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1. Introduction

Wave motion is one of the well-known scientific concepts, Behavior of the waves
on the water surface, as well as propagation of acoustic or light waves are known from
everyday experience. However, it is not easy to define the wave. In general we can say
that it is a form of propagation of a disturbance of some physical field. We know
seismic, electromagnetic, acoustic, gravitational waves. Though, there is no exact
general definition of the waves, because of a variety of their characteristic features in
different cases. For example, we may generally define the wave as a disturbance
(signal}, which propagates in a space with a certain velocity, but a form of the signal,
as well as its velocity may vary. However, this definition involves propagation of heat
(disturbance of temperature), but it is well known that the heat is propagated in
another way — not by a wave. Therefore it is preferable to proceed from an intuitive
notion on a wave as on a signal propagating from one to another part of a medium
with a certain finite velocity. This signal may be distorted, may change its intensity
and velocity, but should remain distinguishable. A perturbation arising in a part of the
medium causes returning forces preventing this perturbation, and the forces are of
such kind that they lead to appearance of similar (in general not exactly the same)
perturbation in neighboring points,

Seismic waves arise in solid media due to elastic forces. A main peculiarity of
seismic waves is that there are at least two types of waves (in anisotropic media -
three types), with different velocities and different polarization. This fact is due to
existence of at least two different elastic modules: in isotropic media - compressible
and shear modules. Therefore returning forces are different for different types of
deformation.

A nature of the wave may be explained by consideration of a compressional wave in
a thin rod. The rod may be represented as a set of interacting elements. If one element
is displaced, a force appears between this one and neighboring elements which is
proportional to a relative variation of a distance between them. We can imagine that
the elements are connected by elastic springs, and the force is due to compression or
tension of the springs.

Let a force due to deformation of the spring be
p
Ax

Motion of the i-th element of mass m submits to the Newton’s law:

mii, = K2 "% g
Ax Ax

U, —u, ,




In continuous case, when Ax—0, and m=pAx, u=u(x,t), we obtain

-k 2t ()
- o’
This is the simplest one-dimensional wave equation. Its solution is as follows:
K
u=fU-S)+g+S),  e= =,
c c fo,

where f{£) and g(&) are arbitrary functions, and ¢ is regarded as velocity of the
wave propagation.

If the masses deviate from the equilibrium in perpendicular direction (shear), it
would be the same, but the module X is different (it 1s less than compression module),
and the velocity of shear wave propagation is less than for the compressional wave.

In continuum (2D or 3D) there are both types of deformation (compression and
shear), therefore two types of waves may propagate.

2. Equation of motion for solid elastic media

Consider an element Q of elastic medium bounded by a surface S.

Equation of motion of this element
may be written as follows:

mp%dﬂ = [[r,ds+ [[[Fxde (1)
Q s S

where F is body force density, T, is stress applied +T
to the boundary. n

Applying Gauss formula to the surface integral, and taking account that the stress
tensor is symmetric, we finally obtain that

or? )
or
2 = BT =
p6;1=81'1+ ry+ar2+F

where T is stress tensor, or a matrix formed by vector-rows Ty, Ty, T::

x

T=|T
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Eqs. (2,3) are valid for all types of media: isotropic, anisotropic, inhomogeneous,
anelastic, which differ by the relationship between stress and strain. Below we shall
consider some particular cases.

2.1. Homogeneous isotropic medium

In homogeneous isotropic medium the relationship between stress and strain, which
in turn is related with spatial derivatives of displacement, is following:

ou. OSu,
, = Adivas, + g —+—2L 4
7, vug, ﬂ[axj o, J 4)
Substituting (4) to (2) (here we neglect the body forces) we obtain
2
(A +2u)Vdiva — grotrotu = p%; %)

The simplest approach to solve this equation (which is valid only for inhomogeneous
medium!) is to represent the unknown vector function in terms of scalar and vector
potentials:

u=Ve+roty
Substituting this representation to (5) we obtain two independent equations for the
potentials:

__p Op_10% 62)
A+2u o a* o
2= 2
ap =LV _10V (6b)

These are the wave eguations (scalar and vector): they describe propagation of the
waves with two different velocities a and 5. The scalar potential determines the

longitudinal (compressional), or P-wave, vector potential determines the share, or S-
wave.

To solve these equations we should know the initial conditions, i.e. the functions ¢
(x) and w(x) at r=0.

It is clear that the solutions of (6) are additive, i.c. if, for example, @, and @, are
two different solutions of (6a), then @, + ¢, will also be a solution of this equation, It

means that that by superposition of the different (elementary) solutions we can
construct the solution, which would fit the given initial conditions. The simplest
elementary solutions are the plane waves.

2.2. Plane waves

At first we shall consider the scalar wave equation
1 8%u
Ay =——— 7
¢’ ort @)
u=u(x,,Xx,,X;,1)

A solution of (7) may be represented in the following general form:

u(x,1) = f{t~(k,x))+ gt +(k,x)) , 8



where f{£) and g( &) are arbitrary functions, and !k|2 = L, . So the two terms in the
2

right-hand side of (8) describe the waves propagating in opposite directions with the
velocity c. It is clear that at any moment the solution at the planes (k,x)=const is one

and the same.
For simplicity we shall represent the solution of (6a),(6b) by one term in (8):

1

N =fl~ k%) [kyl=—

a

G0 =0F(-(kgx) kg :%

Then
u=u, +ug
where
u, =Ve=-kf'(t - (k,x)) ©)
u, =roty =(nxk)F'(t —(k,x))
The motion in P-wave is directed along the direction of propagation k, whereas in S-
wave it is orthogonal to k.

It is clear that in both cases (P and S waves) the displacement may be represented in

the form
u =1¢[rwwj (10)
¢

where n and 1 are unit vectors, and ¢ is a velocity . Using the concept of plane waves
we can show that ¢ may be equal @ or b, and in case ¢=a polarization vector I=n, and
in case of ¢=b 1 is orthogonal to n.

Substituting (10) to (5) we obtain

[(/1 + n(l,n) + ,ul]il)"(t —(n,x)/¢) = pc’1D"(t — (n,x)/ ¢)

or

(A+ mn(ln) = (pc’ - )l

Define & = M, then
A+ u
n(l,n) =61 (11)

or Nl=681, wherematrix N=nn’, so that 0 and 1 are eigenvalue and eigenvector
of the matrix N correspondingly.
It is easy to show that 0 fits the equation

& -6 =0,
which has three roots

6 =1, 6,=06,=0.
Otherwise

¢ = i+2ﬂ:a’ ¢, =c, = H
V »r P

The eigenvector corresponding to the first root is I=n, and those corresponding to the
other two roots are mutually orthogonal unit vectors, both orthogonal to n, i.e to the
direction of propagation. Thus the first root corresponds to the longitudinal wave, and




to other ones — to two share waves propagated with one and the same velocity. As
shown below, in anisotropic medium these two roots are different, so that there are
two quasi-share waves propagating with different velocities.

