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Surface Wave Analysis and Phenomenology

1. Surface Wave Analysis

The surface wave analysis scheme developed by the Center for Imaging the Earth’s Interior
at University of Colorado, Boulder is designed to measure surface wave characteristics discussed
at my previous lecture: phase and group velocities, polarization, amplitude spectrum, and to
extract ‘cleaned’ wanted signals.

The measurements themselves are preceded by several preprocessing procedures which are
worthwhile to mention.

1.1 Preprocessing

Data obtained from different data centers around the world are usually presented as SEED
volumes (Standard for the Earthquake Data Exchange, 1993). Preprocessing includes:
1) reformatting, by converting data from SEED volumes to the CSS v 3.0 relational database
(Anderson et al, 1993; Quinlan, 1994). The important advantage of this database in com-
parison with the often used SAC is the separation of seismic waveforms from the information
. related to the recording stations and channels and seismic events. This allow to us to correct
or update this information without dealing with records themselves. Records of all stations for
a given event are combined into one event volume;
2) editing, i.e. removal of isolated glitches and zero-line shifts;
3) rejection of all defective records containing unrepairable glitches, gaps or clipping;
4) decimation of broadband or intermediate-band channel traces to the sampling rate 1 Hz
using decimating filters;
4) transformation of horizontal components into radial and transverse components according
to the great circle backazimuth to the epicenter.

1.2 Frequency-Time Analysis

Our aim is to extract the signals we desire, related to nearly directly arriving waves that
can be interpreted deterministically, from the potentially interfering multipaths and coda that
are essentially stochastic in nature. Usually only direct wave trains of fundamental Rayleigh
and Love modes are considered as desired signals. Unwanted signals, in particular surface
wave coda, overtones, and body waves are greatly reduced in the filtered seismogram on which
measurements are obtained.
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Figure 1. A comb of Gaussian frequency domain filters with constant
relative bandwidth used in FTAN.

The basic characteristics of the current measurement procedure is based on a long history of
development of surface wave analysis (e.g., Dziewonski et al. 1969, 1972; Levshin et al., 1972,
1992, 1994; Keilis-Borok (Ed.), 1989; Cara, 1973; Russell et al., 1988). The recent innovation is
that code has been developed which allows measurements to be made rapidly on relatively large
volumes of data from heterogeneous networks and a variety of source regions. The innovations
have required the development of rational parametric and waveform database structures and
the development of relatively rapid graphical routines for human interaction with the data
(Ritzwoller et al., 1995; Ritzwoller & Levshin, 1998). The general form of the measurement
procedure is as follows. Group velocity - period diagrams for the vertical, radial, and transverse
components are constructed using a computer-simulated system of narrow-band Gaussian filters
(Figure 1).

An analyst manually traces the apparent group velocity curve for the Rayleigh wave (on
the vertical and radial components) and the Love wave (on the transverse component). Time-
variable filters are applied around the selected curve to separate the desired signal from the
‘noise’. This results in filtered group velocity - period diagrams for which contamination from in-
terfering signals should be reduced. Group velocity, phase velocity, amplitude, and (optionally)
polarization measurements are automatically obtained on the filtered images. Measurements
are graded by the analyst according to the quality of a desired signal using the 5-grade scale.
All waveform and parametric data as well as surface wave measurements are stored in the CSS
v. 3.0 relational database which was significantly extended to accommodate this information.

An unfortunate, but currently still necessary, characteristic of this procedure, is that it de-



pends crucially on direct human interaction with potentially large volumes of seismic waveform
data. The success of this method is based on the analyst accurately identifying the main dis-
persion ridge of the fundamental modes, separating the ‘direct arrival’ from surface wave coda
at periods below about 30 seconds, inspecting interpolation near spectral holes, and truncating
the measurements appropriately at long periods as the signals weaken. This interaction limits
the speed with which the method can be applied, and, therefore, the volume of data that can
be processed. Figures 2 and 3 display this procedure.

