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1. Formal description of seismic source

The description of seismic source we will consider is based on the formalism
developed by Backus and Mulcahy, 1976.

Statement of the problem,
Motion equation

pu;, =0, ;+ /i (1.1}
Hook’s law for isotropic medium

o, =Ab €, +2uc, (1.2)
Initial conditions

ua=u=0,r<0 (1.3)
Boundary conditions

o;n; |50= 0 (1.4)
Here u — displacement vector; oy — elements of symmetric 3x3 stress tensor; ,j=1,2,3 and

3 do .
the summation convention for repeated subscripts is used; o, ; = = g
X .
7

j=1
elements of symmetric 3x3 strain tensor and € ; = 0.5(u, ; + u ;) ; p - density; f; —

;Erj”

components of external force; n;— components of the normal to the free surface Sy,

Solution of the problem (1.1)-(1.4) can be given by formula

T

u,(x,t) =J-drj.G,.j(x,y,t—'c)fj(y,r)dVy (1.5)
4] Q

or
T .

u(x,0) = [dt | H (x,y,1 - 0)f,(y,0)aV, (1.6)
0 Q

Here G is the Green'’s function,
H{j(xay’t) =J.GU(XsyaT)de (17)
0

x € Q and 0 < 1 < T are the space region and time interval where f  is not identically

Zero.

Sources of seismic disturbances
We will consider internal sources only (earthquakes and explosions). In this case

any external forces are absent. We must then set f = 0 in equation (1.1}, so that the only
solution that satisfies the homogeneous initial (1.3) and boundary (1.4) conditions, as well
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as Hook’s law (1.2) willbe u = 0 . Non-zero displacements cannot arise in the medium,
unless at least one of the above conditions is not true.
Following Backus and Mulcahy, 1976, we assume seismic motion to be caused by a
departure from ideal elasticity (from Hook’s law) within some volume of the medium £ at
some time interval 0 < ¢t < T.

Let u(x,?) be the actual displacements, o(x,t) - correspondent stresses, if Hook’s
law is valid, s(x,?) - actual stresses.
Let the difference
I'(x,t) = o(x,1) - s(x,1), (1.8)
called the stress glut tensor or moment tensor density, is not identically zero for 0 <t < T
and x € L.
T we define as source duration, and £ - source region. Within this region and time interval
(and only there) the tensor I'(x,?) is not identically zero as well.

Replacing a(x,f) by s(x,?) in equation (1.1), using definition (1.8) and the absence
of external forces (f = 0 ) we can rewrite the motion equation (1.1) in form

pu; = 5,

or

pi; =0, ;+8, (1.9)
where

g.=-T, . (1.10)

Equation (1.10) defines the equivalent force g. Using formula (1.6) with f; replaced by g;,
definition (1.10) and Gauss theorem we have for displacements

T
u(x,0) = [de[ H,, (x,y,t -0, (v, D)V, (1.11)
0 Q

where Hj; is differentiated with respect to y .
If the inelastic motions are concentrated at a surface X, then

T
u (x,0)= [ dt[ Hy, (%,y,6 =0, (7, 7)dE, . (1.12)
Y] z

Relation of stress glut (moment tensor density} with classic definition of moment tensor M :
T

M=jdtjr(y,:)dvy . (1.13)
0 o

Normalizing moment tensor we define seismic moment My :

3
M=Mom , where tensor m is normalized by condition tr(m™m)= Y. m; =2, m' is
ij=1

transposed tensor m.

Stress glut moment for special types of seismic sources
1. Discontinuity of displacement Au at a surface £ in isotropic medium (stress is
continuous):

C,(x,1) = Adu, (x,8)n,(x)8,
+ Ju[jr'z[.(}ii)Auj(x,t) + nj(x)Au,.(x,t)].

Here n(x) is the normal to the surface X, and seismic disturbances are given by formula
(1.12).

(1.14)



2. In the case of tangential (shear) dislocation we have
Au,n, = 0and formula (1.14) takes form

I‘,.j(x,r) = pln,(x)Au;(x,1) + n;(X)Au,(x,1)}. (1.15)
3. Instant point tangential dislocation occurred in the point x=0 at time 7=0:
I, (x,6) = M m,8 ()8 (x), (1.16)

where m; =n.a;+na, ,a=Au/|Aufand M, = i | Aua |.

Phenomena of matrix m
Trm = 0. The eigenvalues of matrix m are: 1, -1 and 0. The eigenvector correspondent to 1

defines the direction of maximum extension, and the eigenvector correspondent to -1
defines the direction of maximum compression. Such a source is called double couple.

As it follows from formula (1.12) an instant point double couple excites a
displacement field of the form

u,(x,t)=MH,,(x,0,t)m, . (1.17)

We have for Fourier transforms H(x,y,®) and G(x,y,®) from equation (1.7):

H(x,y,0) = —G(x,y.0). (1.18)
0

where i is the imaginary unit, and  is angular frequency.
As result the spectrum of displacements is given by formula

1
1, (%,0) = — My, Gy (x.0,0). (1.19)

Relation between the displacement field and stress glut moments

We assume that following product can represent the time derivative of stress glut tensor:
I'(x,1) = f(x,t)m, (1.20)
where f(x,t) is non-negative function and m is a uniform normalized moment tensor.