2.3. Inhomogeneous plane waves

The concept of plane wave may be extended to complex vectors I and n.
A solution of the wave equation (5) in the form (10) assumes n to be a unit vector,
ie.
(n,n)=1 (12)
But n can also be a complex vector, i.e.
n=n, +in,
Obviously, the function ®(£) , as a function of a complex variable, should also be
complex, as well as the polarization vector I:
=1 +i,,
D(x +iy) = f(x,y) +ig(x,p)
Since both n an 1 are unit vectors, we have
(n,,n)—(n,,n,)+2i(n,,n,)=1,

(m,n)—(n,,n,)=1

(n,,n,)=0
a,1,)-(,,1,) =1
(]tslz) =0

As usual, since the displacement u is real, we take only the real part of the complex
solution:
u(x,?) =1, f(¢—(x,n,)/c, -(x,n,)/c)-l,g(t —(x,n,}/c,-(x,n,)/c) (13)

This formula describes inhomogeneous plane wave. The motion in the
inhomogeneous wave has the following meaning.  Temporal behaviour of
displacement is one and the same along straight lines determining by intersection of
the planes (x,nj)=const and (x,m;)=const. Direction of the wave propagation
coincides with the vector m;, the wave propagates along this direction with the

velocity V = ﬁ Since |n,| = 1/1+[n.‘,_|2 >1, velocity of the inhomogeneous wave is
nl
always less than ¢ (@ or b). The wave form and the wave amplitude are changing in
direction of the vector n,. Components of the displacement along vectors 1, and b, are
changing differently, accordingly to the different functions fandg.
The vectors lyand I; in compressional wave coincide with the vectors n; and n;. In
shear wave the vectors 1; and I, satisfy the relations '
(113n1)*(12=n2)=0 (14)
(,,m;,)+{,,n,)=0

Orientation of the vectors n;, n,, l;, I, are shown below,



It follows from (14) that
cosff = ) :
I, L,

If P=n, we have SV-wave, and in case B=n/2 the wave is SH. It is clear that for SH-
wave 1,=0, and only in this case polarization is linear.

If the function ®(z) is analytical, then, according to the Cauchi-Riemann relationship
for real and imaginary parts of an analytical function of complex variable

of _og o __og
>y w o
If the motion is harmonic oscillation with frequency , then
f(x,y)=Ae ™ cosax
g(x,y)=Ae ™ sinax
Particle motion in harmonic inhomogeneous waves is elliptic for P and SV waves,
and linear for SH waves (see fig. below )

Particle motion in harmonic
inhomogeneous waves

P sV

LT

|lcl?'
=

In general case the functions f{x,3), g(x,y) may be represented as a superposion of
these solutions, i.e.

flx,y)=

Alw)e™ cos axdm

2(x,y)= | A(w)e ™ sin axdw

]
?

This means that the function g as a function of time in a given point x is Hilbert
transform of f



The functions fand g are not finite in the infinite space due to the exponential term

e . Therefore they may be used to represent solutions of the wave motion either
int a finite volume, or in case of sources,

Any wave field may be represented by superposition of plane waves (both
homogeneous and inhomogeneous), which fits the equation of motion (5) and the
following boundary conditions:

e radiation condition, requiring the displacement not to increase at the infinity;
¢ boundary conditions at interfaces in the medium;
e conditions in the points where sources are located.

The Ist and the 3d (and sometimes the 2d) conditions cannot be satisfied by only
homogeneous plane waves. In such cases the inhomogeneous waves should be
involved.

2.4. Energy flux

Total wave energy is a sum of kinetic and potential energy. The density of kinetic

energy is
2

1 lou

W, =2 oY
Y P

Potential energy is the energy of elastic deformation. The density of the potential
energy is determined as

1
W, = EZTU-% ’
7

. ) . 1{ du, Ou,
where 7; is stress tensor, and g; is strain tensor: &, == —+—21. For
2{6x, ox

homogeneous isotropic medium

1 .
W, = Ei(dzvu)z +uY e, (15)
i
For plane wave u(x,s) = I&(r - (x,n}/ ¢} the density of kinetic energy is expressed as

W, = i::i[(I)']2 - for homogeneous wave

W, = §|11f' _]2g'|2 = gﬂllfz(f')z +|l2f2(g')2) - for inhomogeneous wave

(here and below /" and g’ mean %f; and Z—g— .
it

The density of potential energy is
1[A+2
W, = 5{ 3 Llame] + ﬁz”l x n[CD']Z} = wg-[CD']2 =W, -for homogeneous
c ¢

p

wave, and for inhomogeneous wave we must replace divu and g, in(15) by

Redivu and Ree, . These expressions are different for P, SV and SH waves:

1 2
W, = g {(f')z + M[( f')2 + (g’)2 J} - for P -wave,
oa



W, = g{(f’)2 +4]n]]2|n2|2[(f')2 +(g'y ]} for SV-wave,

W = g{( PPl e @f]) for SHwave.

, and |n2|=|12[ . as well as

Taking into account that for P and SV waves ]n]| = Il,
L,=0 for SH-wave, we may write all these expressions in common form:

W= Ly oy + @ e 2Ly o (ep] as)

The first term (%( £"?) is similar to that for homogeneous wave, the second one

describes the energy of elastic deformation due to amplitude variation in the direction
perpendicular to the wave propagation, and the third one includes the part of energy
due to non-linearity of polarization.

It should be noted that the total energy density is not constant as in case of
oscillation. However, it is obvious: the energy is transported within the medium, and
the energy conservation law is justified for the whole volume.

In case of harmonic wave u = Iexplio(r —(x,n)/¢)] the total energy density is
W = pw? sin*[w(r — (x,n)/¢)] for homogeneous wave,
and

2 2 2
W = pa exp(zw(x’nz)][sinz[a)(t—(x,n])/c)]+ {nzl N 2!1!111I ZjlzJ
c 2 oc
for inhomogeneous P, SV and SH waves.
So for homogeneous wave the energy oscillates within a half of period from 0 to
pa’, whereas for inhomogeneous wave it never achieves 0. This can be easily
explained: if the amplitude does not change along the wave front, then at the moments

corresponding to maximum displacement both velocity and strain vanish, whereas this
is not so in case of elliptic polarization and variation of the amplitude in the direction

perpendicular to the wave propagation.

The vector of energy flux (the Pointing vector) is
p=We,
where ¢ 1s the velocity vector directed as the wave propagates: in case of
homogeneous wave it is equal to ¢n, and in case of inhomogeneous wave it is

£ h g is obvious that divp = (¢, Vi) = _oW
|n1| |n1‘ ot
Define the energy in a volume Q as £:
E= [[[paa,
Q
Then
OF

o = —”Idivpdﬂ = —HpndS
Q Sn
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Thus, variation of the energy within a volume ) is equal (with opposite sign) to a flux
of the Pointing vector across its surface.

