(21-‘33 (1) ] (3-84)

+e3{—2u(l + 2)r~ W3 4 pg Ar=ED] 4 e5[—por= (1]

o2 g 20-1) (-2
Y4 = Cigpuen ! T2 r(t=2

(3.85)
202 -1)  — 201+2)
+CT%T-1’§’" t+1) 4 3 S ) —(143)
Y = +c1 33,?-—‘421[:_;; + 3Acort™1 — c3 (20 + 1)1“‘l
(3.86)

+c} 71_?32442:;1) rl 4 3Ar (D)

For each of the /V layers of the Earth model (assuming that each layer has
material parameters which are constant inside it, while also the gravity g is
assumed to be constant inside such a layer), the solution can be written as

yl(rs S) = YI(T': 5) ’ CI(T) (387)

in which Y, is the fundamental matrix and C, a 6-vector integration constant.
The fundamental matrix Y,(r, s) reads

—i-2 i

Irit -1 {i+1)r=!
( 2(A+3) T 0 TLTz 211 r 0
(143)ri+! -1 0 2! _roi=?
ALNIFL 7 20(20-T) +1) 0
(tpgr+2(4° ~1-8)u)r - {I+1}pgr—2(2+31-1)p  pgr—2(1+2)p
3317 3) ("’g”(?"l),“”"t ’ -ert 2(2I—1)717] T3 T
(1+2)prt 2(1—1)pr! -2 1?-1)pu 2g£+22u
TR T{ENY) ] ¢ I~y T TH1jri+s 0
0 0 —r! 0 0 —4
2aGplrltt -1 1 2rGp(l+1 G
\ T 4xGpr ~(2r e Gt 0
(3.88)

Each column of this fundamental matrix represents an independent solution of
(2.34) with A given by (2.39).
A is defined by

4
A= gzrrgpo (3.89)
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22 EARTH ROTATION, SEA LEVEL AND GEODYNAMICAL PROCESSES

The inverse of the fundamental matrix Y has the form
Y (r,s) = Dy(r)Yy(r, s) (3.90)

with D being a diagonal matrix with elements

) 1 [+1 {I+1) 1 ;o HE+1) 1+2 I+1
diag(Dy(r)) = 3777 ('r"“ Y@ - L)L e s 2020+3)
(3.91)
and
( Eﬁ—r—z(m—z) air) —-L & 0\
o MO ey B -8
v _ 4rGp 0 0 0 0 -1
ir,s) = 29" 4oy ar-ny  —n UEr e
p9r 2@2_5_32 2u(1+42) T jl+3[r _pr 0
[ ¢ 7 7 I
\ AxGpr 0 0 0 2+1 —"}
(3.92)

Although it would be quite laborious to derive such an analytical compact form
of a 6 x 6 inverse matrix ‘by hand’, this can easily be done nowadays by means
of an algebraic software package like Mathematica. Of course, it is not so
difficult to show analytically that Y x Y~! = I, with I the identity matrix, by
hand!

3.1 TOROIDAL SOLUTION FOR THE
INCOMPRESSIBLE CASE

The analogous of the A matrix for the toroidal case has been obtained by
Alterman, Jarosh and Pekeris (1959) for the elqastic case, thit remains valid
also for the viscoelastic case once the Correspondence Principle is considered.
It reads, with the superscript 7" to distinguish the toroidat case

1 1
T 1
Aj(r.s) = ( ()l tr+1}72) '(5) ) (3.93)
T r
The vector solution y” is given by
dty” "
= tiyg = 3.94
1=z = pls)— - 7") (3.94)

Exercise. Show that the [ component of the fundamental solution is given
by
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rt pi-l
¥ile) = (n(s)(z—l)rf—l —p(s)a+2)r—‘-2) G99

The inverse matrix of the fundamental solution reads

12+£ rl“l
142
YT(rs) = { SG%) MG (3.96)
1+2] —p(1+20)

3.2 SOLUTION FOR AN ARBITRARY FORCING
SOURCE

After the solution for the homogeneous system of ordinary differential equa-
tions has been provided, it is now necessary to derive the solution of the
non-homogeneous equations that account for the forcing term F entering equa-
tion (3.1), to deal with surface or internal loads, centrifugal forces and seismic
dislocations.

The general solution of the non-homogeneous system of ordinary differential
equations, where f is the vector characterizing the source

d
SY=A-y+f (3.97)

is given by

v = YOU YO8 + Y roly(ro)]  398)

In the following derivation it is assumed that the source is embedded in the
outermost layer of radius a, detoting the radius of the Earth, and internal radius
b, denoting the interface between the bottom of the lithosphere and underlying
layer. This procedure can generalized to a source embedded in an arbitrary
internal layer. If the vector £ has this form

f=f18(r—r,) (3.99)

with r, denoting the radius of the source the non homogeneous system of
ordinary differential equations takes the following form

v = { ZONTME YO0 s g

Y(r)Y~H{b)y(b), b<r<ryg

Exercise. Show that, if the forcing vector has the form
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f=Ffd(r—ry) +£8(r—ry) (3.101)

the solution is given by

_ Y)Y r )X+ Al )f) + Y by (B)] e <7 <a
(r) = { Y(r)Y " (b)y(b), b<r <y
(3.102)

4. PROPAGATOR MATRIX TECHNIQUE

For each layer of a spherical Earth model the solution vector {(2.39) can be
determined from the fundamental matrix. This solution vector expresses the
most general solution for the displacements (radial and lateral), the stresses
(radial and lateral), the gravity and the parameter y¢ from which the gravity
gradient can be derived, for each layer of the spherical model and for each
harmonic degree ! in the Laplace domain. Each viscoelastic layer of the model
is bounded by either another internal viscoelastic layer or an external layer (free
outer surface, inviscid outer core layer at the core-mantle boundary). For each
of these cases we need to determine the boundary conditions.

The internal boundary conditions are quite easy: for a boundary between
two viscoelastic layers we require that U, Vj, o1, 0rg; and ¢y are continuous.
This implies that during deformation there will be no ‘cavitation’ and no slip,
while it is also assumed that no material crosses the boundary (otherwise
we should have considered continuity of flow, pU, rather than U;). Internal
boundaries where no material crosses are called chemical boundaries. Internal
boundaries where material does cross, undergoing a phase change, are called
phase-change boundaries. The boundary between the upper mantle and lower
mantle at about 670 km depth is likely to be partly a chemical and partly a
phase-change boundary, but we will assume here that in owr Earth models there
are only chemical boundaries.

As was already alluded to when the parameter yswas dofined in (2.34), we
do not take the gravity gradient as sixth component of t ¢ solution vector
but a combination of gravity, gravity gradient and radial lisplacement. The
reason becomes clear when the boundary condition for the gravity gradient at
the free outer surface of the model is considered. If ¢° de otes the gravity of
the external layer and ¢ of the top layer of the Earth model, then at the free

surface
6¢f 8@5,}
ool S S 1
or or 47rG,oUg (3.103)

As the gravity gradient of the external layer satisfies {note that ¢ proportional
to 1/r"*1 is a solution of (2.10), while the other solution, being proportial to
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r"*, becomes irregular at infinity)

e
O _ I+l (3.104)
or r
and
= (3.105)
we can express the external boundary condition as
0 [+1
Yo = _%_ —¢+4nGpl; =0 (3.106)
ar r