The moment £, (q,7) of spatial degree / and temporal degree n with respect to point q

and instant of time 7 is a tensor of order / and is given by formula
£ @0 = [aV Fnx, —g,)-(x, —g, -0 dr, .21
\4 [

ki,....k=1,2,3.
Replacing in equation (1.11) H;(x,y.t-T) by its Taylor series in powers of y and in powers
of 1, we get:

- (—l)n (L an a 8 8
u,(x,1) = —m, f(0,0)

(%0 ; ; I'n! wan 0055 , 9, I,
Using formulae (1.18) and (1.22) we have following equation for the spectrum of
displacements:

o (_l)n (1,m) . n-1 8 d 8
u;(x,0)= m, f. (0,03

0)= X OO0 5 g o

Here we assume that the point y=0 and the instant #=0 belong to the source region and the

time of the source activity respectively.
When the spectra of displacements u;(x,0) and Green’s function Gy(X,y,w) have
been low pass filtered, the terms in equation (1.23) start to decrease with ! and n increasing

Hy(%,Y,0) o0 - (1.22)

G, (x,y,mjy=0 . (1.23)




at least as rapidly as (0T)*" (T is the source duration, and wT<1), and one might then

restrict to considering finite sums only.
In the following sections we will take into account in formula (1.23) only the first
terms for [ +n £ 2.

II. Source inversion in moment tensor approximation

The first term in (1.23) corresponding to /=0, n=0, describes the spectra of
displacements u;(X,) excited by an instant point source (compare with formula (1.19)
taking into account that seismic moment is equal to zero moment of function f{x,?):
M0=f0'0)). For a source with nonzero size and duration this term approximates u;(x,) with
high accuracy for periods much longer then source duration. Performing the inversion of
long periocd seismic waves we describe the earthquake by an instant point source. As it was
mentioned in previous section, an instant point source can be given by moment tensor - a
symmetric 3x3 matrix M. Seismic moment M, is defined by equation

M, =4 % tr(M'M), where M’ is transposed moment tensor M, and

3
tr(M™) = ZMJ.f. Moment tensor of any event can be presented in the form
ij=1
M = M m, where matrix m is normalized by condition tr(m™m) =2,

We’ll consider a double couple instant point source (a pure tangential dislocation) at a
depth h. Such a source can be given by 5 parameters; double couple depth, its focal
mechanism which is characterizing by three angles: strike, dip and slip or by two unit
vectors (direction of principal tension T and direction of principal compression P) and
seismic moment M,. Four of these parameters we determine by a systematic exploration
of the four dimensional parametric space, and the 5-th parameter M, - solving the problem

of minimization of the misfit between observed and calculated surface wave amplitude
spectra for every current combination of all other parameters.

Under assumptions mentioned above the relation between the spectrum of
displacements u(x,w) and moment tensor M can be expressed by formula (1.19)
rewritten below in slightly different form:

0

1
06 @) = 7o 5 -Gy (.3, 0)] @1

ij = 1,2,3 and the summation convention for repeated subscripts is used. G, (x,y,0) in

equation (2.1) is the spectrum of Green function for the chosen model of medium and wave
type (see Levshin, 1985; Bukchin, 1990), y- source location. We will discuss the

inversion of surface wave spectra, so G, (x,y,w) is the spectrum of surface wave Green

function. We assume that the paths from the earthquake source to seismic stations are
relatively simple and are well approximated by weak laterally inhomogeneous model
(Woodhouse, 1974; Babich er al, 1976). The surface wave Green function in this
approximation is determined by the near source and near receiver velocity structure, by the
mean phase velocity of wave, and by geometrical spreading. The amplitude spectrum
|, (x,) | defined by formula (2.1) does not depend on the average phase velocity of the
wave. In such a model the errors in source location do not affect the amplitude spectrum
(Bukchin, 1990). The average phase velocities of surface waves are usually not well
known. For this reason as a rule we use only amplitude spectra of surface waves for



determining source parameters under consideration. We use observed surface wave phase
spectra only for very long periods.

Surface wave amplitude spectra inversion
If all characteristics of the medium are known the representation (2.1) gives us a system

of equations for parameters defined above. Let us consider now a grid in the space of these
4 parameters. Let the models of the media be given. Using formula (2.1) we can calculate
the amplitude spectra of surface waves at the points of observation for every possible
combination of values of the varying parameters. Comparison of calculated and observed
amplitude spectra give us a residual £ for every point of observation, every wave and

every frequency ®. Let #”(x,0) be any observed value of the spectrum, i = 1,...,N; €5} -
corresponding residual of |« (x,0)| We define the normalized amplitude residual by
formula

N N N . 172
€ (B, T,P) = HEI e;’np 2)/{leu(')(x,a) [? H . (2.2)