Analogous relationship holds for arbitrary elastic medium and for arbitrary wave.
This will be shown later, in analysis of anisotropic media.

2.5. Spherical waves

We consider spherically symmetric solution of scalar wave equation
1 .
Ap=—30. 9=0R1)

In spherical coordinates

2
A§0=—1— 0 (R2§£J+ 1 %[sin@a—goJ+-§l—a 14

R* R\ 8R) R'sin® 80) R*sin’@ 8"
For spherically symmetric solution
1 0 26¢oj 1 &%
—— R — |=— , 17
R’ GR( oR) a* o a7
or

9 20p 1 d%
+ ==
OR* ROR a* &
The latter may be represented in the form

82 1 &
Rpy=-———(R
ajez( 2 a’ or? 2

A solution for Rg is the same as for 1D wave equation, and for the case, when the
wave is expanded from the origin (R=0)

¢(R’t)=w (18)

It should be noted that (18) represents a solution of (17) everywhere except the point
R=0. But because the wave propagates from R=0, this point may be regarded as a
source, where a body force is applied. Therefore to get the solution, which exists
everywhere including R=0, we must proceed from another equation, notably,

1 2 Op 1 &
— | RP L | =— — 475 (R)[-F (¢ 19
RzaR( 6R] a’ ar? m(R=F@)] (19)

Then (18) will be the solution of (19), which is valid in the whole space.

b

It should be noted that a solution in the form of ‘pure’ spherical wave exists only
for compressional waves. For shear wave we cannot have spherical symmetry
because this is impossible for vectors tangential to a spherical surface.

Now we shall represent spherical wave as a superposition of plane waves. For this
purpose it is necessary at first to represent the function F(?) in a form of the Fourier
integral

-F()= ]‘ﬁ (w)exp(iot)da .

It will be sufficient to restrict the analysis by a harmonic wave:



P(R.1) = exp[ia)(JtR— R/a)]
Also we may omit the factor exp(iot), and consider the part of the solution, which
depends only on spatial coordinates:
exp(ioR
(i) = SEC2)
(The sign in the exponent also may be assumed opposite).
(20) is a solution of the equation resulting from (19):

(20)

2
Ap+Z g = ~475(x) 1)
a
Let us represent the solution in a form of 3D spatial Fourier transform:

1 .
o(x) = Jffeaoexplik, x)ldk. (22)
then , substituting (22) to (21), we obtain the equation for ®(k):
4
Ok)=—
e
a2
where
K =(k.k) =k} +k +k! (23)
Thus,

exp(ioR/a) 1 rexpli(k,x)]
R f] = dk dk k.
—m k2 _ -
a

But the because of (23) the variables &, .k, k_ are not independent. Therefore we can

integrate over one of the components of the wave vector, e.g. over k.. The integration
is performed by the use of the theory of residuals, and finally we obtain

exp(ioR/a) _ 1 J-reXP[i(kxx +k,¥) -7}
R 27 3 ¥

dk dk,  (24)

where

, ) a)2 1/2
Y =[kx +ky —a—zj

and the sign at v is chosen so that Re y>0.
(24) is Weyl integral, which represents spherical wave as superposition of plane

waves. Since -ow<k, <o, —0<k <o, the integrand contains not only
homogeneous, but also inhomogeneous plane waves.

The integral (24) may be transformed to the Sommerfeld integral, which represents
spherical wave as a superposition of cylindrical waves. Let us replace the variables:

X =rcosn k.=kcosg
y=rsing k, =ksing
Then
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w2

exp(za)R/ a) _ 1 rexplikr COS(*,’D n)—ylz |]
2]

Taking into account that

1 2z ]
— Jexplikr costp ~ n)ldg = J, (hr)
0

we obtain
exp(m)R/a) “j--f (kr)exp( 7|Z|)
0

2.6. Cylindrical waves

If the wave field is symmetric in respect to a straight line (z-axis), and the field does
not depend on z-coordinate, the wave equation for potentials may be written in
cylindrical coordinates as follows:

2
1 6( Spy_126 £2 (c=a) forscalar potentil,
ror or) & ar

and similar equations for components of the vector potential with c=5.

This case may be regarded as 2D case, i.e. corresponding to the wave propagation in
a plane z=const. In contradiction to the 1D case, to which a plane wave can be
reduced, and to the 3D case (spherical wave) in 2D case it is impossible to construct a
solution in a general form f{r.7), and it is necessary to express a solution as a function
of ¢ in the form of Fourier integral, and consequently to solve the equation for the
harmonic wave:

16( 8¢\ o .
0 25
rar[ arj c? PaAde (23)
or
2;\
-6——?+la¢ k=0 (26)
or° ror

where k=w/c.
Solution of the eq.(26) is a combination of the Bessel functions. If the time
function is taken in the form exp(ia¥), and the wave is expanded Jrom r=0, then
P(r.w) = AH (kr)
and the solution for @(r,t) is following:

p(r,t) = R ?A(a))Héz) (or / c)expliot)dw
2r

It is clear that, in contradiction to the 1D and 3D cases, the waveform is not remained
unchanged in the process of propagation. This peculiarity was noticed by Hadamard
in his classic studies of the wave equation: he pointed that the behavior of the solution
is different for odd and even numbers of spatial dimension.
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c
function, so that the solution can be written as a wave with preserved form and with

At large distances (ﬂ >> 1) we can use the asympotic representation for the Hankel

the amplitude decaying as —l—:

Jr

o(rt)=C exp[iwf/t;— r/cyl

Though it seems that cylindrical waves cannot be excited in reality, they are important
in analysis of surface waves and the waves with axial symmetry.

2.6. Anisotropic medium

For anisotropic elastic medium the relationship between stresses and derivatives of
displacement is expressed by the Hooke’s law in the form:

Ty T Cou€u (27)
(summation over repeated subscripts is assumed here and below). In the similar
notation we may re-write the equation of motion (2):

or i azuj
Foata (28)
Substitute (27) into (28):
1 o (ou, Ou 8’u,
EC”’H axj(ﬁx, +8x,:]_p o’ 29)
A solution of this equation also may be represented in a form of plane waves:
n,x
u, = z,qa[t - W] (30)

where »n, are components of the unit vector indicating the direction of propagation, and
I; are components of the polarization (unit) vector. Substitute this to (29):

1
Ecyk{(lknjn.’ +hnen;) = pe’l, (3D
This is a system of 3 linear equation respectively the components of the polarizarion
vector /,l,,/; . Determinant of the system should be equated to 0, so we obtain a

cubic equation for ¢?. All three roots of this equations are different (in contradiction
to the isotropic case) and depend on m, i.e. the velocity is different in different
directions. The components of the vector 1 are not related to m as was in isotropic case.
In this case we have no pure ‘longitudinal’ and ‘shear * waves: in so-called ‘quasi-
longitudinal’ wave the polarization vector 1 does not coincide with n, and in two
‘quasi-shear’ waves they are not orthogonal to n.