1.3 Measurements on a Continental Scale

Due to the high average efficiency of surface wave propagation across continents, surface
wave measurements can be made at periods up to 100 - 150 seconds for earthquakes as small as
M, = 5.0 that propagate across the entire continent. Of course, measurements can be extended
to longer periods for substantially larger events.

As an example, group velocity measurements for a single station (KEVO, Finland) for one
event (Kuril event, 10/9/94, M, = 7.0) are shown in Figure 2b for the Rayleigh wave (measured
on the vertical and radial components) at periods between about 20 and 300 seconds and for the
Love wave at periods between about 30 and 250 seconds. Predictions for the spherical model
PREM (Dziewonski and Anderson, 1980) are shown for comparison.

A useful by-product of these analyses are ‘cleaned’ or ‘filtered seismograms’. Figure 2c
shows a comparison between the raw and filtered seismograms for a single station:event pair.
Surface wave coda, overtones and body waves have been greatly diminished from the cleaned
seismograms, making them an ideal target for surface wave fitting techniques during a later
stage of this research.

1.4 Measurements on a Regional Scale

On a regional scale at shorter periods, smaller events (M < 5.0) can be analyzed similarly.
KNET (Kirgizian Digital Network), situated in a complex tectonic setting in Central Asia
surrounded to the East, West and South by significant seismicity, is a natural site to focus
studies of regional scale measurements. Due to complexity of the region records of KNET
stations are usually quite complicated and exhibit a great variance of wave patterns from the
same event across array and from one event to other.

Figure 3b presents an example the analysis of KNET data. Seven KNET stations were
operating during the passage of surface waves from an event in the Qinghai Province, China
on 1/17/94 (A = 16 degrees, M, = 4.8). Rayleigh and Love wave group velocity measurements
are shown in Figure 3b. Rayleigh wave measurements are quite similar across the array above
about 20 seconds period and for Love waves above about 30 seconds period at this azimuth.
Variations across the array at shorter periods result both from real differences along the various
wave paths near the network and also from Rayleigh - Love interference, which can be significant
since the group velocities of the two wave types are similar in this period range. Cleaned and
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raw waveforms are presented in Figure 3c.

1.5 Measurements on a Local Scale

An interesting application of surface wave seismology is related to the off-shore seismic prospect-
ing for oil and gas. In recent years, the technology of this industry passed through significant
changes. Instead of streamers floating in the water near the surface many seismic crews use
three-component bottom receivers plus hydrophones for recording seismic signals generated by
air guns. The main goal is to record converted reflected PS waves which are less sensitive to
the gas saturation. Presence of gas in rocks causes scattering and attenuation of P waves but
produces almost no effect on S waves. Due to this seismic images obtained using PS reflections
are much more focused than standard PP images. However, the serious difficulty in using PS
waves i8 an absence of information about shear velocities near the bottom, which are needed
for making static correction of PS travel times. Here is a reason to use for this purpose surface
waves which are well observed if the air gun is not too far away from the bottom (10-15 m in
the case of a very soft bottom, or up to 50-70 m for more hard bottom rocks).

Figure 4 provides an example of a record section from a seismic survey near Luisiana coast in
Mexican Gulf. Records passed through low-pass filtering which suppresses P waves and partly
suppresses PS reflection. We see several groups of slow dispersive waves which are usually called
ground roll, or in this case "mud roll". FTAN diagrams for both vertical and one of horizontal
components at some range are shown in Figure 5. We can distinct a fundamental (Scholte)
wave at vertical component, and several higher (Rayleigh) modes at horizontal component.
Some of them (like the first higher mode) are separated in a frequency-time space from others:
others interfere combining in so-called guided waves: quasi-impulsive nondispersive arrivals.
Our interpretation is shown in Figure 6. Resulting average cross-section obtained by Monte-
Carlo inversion is shown in Figure 7. Note extremely low velocities of shear waves in upper 10
m below the bottom (40 -50 m/s), with Vp/Vs ratio of the order of 30! This demonstrates how
important could be statical corrections for reconciling PP and PS images. As three-component
observations become also common on land, applications of surface waves for these purposes
may become more and more important.
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2. Surface Wave Phenomenology

In this part of the lecture I would like to demonstrate some phenomena which are often observed
during surface wave data processing.