The optimal values of the parameters that minimize €y, We consider as estimates of these
parameters. We search them by a systematic exploration of the four-dimensional parameter
space. To characterize the degree of resolution of every of these source characteristics we
calculate partial residual functions. Fixing the value of one of varying parameters we put in
correspondence to it a minimal value of the residual €., on the set of all possible values of
the other parameters. In this way we define one residual function on scalar argument and
two residual functions on vector argument corresponding to the scalar and two vector
varying parameters: €,(h)}, €,(T)and €, (P). The value of the parameter for
which the corresponding function of the residual attains its minimum we define as estimate
of this parameter. At the same time these functions characterize the degree of resolution of
the corresponding parameters. From geometrical point of view these functions describe the
lower boundaries of projections of the 4-D surface of functional € on the coordinate
planes. A sketch illustrating the definition of partial residual functions is given in Fig. 1.
Here one of 4 parameters is picked out as ‘parameter 1°, and one of coordinate axis
corresponds to this parameter. Another coordinate axis we consider formally as 3-D space
of the rest 3 parameters. Plane X is orthogonal to the axis ‘parameter 1’ and cross it in a
point pg . Curve L is the intersection of the plane X and the surface of functional €. As one
can see from the figure the point &;(po) belong to the boundary of projection of the surface
of functional €, and at the same time it corresponds to a minimal value of the residual € on
the set of all possible values of the other 3 parameters while ‘parameter 1’ is equal to the
value po.

So, as it is accepted in engineering we characterize our surface by its 4 projections on
coordinate planes.

It is well known that the focal mechanism cannot be uniquely determined from surface
wave amplitude spectra. There are four different focal mechanisms radiating the same
surface wave amplitude spectra. These four equivalent solutions represent two pairs of
mechanisms symmetric with respect to the vertical axis, and within the pair differ from

each other by the opposite direction of slip.
To get a unique solution for the focal mechanism we have to use in the inversion

additional observations. For these purpose we use very long period phase spectra of surface
waves or polarities of P wave first arrivals.
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Parameters 2,...

Fig. 1. A sketch illustrating the definition of partial residual functions.



Joint inversion of surface wave amplitude and phase spectra
Using formula (2.1) we can calculate for chosen frequency range the phase spectra of

surface waves at the points of observation for every possible combination of values of the
varying parameters. Comparison of calculated and observed phase spectra give us a

. {3 . .
residual €, for every point of observation, every wave and every frequency . We define

the normalized phase residual by formula

1 N ‘. 1/2
eph(h,(p,T,P)=n—Hz e;fJ/N} . 2.3)

i=1

We determine the joint residual € by formula

e=1-(-¢g  ,M1-€,,,). (2.4)
To characterize the resolution of source characteristics we calculate partial residual
functions in the same way as was described above.

Joint inversion of surface wave amplitude spectra and P wave polarities

Calculating radiation pattern of P waves for every current combination of parameters we
compare it with observed polarities. The misfit obtained from this comparison we use to
calculate a joint residual of surface wave amplitude spectra and polarities of P wave first
arrivals. Let €,  be the residual of surface wave amplitude spectra, €, - the residual of

P wave first arrival polarities (the number of wrong polarities divided by the full number of
observed polarities), then we determine the joint residual € by formula

ge=1-(1-€e )(1-g,,). (2.5)
For this type of inversion we calculate partial residual functions to characterize the
resolution of parameters under determination in the same way as it was described for two
first types.

Before inversion we apply to observed polarities a smoothing procedure, which we will
describe here briefly.

Let us consider a group of observed polarities (+1 for compression and -1 for dilatation)
radiated in directions deviating from any medium one by a small angle. This group is
presented in the inversion procedure by one polarity prescribing to this medium direction.
If the number of one of two types of polarities from this group is significantly larger then
the number of opposite polarities, then we prescribe this polarity to this medium direction.
If no one of two polarity types can be considered as preferable, then all these polarities will
not be used in the inversion. To make a decision for any group of n observed polarities we
calculate the sum m = n_ —n_, where n, is the number of compressions and n_ =n—n, is
the number of dilatations. We consider one of polarity types as preferable if [m] is larger
then its standard deviation in the case when +1 and -1 appear randomly with this same
probability 0.5. In this case #n, is a random value distributed following the binomial low.
For its average we have M (n,) =035n, and for dispersion D(n, )= 025n. Random value
m is a linear function of n, such that m =2n, —n . So following equations are valid for the

average, for the dispersion, and for the standard deviation © of value m
M(m)=2M(n,)=n=n-n=0, D(m)=4D(n,)=n, and o(m)=n.

As a result, if the inequality |m|= Jn is valid then we prescribe +1 to the medium direction
if m>0,and-1if m<0.



Example of application

We illustrate the technique by results of its application for a study of Vrancea
earthquake, 30.05.90, M.=6.7. Using frequency-time and polarization analysis programs
we analyzed fundamental Love and Rayleigh modes recorded by IRIS and GEOSCOPE
networks. We selected for moment tensor and source depth inversion records of 14
stations. We used the signals of a good quality and normal polarization. The distribution of
selected stations with respect to the epicenter is given in Fig. 1.