Example: Transversly isotropic medium

Let z-axis is the axis of symmetry. Then
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To=Ae, +(A-2N)e  + Fe_
T, =d4de, +(A~2N)e_ +Fe_,

7, =F(g, + syy) +Ce¢,,

7, =Ne,
T,=Lg,
t,=Le,

As before, we look for a solution for plane wave in the form
u= ICD(I - M] . Substituting this solution to the wave equation we
[

obtain the following equation for the velocity ¢ and the polarization vector
I:
Ml =1,
where M is matrix with elements depending on n and the modules
A,L N, F,C. In general case (arbitrary direction of n) the solution is too
complicated, but it is simplified in the particular cases, when n is directed
along or perpendicular to z-axis:
e n =1 n=n=0
&= pc’
Equation for &
E-QL+COYE + L(L+20) - I'C =0
has the solutions:
51 =C, 52 :53 =L,
L'=n (,n)=0, (I,,n)=0, (1,,1,)=0

e n,=0, nl+n =1
.;’,:3—(A+N+L)§2+(AN+LA+LN)§—LAN=0
& =4, S, =1, & =N
I, =n, I, =e,, I, =(nxe)

The most unusual property of the waves in anisotropic medium is that the energy is
transferred not in the direction of propagation. It is difficult to understand for plane
waves, but can be illustrated on the example of the waves propagating from a point
source. Surfaces of constant phase at two different moments are shown below:
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Vector k=n/c is wave vector, and ¢ is phase velocity. But the energy is transferred
along the ray q=n’/u, where u is group velocity. The group velocity and the direction
of the energy transfer can be obtained using the vector of energy flux, which in
general case is expressed as follows.

As was shown above, the kinetic energy density may be written as
o
W == pliw) (32)

Therefore,
ow,

ot
Potential energy density is

1 1
Wp =ETU€U =ECW‘I£“8

= pli,ii) = (VT, W)

p (33)
Then

oW, 1 i .
Py =§cw(£m3y‘+5w€y (34)

Due to the relation between the elastic coefficients ¢, = c,,, (34) can be written as
ow

p —- . _ . - .
——at = Cyun€y = T8, = (TV.,u)

Thus
%?=wnm+amm=Vﬂm)

Variation of the energy in a volume 2 is
%’_f_ = [ J‘ faiv(T, w)dQ = - [[Jdivpacy=- [[p.as
Q [¢] 8

where

p=—(T.u)
This vector is directed along the energy transport, and using this formula we can
determine the group velocity in anisotropic medium, because according to the
definition of the vector of the energy flux

p =Wun'

Consequently,

un' = —(T,a)/W



3. Propagation of elastic waves in media with boundaries
3.1. Boundary conditions

If the medium contains a boundary or discontinuity at which seismic velocity
changes, the waves reflect or refract, i.e. some new waves are generated on the
boundary. These waves must fit the boundary conditions. Boundary conditions relate
stresses and displacements at the boundaries.

At free surface all stresses applied to the surface (so-called tractions) vanish, i.e. if
the unit normal to the surface § is n, then (T,n)s=0.

Boundary conditions at interfaces between two solids may be different. The most
usual condition is continuity of traction and displacement:

Trf” _ T;z)
u® =g

These conditions correspond to the welded contact.
Another case is the so-called sliding contact. This corresponds to the case, when the
media in contact are allowed to slide freely along the boundary. It means that the
tangential component of traction vanishes, whereas normal components of both

traction and displacement are continuous. No restrictions are placed on the tangential
component of displacement:

(35)

1y _ (2
Tnn - Tl’lﬂ

m _ (2
t, =T, =0 (36)
ul =

Such contact may be realized if a thin fluid layer is placed between the media.

More general condition is the so-called unwelded contact. This includes (35) and
(36) as particular cases. This contact can be also realized as before: if a thin ‘elastic’
layer with vanishing rigidity (u—0) is placed between the two media. Depending on
the relation between the thickness of the layer / and the rigidity p the contact tends to
the welded or to sliding one. To derive the boundary condition on such contact we
have to consider the conditions on both interfaces of the layer, and then assume /#—0,
u—>0. The conditions at each interface are assumed as those for the welded contact.

4 1
h m
¥ 2

At the interface I the conditions are as (35):

£ =5l
0 = el
u® = 4U»
u® =yt

At the interface 2 the displacements and tractions in the layer are



, A :
R A o (s P
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o= e s
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] au(ﬁ) ‘
ur(lfl} — u}(}.fl) + it h> uf,-’”
on
1)
- W Ouy " h .,
uf = uff? 4 Ty, Ll
Fl h—{) (L[

U
Eliminating the tractions and displacements in the layer we obtain the
relationship between these quantities in the upper and lower solids:

) _ 2
Tnn - Ihmr
H bl .
TJ(M') = TJ{H)
(1 (2) (37)
un =un
(" y _ ., (2)
i, +]72Tm —Hf
. | A
where m = lim|—}.
s
h—=0
H—{

H'm=0 we obtain the welded contact, and if pz—-»c0 the contaet is sliding,
Alternative conditions for unwelded contact may be derived if we assume the layer
between two solids as filled by a viscous fluid.

3.2. Incidence of a plané wave to a plane boundary

It is well known that if a plane wave impinges on a plane boundary, new derivative
waves result. The number of them depends on a type of the boundary and on
polarization of the wave. In all cases we shall assume the boundary to be horizontal
(z=0), and the waveform in the incident plane wave to be

xsing —zcosa
¢

so that the plane of incidence is y=0.
1. Free surface.
Scheme of the incident and reflected waves is shown below.
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It is clear that to satisfy the boundary conditions we must assume the wave forms of
the reflected waves the same as for the incident wave, i.e. F{f). Also the argument of
the function F should be the same at any point x of the boundary z=0. This
requirement leads to the Snell’s law:

sina, sina, 1

a b c
where the meaning of ¢ is an apparent velocity along the boundary.

If P or SV waves impinges to the surface, the displacements in the reflected P and
SV waves are expressed as

xsina, + zcosa

u, =x,F(t- E)e, sina, +e, cosa,)

xsinag +2cosa
b

where kp and ks are the reflection coefficients. They are determined from a linear
system derived from the two boundary conditions

r,,=0, 7, =0, atz=0

u, =x F(r—

e, cosa, —e, sina,)

The system may be written in the matrix notation:

K
Kg

where the matrix A is following:
A< sin2a,  yosaq
—ycos2a; sin2ag )

a
b

and the vector b depends on the incident wave.
If P wave is incident,

b =4y,
b = -4,
If S wave is incident
b =4,
b, = —Ay

The reflection coefficients depend on the angle of incidence. The most intéresting
case is when P wave reflected due to incidence of SV wave becomes inhomogeneous.

. . . 1 . ;
This case arises when sina; > —. In this case cosa, =+/1—(ysin ag)’ becomes
Y

imaginary, and the solution for P wave becomes complex. It is clear that the reflection
coefficients for both P and S wave also become complex. Polarization vector

n=e sina,+e, cosa, forP wave also is complex. The amplitudes of the

coefficients for ¥ =+/3 are shown below.