2.1. Higher modes

First of all I would like to show an example of FTAN analysis of a real multimode record.
Figure 8a demonstrates the record of the earthquake on 4 August 1998 at Iran-Turkmenistan
border, at the depth 33 km. Its magnitudes are: mb=>5.1, Ms=4.9. The record is made at the
station Ala-Archa (AAK) near the capital of Kirgizia in Central Asia. Epicentral distance is
1560 km, the path is across Kopet-Dag mountains, Turan and Kazakh plates. The record itself
looks quite complicated but FTAN diagrams (Figure 8b) show very clearly several modes of
surface waves and multiple late arrivals named here CODA. Group velocities and amplitude
spectra of all detected modes measured using FTAN are shown in Figure 8c.

2.2. Continental and Oceanic paths

Significant differences in surface wave propagation along oceanic and continental paths. There
are at least three reasons for this:

(1) Presense of ~ 5 km of water in the ocean. Love wave as a shear wave ignores the water
layer. Fundamental Rayleigh mode propagates partly in water and is significantly slowed at
short periods by this low velocity layer. Higher Rayleigh modes are not sensitive to water.

(2) The Earth crust is significantly thinner in the oceans (5 - 10 km) than at continents {30-50
km) and presented mostly by basalts (i.e. higher average velocities than in a continental crust).
(3) The oceanic lithosphere is in general more laterally homogeneous than the continental
lithosphere.

Figure 9 demonstrates how different are group velocities of fundamental Rayleigh and Love
waves propagating across oceans and continents. To show real data I have selected several long,

purely continental and oceanic paths. Examples of Rayleigh and Love wave propagation across
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Eurasia are shown in Figure 10 and 11. An example of surface wave propagation across Pacific
Ocean is shown in Figure 12. Note a strong scatter of short period waves (7-12 s) along the
oceanic path and their practical absence along continental path. Note also some "footprints” of
Love wave at vertical component, and Rayleigh wave at transverse component in contradiction
to the theoretical prediction for laterally homogeneous isotropic Earth. This will be discussed
later in this lecture. Very often we observe waves which paths include both continental and
oceanic parts, or seas with oceanic structure of the lithosphere. The observed group velocities
have intermediate values between continental and oceanic velocities. Due to the scattering
effect of continental margins short-period parts of surface wave signals strongly attenuate when
crossing these zones.

2.3. Path Deviations and Multipathing

As it was mentioned in the Lecture 1, the lateral inhomogeneity of the Earth is respounsible
for many complications in surface wave propagation. One of them, well documented in seismic
literature, is the deviation of surface wave path from the shortest (great circle) paths between
the source and receiver. There are two techniques for detecting such deviations. One is based on
measuring travel time delays of surface wave propagating across the array or dense local network
of seismic stations (e.g., Bungum and Capon, 1974). Other one is using three-component records
to analyze polarization of surface waves {Lander, 1989; Paulssen et al, 1990, Levshin et al,
1992; Levshin et al., 1995; Laske, 1995). Effects of relatively smooth lateral inhomogeneity will
manifest themselves in deviation of the vertical plane containing Rayleigh wave particle motion
from one passing through the great circle epicenter-station. Particle motion in Love waves
will be orthogonal to this new plane. Figure 13 shows results of such measurements of surface
wave polarization using modification of FTAN called FTPAN (Frequency-Time Polarization
Analysis). These measurements were done for relatively long periods (> 60 s) to avoid Love-
Rayleigh interference distorting polarization picture. Records of the Russian station (KIV)
for events near S. Honshu and records of stations in Japan (INU and MAJO) for events at
N. Caucasus were used to compare observed anomaly along almost reciprocal paths. Good

agreement between measurements along reciprocal paths can be seen in Figure 13b. Observed