Analyzing the long period part of the spectra (periods from 100 to 170 seconds) we
determined the following focal mechanism of the source: strike 225°, dip 60°, and rake
105°. The stereographic projection of nodal planes on the lower hemisphere and seismic
moment, obtained by surface wave amplitude spectra inversion and by joint inversion of
surface wave amplitude spectra and first arrival polarities are shown in Fig. 3. and Fig.4
respectively. As one can see, the best double couple obtained by joint inversion is the same
as one of four equivalent solutions in Fig. 3. The procedure of polarity smoothing is
illustrated by Fig. 5 (the value of angle was taken equal to 10 °). The resolution maps for
main double couple axes obtained by two different inversions are given in figures 6 and 7.
In the first inversion (Fig. 6) the first arrival polarities were used as additional observations
to the surface wave amplitude spectra. I the second inversion we used as additional
observations surface wave phase spectra for periods from 150 to 170 seconds. The best
solutions obtained by both inversions are the same, but the resolution of focal mechanism
is significantly higher when the first arrival polarities were used. The source depth was
estimated at 105 km. The depth resolution curve by joint inversion of surface wave
amplitude spectra and first arrival polarities is shown in Fig.8.



Map, centered at45.87:26.67

-,
“LKIP

Fig. 2. Vrancea, 90 earthquake. Distribution of stations
used for long period surface waves inversion.



P1:45°,60°,105°, P2:197° 33°, 66° P1:45°,60°, -75°% P2:197°, 33°,-114°

P1

o O

:225°, 60°,105°, P2:17°,33°, 66° P1:225° 60°, -75 ¢ P2:17°,33°,-114°

o 0

Fig. 3. Four equivalent solutions
from surface wave amplitude spectra inversion
M0=0.26E+20N-m
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P1:225°, 60°,105° P2:17°,33°, 66°

Fig. 4. Best double couple from joint
inversion of surface wave amplitude spectra

and first arrival polarities
M0=0.26E+20N'm



Originalfirst arival polarities

Fig. 5. First arrival polarities before and after smoothing
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Main tension axis

Main compression axis

028 0.33 038 043 048 053 058 063 068 073 078 0383

Fig. 6. Resolution of main axes by joint inversion
of surface wave amplitude spectra and first arrival polarities
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Main tension axis

' !
056 059 062 065 068 071 074 0.77 080 0.83 0.86 0.89

Fig. 7. Resolution of main axes by joint inversion
of surface wave amplitude and long pertod phase spectra
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Fig. 8. Resolution of best double couple depth by joint inversion
of surface wave amplitude spectra and first arrival polarities
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III. Second moments approximation. Characteristics of source shape and evolution in
time.

We present here a technique based on the description of seismic source distribution in
space and in time by integral moments (see Bukchin et al., 1994; Bukchin, 1995; Gomez,

1997 a, b). We assume that the time derivative of stress glut tensor I" can be represented in
form (1.20). Following Backus and Mulcahy, 1976 we will define the source region by the
condition that function f(x,t) is not identically zero and the source duration is the time
during which nonelastic motion occurs at various points within the source region, i.e.,
f(x,t) is different from zero.

Spatial and temporal integral characteristics of the source can be expressed by
corresponding moments of the function f(x,7) (Backus, 1977; Bukchin er al., 1994).
These moments can be estimated from the seismic records using the relation between them
and the displacements in seismic waves, which we will consider later. In the general case
stress glut moments of spatial degree 2 and higher are not uniquely determined by the

displacement field. But in the case when equation (1.20) is valid such uniqueness takes
place (Bukchin, 1995).

Following equations define the spatio-temporal moments of function f(x,7)of total
degree (both in space and time) 0, 1, and 2 with respect to point q and instant of time 7.

re=favfrana, 0@ =[av| e -g)d,
v 0 v 0
fm.n(,[)=J‘dVJ'f(x,;)(:—1:)dt, FOD (1) =IdV_[f(x,t)(r-—'r)2dt,
v 0 v 0
£89(q,0) = [av[ Fen0e, - g - vt 3.1)
v 0

S0 = [av] 00 - g0, - g,dr
v 0

Using these moments we will define integral characteristics of the source. Source
location is estimated by the spatial centroid q_ of the field f(x,?) defined as

q. =£Y0)/ M, , (3.2)
where M, = f®% is the scalar seismic moment,
Similarly, the temporal centroid T, is estimated by the formula

T, =0/ M, . (3.3)
The source duration is A ¢ estimated by 2 A T , where

(A = FOB ()M, . (3.4)
The spatial extent of the source is described by matrix W,

W=£%(q )/ M, . (3.5)

The mean source size in the direction of unit vector r is estimated by value 21, , defined by
formula

I> =r"Wr, (3.6)
where r" is the transposed vector. From (3.5) and (3.6) we can estimate the principal axes

of the source. There directions are given by the eigenvectors of the matrix W, and the
lengths are defined by correspondent eigenvalues: the length of the minor semi-axis is
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equal to the least eigenvalue, and the length of the major semi-axis is equal to the greatest
eigenvalue.