With this it is clear that also yg is continuous for internal boundaries between
viscoelastic layers.
At the interface r = ry, the top layer ¢, in which

yP(ri, 8) = YO (ry, s)C(ry) (3.107)
can be linked to the layer ¢ 4 1 below it, with
Gt (ri,s) = YO (i, 5)CH D (i) (3.108)
by
y = ylitl) (3.109)

as a consequence of the boundary conditions at the internal boundaries. With
(2.50) it is possible to express the unknown constant vector C¥) into the
unknown constant vector C**+1), Doing this for every internal boundary of an
N layer model (layer 1 is the top layer (crust or lithosphere), layers 2,3, ..., N—1
the layers below it, and layer N the core), the solution vector at the surface of

the Earth at r = a can be related to the conditions CE(N) (r¢) at the core - mantle
boundary (CMB) r = r. as

N-1 . o
y(a,s) = (H Yy, 5) YD l(ri+1,s)) Y (r, s)C™M(r,) (3.110)

i=1

The conditions at the CMB have been disputed among geophysicists since
the 1960’s. This controversy concentrates on the treatment of the continuity
conditions for the vertical deformation at the CMB. Without going into details,
if it is required that the vertical deformation at the CMB should be continuous,
then this restricts the core to being either into a state of neutral equilibrium
{homogeneous with neutral adiabatic temperature gradient) or that the radial
stress at the CMB is zero. Both could be the case, but such restrictions are
obvicusly not always the case in reality. Therefore the vertical deformation
should in general not be continuous at the CMB. This might seem strange,
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26 EARTH ROTATION, SEA LEVEL AND GEODYNAMICAL PROCESSES

as one would think that this could lead to ‘cavitation’ or to overlap of layers
occurring. The way out of this conundrum is that the fluid core layers are rather
to be interpreted as equipotentials rather than material layers.

The gravity should be continuous at the CMB, at least: if we assume that
there are no additional masses positioned at the CMB. Inside the core, the
gravity should be proportional to r!, as the other solution of (2.10) is irregular
at the center of the Earth. Note that this is in contrast to the surface gravity that
we used to derive (2.45). So for the lowermost mantle layer at the CMB we get

N
yM o) = Kyt (3.111)
with yém the fifth component of the vector y*~) and K| a constant.
Assuming that the core is inviscid (fluid), we can readily deduce that the
tangential displacement of the mantle is not restricted, so for the lowermost
mantle layer at the CMB we can set

v (re) = Ko (3.112)
with K» a constant and yéN) the second component of the vector y{™).
This leads to the following condition for the lowermost mantle layer at the
CMB (note the minus sign of ¢ in (2.33)):

(N) 3pi-1

(N} \_ Y5 L "
¥ (re) o + Ky 4erpcK1+K3 (3.113)

with g, the gravity at the CMB, K5 a constant, and y&N) the first component of
the vector y(N).

The radial stress (pressure) should be continuous over the CMB. With (2.54)
this leads for the lowermost mantle layer at the CMB to the condition

4
y:(;N)(rc) = gepK3 = —ngp?rCKg (3.114)

with ygN) the third component of the vector y™V/,
The tangential stress in the fiuid core is zero, and thus continuity of stress
requires for the lowermost mantle layer at the CMB that

yiN’(rc) =0 (3.115)

with yiN) the fourth component of the vector 3.

Finally, the parameter () should also be continuous at the CMB, leading for
the lowermost mantle layer at the CMB to the condition ((2.52) and (2.54) in
(2.34)):

y(r) = 20 = D Ky + 4nGpeKs (3.116)
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with y{™ the sixth component of the vector y(¥),
If we treat the core as the innermost boundary layer, then with (2.52) - (2.57)
the conditions at the CMB can be expressed as a 6 x 3 interface matrix I ;(r.)
as

Y™ (re, s)CM (o) = Iy(re) - Ce (3.117)
with
—ri=tia, 0 1
0 1 0
— 0 0 peAcere

L(rs) = o o o (3.118)

rl 0 0

2= 0 3Ac

with p, the (uniform) density of the core, A, = %’H‘G perand G, = (K1, K2, K3)
a 3-vector constant.

The solution vector y(a, s) (2.51) with (2.58) can either express the condi-
tions for a free surface, or express the conditions for a (tidal} forcing or (surface)
loading. The loading/forcing case will be treated in section 2.5.

The solution vector y (R, s) can be split into two parts: one part that contains
the unconstrained parameters U}, V; and ¢; (which we are solving for), and the
other containing the constrained y3 = ory, Y4 = 0pg and ye.

For a free surface, the components of the latter, as we have seen already, are
all zero at the surface. If P} denotes the projection vector of (2.51) with (2.58)
on the third, fourth and sixth component of (2.51) with (2.58), then we get the
following condition:

N-1
» av—1
0 =Pyy(a,s) =P, ( IT Y®(ri,s)Y® (rm,s)) I.(re) - Ce

i=1

(3.119)

and this condition puts constraints on the s-values in the sense that only those
s-values for which (with (2.58))

N-1 . e
det (P1 (H Y, 5) Y (ri+1,s)) IC,;(TC)) =0 (3.120)

i=1

are non-zero solutions of (2.60). The expression (2.61) is called the secular
equation and the determinant the secular determinant. Its solutions 5 = s; (j =
1,2,3, ..., M) are the inverse relaxation times of the M relaxation modes of the
Earth model. These s; are dependent on the harmonic degree ! (and thus must
be determined for each harmonic degree), but the index { is left away in order
not to complicate the indexing. The total number of relaxation modes for each
harmonic degree, M, is the same for each harmonic degree (with the exception
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of degree 1, but we will not digress on the differences between degree 1 on the
one hand and degrees 2 and higher any further).

Experience and {extremely laborious) analytical proofs have led to the fol-
lowing results:

= The surface contributes one mode, labeled AMO.

« If there is an elastic lithosphere on top of a viscoelastic mantle, then there
is one mode triggered by the lithosphere - mantle boundary, labeled L0.

s At the boundary of two viscoelastic layers, one buoyancy mode is triggered
if the density on both sides of the boundary is different. Buoyancy modes
between two mantle layers are usually labeled M3, with: = 1,2,3, ..,
whereby M1 is usually the buoyancy mode associated with the 670 km
discontinuity (upper / lower mantle) and M2 with the 400 km discontinuity
{shallow upper mantle / mantle transition zone}.

w At the same boundary two additional viscoelastic modes are triggered if
the Maxwell time on both sides of the boundary is different (so if the
viscosity and rigidity are different, but the ratio of viscosity and rigidity not,
then these viscoelastic modes are absent). These ‘paired’ modes are also
called transient modes as they have relatively short relaxation times, and
are therefore usually labeled Tz, with ¢ = 1,2,3, ...

s The boundary between the lowermost mantle layer and the inviscid core
contributes one mode, labeled CO.

It is thus possible, with the above rules, to determine the total amount of
modes of (2.61). This is of importance, as solving (2.61) has to be done
numerically. However, this root-solving is the only non-analytical part of the
viscoelastic relaxation method as described in this chapter.

The root-solving procedure usually consists of two parts: grid-spacing,
followed by a bisection algorithm. In the grid-spacing part, the s-domain is
split into a number of discrete intervals. For each s-value at a boundary of
an interval, the value of the determinant of (2.61) is calculated, after which
this value is multiplied with the value of the determinant of the s-value of
the boundary next to it. If this product is positive, then the determinant has
not e¢ither not changed in sign (or has changed an even amount of times).
If the product is negative, then we are sure that there is (at least) one root
inside the interval bounded by the two s-values for which the determinant was
calculated. In that case, the interval is split up in two parts, and the procedure of
determining the product of the determinant of the bounding s-values is repeated.
The interval where the determinant changes sign will result again in a negative
product, and for this interval the procedure of cutting the interval in two, etc.,
is repeated. Thus the s-value where the determinant of (2.61) is equal to zero
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Figure 3.3. Relaxation times in years as a function of the harmonic degree ! and varying lower
mantle viscosity. The parameter C = vz /vuas is varied from 1 to 200. LB corresponds to
VoM = Vpa = 10“ Pas, while UB COF‘I’ES]}OHdS tovpay = 0.5% 1021 Pasandvppr = 2% 1022
Pas.