11
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Rayleigh and Love waves show significant azimuthal anomalies (up to 10° to the North) caused
by increase of velocities in the upper mantle and thinning of the crust from South to North
across Siberia. I should mention that most of tomographic studies do no take this effect into
account. Such effects may be more severe for shorter periods (shorter wavelengths) resulting in
blurring and bias at tomographic images. It is also worthwhile to mention that some anomalies
of polarization may be caused by anisotropy (Crampin, 1975; Park, 1996; Levin and Park, 1998)
and there are no simple rules for discrimination between two factors (lateral inhomogeneity and
anisotropy) influencing surface wave polarization.

Besides deviations of the main train of surface waves from the shortest path we often ob-
served another phenomena, namely multipathing. The part of surface wave energy splits from
the main train and propagates by its own way mostly tunneled by some laterally extended low-
velocity waveguide: the foredeep of some mountain range, a sedimentary basin, or the oceanic
trench near the coast of a continent. It carries usually only a short-period part of the surface
wave spectra and by some (yet unclear) reason consists predominantly of Love waves. Figure 14
demonstrates such a phenomenon for Love waves propagating from NW. China to the station
Garm (GAR) in Tadjikistan. Latest arrival is a Love waves tunneled by Tarim Basin where
thickness of sediments reaches 10-12 km. Naturally, such a wave comes much later than a direct
arrival (Figure 14b), and has different angle of approach to the station (Figure 14c). Similar
effects were observed in many other cases. Multipathing also may be caused by reflections of
surface waves at some sharp discontinuities (boundaries of crustal blocks, rifts, deep grabens)
(e.g., Levshin and Berteussen, 1979; Berteussen et al., 1983), or conversion of Love waves into

Rayleigh waves at sharp discontinuities.

2.4. Love in Wrong Places

This joke belongs to Prof. Jeff Park (Yale University). He discovered presence of quasi-Love
waves at the vertical components of some long-period records, and explained them by effect
of anisotropy (e.g., Park, 1996; Levin and Park, 1998). There are some other examples where
Love waves appear at the wrong component due to other reasons:

(1) Multipathing and path deviation (discussed above)

(2) Tectonic release. Theory predicts that Love waves (as SH waves) should not be observed in
a laterally homogeneous Earth if the source is a center of expansion (dilatation) or a vertical
force. Nevertheless, there are excellent long-period Love waves generated by nuclear explosions.
Figure 15a shows records of vertical, radial and transverse components for the nuclear explosion
at Lop Nor (NW. China) obtained at the GEOSCOPE station HYB in Central India. A strong
Love wave is a dominant feature of these records. Figure 15b demonstrates that surface wave
group velocities observed at HYB for this explosion and for the earthquake of 11/03/1990 near
Lop Nor are very similar. This implies that Love waves from the explosion are generated very
close to the source and do not result from Rayleigh - Love coupling due to lateral structures

along the wave path.
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at Lop Nor, China: (a) Love waves have the highest intensity for the
three-component seismogram of the explosion on 05/21/1992 recor-
ded at HYB; (b) Group velocity curves for this event and an earth-
quake near Lop Nor on 11/03/4990 are very similar.

Observations at others stations, at quite different directions from Lop Nor, and for another set
of explosions and earthquakes are similar. (Levshin et al, 1995; Bukchin et al., 2000).

The traditional explanation of these phenomena is tectonic release provoked by the explosion in
a prestressed area. There are numerous papers describing and explaining tectonic release. The
interest to such phenomena is due to the fact that it makes more difficult to distinguish between
earthquakes and underground nuclear explosions using a famous Mg : m; discriminant. This
discriminant is based on relative differences between body wave and surface magnitudes for
explosions and earthquakes: due to the smaller size of the source zone and the shorter duration
explosions are "better” generators of P waves than of surface waves. Tectonic release diminishes
these differences. However, absence of isotropic component in earthquake radiation and a very
small depth of the equivalent source of tectonic release from explosion may help to discriminate
these events (Bukchin et al, 2000).
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