In the same way, from the coupled space time moment of order (1,1) the mean velocity
v of the instant spatial centroid (Bukchin, 1989) is estimated as
v=w/(AT), (3.7)
where w=f£""(q,,7.)/ M,
Now we will consider the low frequency part of the spectra of the i* component of
displacements in Love or Rayleigh wave u,(x,®). It is assumed that the frequency ® is
small, so that the duration of the source is small in comparison with the period of the wave,
and the source size is small as compared with the wavelength. It is assumed that the origin
of coordinate system is located in the point of spatial centroid q_(i.e. q, = 0) and that time
is measured from the instant of temporal centroid, so that T, = 0. With this choice the first
degree moments with respect to the spatial origin x=0 and to the temporal origin t=0 are
zero, ie, £%9(0)=0 and fOV(0)=0.

Under this assumptions, taking into account in formula (1.23) only the first terms for
[ +n <2 we can express the relation between the spectrum of displacements «, (x,®) and

the spatio-temporal moments of the function f (x, ) by following formula (Bukchin,1995)

d
u(x,u))- 1 MM G(XO(L))+ f(”)( )M i—a—iG( 0,m)
"9y, " 9y, v, oy,
(1,1} a a (0,2) a
- fiOOM -G, (x,0,0 f OM,—G,;x,0,0), (3.8)
1oy, Oy, "oy, Y
Lplmn = 1,23 and the summation convention for repeated subscripts is used.

G,.j (x,y,®) in equation (3.8) is the spectrum of Green function for the chosen model of

medium and wave type. We assume that the paths from the earthquake source to seismic
stations are well approximated by weak laterally inhomogeneous model. Under this
assumption the amplitude spectrum |, (x,®) | defined by formula (3.8) does not depend on
the average phase velocity of the wave, and the errors in source location do not affect the
amplitude spectrum (Bukchin, 1990).

If all characteristics of the medium, depth of the best point source and seismic moment
tensor are known (determined, for example, using the spectral domain of longer periods)
the representation (3.8) gives us a system of linear equations for moments of the function
f(x,¢) of total degree 2. But as we mentioned considering moment tensor approximation
the average phase velocities of surface waves are usually not well known. For this reason,
we use only amplitude spectrum of surface waves for determining these moments, in spite
of non-linear relation between them.

Let us consider a plane source. All moments of the function f(x,) of total degree 2 can
be expressed in this case by formulas (3.2)-(3.7) in terms of 6 parameters: At - estimate of
source duration, /.y - estimate of maximal mean size of the source, ;- estimate of the
angle between the direction of maximal size and strike axis, Iy, - estimate of minimal
mean size of the source, V - estimate of the absolute value of instant centroid mean velocity
v and @, - the angle between v and strike axis.

Using the Bessel inequality for the moments under discussion we can obtain the
following constrain for the parameters considered above (Bukchin, 1995):

2 : 2
vma(“ﬁ 0,5 (‘DJSI. 39)

mic

where @ is the angle between major axis of the source and direction of v.
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Assuming that the source is a plane fault and representation (1.20) is valid let us consider a
rough grid in the space of 6 parameters defined above. These parameters have to follow
inequality (3.9). Let models of the media be given and the moment tensor be fixed as well
as the depth of the best point source. Let the fault plane (one of two nodal planes) be
identified. Using formula (3.8) we can calculate the amplitude spectra of surface waves
at the points of observation for every possible combination of values of the varying
parameters. Comparison of calculated and observed amplitude spectra give us a residual

e'” for every point of observation, every wave and every frequency . Let u" (r,m) be
any observed value of the spectrum, i = 1,...,N; £“ - corresponding residual of |u*” (r,0)|.
We define the normalized amplitude residual by formula

N N 1/2
(Al 1 0,V 0,)= ':(2 e“’zJ/(E lu'(r, o |2” . (3.10)

i=1
The optimal values of the parameters that minimize € we consider as estimates of these
parameters. We search them by a systematic exploration of the six dimensional parameter
space. To characterize the degree of resolution of every of these source characteristics we
calculate partial residual functions in the same way as was described in previous section.
We define 6 functions of the residual corresponding to the 6 varying parameters:
Ea(A) e, (Unn)s € (o), €o,(®,),&,(v)and &, (¢,) . The value of

the parameter for which the corresponding function of the residual attains its minimum we
define as estimate of this parameter. At the same time these functions characterize the
degree of resolution of the corresponding parameters.

Example of application

We illustrate the technique by results of its application for a study of the same Vrancea
earthquake, 30.05.90, which we considered above. To estimate duration and geometry of
the source we have used amplitude spectra of fundamental modes of Love and Rayleigh
waves in the spectral domain from 40 to 60 seconds. We fixed source depth, focal
mechanism and seismic moment obtained from analysis of long period surface wave
spectra considered above. The plane dipping to the North-East was identified as a fault
plane. Results of direct trial of possible values of the unknown parameters are shown in
Fig. 10.

Residnal function for the integral estimate of duration attains its minimum at 8 seconds.
The residual function for the integral estimate of the instant centroid velocity attains its
minimum between 3 and 4 km/s.

For the integral estimate of the main axis was obtained the value 40 km. The residual
function for the integral estimate of the minimal size of the source attains its minimum
between 0 and 20 km.