N-1 -
b=Piy/(R,s)=PF (H Yfz}(?"i, S)Yg(l) (ris1, S)) Ioi(re) - Co

i=1
(3.123)
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where b constrains &, org and yg at the surface. For a Heaviside function
mass load, the vector b reads

b= (—Z%g(R)(Qi +1)/R?,0, -G +1)/RHT (3.124)

The derivation of (2.89) will follow later.
The unconstrained parameters U/, V; and ¢y at the surface can be expressed
as

(UnVi, — #)'(R.s) = Py(R,s) =
N-1 -
= (Pz H Yz(l)(fi,S)Yz(i) (T‘i+1,5)1c,i(?“c)) - Cc(3.123)
i=1

with I% the projection vector of (2.51) with (2.58) on the first, second and
fifth component of (2.51) with (2.58).
Elimination of C, from (2.88) and (2.90) results in

N-1
UnLVi, — &)T(R,8) = (Pz 11 Y“’(n,s)w”“(ml,s)xc,l(rc)) -

i=1

N-1 -1
(Pl 1 YO, s)YO™ (i, s)Ic,i(rc)) b (3.126)
i=1

For each of the M solutions s; of (2.61) we can now determine the solutions
for U;, V; and ¢, by inverse-Laplace transformation using the residue theorem
of the former section. The solution vector Py (r, s) can be written as the sum
of an elastic term and M viscous terms;

Ki(r)

S-—Sj

M
Poy(r,s) =Ke(r)+ ) (3.127
7j=1

in which the K7(r) are the vector residues of the solution kernel vector
y(r, s) given by

. T
(P2BdIC(TC) (PIBIC(TC)) ) i b (3.128)
s det(P}_BIC(Tc)) 5=,
with
N-1 ] 1
B = ] Y®r,s)Y® (rig1.s) (3.129)
i=1
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and

(P1BIL.(r))t = (P1BI(r.))"! - det(P3 BI.(r.)) (3.130)

and K¢(r) the elastic limits

K'(r) = lim (P2BL(r.) - (P1BL(rc))™) - b (3.131)

This gives the radially dependent part of the Green functions for the variables
foreach degree /. Multiplying the Green functions with the Laplace transformed
forcing functions (which is the same as a convolution in the space - time
domain) and performing an inverse Laplace transformation gives the sought-
for expressions.

The inverse Laplace transform f(t) of a function F(s) is formally defined
by complex contour integration by (cf. (2.12))

t Lo F(s)e'd 3.132
f()—%[y_m (s)estds (3.132)
in which the real constant «y is chosen such that singularities of F'(s}e*® are
either ail on the left or all on the right side of the vertical line running from
v — ico to vy + toc. Closing the contour with a half-circle (either on the left of
the line or on the right, depending on where the singularities are situated) leads
to a complex contour that is known as the Bromwich path.
Applied to (2.92) gives for the Heaviside surface loading the solution

M
(UL Vi =) (r,8) = K(r)é(t) + DK/ (r)e" (3.133)

=1

Solution (2.96) shows that for each harmonic degree {, the horizontal dis-
placement, vertical displacement and change in gravity consist of an immediate
response to the (Heaviside) load (the elastic response), followed by M expo-
nentially decaying (viscous) responses. At least, the viscous responses are
decaying only if the inverse relaxation times s; for each harmonic degree are
negative. For incompressible models this turns out to be always the case if the
Earth layers show no density inversions in the radial Earth profile. However, if
there is a layer with a greater density than its neighboring layer below, then the
buoyancy mode for the interface will have a positive inverse relaxation time
for each harmonic degree . Such a positive relaxation time leads, according
to (2.96), to an exponentially increasing response in the displacements and
gravity variations, and thus the interface becomes Rayleigh-Taylor unstable. If
this occurs, convective motions will be triggered in the Earth model, and the
linearization assumed in the normal-mode theory as developed in this chapter
breaks down.
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7.  DISLOCATION SOURCE

With respect to the surface loading, the boundary conditions for dislocations
are the vanishing of the stress components and yg at the Earth’s surface

y3(a) = ya(e) = ye{a) =0 (3.134)
These conditions can be cast in the following form

PoY(a)[Y Hr)(If + A(r)E) + Y (B)y(®)] =0 (3.135)

where P> denotes the projection operator on the third, fourth and sixth
component of the solution vector.
If the three component vector by is defined in the following way

br = —P2Y(a)Y "' (r,)}(If + A(r,)f") (3.136)

the boundary conditions at the surface become

P,Y(a)Y }(b)y(b)] = bp (3.137)

With these definitions, the boundary conditions at the surface for dislocation
sources become formally equivalent to those appropriate for surface loading.

8. MULTI-LAYER MODELS
8.1 INTRODUCTION

Multi-fayer, spherically stratified, self-gravitating relaxation models with a
large amount of layers (more than 100) can be dealt with analytically. Relax-
ation processes are studied for both Heaviside surface loads and tidal forcings.
Simulations of the relaxation process of a realistic Earth model with an in-
compressible Maxwell rheology show that models containing about 30 to 40
layers have reached continuum limits on all timescales and for all harmonic
degrees up to at least 150 whenever an elastic lithosphere is present, irrespective
of the viscosity profile in the mantle. Especially fine-graded stratification of
the shallow layers proofs to be important for high harmonic degrees in these
models. The models produce correct long-time (fluid) limits. It is shown that
differences in transient behaviour of the various models are due to the applied
volume-averaging procedure of the rheological parameters. Our earlier pro-
posed hypothesis that purported shortcomings in the fundamental physics of
(discrete) normal mode theory are artificial consequences of numerical inac-
curacies, theoretical mis-interpretations and using incomplete sets of normal
modes is reinforced by the results presented. We show explicitly that the mod-
¢ls produce both continuous behaviour resulting from continuous rheological
stratifications and discrete behaviour resulting from sharp density contrasts, as
at the outer surface and the core mantle boundary. The differences between
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The linearized Liouville equation for polar wander (3.23) which includes both
loading and tidal forcings can be written as

2 im=% (4.49)
Jr
with the forcing function @ consisting of two parts: & = ¥y, + ®R, with
&, the part describing the direct geodynamic forcing (e.g. an earthquake or
changing atmospheric pressure) and $ g the induced rotational deformation.
With (3.47) the linearized Liouville equation (3.49) can be expressed as

z'g:— +(1- :—z)m = By, (4.50)
or .
2 m =Ty 4.51)
ag
with
o= (1— 2y, (4.52)
ko
and
L= 5 ;f’ s’ (4.53)

The term o in (3.51) is the frequency of the Chandler wobble. Its four months
decrease with respect to the frequency of the Eulerian free precession frequency
oy (3.15) is apparently due to the quotient ko /ky.

Exercise: Determine numerically %y and consequently ko from your answer to
the exercise on page 31 and the observation that the frequency of the Chandler
wobble is four months lower than the Eulerian precession frequency.