19

S8

0.5 -

I
|

| :

f T

[ 20 40 0 B8O

o0

At overcritical angles (a; >35°) the modulus of the SS coefficient remains equal to

1, but its phase changes, though the wave remains to be homogeneous.

If, as was defined above, f{x,3) and g(x,3) are real and imaginary parts of the the
function of a complex variable F(z)=F(x+iy) , then displacement in the reflected P
wave at overcritical angles is

u,(s,x,z)= Re{(rc, +ir, )(f{t—i,iﬂ'y2 sin @, —D+igt—=,2 Jy? sin? a; —1))e rsina, +ie .y sin® a, —1}
¢ ¢ cc

For harmonic wave

—EE‘— rrsinag-1)

u,{t,x,z)= Re:{(mrl +ik, )(cos[w(r— g) +isin[e(t ,%)])(ex}, singg +ie,4/y’sin ay — 1)}9

Particle motion in P wave for different angles of incidence is shown in the next figure.
The motion is elliptic, prograde (as a rolling ball), and z-axis of the ellipse increases
with the angle of incidence.

—

(O 4

64°
Particle motion in
inhomogeneous
750 reflected SP-wave
80°

If P wave is incident, reflection coefficients are always real. The behavior of the
coefficients with the angle of incidence is shown below.
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2. Interface benjl}Zen two solids.
If P or SV is incident to the boundary, four waves arises:.reﬂected P and SV, and
transmitted P and SV. In case of incidence of SH wave only two waves arises:
reflected and transmitted SH. Reflection and transmission coefficients are defermined
from a system of Tincar cquations resulting from the boundary conditions.

1 ~incident wave
2 - reflected/transmitted
3 — polarization vectors

As mentioned above, the boundary conditions can be of different type, depending
on the physical properties of the boundary. It is interesting to compare the coefficients
for unwelded contact for different values of m. It is convenient to choose a
dimensionless parameter instead of m, e.g. nt=cwmy, /b, , where g and b, are
rigidity and shear wave velocity in the medium where the incident wave propagates.
The next figures show the coefficients as functions of the angle of incidence for
different values of 77 (remember that # = 0 corresponds to the welded contact, and
nt = oo to the sliding contact). Parameters of the media in contact are taken as follows:

a, kmvs o, km/s  p
upper 7.6 4.5 3.23
lower 8.2 4.8 3.36
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3.3. Head waves

If spherical wave impinges on a plane boundary, and velocity of one of the
reflected/transmitted waves is larger then that of the incident wave, a so-called head
wave is produced on the boundary in addition to the transmitted and reflected waves,
It is easier to understand generation of the head wave proceeding from the concept of
the wave fronts. Let the disturbance in the source begins at r=0, then the surface r=r/,
where 7 is a distance from the source and ¢ is wave velocity, separate the disturbed
and non-disturbed areas. This surface is called the wave front.

Let the source be placed in the half-space 1, the source radiates P-wave, and a>> q,.
At the boundary z=0 transmitted and reflected P and S waves are produced. The front
of the reflected P wave is spherical, as of the incident wave, and the fronts of all other
waves are spheroidal. While the front of the incident wave crosses the boundary

. . a )

under the angle less than critical (sine!’ <—1), the wave fronts can be drawn as in
a,

the fig.a. The fronts converge in one point, which the disturbance reaches at the given

moment. At the moments, when the angle of incidence exceeds the critical one, the

picture of the wave fronts changes: the front of transmitted wave breaks away from

this point and propagates in the half-space 2 along the boundary with larger velocity

({fig.b).

In this case a part of the boundary between points A and O turns to be disturbed. This
disturbance is radiated to the half-space I in a form of so-called head waves with
conical fronts. The waveform of the head wave (w1?)) is the integral of the waveform
of the incident wave (£{1)):

v@) = [£(D)dr y()

Amplitude of the head wave is determined by the formula

r' 4+ R

it ————— L)tana“)
a

Peris

—_ | 2
- o LL\‘ﬂJ\JI
' r

where I is the coefficient of head wave generation, which is expressed in terms of
reflection/transmission coefficients in the points A and B. If the types of incident,
grazing and head waves are indicated by indices m, n,q, then

Py

Dy = =Ky K g —————emm
p, sin2a,

g "t ng



24

3.4. Rayleigh waves

In a half space with free surface exists a specific solution, which represents a
superposition of inhomogeneous plane P and S waves. If we look for a solution in a
form of a plane wave, the plane of incidence being y=0 (for simplicity we assume the
dependence on time 1o be harmonic) then, according to the general representation of
the inhomogeneous waves, we may write

2
u,(t,x,z)= A[Eex —ieﬂ/%—lJexp[fa)(t—x/c)]exp[—a)z —IT—J;J
¢ ¢ , ¢’ a
2
uq(t,x,z):B[ieﬂl?—z——l+2e,Jexp[ia)(t-x/c)]exp[—axz —17—-%]
) c c c- b

Replacing these expressions to the boundary conditions at the free surface z=0 we
obtain a linear system for the amplitudes 4 and B of P and S waves. This system is
homogeneous, therefore if non-zero solution exists, the determinant of the system
should be equal to zero. This is

6'2 ? C2 C2
[z--bTJ “41’1“;7 =25 =0

Thus, the superposition of the waves (38) with 4 and B determined form the boundary
conditions (up to a constant multiplier) represent a wave propagating along x-axis and
decaying exponentially along vertical direction. :

" Velocity of this wave along x-axis varies from 0.8745 up to 0.9565 for all possible

(38) .

values of b/a (from 71_5 to 0). It does not depend on frequency.

Motion in the Rayleigh wave is elliptic, retrograde at the surface and at shallow
depths, but becomes to be prograde at large depths. The figure shows variation of the
vertical (w) and horizontal (u) components with depth.

Ratio of horizontal and vertical amplitudes in Rayleigh waves at the surface is equal

Y1 (c/b)?

1
t0 —==—=== It depends also only on the ratio b/a. For b/a varying from — to 0
Yl=(c/a)’ - J2

this ratio varies from 0.786 to 0.541. For b/a= % it is equal to 0.681.

U

Rayleigh wave can be generated by a point source in the half-space, because the
spherical wave radiated by such source may be represented as a superposition of both
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homogeneous and inhomogeneous plane waves. So it contains the waves with the
apparent velocity equal to the velocity of Rayleigh wave.

3.5. Love waves

Inhomogeneous SH wave cannot exist in a half-space with free surface, because it
is impossible to satisfy the boundary condition by only one wave — this can be done
only if its amplitude is equal to zero. But if we have a layer with S wave velocity less
than in the underlying half-space, than the waves can propagate along the boundary,
amplitude of which decays with depth in the half-space. These are Love waves.