The residual functions for ¢; and @, defining the direction of main axis of the source and
the direction of the instant centroid velocity are given by two last curves in Fig.10. These
residuals were calculated for all possible values of angles ¢; and @, while other parameters
were fixed equal to their estimates obtained before. Angles are measured in the footwall of
the fault plane clockwise round from the strike axis. ¢; varies from -90° to 90° and
€,, (0 ,) attains its minimum at -25°; @, varies from 0° to 360° and residual functions

€,, (¢, ) attain its minimum at 155° Taking into account that two directions of

maximum source size differing from each other by 180° are equivalent, one can see that
estimated instant centroid velocity is directed along estimated source major axis.
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As a result of surface wave spectra analysis we produced a model of the source. A scheme
of this model is given in Figure 11. The ellipse in the fault plane represents here the
integral estimates of source geometry. Vector v is the direction of the instant centroid
velocity. Vector E is directed to the East, and vector S is directed to the South.

Stereographic projection of nodal planes on the lower hemisphere defining the focal
mechanism is shown at the same figure.



Map, centered at 45.87:26.67

ACRZF  APAF

Fig. 9. Vrancea, 90 earthquake. Distribution of stations
used for intermediate period surface waves inversion.
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Fig. 11. Scheme of source model and focal mechanism.
AU - slip vektor, V - direction of instant centroid velocity.

!
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IV. Study of nuclear explosions by joint inversion of surface wave amplitude spectra
and P wave first arrival polarities.

This section is based on the paper by Bukchin et al., 2000 submitted to PAGEOPH.
A combination of isotropic tensor, modelling an explosion, and pure double couple,
modelling the tectonic moment release, is considered as the moment tensor of seismic
source. The explosion is located at free surface, and the depth of double couple is a varying
parameter. Such a source can be characterized by six parameters - seismic moments of
double couple and explosion, three parameters determining the double couple focal
mechanism, and its depth.

We determine these source characteristics by minimizing the misfit between synthetic
and observed Love and Rayleigh surface waves spectra and polarities of P-waves first
arrivals. The optimal values of the parameters that minimize the misfit we consider as
estimates of these parameters. We search them by a systematic exploration of parameter
space. To characterize the degree of resolution of every of these source characteristics, we
calculate partial residual functions as it was described above.

We applied the method described herein to a small set of data recorded regionally
between 1990 and 1996 following events (seven nuclear explosions, three earthquakes,
Fig. 12) that occurred on the Lop Nor test site in Western China. The explosions all
possess a significant non-zero jsotropic component and the estimated depth of the double
couple component of the moment tensor, presumably the result of tectonic release, lies
between about 0 and 3 km. For the earthquakes studied, the isotropic component is
indistinguishable from zero and the depths of the sources are estimated at 3, 17 and 31 km.
The data set we have studied, although still very small, suggests that certain source
characteristics (namely, double couple depth and the ratio of the isotropic to nonisotropic
components of seismic moment) may prove useful in discriminating explosions from
shallow earthquakes.

Description of technique
As it was mentioned in section II an instant point source can be described by the

moment tensor - a symmetric 3x3 matrix M. Seismic moment M, is defined by equation
3
M, = ,/%U(MTM), where tr(M™™) = EMUQ. Moment tensor of any event can be
ij=1

presented in the form M= Mm, where matrix m is normalized by condition
tr(m"m) = 2.

We consider the event under study as a sum of earthquake (0O-trace moment tensor
M_,) and explosion (moment tensor M, ). Moment tensor M of such an event is given

bysum M=M_ +M,,.

Let I be an identity 3x3 matrix. Then M, = \/% M, 1, where M, is the seismic
moment of the explosion. For the earthquake M_, = M, m, where M, is the seismic
moment of the earthquake, and m is a normalized moment tensor, such that trm = 0 and
tr(m'm) = 2.

Let us consider a 6-D linear Euclidean space of symmetric 3x3 matrixes M, and let
the scalar product of two vectors (M,N) is defined by formula

(M,N) =Y M;N, = t(M'N). 4.1)
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Isotropic tensors M, form a 1-D subspace which is orthogonal to 5-D linear subspace
of zero trace tensors M, . This follows from definition (4.1} and from relations:

M, M, )_,/ MOQMMOExtr(mTI)—J 3 My Mo, trm = 0. (4.2)

Then the scalar moment of combined event can be expressed by formula

My =M = [V (M, + M) M, +M,,))
= M) S, M) =, M,

(4.3)

So 6-D vector M is a sum of two orthogonal vectors M, and M, , and seismic moments
of the explosion component M,,, and of the earthquake component M, « can be expressed
by total scalar moment M, and the angle ¢ between 6-D vectors M « and M which
determines the ratio of the seismic moments of the isotropic and double couple

components:
Moqu = M,cos¢ 4.4)
M, = M,sin@ (4.5)
M
tan @ = —2& (4.6)

Oqu
We call ¢ the isotropic angle, for want of a better term, because @=0 corresponds to a
pure earthquake, ¢ =90° corresponds to a pure explosion.