Exercise: Show, assuming that k- is not time-dependent, by solving the ho-
mogeneous form of (3.51) and consequently by the method of variation of a
constant, that the solution of (3.51) is

. t .
m(t) = —iope [ Wy(r)e i 7dr .54)
—00

and determine m(¢) for the following two cases:

(1) ®1,(t) = WoH(t), with ¥y time-independent and H the Heaviside func-
tion;

(2) 1 (t) = ®ud(t), with ¥g time-independent and & the delta function.
Draw your solutions in the {(m,m2)-plane for both cases (1) and (2). Assume
that at time ¢ = 0 the rotation pole is at the origin.
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Laplace transformation and substituting (4.23) leads to

SN f: ki () = & 4.55
'*"or k! e+i=13_3i ms)_' L(S) (4.55)

with k¢ = ka(s = 0) being the tidal fluid Love number.
With the tidal elastic Love number

My
ke =k =
e=kr+3 5 (4.56)
=1
(cf. (4.23)), and
ki ki i
%y = ks 4.57)
s5i  s=38  si(s—s)
(4.34) becomes
o A k;
s(1+i— — | (s) = —ig, B (s 4.58
( kf;sf(S_Si)) ( ) r L( ) ( )
So
Mo ~
1 - n(s) = —i :
s ( + ; o Si) m(s) io, ®r(s) (4.59)
with
ork;
;=1 (4.60)
kgs;
Now
M M M M
; (s —5; (8 — 3;
1+ i _ HJA;I( ) +Zmi————nj;f’(s %) (4.61)
=15 "% Hj:l(s - sj) i=1 l"Ij=1(8 - Sj)
where H}’-‘gﬁ means I'Ij"‘i1 without the term § = 4.
The right-hand side of (4.38)
Hjﬂil(s ~85) + zinil I Hj'\;féi(S — 55) (4.62)
Hﬁiﬂs - 85)
can be transformed into . ,
P i i
———%—0 Qi (4.63)
Hj=1(3 - s5)

(whereby it immediately follows that apy = 1), and consequently (4.38) can
be put as

1+ﬁ T LiL(s - a))

e M
1=1 8 5 Hj:l(s - SJ)

(4.64)
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with a; being the M complex roots of the equation

M -’
z a8 =10 (4.65)
=0
(4.39) in (4.36) gives
ng 1(3 - a’J) . =
et (s) = ~i0, P L(s) (4.66)
TG —s) -

and so

. . H?i!_-l(s - 5;) ‘i’L(S)

Y v PR

—ia, ( + Z — a,) L(s) (4.67)

In this expression, the terms a; are the inverse relaxation times from the tidal
problem for the M modes, having the strength given by the residues A;. The
residue Ag gives the strength of the secular term.

Just as the sea-level equation (2.24) forms the basis for realistic models on
sea-level variation that take solid-earth deformation self-consistently into ac-
count, equation (3.50) forms the basis of realistic models on Earth rotation that
take solid-earth deformation and its consequential shifts of the equatorial bulge
self-consistently into account (with one restriction: the Liouville expression
has been linearized and therefore polar wander needs to be restricted to about
10 degrees over the Earth surface, or about 1000 km, at most). Of course, one
can also combine (2.24) and (3.50) into an even more general theory. Inter-
esting interactions between solid-earth deformation, sea-level variations and
rotational changes then emerge (for instance, not only can sea-level variations
induce polar wander, but polar wander could induce sea-level variations). One
important ingredient has not been explicitly modeled, however, and that is the
way the solid Earth deforms and changes its gravity field due to loads and
forcings. To put it in technical terms: how Love numbers are to be determined
once an Earth model is specified. As alluded to already in chapters 2 and
3, this rather complicated modeling by means of normal mode analysis will
be dealt with in the 4th year course on Geophysical Applications of Satellite
Measurements.

Whereas the present-day true polar wander and the secular non-tidal accel-
eration of the Earth have usually been attributed to post-glacial rebound, it was
suggested in chapter 3 that non-glacially induced vertical tectonic movements
taking place under non-isostatic conditions can also be effective in changing
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Greenland

Secular component of sea-level variabilities due

to post-glacial rebound and present-day glacial
instabilities
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Conclusions

One step ahead with respect to our present-day

knowledge of the dynamics of the Earth will be
gained in the following decades at the interface
between geophysics and geodesy.

We can predict the time evolution of our planet,
on time scales that could also interfere with the
life-time of human beings.
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SUMMARY
The rapid opening, since 10 Ma, of the Tyrrhenian Sea in a context of convergence
between Eurasia and Africa remains a puzzling geodynamic problem. One of the most
plausible scenarios, proposed by Malinverno & Ryan (1986) attributes extension to
southward and eastward migration of the trench, resulting from subduction of the
African-Adriatic lithosphere below the European lithosphere. At present, subduction
only continues along the Calabrian arc. A compilation of recent strain and stress
indicators by Rebai, Philip & Taboada (1992) indicates that an extensional regime still
prevails in the Tyrrhenian Sea, whereas compression dominates north and south of this
area. In an earlier paper, Bassi & Sabadini {1994) used a numerical model to demonstrate
the necessity of a ‘trench suction force’, acting along the subduction trench, to produce
the present extension in the Tyrrhenian domain, This study, however, did not discuss in
detail the tectonic regime in the different areas composing the domain, nor the maich
between the observations and the model. In this paper, we first review the constraints
provided by the observations compiled by Rebai er ai. (1992) and by more recent
measurements. We then investigate how much of the observed tectonic regime can be
understood in terms of plate-interaction forces. using ‘thin-plate’ models {Bird 1989).
The geometry and heterogeneous lithospheric properties of the models are constrained
by observations. The best-constrained boundary conditions are held constant; the
remaining are regarded as parameters that we tune in order to fit the observations.
Our results indicate that the present-day tectonic regime in the Tyrrhenian area can
be explained as a consequence of trench retreat associated with the subduction of
lonian oceanic lithosphere under the Calabrian Arc. combined with a rotation of the
Apennines, possibly related to a rotation of the Adriatic microplate. This study
supports, therefore, the model of Malinverno & Ry in (1986) and suggests, moreover,
that rotation of the Apennines is an ongoing prock ss, which is supported by seismo-
togical and geodetic data but remains to be undcrstood in terms of geodynamics.
A discrepancy between observations and models is observed in western Sietly, which
can be attributed to modelling limitations. The weak extensional activity of the
Corsica—Sardinia block, however, is not explained kv this model.

Key words: backarc, extension, lithospheric deforination, model, stress distribution,
Tyrrhenian domain.

INTRODUCTION

The Tyrrhenian Sea and Apenninic chain (Fig. 1) have attracted
considerable attention over the years, producing an abundant
literature on the geological and geophysical characteristics of

*Now at: Research School of Earth Sciences, Australian National
University, Canberra, Australia. E-maik; glanna@rses.anu.edn.au.
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this complex region. Besides the interest in evaluating seismic
nsk, there is a fundamental interest in understanding the
formation of these structures, which developed in the general
framework of the Africa/Eurasia collision. In this context of
convergence, the rapid opening since Tortonian times of the
Tyrrhenian basin represents an intriguing problem. Extension.
initially in a W-E and evolving into a NW-SE direction
(Patacca, Sartori & Scandone 1990), took place within the

© 1997 RAS
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Figure 3. Summary of observations and schematic map of the tectonic zones in the Tyrrhenian area. l: zone
faulting; 2 zone displaying normal and strike-slip faulting; 3: tectonic regime close to radial extension: 4 non-
maximum herizontal compression direction (compressional tectonic context);, 7: strl

{extensional tectonic context); %: radial extension.