Love wave is produced by homogeneous waves within the layer and by
inhomogeneous waves in the half-space. Therefore the apparent velocity of Love

sina,, sinag,

wave should be within the limits 5, < ¢ <5, < because l = 5 z PR and
c 1 2

) b . "
1>sina,, =—-. These waves should satisfy the boundary conditions at the free
2
surface and at the interface.
Again we shall construct the solution as a superposition of plane waves.
In the layer (homogeneous plane waves)

. X | 1 . X 1 1
v = dexplio(r-—-2z *1;1*5—"67)]+Bexp[m)(r-—;+z g_c—z)]

In the half-space (inhomogeneous waves)

) x |1 1
v, = Cexpliw(t —;+zz c—z-l_’z?)]

It should be noted that in this case polarization vector is real (directed along y-axis),
because the real part (l;) is orthogonal to z-axis. So, if we recall the relationship

between the components (16), we can see that cos =0, so that ,=0.
These waves should satisfy the boundary conditions at the free surface and at the

interface.
At the free surface (z=0)

& 1 1 :
= — = L =7 _ j t - / =
T, = t4 % i@ ER (A - Byexpliw(t—x/c)]=0

where from 4=B. So the solution in the layer may be written as

f 1 1
v, =24 cos(a)z PEie “0*5-} expliw(t —x/c)]
I

At the interface z=H

1 1 i 1
vwW(H)y=v,(H) = 2Acos(a)H /—2——2] ICeXp(—a)H /—2——2]
by ¢ ¢ b
D H) =t (H) = -2Auw _]"_ism(“’” -l—_ijz‘(luw l—iexp —oH d_1
v 2@ 1 b]Z c2 blz Cl 2 c2 b22 Cl b;

From these equations follows
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)
\/bf c’? 1 1
2 glz_"c_z

This is dispersion equation for Love wave velocity: in contradiction to Rayleigh
waves in a half-space the velocity depends on frequency.

It is easy to show analytically that b, <c < b, (as concluded above from simple
physical consideration). In fact, only in this case left and right sides of the dispersion
equation are real.

It is also easy to show that for a given ¢ there are infinite numbers of frequencies
satisfying the dispersion equation. In fact,

1 1
1 ﬂ?czbj
1

—lTatan —— |4k, k=123..
]lﬁ_? ﬂtﬂaz_“cz

Also we can show that for any given @ there are finite number of ¢. The eq.( ) may
be written as

ol =

Srle,w) = fi(c)
A graph for the right-hand side is drawn by solid line. And the graph of the left-hand

. 3 .
side behaves as tan - at the values of argument > + k7 it tends to +oo, But the rate of

change depends on . At the figure below the graphs for the left-hand side are shown
for two different values of . It is clear that for small o there is only one root, and the
number of roots increases with increase of m.




27

4, Waves in anelastic media

4.1. Constitutive equations

Real solids are not perfectly elastic. This causes seismic processes (waves,
oscillations) to attenuate with time due to various energy-loss mechanisms. The most
usual explanation of these mechanisms is internal friction between microscopic particles
of the material, which leads to transformation of mechanical energy to heat.

The simplest description of attenuation due to ‘friction’ can be developed for an
oscillating mass on a spring: this is 2 phenomenological model for seismic attenuation.

/\/\/\/ m [—=f

Let x be a deviation of the mass from the equilibrium. The force f is friction opposing
the motion of the mass. Denote K a measure of the spring’s stiffness.
The motion of the mass is

mi—-F=0
if friction is lacking, and oscillation results only from elastic force, F=-kx,

mi+hkx=0,
and we obtain harmonic oscillation:
x=Asin{ont + @), w@w=+K/m
However, if there is a friction between the moving mass and the underlying surface, and
this force is proportional to the velocity of mass, so that the total force is

F=—kx—pm,
then the oscillation attenuate:
x=e Pe™

2
where ﬂ=L, a)=1f£]/1——ﬂ "
2m m K

Motion in a solid is controlled by the equation
7u
VT = p 0»}2
where T is stress tensor. To solve this equation for any particular case it is necessary to
express the stress in terms of displacement and its derivatives. In perfectly elastic medium
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this relation is expressed by the Hooke’s law. As shown above, in the case of
homogeneous 1sotropic medium the equation of motion is reduced to the following

Ju

a’’

(A+2u)Vdiva — protrotu = p

Its solutions are non-attenuated waves.

In realistic media the relationship between stress and strain is more complicated than
that corresponding to the Hooke’s law. Various properties of realistic materials lead to
different relationships between stress and strain,— so-called constitutive equations, —
which describe behaviour of the material when a stress is applied. A constitutive equation
defines rheological model.

We consider the main rheological models used for analysis of oscillations and waves in
solids.

Kelvin-Voight (viscoelastic) model. This model assumes existence of viscous coupling
between particles in addition to elastic forces. Viscous forces are proportional to the
velocity of strain. The relationship between stress and strain is as follows:

7

Ty = HEy 17 P
a0 O€,
o, =A0 +2us, + n'~;:t—+2n?

(6 = divu)
This model can be represented by a simple mechanical analogue: elastic element (spring)
and viscous element (a piston pressed into viscous fluid) connected in parallel. If we
apply a stress to such system at some moment, the strain arises not immediately, but
increases gradually. The same happens if the stress is suddenly taken away: the strain
would vanish gradually.

\f/ T

The relationship between stress and strain may be written in another form:
daj
T=ue+T —
”( “dt
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The deformation under constant stress relaxes:
— —t/T,
£ = 80(1 —e )
T, is the relaxation time. For small T, we obtain the Hooke's law.
Maxwell model. This model is a particular case of the so-called affer-effect models, in

which the stress is assumed to relate not only with the strain at the same moment, but also
with the history of strain behaviour at previous time:

Ty = HEy — T?o(é:)gfk (t-8)ds (40}

(&) is the so-called creeping function. Various rheological models correspond to various
creeping function.

If (&)= Tﬁexp(—.f / T.) (for pressure the Hooke's law 1s kept), we obtain the Maxwell

model. Substituting this function to the formula (40) and integrating by parts, we obtain
dr 7 de

a T P
The constant T, is the relaxation time of stress under a constant strain:
T=71 exp(—t/T,)
The Maxwell model is valid only for shear strain. The figure below shows the mechanical
analogue of the Maxwell model, as well as behavior of strain under a constant stress,

i:‘_:l €
t
Standard linear solid. This model combines the both dissipation mechanisms, so that the
relationship between stress and strain is following:

T4 e %
T+rdt_#(g edt

Mechanical analogue of this model is shown below:
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In this model the strain is relaxed under a constant stress, and the stress is relaxed under a
constant strain.