Let us consider a seismic source as a combination of isotropic tensor, modelling an
explosion located at a zero depth, and pure double couple point source at a depthh,
modelling the tectonic moment release. Both explosion and earthquake are considered as
an instant sources. Such a source can be given by 6 parameters: described above angle @,
double couple depth, its focal mechanism which is characterizing by three angles: strike,
dip and slip or by two unit vectors (direction of principal tension T and direction of
principal compression P} and seismic moment M, . Five of these parameters we determine
by a systematic exploration of the five dimensional parametric space, and the 6-th
parameter M, - solving the problem of minimization of the misfit between observed and
calculated surface wave amplitude spectra for every current combination of all other

parameters.
Under assumptions mentioned above the relation between the spectrum of the

displacements u,(x,®) in any surface wave and the total moment tensor M can be

expressed by following formula
1 d
u(X,0) = E[Mqu 3y,

i,j = 1,2,3 and the summation convention for repeated subscripts is used. G;(x,y,0) in

equation (4.7) is the spectrum of Green function for the chosen model of medium and wave
type (see section II), y - source location (we assume that the explosion and earthquake
have this same horizontal coordinates, but different depth: h for earthquake and O for
explosion). We make the same assumption as in section II: the paths from the earthquake
source to seismic stations are relatively simple and are well approximated by weak
laterally inhomogeneous model. We remind that the surface wave Green function in this
approximation is determined by the near source and near receiver velocity structure, by the
mean phase velocity of wave, and by geometrical spreading. The amplitude spectrum

d
—G;(X, ¥4, 0) + Mexﬂ-é——G,-j(x,yex,u))] 4.7)
auy Yexq
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|, (x,)| defined by formula (4.7) does not depend on the average phase velocity of the
wave. In such a model the errors in source location do not affect the amplitude spectrum.
Average phase velocities of surface waves are usually not well known. For this reason, we
use only amplitude spectrum of surface waves for determining source parameters under
consideration. An example of fit to the surface wave amplitude spectra is shown in Fig. 13.
If all characteristics of the medium are known the representation (4.7) gives us a system
of equations for parameters defined above. Let us consider now a grid in the space of these
5 parameters. Let the models of the media be given. Using formula (4.7) we can calculate
the amplitude spectra of surface waves at the points of observation for every possible
combination of values of the varying parameters. Comparison of calculated and observed

amplitude spectra give us a residual &'’ for every point of observation, every wave and
every frequency ®. Let ¥ (x,i0) be any observed value of the spectrum, i = 1,...,N; g*’-

corresponding residual of |u'”(x,®) | We define the normalized amplitude residual by
formula similar to formula (2.2)

N N 1/2
s(h,cp,T,P):HZ e“)z)/(zium(x,mz” _ (4.8)
i=1 i=1

The optimal values of the parameters that minimize € we consider as estimates of these
parameters. We search them by a systematic exploration of the five dimensional parameter
space. To characterize the degree of resolution of every of these source characteristics we
calculate partial residual functions in the same way as in previous sections. We define two
residual functions on scalar argument and two residual functions on vector argument
corresponding to the two scalar and two vector varying parameters: € , (k) , €, (¢),

gy (T)and €, (P) . The value of the parameter for which the corresponding function

of the residual attains its minimum we define as estimate of this parameter.

To improve the resolution of focal mechanism we use in the inversion polarities of P wave
first arrivals as we did it for earthquake study considered above. Before inversion we apply
the smoothing procedure described in section II to the observed polarities. In calculating
the radiation pattern of P waves for a set of source parameters, we assume that the waves
radiated by the isotropic (i.e., explosion) and nonisotropic (i.e., tectonic release or
carthquake) source arrive simultaneously. This assumption can be abolished if the
observed signs of the P first arrivals would be substituted by polarities measured from long
period P wave spectra (Bukchin et al., 1997).

Description of applications

We utilized IRIS and GEOSCOPE broadband digital seismograms and NEIC bulletins
for 14 events that occurred at the Lop Nor test site in China from 1990 through 1996. Eight
of these events are nuclear explosions, the other six are natural earthquakes. However, only
10 events with high signal-to-noise surface waves recorded at several stations were
selected for study. The location of the selected events (7 explosions and 3 earthquakes) are
given in Fig. 12,

We estimated the source parameters using the spectra of Love and Rayleigh
fundamental waves in the spectral domain for periods ranging from 20 s to 70 s. Love and
Rayleigh fundamental modes were extracted by using frequency-time analysis (FTAN) and
floating filtering. Only records in which the surface wave polarization pattern did not
exhibit significant azimuthal anomalies (< 15°) were used for further analysis. Some
examples of normalized amplitude spectra are shown in Fig. 13. Note that the amplitude of
the Love waves, which cannot be excited by a pure isotropic source, is comparable with
the amplitude of the Rayleigh waves.
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The focal mechanisms for the earthquakes and for the double couple components of the
explosions are shown in Fig. 12.

The double couple depth is well resolved for all events studied and varies from 0 to 3
km for explosions and for the earthquakes we obtained depths 3 km, 31 km, and 17 km.
The partial residual function of double couple depth is presented in Fig. 14 for all events.

Fig. 15 shows an example of the resolution of the double couple focal mechanism for
the
large explosion that occurred on 05.10.93 with M, = 5.9 and M, = 4.7. This figure displays
the partial residual function of principal axes orientation. The principal compression axis is
resolved better than the principal tension axis.