different areas comprising the domain. nor how well these
observations were matched by the model. A first-order com-
parison of model results and observations shows that extension
is predicted in a more restricted area than is actually observed.
The cause of this discrepancy lies both in the simplicity of the
model itself and in the interpretation and interpolation of data,
which show large variations of tectonic stresses, especially in
the southeastern Tyrrhenian Sea (Fig. 2). In this paper we
discuss in more detail the constraints provided by the obser-
vations compiled by Rebai et al. {1992) and by more recent
measurements. In a context like this one, where the inter-
pretation of data is controversial, numerical modeiling of
lithospheric deformation provides additional understanding by
indicating what type of boundary conditions can reproduce
specific observations, in this case the stress/strain regime. We
discuss. therefore, a series of models using the thin sheet
approach developed by Bird (1989} and used by Bassi &
Qahadini (1094} The geometrv and heterogencous lithospheric

displaying reverse and strike-slip
defined regime; 5: thrust front: &
ke-slip tectonic context; 8: least horizental stress direction

properties are chosen according to observations. The best
constrained boundary conditions are fixed: the remaining one:
are regarded as parameters that we try to tune in order tc
obtain a reasonable fit with observations. It is important t
emphasize that the focus of this study is the regional tectoni
regime in the Tyrrhenian Sea and adjoining argas. As a resull,
local situations and processes occurring on the boundaries ¢
this domain may be either overlooked or oversimplified. Thi
is the case, for example, of the Apennines, which would requir
a model of their own. Finally, we discuss the implications ¢
these boundary conditions for the mechanisms currently activ
in and around the Tyrrhenian area.

MODERN TECTONIC REGIME

The current tectonic regime in the Tyrrhenian area is chara
terized by a great variability, The causes of this variabili
probably lie both in the diversity of tectonic forces acting
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Figure 11. Principal stresses within the Calabrian Arc predicted by
Mode]l 3. Note that these are integrated (over the layer thickness)
deviatornic stresses, measured by reference to a mid-ocean ridge, ie. a
column of mantle at asthenosphere density, with a 2.7 km deep ocean
on top and a 5Skm crust. Arrows represent the horizontal stress
components, while the vertical stress is tepresented bv 4 zircle
(compressional) or a triangle (extensional). Note the almast isotropic
state of stress in Calabria.

> STRIKE-SLIP
+~——+ THARUST
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Figure 12. Same as Fig. L0(b), but for a reduced rotation velocity
along the Apenmnes (7.5 mm yr~' instead of 15 mm yr~!). Extension
is less widespread in the Tyrrhenian Sea. and the faulting mode in
Sardinia becomes dominantly compressional,
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> STRIKE-SLIP
+—— THRUST

— NORMAL

Figure 13. Same as Fig, 10 b), but for a reduced trench suction force
(2 % 10" N'm~" instead of 4 x 10'* N m " over the enlire lithospherel,
Extension in Calabria becomes dominated by the Apennines rotation
and is parallel to the geological structures.

component, imposed by the \iconines rotation, becomes
dominant in the extensional pattern of the southeastern
Tyrrhenian Sea and Calabria, while the results in the northern
half of the domain are the same as in Model 3.

Besides the choice of boundary conditions, the varation of
initial lithospheric properties—crustal and mantle thickness.
heat flow—across the domain may also contribute to the
predicted tectonic pattern by controlling the average rheology
at each point and also by determining the level of gravitational
stresses that arise due to differences in the density distribution
with depth (Artyushkov 1973 Fleitout & Froidevaux 1982).
The influence of lateral heterogeneity was tested by running a
model with uniform lithospheric properties, specifically a 25 km
thick crust and 90 mW m ™2 heat flow. The fanlting mode for
such a homogeneous lithosphere (Fig. 14} is smoother but not
significantly different than for a heterogeneous lithosphere,
which indicates that the resuits are primarily determined by
the boundary conditions. A difference to be noted is the purely
strike-slip regime predicted in the Corsica-Sardinia block,
compared with the mixed strike-siip/compressional regime
observed in Model 3. In turn, the importance of gravitational
stresses can be examined by running a model similar to
Model 3 but with uniform density (Fig. 15). Again, the only
noticeable difference concerns the Corsica-Sardinia block,
where the regime is slightly more compressional in the absence
of gravitational forces. This means that this continental block
does indeed have a tendency to ‘spread’ under gravitational
forces, but the contrast in crustal thickness between the block
and the surrounding area is not sufficient to generate significant
extensional stresses. This is indeed what is expected for
continental crust that is only 30 km thick {Braun & Beaumont
1989).
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SUMMARY

Crustal deformation in the central Mediterranean is modelled by means of 3-D finite
¢lement models assuming a viscoelastic rheology. The tectonic mechanisms under
investigation are subduction of the lonian oceanic lithosphere beneath the Catabrian
arc and continental convergence between the African and Eurasian blocks. Very Leng
Baseline Interferometry (VLBI) data art the station Noto in Sicily and the results from
global models of plate motions are taken as representative of the motion of the African
plate with respect to Eurasia, while VLBI solutions at Matera and Medicina. in the
southern and northern parts of the [talian peninsula. are geodetic observations that
must be compared with modelling results. Vertical deformation rates are taken from
geological and tide gauge records. The model that best fits the observations includes the
effects of subduction in the southern Tyrrhenian and convergence between Africa and
Europe.

The overthrusting of the Tyrrhenian domain onto the Adriatic domain results in an
eastward component of the velocity at the eustern border of the Tyrrhenian domain.
in agreement with VLBI data from the Matera and Medicina stations and GPS
data from northeastern Sicily and the Eolian Islands. The highest subsidence rates are
obtained in the southern Tyrrhenian. and are of the order of 1.2-1.4 mm vr~i Along
the whole Adriatic coast of the Italian peninsula. subsidence in the foredeeps 1s
of the order of 0.2-0.5 mm yr~'. The Apenninic chain is -ising with rates of the order
of 0.2-0.4 mm yr~'. Subduction beneath the Calabrian .rc is responsible for a roll-
back velocity higher than in the northern areas. 2-D models. built for the geological
past, indicate the possibility of roll-back velocities of sev 'ral centimetres per vear. In
particular, active rifting in the Tyrrhenian and softening of the crust in the back-arc
basin result in a trench retreat velocity in agreement wi h geological estimates. Qur
results show that numerical modelling can be used to estin ate present-day deformation
rates and the contribution of active tectonics to sea-level changes along coastal areas.

Key words: 3-D modelling, central Mediterranean. corvergence. deformation rate,
subduction.

INTRODUCTION

The Mediterrancan region is attracting considerable attention
due to the complexities of its tectonic setting, which is con-
sidered a unique natural laboratory for studying the occur-
rence of extensional tectonics in a framework of continental
convergence.

*Now at: Departamento de Geofisica. Facultad de Ciencias Fisicas.
Universidad Complutense de Madrid. Ciudad Universitaria s/n. 28040
Madrid. Spain.
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In this paper, we will focus on the central Mediterranean. the
Tyrrhenian basin and surrounding mountain belts; this region
is affected by the collision between the African and Eurasian
blocks and by the subduction of the lomian lithosphere,
Exiension started in the Tortonian within a N-S-trending
Alpine orogenic belt west of the Sardinia—Corsica block.
and evolved in a different way in the northern and southern
parts of the Tvrrhenian basin, with moderate extension in
the north and stronger extension in the south, where litho-
spherie thinning produced oceanic crust (Kastens er al. 1987).
Extension initiated in the western part of the Tyrrhenian basin

261



264 A M. Negredo et al.

Figure 2. Model geometry. boundany conditions and 3-I finite etement mesh used in the calculations. The circles dencte a free-slip condition.
The arrow denates the veiocity applied in some caleulations 1o the southern boundary of the Tyrrhenian domain 10 simulate the motion of the
Adfrican plate. The springs represent the buevant restoring force applied at the surface.