4.2. Propagation of harmonic waves.

It is possible to derive the equation of motion in a form

e
Lw=p%t
only in some particular cases of anelasticity, - for example for viscoelastic medium. But
it is easy to study propagation of harmonic waves in any linear model.
Let us constder harmonic oscillation in various rheological models:
u = u(r)exp(iawt)
Time dependence of strain is of the same form:
g = g(r)exp(iot)
For Kelvin-Voight mode!
t(r,t)= u(l+iwT Ye(r)exp(iot) = p(1+ioT, )e(r,t)
For Maxwell model
(1+iaT, )r(r,t) = uyiwT, e(r,t)

ioT, pe(r,t)
T = el
For standard linear solid:
w0 = p sl oy
’ (1+iwT)

This for all cases the relationship between stress and strain is formally coincides with the
Hooke's law, but the elastic modules are complex and depend on frequency. The
frequency dependence is different for different models. Therefore in analysis of wave
propagation of harmonic waves in anelastic media we may formally use the inferences
obtained for perfectly elastic medium.

Consider propagation of a plane harmonic wave along x-axis:

A(x,t)= Ajexplio(t —x/V)]
If the modules are complex, the wave velocity ¥ should be also complex:

1 i
V Vie) V

_ 1

&



31

Then

A(xnt) = 4, exp(— I"/’x) explio(t —x/ V()] (41)

This shows that the wave attenuates with distance, and its velocity depends on frequency:
V =V{(w). Attenuation and dispersion are the main properties of the waves propagating
in anelastic media.
Using the wave number & we can represent the plane wave in the form
A(x,t) = A, expli(arx — kx)]
where the wave number & is complex: k = k — ik”, so that the attenuation is determined
by the exponential term exp(-k x), being the attenuation coefficient. It depends on

frequency.
Quality factor. Instead of the attenuation coefficient & seismologists use the

characteristics, which is called the quality factor (. It is a measure of energy loss at a

distance k' = Ey where A is the wave length:

L]

AE _ exp(—2k x) —exp[-2k (x + k)] = 1—exp(=2k" 1 k) zzk_
P

-1 _
¢ =7 exp(—2k"x)
The larger O,, the more proximate the medium to the perfectly elastic. Because

*

2 kVr .
k= el , then 07' = , and consequently, £ = L. Thus, the term describing the
i1

oVT

Fia . . .
attenuation 1s exp{~ Eﬁ). In inhomogeneous medium, where both velocity and Q are

Now we show how the quality factor  is expressed in terms of the real and imaginary
parts of the complex modules, and how to relate it with the relaxation times. Consider a
shear wave. The complex velocity is expressed through the complex shear module as

follows:
7o /“p_”\ﬁ(l_ﬂ;}
pip JIANN
2k 20" o
It follows from Q' = that 07' = (V") =%—. Knowing the expressions for

complex modules for different rheological models we can write the quality factor as a
function of frequency and relaxation times:

For Kelvin-Voight's model Q' = &T, .
For Maxwell model QO=aoT,

ao(T. -T
For standard linear solid Q" = —g-f—z—;)
1+ @°T,T,
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It scems that O should noticeably change with frequency. However seismological
observations indicate that () does not practically depend on frequency over a large range
of frequencies. This is because of a variety and scale of attenuation processes in real
materials. The most general model is the standard linear solid, for which the frequency
dependence of Q7' is as follows:

Q"

T T""I" m
@q

The peak in Q7' is known as a Debye peak. It corresponds to the frequency

1 i [z, [T)
@y = ﬁ’ and the value of Q7' at this frequency is equal to -2—L Fj - ?: J The

superposition of numerous Debye peaks for various relaxation processes , each with a
different frequency range, produces a broad, flattened absorption band.




5. Excitation of the waves

In the elastodynamic theory a source of waves may be described in two ways:
cither by a body force in the right-hand side of the equation of motion, or by
displacement / traction at a closed surface bounded a volume where a solution is
looked for. We shall consider both these cases.

5.1. Body force

We shall analyze the equation of motion for homogeneous isotropic medium:

ota

(4 +2)Vdiva — grotrotu = p YR f(x)X(r)
/4

If the force f is distributed in space, we can represent it as a superposition of infinite
number of point sources concentrated in the space, and the solution u may be
constructed also as superposition of solutions corresponding to the point sources.
Thus, if gV(x,x..7) is a solution in the point x corresponding to a source in the point
Xo, Where the unit force is directed along g-axis with dependence on time X{(¢), the
total solution may be represented as

u(x,0) = [[[£,()g" (x, X', 1)elx (42)
Therefore the problem is to find a solution for a point source. As is clear from (42), it

is sufficient to consider the point forces directed along the coordinate axes and

applied to x=0. It means that is necessary to solve the equation
2

(A +2)Vdiva — grotrotu = p‘;—? —e, 5(X)X(1)  (43)
t

Here &(R) 1s 3D delta-function satisfying the condition

0 R>0
O(R) =
() fflo®ar =1
We have seen earlier that spherical wave @(R.f) = -% is a solution of the
scalar wave equation
18°
Ap=— ar? ~S(R)X(). (44)

For a source distributed in space, i.e. if the equation is
_ 1 2% @(x0)
Tdr et pa’
its solution is constructed similar to (42):

o=
1 J_ J_ }_ 4 i )
ma k=g
Solution of (43) can be obtained on the basis of these results.

As noted above, a solution of (43) may be expressed in terms of scalar and vector
potentials:

u=Veg+roty

In the similar form we shall represent the force. Taking into account that

x-¢

dV (45)

p(x,1) = 2
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5(R)———A(l] —LV[VLJ
4z \ KR 4 R

we see that

1
S(x)=-V| V e
)= vk,
Remembering the identity
VxVxa=V(V,a)-(V,V)a
we can write the last term in the right-hand side of (43) as

{v[v e—J VxVx{ e J}X(t) (~VD -V x ) X(1) (46)

4zx

where

Then we may separate solenoidal and irrotational parts of the equation of motion:

(A+24)VdivVe = p ‘3;2” ~ X (VD

— protrotroty = p o'r Y roty - X(OV XY

or
2

(/1+2y)qu+[ ql' IJX(:‘) pa d = ¢é=a2A¢+9X(t)
P
(47)

7 e,
— protrotroty = p o roztl,u' - X()|-VxVx
ot JT,XI

The ‘sources’ in (47) are not point sources. Therefore to construct the solutions we
must use formula (45).
Taking into account the expressions for @ and ‘¥ we obtain

H = y= b2A¢7+—‘{1X(t)
ol

_ 2, 1 2
p=a'lp o _axq [|X|J X(1) (48a)
o - 1

Solution of (48a) is obtained by integration over the whole space & where the sources
in the eq.(45) are distributed:

o

1 ) 5
oot == [ o 57 T IdV(é)
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This integral may be simplified if we put the origin into the point of observation x.

Denote |x — fl =ar, then

1 tX(@-71) a1
P(x,1) = (m)zpoj — {I 5 g’dS Jdr  (49)

where S is a spherical surface with center in the point x and radius az. A meaning of
the integral over the spherical surface may be regarded as a g-component of a
gravitational force produced by a thin spherical layer.

O

If ar>{x| then the integral over the surface is equal to 0. Otherwise it is the
gravitational force produced by a mass concentrated in the point x and equal to the
total mass of the spherical layer = 4n(az)’dr, i.e.