The number of surface wave records that we selected for the studied events was small,
particularly for the earthquakes on the test site. For some events, only a few polarities of P
wave first arrivals were available. As a result, the double couple focal mechanism was very
well resolved only for the earthquake on 21.01.90, but for half of the events the principal
compression axis, which trends in the SE-NW direction, was resolved well. Considering
the focal mechanisms of these events, and the solutions obtained by Gao and Richards
(1994), we found that while they vary widely, there is a moment tensor characteristic
which is quite stable for all events. This characteristic is the orientation of the principal
axes of 2 x 2 minor of the moment tensor corresponding to the horizontal coordinates
{Mu; Myy; Myy; My}, This minor describes the horizontal deformations on the horizontal
plane. We found that for all events, horizontal compression is dominant, and the principal
horizontal compression axis deviates from the average direction (with an azimuth of 60°)
by no more than 12°. These observations allow us to improve the estimates of the isotropic
angle ¢ by assuming that the orientation of the horizontal deformations is a stable

characteristic for the region under study. The average direction of horizontal compression
is deviated from the fault visible in Fig. 12 by about 45°. With this assumption, we applied
an a priori constraint on the possible double couple focal mechanisms. This constraint was
formulated as a condition that the azimuth of the principal compression axis of the
horizontal minor of the moment tensor cannot differ from 60° by more than by +45°. This
constraint is weak, but it reduces the number of possible focal mechanisms in half.
Although the constraint is heuristic, we can present a special case when it is exact. This is
when the deviatoric tectonic stresses in the region are horizontal and the direction
mentioned above is the direction of principal compression. Then the constraint follows

3
from the principle of positive deformation energy: 2 S;M, 20, where S is the regional
i,j=1
stress tensor, and M is moment tensor of event in the region.

When we applied this constraint, the resolution of the angle ¢ defining the seismic
moments ratio was improved for three of seven studied explosions but the minimums of
the curves did not vary appreciably. The curves of partial residual functions of the isotropic
angle ¢ for all explosions are shown in Figure 16. Those for the three earthquakes
are displayed in Fig. 17. We applied the same approach for the two earthquakes occurred
m
Gansu province, China (Tianzhu, 1996, M; = 4.9, depth 12 km, and Yongden, 1995,
M; = 5.4, depth 6 km) studied by Lasserre et al.,2000 under the assumption of pure double
couple source. The curves of partial residual functions of the isotropic angle ¢ are shown
in Fig. 17. The explosions, with perhaps one exception (05.10.93), all display substantial
non-zero isotropic angles @ ranging from about 10° to 50°, corresponding t0 Mpe/Mogu
ranging from about 20% to 120%. In contrast, the isotropic angies for the earthquakes are
all estimated to be approximately 0.



27

Fig. 18 illustrates the effect of adding of an isotropic component to a double couple
source model on fitting of theoretical and observed data in the case of an explosion (on
10.06.94). Theoretical Rayleigh wave amplitude spectra and P wave first arrival polarities
are compared here with observations for two different moment tensors. One of them (a,b)
was obtained by minimizing joint residual for a fixed zero isotropic angle (double couple
source model). Another one (c, d) is a result of a similar minimization, but for varying
isotropic angle (30° is the estimated optimal value). As one can see the fitting of P wave
first arrival polarities is good for both source models, but the fitting of Rayleigh wave
amplitude spectra is much better in the case of non-zero isotropic component.

The results above are consistent with the hypothesis that motivates this study. Namely,
that for the events we analyzed on the Lop Nor test site surface wave amplitude spectra
combined with polarities of P wave first arrivals can be used to discriminate explosions
from earthquakes based on source characteristics alone (a combination of the double
couple depth and the ratio of the isotropic to nonisotropic moments). But it must be tested
if the method can be applied to events with smaller moments and if the method is
transportable to other regions.



-

88.6 88.8

41.8
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Figure 12. Epicenters and focal mechanisms of earthquakes (circles)
and explosions (stars). Focal mechanisms for explosions are given
for their tectonic release.
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Love amplitude spectra as function of period
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Figure 13. Comparison of observed (dashed) and computed (solid) Rayleigh
and Love wave amplitude spectra for the explosion on 5 October, 1993.
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Fig.15. Partial residual functions of double couple principal axes
orientation for the explosion on 5 October, 1993.
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(a) N (b)

(c) N (d)

Fig. 18. Comparison of observed (circles) and synthetic (a, ¢) Rayleigh wave
amplitude spectra for period 26 s and (b, d) first arrival polarities for
explosion, 10.06.94. Rayleigh amplitude spectra are recalculated for laterally
homogeneous media for source-receiver distance 3000 km.

(a, b) - moment tensor is estimated by minimizing of joint residual of surface
wave amplitude spectra and first arrival polarities for fixed zero isotropic
angle. (¢, d) - moment tensor is estimated by the same minimization for
varying isotropic angle (optimal value is 30°). Directions of compression
waves radiation are shaded. Nodal planes of double couple component are
shown by solid lines.
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