thick. Due to the high heat flow values measured in the
southern Tyrrhenian {Mongelli ¢7 4l 1991), we have considered
a lithospheric thickness of 40 km. whereas a lithospheric
thickness of 80 km has been assumed for the northern areas.
For the sake of simplicity. the other parameters of the model do
not change from scuth 10 north and the whele Tyrrhenian
dontun is assumed 10 be a conuinental ptate. We have used &
linear viscoelastic rheology. with viscosities of 10™ Pa s for the
crust and harzburgite laver. 5x 107 Pa s for the lower litho-
sphere, 107! Pa s for the asthenosphere and transition laver.
and 3% 107 Pa s for the lower mantle (Whittaker er of 1992:
Spada et af. 1992) The clastic parameters are calculated using
the PREM reference mode! (Dziewonski & Anderson 1981).
The dip of the slab 1s 70 and reaches a depth of 500 km.
Although some authors suggest that the slab may be totally or
partially detached te.g. Spakman 1990). we have modelled a
continuous slab on the basis of the absence of seismicity gaps
{Anderson & Jackson 1987. Selvagpi & Chiarabba 1995) and
on the results of numerical models (Giunchi et al. 1996). which
show that the siress pattern and present-dav surface motions
are better reproduced when assuming a4 continuous slab, The
density anomalies within the slab. due to the phase trans-
formation of a subduciing oceanic plate, are based on the
petrological maodel of Irifune & Ringwood (1987} and reach a
maximum value of 40¢ kg m™ ¥ at 400 km.

Further 1o the north. the interaction between the Tyrrhenian
and the Adristic domains is a matter of debate. The presence of
subcrustal seismicity down to 90 km (Selvagg) & Amato 1992)
1ogether with petrolomeal and geochemical studies (Serri
er af. 1993} indicute a process of subduction/delamination of
the Adriatic lithosphere. However. the existence of u high-
velocity body beneath the northern Apennines. representing a
detached (Spakman 1990) or continuous slab (Amato er af.
1993}, 15 still a matter of debate. Mele e7 ¢/, (1997} showed that

a region vl sild-wase dilenuabion exasts in the uppermost
mantie beneath the northern Apennines. Due to these still
controversial results, we have followed the cautious point of
view by modelling the dynamics of the Apennines for the
Quaternary as a zone of collision between the Tyrrhenian and
Adriatic domains. Comparison with geological observauons
justifies a posteriori our hypothesis, and shows that it 1s
not necessary to invoke a process of subduction to explain
subsidence and uplift rates in the Adriatic foredeep and
northern Apennines, respectively. The underthrusiing of the
Adriatic lithosphere is assumed to occur via a megathrust
tsolid triangles in Fig. 3) dipping about 30 and reaching &
depth of 90 km.

The density contrasts in the slab and the convergence
velocity are activated at time =0 and maintained constant
thereafter. following the same procedure as Whittaker ¢r of.
(1992). After a ume interval of about 250 kyr since loading,
dynamic equilibrium between the buoyant restoring foree and
the forces arising from density contrasts and convergence
is attained. By this time, the unrealistic 1initial stress and
velocity distribution associated with nstantaneous loading
have vanished and reached steady-state values: the vertical and
horizontal components of the velocity are then sampled at the
surface. The timescale of validity of the modelling results is
10°-10% yr. during which the geometric configuration does not
change significantly; for longer integration times. viscoelustic
models overemphasize the stiffness of the lithosphere.

The velocity vectors shown in Fig. 3 correspond 1o the
CGS-VLBI-EUR96 sojution. obtained by the Centre of Space
Geodesy of the halian Space Agency in Matera. Table 1 gives
the velocities in mm yr~' of the CGS-VLBI-EURY6 solution
for the VLBI stations Noto, Matera and Medicina in the
local topocentric reference frame (Lanotte e af. 1996). In order
10 obtain the horizontal components of the velocity with
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Figure 12. {a} Horizonwl and (b) vertical components of the surface
velociy obtained with three different 2-D models. The free edge model
assumes free E-W motion of the lefi edge. The rified Tvrrhenian madel
assumes a reduction of the lthosphere viscosnv in the area of the basin
to sccount for continental break-up.

geometry and condnions for the geological past. we test some
simplified 2-D models with the same geometry and element
type as Giunchi er ul. (1996) in order to study the possible
causes of higher roll-back velocites in the past. The horizontal
and vertical surface velocities are shown in Fig. 12, Positive
and negative values ol horizontal velocity denote eastward and
westward motions. respectively. The discontinuity at 1675 km
corresponds to the location of the hinge line. The model
assuming [ree motion of the left edge of the overriding
plate could be representative of an old tectonic setting, when
large southward and castward motions in the Mediterranean
allowed the formation of the Balearic and Liguro-Provencal
basins and counterclockwise rotation of the Corsica—Sardinia
block (Auzende er al. 1973). With respect to the fixed edge
model (solid line) roli-back is increased by a factor two
10 nearly 3 cm yr~!. This value is comparable to the high
veloeities of trench retreat for open oceanic environments, such
as in the Pucific.

These results indicate that in 4 ¢losed environment such as
the Mediterranean. roll-back velocities of the Calabrian Arc
are necessarily lower than those found in oceanic environments
such as the Pacific. because of the finiteness of the domain
that. at least for the present-dav tectonic selting. inhibits the
possibility of large displacements of the overriding plate and
flow 1n the mantle.

The free left edge boundary condition is not realistic
alter the Middie Miocene (about 15 Mvr ago), when the
Corsica- Sardinia block stopped its counterclockwise rotation

(Viglioti & Langenheim 1995): this event was followed by
rifting in the Tyrrhenian. During this phase. hot upper-
mantle material replaced the broken continental ¢rust, In our
purely mechanical model, this event is modeiled by means of
decreasing the viscosity of the lithosphere 1o asthenospheric
values, as in the rifited Tyrrhenian model (dashed curve). This
reduction causes an increase in the roll-back velocity of about
30 per cent with respect to the reference model (solid line).
providing a value that, although underestimating the geo-
logically inferred roll-back velocities quoted above, agrees
well with the average velocity of hinge retreat during the
last 20 Myr of 2 ¢m yr—! estimated by Malinverne & Ryan
(1986).

Inspection of the lower panel of Fig. 12 indicates that the
pattern of vertical motion rates is less affected by the modi-
fication in the boundary conditions than the horizontal
motions. We notice. however. that the fastest model (dotted
line) predicts veriical velocities in the arc and in the trench two
times higher than those of the reference model (solid line).

CONCLUDING REMARKS

The generally satisfactory agreement between 3-D medeliing
results and the crustal motion pattern inferred from geological
and geodetic observations indicates that. to first order. the
principal tectonic structures and forces have been correctiy
reproduced. at least for the Plio-Quaternary. Discrepancies
between model results and observations in the Tyrrhenian Sea
can be attributed 1o model limitations. since the model does
not account for subsidence caused by nifting. The preseni-day
horizontal motion pattern. together with the subsidence in
the back-arc basin and in the foredeeps and the uplift of the
Apennines can only be reproduced when both subduction
n the Calabrian Arc and convergence between Africa and
Europe are included in the models. The model that best fits the
observations, model 4. assumes that the interaction between
the Tyrrhenian and Adria-lonian domains occurs via an
unlocked fault. and that the southern boundary is free to move
in the E-W direction,

Although slab-pull alone causes a very low hinge retreat
velocity, sinking of the slab strongly enhances the eastward
extrusion of the Calabrian arc when convergence is active.
This study confirms that subduction beneath the Calabrian
arc is responsible for a faster hinge retreat velocity in the
southern areas of the model. in agreement with previous
studies (Malinverno & Rvan 1986: Faccenna et af 1996:
Negredo et af 1997).

Calculated roll-back velocities along the hinge line are
clearly smaller than those inferred from geologica!l studies. 2-D
models built for the geologicai past indicate that the roll-back
velocity could have been significantly higher in the past. either
due to a reduced viscosity in the back-arc basin accounting for
active rifting in the Tyrrhenian Sea or due to E-W motion at
the western boundary.
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resembles that of the model without convergence. owing to
the reduced effectiveness of convergence in the locked model.
The subsidence maximum results from contributions from the
negative buoyancy of the subducted slab and from the flexural
response (o the exaggerated uplift induced at the southern
edge. We have thus noticed that in general all the models
have the tendency to overestimate the flexural response of the
plates. This is clearly the unavoidable consequence of using
continuous plates, while in the real situation deformation
is accommodalted by faults and aseismic creep. In the cemiral
and northern sectors of the peninsula, the uplift disappears,
because the Tyrrhenian domain cannot overthrust onto the
Adriatic plate. and. for the same reason. subsidence in
ihe Adriatic loredeeps is drastically reduced. It is clear that this
locked model fails completely to reproduce the pattern of
vertical motions in the whole peninsula and surrounding basins
and foredeeps. This is the indication that. at least on the time-
scale of 10% yr. the two sectors of the peninsula. the Tyrrhenian
and Adriatic sectors. are decoupled. This decoupling occurs via
earthquakes and aseismic creep. as can be seen in the distri-
bution of the carthquakes along the peninsula, which follows
the megafault separating the two plates in our model (Pondrelli
er al. 1995). We can sav that the sequence of carthquakes
following the Apenninic chain accommodates the slip on the
megafault in our model on a geological timescale.

DISCUSSION OF 3-D MODELLING

The two cases that we have considered. (otally unlocked und
totally locked. are of course two end-members of the real
contiguration. in which the boundary between the two plates
can be partially locked. with heterogeneities along the whole
Italian peninsula. and with phases of locking and unlocking at
different times. OFf course, there is no possibility at the moment
of modelling such a complex tectonic situation. so. to first
order. we limit our attention to these two end-members.
assuming the same coefficient of friction along the whole
boundary separating the two plates. Ongoing GPS campaigns
will probably provide better constraints on the interaction
between the two plates along the Italian peninsula m the near
future.

The pattern of vertical and horizontal motions of the
surface is reproduced properly by models 2and 4 (Figs 5 and 8),
which include the effects of subduction under the southern
Tyrrhenian Sea and convergence between Africa and Eurasia.
Discrepancies between model predictions and observations in
the southern Calabrian arc and in the Tyrrhenian Sea are
attributed to model limitations.

Fig. il shows in detail the variation of roil-back velocity
along the modelled subduction hinge line for the set of
models using an unlocked fault. This velocity is calculated
as the difference at the hinge line between the horizontal
E_-W velocities of the overriding and subducting plates. The
most evident features of this figure are the high variability
of roll-back velocity among the different models and the
location of the maximum at the southern part of the study
areu. corresponding to the subduction zone. The latter result
demonstrates the major role of slab-puli in controiling the
velocity of trench retreat on timescales of 10° vr.

Models carrying solelv a subducted plate without con-
vergence (models 1 and 3) produce insignificant roil-back
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Figure 11. Variation of the roll-back velocity along the madelled
hinge line. obtamed for the models {indicated by the lubeis) with un
uniocked fault.

values. The effects of subduction on roll-back velocity ure
enhanced when convergence is activated and E-W motion of
the southern boundary is permitted tmodels 4 &nd 3): sirong
variations of roll-back velocity occur aleng the hinge line. Al
the subduction zove. roll-back increases from I mm vr '
model 3 to § mm vr ™! in models 4 and 3. while u subswenual
reduction is observed along the hinge line. In the northern
sectors of the peninsula. the presence of the Adriatic plute
counteracts the eastward extrusion ol the Apenninic chain.
o lur e ke oo e eptn b sinking of the slab permits
. i Arc. Our results indicate
that slab sinking acting roughly at right angles to continental
collision has the effect of ‘opening the door’ to the escape of
crustal material. Tavouring fuster roll-back veloaities at the
subduction zone.

Y DT TRV M|

2-D MODELLING OF THE GEOLOGICAL
PAST

Geological estimates based on the migration of hintertand
extensional and foreiand compressional basins indicate a rute
of trench retreat since the Tortonian of 5-6 cm yr~' for the
southern Calabrian Arc and 1.5-2 cm yr~! for the northern
Apennines (Patacca ¢ al. 1990: Cipollari & Coscntino 1994).
Model 4 provides an average roll-back velocity in the southern
area three times higher than in the northern area. in agreement
with the geologically observed trend. However. the precise
values are not comparable. because modelting of the tectonic
evolution since Tortonian times would require modification of
the geometry of the piates and a softer rheology, appropriate
for timescales of 107~10% yr (Gurais er ¢/, 1996). In general. all
the models shown in the previous figures predict roll-back
velocities lower than those estimated from geological records:
possible canses couid be the stiffness of the 3-D mesh and the
simplified theology and geometry of the models.

We have seen. on the other hand. that roli-back is extremety
sensitive to the geometry and boundary conditions imposed on
the model in the vicinity of the subducted siab. and it could well
be that modelled velocities derived for the present-day tectonic
setting are not representative of the geologicul past. Since it
is impossible to establish with the necessary precision the
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SUMMARY

We model the evolution of the lithosphere during its shortening and consequent
gravitational collapse with special emphasis on the induced vanations in the surface
stress regime and dynamic topography. In particular. we analyse the conditions leading,
immediately after lithospheric failure, to local extension. eventuatly coeval with com-
pression. Different crustal rheologies and kinematic condittons as well as thermally
imposed mechanical rupture are considered. Numerical calculations have been per-
formed by using a 2-D finite element code that couples the thermal and mechanical
equations for a Newtonian rheology with a temperature-dependent viscosity. The
results show that, after the failure of a gravitationally unstable lithospheric root, the
replacement of lithospheric mantle by warmer asthenospheric material induces a
considerable variation in the dynamic topography and in the surface stress regime. The
occurrence of local extension. its intensity and its spatial distribution depend mainly
on whether convergence continues throughout the process or ceases after or before the
lithospheric failure. Similariy, uplift/subsidence and topographic inversion are controlied
by kinematic conditions and crustal rheology. Mechanical rupture produces drastic
changes in the surface stress regime and dynamic topography but only for a short time
period. after which the system tends to evolve like a continuous model.

Key words: extension, gravitational collapse, lithospheric shortening, topographic
instability.

showed that the convergence between plates should cease in

INTRODUCTION order for the gravitationallv induced extensional forces to

During the last decade. the mechanism of lithospheric mantle
removal has atiracted the interest of geologists and geophysicists
since it can explain the conversion from thrust faulting to
normal faulting in continental regions undergoing continuous
convergence. A common characteristic of the areas where this
mechanism has been invoked is the delay between the initiation
of shortening and the onset of extension. which can span
several million years, and the huge vertical movements of the
Earth's surface associated with this transition (see Houseman
& Molnar 1997 for a wide-ranging review of geological settings
where mantle removal could operate).

The simplest explanation for the onset of extension under
regional compression is the variation in the balance of tectonic
forces produced by either an increase in the locai potential
energy or a change in the convergence velocity. England &
Houseman (1988), assuming a thin sheet viscous model.

*Now at: GFZ. Potsdam 3.4, Telegrafenberg, DI14473 Potsdam.
Germany. E-mail: marottatgfz-potsdam.de.
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dominate over the compressive ones. However, cessation of
convergence cannot account for regions where extension appears
to be coeval with regional plate convergence. Furthermore.
Fleitout & Froidevaux {1982} and more recently England &
Houseman (1989} for a wider range of crustal and lithospheric
thicknesses showed that during shertening the potential energy
can decrease. rather than increase. due to mante thickening.
Under these conditions, compression is enhanced if no additional
mechanisms such as convective removal of the lithospheric
mantle lead to an abrupt increase of local potential energy.
This mechanism is based on the idea that lithospheric
shortening produces crustal and lithospheric thickening with
a consequent downward deflection of the isotherms at deep
crustal and lithospheric levels. Under these conditions the litho-
spheric mantie root, colder and thus denser than the surrounding
mantle. becomes gravitationally unstable and sinks into the
asthenosphere like a blob. Analysis of the gravitational instability
of a thickened lithosphere has been developed by many authors
(e.g. Houseman er al. 1981; Buck & Toksoz 1983; Houseman
& Molnar 1997 Marotta er ¢l. 1998; Schott & Schmeling 1998).
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vajues of kinetic encrgy al the maxima. Interruption of the
convergence reduces these maxima. this reduction being more
cffective in the case 1n which convergence has been stopped
when the lithospheric thickness has increased by only 30 per
cent. Interruption of the convergence has the largest effects for
the higher convergence rate of 1cmvr™!{b). As expecied, the
high convergence rate has the effect of displacing the maxima
in the kinetic energy ¢ the left. indicating that the unrooting
process is generally faster for the higher convergence rate.
Another remarkable result is that the imterruption of con-
vergence has the largest effects in the case of the highest
convergence rate; after the interruption of convergence. the
values of the maxima for the two convergence rates (a and b}
become comparable. indicating that after the termination of
convergence the process is mainly controlled by gravitational
forces. In Fig. 7 we compare the time evolution of the kinetic
encrgy for two classes of models. without mechanical rupture
(thick contnuous and dashed curves) and with mechanical
rupture (thin conunuous and dashed curves). [or convergence
rates of 0.2cmyr ' {a} and Tcm vr™! (b). Both continuous
convergence and convergence until lithospheric failure are con-
sidered (continuous and dashed curves. respectively). The thick
continuous and thick dashed curves in these panels are thus
identical 1o the thick salid and dashed curves shown in Fig. 6
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lithospheric failure. The most remarkable result of this case

study is the increase in kinetic energy for the whole set of
models considered when the viscosity along the predefined
rupture channel is reduced to simulate the mechanical rupture.
The detached lithospheric blob falls aimost freely into the
mantle, thus increasing the kinetic energy of the system. The
Jargest increase in the kinetic energy, of about the 50 per cent,
occurs for the slow convergence rate of 0.2 em yr ' (a) In the
case of [ast and continuous convergence (b} the fncrease is
limited to at most 20 per cent; for fast convergence until
lithospheric failure, the increase in the kinetic energy is slightly
higher, of the order of 30 per cent. as indicated by the curves
at the bouom of (B). These results indicate the major cflects
of mechanical rupture on the kinetic energy of the sysiem
when gravitational {orces become domunani with respect 10
horizontal forces. A poteworthy feature characterizing all the
calculations is that the time span necessary 10 complete the
process of unrooting remains essentially constant. in spite of
the increase in the kinetic energy when the mechanical rupture
is introduced. Thermal re-gquilibrium oceurs & fcw million
years after mechamcal rupture, independent of the convergence
velocity. implying that deep deformation at Jong umes [ollows
the same pattern as the conlinuous (non-ruptured ) model.
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Lenardic & Kaula (1995) made a quantitative evaluation of
the surface stress but their analysis was limited to the average
Yalue in the centre of the thickened region, and the effects

roduced by a change in kinematic conditions were not
considered. Houseman & Molnar (1997), using a Rayleigh-
'Taylor instability model, showed that rheology has a strong
influence on determining the conditions for mantle convective
thinning and that non-linear rheologics can explain the delay
between extension and compression. These authors assumed
that extension is a consequence of the removal of the litho-
spheric mantle and no stress calculations were performed.
Marotta ef al. (1998) used a thermomechanical approach with
a Newtonian rheology and a temperature-dependent viscosity
for the whole system (crust, lithospheric mantle and sublitho-
spheric mantle) to analyse the evolution of the lithosphere-
asthenosphere system when subjected to tectonic convergence.
The analysis of variations in maximum shear stress, strain rate
and total kinetic energy allowed them to define four different
stages that characterize the mantle unrooting process (Fig. 1)

{1) a stage of orogenic growth due to tectonic convergence
until a critical lithospheric root thickness. about a factor of
two of the initial value, is reached:

{2) initiation of gravitational instability of the lithospheric
mantle root until the critical conditions for its break-up
are reached. when the local shear stress and strain rates have
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Figure L. (a} Major stages of the evolution of mantle wnrooting
deduced from the variation of total kinetic energy. (b)Y Schematic
representation of the unrooting process: (1) orogenic growth. (2)initiation
of gravitational instability unui lithospheric faiture, (3) sinking of the
detached lithosphere, and (4) relaxation of the system. Reprinted from
Maroua et af. (1998), with permission from Elsevier Science.
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attained a maximum: in the following we will refer to this
critical condition as lithospheric failure;

{3) detachment of the lithospheric root and sinking of the
root into the sublithospheric mantle:

{4) relaxation ol the system towards a new state of
equilibrium,

Although these authors examincd the possibitity of tectonic
inversion after lithospheric unrooting, the use of a single
rheology for the whole system prevented them from drawing
firm conclusions about the evolution of the surface stress
regime. This work was a continuation of that of Marotta et al.
(1998) and butlt upon the approach and results of the earlier
work.

The main goal of this paper is to analyvse the prevailing
surface tectonic regime and vertical movements associated
with the detachment and subsequent sinking of the litho-
spheric mantle root after its plastic failure {Ranalli 1987) as a
consequence of tectonic convergence. We evaluate the cffects
ol considering different crustal rheologies (comstant crustal
viscosity and a low-viscosity channel in the lower crust). and
different kinematic conditions (continucus convergence versus
cessation of convergence at different deformation stages).
Different thermal conditions are imposed on the model to
simulate mechanical rupture in the lithospheric mantle, The
numerical approach has been developed in two dimensions
and therefore we will address the primary featurcs associated
with lithospheric collapse rather than appiy our modelling o0
specific geological settings.

NUMERICAL MODEL

The physics. parameters and initial and boundarv conditions
of the numerical model are very similar to those used by
Marotta et af. (1998). and therefore in this section we will
remark only on the main aspects of the model. The reader is
referred to the paper mentioned above for a more detailed
description. We assume that the sysiem. formed by the litho-
sphere and the sublithospheric manile down 1o 700 km depth.
can be approached as a Newtonian fluid. Although our
approach does not permit simulation of all the deformation
processes, in particular those related to brittle failure, it docs
allow us to anatyse the gross mechanical behaviour during litho-
spheric convergence. since the Newtonian rheology reproduces
the continuum average properties of a discontinuous medium
well. Furthermore. the use of a simple linear rheology allows
us to address the main factors that control deformation until
lithospheric failure: a non-linear rheology would have the
effect of localizing and accelerating the strain { Houseman &
Molnar 1997),

The dynamics of a Newtonian fluid are governed by the
equations of conservation of mass, momentum und energy.
which can be expresscd in the form

V-v=0, (1)

0=V-(2u8) + pg — Vp. 2)
éT

pC(E+v-VT)=pckV2T+HI, (3)

where £ is the strain rate tensor, v is the velocity vector, u is
the viscosity, p is the pressure, T is the temperature. ¢ is the
thermal capacity, k is the thermal diffusivity and H, is the heat