1 8 1™ xe—-0)

P(X0) = - —— 4rma’t’dr =
(4ma)’ p ox, X ; T
Mla
ot IfX(t-—r)dr
4rp Ox, |x| ;

Analogously the components of the vector potential 7 are expressed. Finally, for
the displacement u = V¢ + rot iy we obtain

2 Rib
u,(x,:):_ln—[ 0 ljjz?((t—r)dr-# ! (aR aR]X(I—R/a)+

4rp| ox,0x, R )7, 4na’ pR | &, ox,
(30
12 5, ~ R R |- r1b)
ambipR\ ¥ ox, éx,

where R=[x|. The last two terms determine the main part in P and S waves at large
distances (which decay with R as 1/R). After simple transformation the first term may
be represented as additional contributions to P and S waves decaying as
R and R”.

Denote the angle between the g-axis (direction of the force) and the vector x as #.

Then
OR d 11 cosd Jd {1 2cosd sin @
—=¢086, | —lm-—, Vio—|—=|}= —e€, + e,
x ox, \ R R? x \ R R R’

q q

Formula (50) in vector notation can be then written as



- |

- |

36

1 |2cos@ sing 17 cosé
u(x,?) = €, t— eg} IzX(t-r)dr+ —X({-R/a), —
dzp| R R o) d7zpa” R
. 3 (51)
Smf X(t-R/b)e,
47pb° R

To determine a solution from the force f(x,f) we have to know a solution from a
point source in X’ with time dependence &(f-1). This solution is easily obtained from
(51). Denote it as g9 (x,5;x';7) =g " (x,/—;x"). This is the Green function in
elastodynamics. The wave field excited by the force f(x,7) should then be

u(x,f) = mja'r [ J‘ j £, (X, 0)g? (x.t — 73x")dx’ (52)

5.2. Representation theorem

Now we shall consider a wave field in a volume ¥ bounded by a surface §, if given
are a displacement Us (#) and a traction T, (¢) at S. For simplicity we suppose that no
body forces act within the volume ¥. The wave field in ¥ satisfies the equation

o'U
VT - =0 53
P35 (33)
The Green function g'?(x,t~1;x,) is a solution of the equation
oigd
Vii-p a¢g2 = —8(x—x,)8(t - 7)e, (54)

where 7 is the stress tensor corresponding to the Green function.

Let T and V correspond to any two different solutions of (53)(may be with non-zero
right-hand side), T being a symmetric tensor. Then according to Gauss formula we
obtain

[div(TV)dV = [xv.m)as (55)

For symmetric tensor
(TV,n)=(T,.V)
Thus

[div(TV)dV = fax,, vyds

Now apply (55) to the following combination
[laiv(c*0) - aiv(Tg))av = (22, 0)- (T,,g"))dS

Vv S
The terms in the left-hand side may be transformed as

div(TV) = (V,TV) = (VT,V)+(TV,V)
Denote

I, = {(V2?,0)- (VT,u"))ds

I, = f((zqv,U)—('rv,u‘f ))dS
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To transform /; replace V1% u VT from the equations of motion:

I[P(aagz JU)-(U,e, )5(x—x,)8(—7)— p(g°, aa?

= ~(U(x,.1),e,)8( - 1)+ _"p [agf aalr]g ]dV

Now integrate this expression over ¢t from -co to +eo, and taking into account that the
Green function as well as its time derivative vanish at too, we obtain that the integral

is equal to — (U(x,,7).e ).
Now we shall transform I :

. N=r S 4 47 L4
( ) xx & Xy @} Xz &
ol al, a0,
T,,——+T, —+T,_ ——+
B & »y @} Yz &
T, T, — =
& Y &

= AdivgdivU + éﬁ D rilu

Because of symmetry of this expression in respect to U and g , we see that 1; =0.
So finally

(Uxo,7e,) = fat [T, (000,87 (Koot = £%0) (2 (55~ £.%,), U DJES (56)

g

This is the so-called representation theorem.
It is widely used in analysis of seismic sources and in the theory of diffracted

waves.

5.3. Diffracted waves
The formula (56) is used for analysis of the waves diffracted at sharp ends of

boundaries. The simplest example is the case when a plane wave impinges to an
opaque boundary x<0:

e\

The edge x=0 can be regarded as a source for diffracted waves.




-
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It is evident that diffracted waves should depend on frequency. Therefore we
should analyze harmonic waves. For harmonic waves we may omit the term
depending on time exp(-iwi), and analyze the solution U(x), which depends only on
spatial coordinated. Analogously we eliminate such term from the Green’s function,

which would be now of the form u?(x,x'). Representation theorem for this case is
expressed as

(Ux,).e,) = [T, (x)087 (g x0) — (225, %), U DS (57)

Now we shall consider the following problem. An opaque half-plane screen, which
does not transmit P-wave, is placed along xy-plane at —o0o <x,<-X, —-wo<y<om,
A plane wave is incident normally to this plane along positive direction of z-axis. We
shall determine the wave field in the point x=0, z=H.

= AN 0

The incident wave is expressed as
U(x) =, exp(ikz)
where k=w/a. This is valid in the half-space z<0. The stress at z=0 is

T_=(1+2u) v, = ik(A + 2u)exp(ikz) . But the outward normal to the boundary

oz
z=0 is -z, therefore at the boundary T,=-T,=(0, 0, —ik(1+24)). The
displacement at z=0 is U=(0,0,1).
For this particular case formula (57) has the following form:

UMy = [ [[(T,.87 (x5, M0) — (23 (x5, M), U) iy (58)
-X -

To use the formula (58) we have to determine the Green’s function and the
corresponding stress. Assuming the frequency to be sufficiently high (the wavelength
much smaller than the distance from the ‘source’ M to the boundary) we may keep
only the main term in the Green’s function (decaying as 1/R). Then the field of P
wave excited by a unit force placed at M and directed along z-axis is

g ()=

H
exp(ikr)(e,,e, e, = —————exp(ikr)e,
pr— p(ikr)(e. .e,) py— pikr)

2

1 H
2(8) = ———exp(ikr) 2
g.(S) FE—e exp(i )r;,_
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To calculate 77, we take into account that for high frequencies (and for large k) it is
sufficient to differentiate in respect to r only the exponential term. Then
: ik G H H’
T, = exp(ikr)| A—+2u—-
4pa’r v r
Substituting all these expressions to (58) we obtain

-] 2 3 .
(— k(A +2y)H—2 - fk(zﬁ- +2u H3 D eXpUkT) 1
¥

7

U.(M)= ﬂl

To estimate this mtegral we use the method of stationary phase. The stationary point
is =y, = 0. In this point 7/=H. According to the method of stationary phase we

represent the phase function as series in the vicinity of the stationary point and keep
only terms of the second order. Then we obtain

U_(M)= Mexp&kﬂ' ) jexp(z ¥ 1 2)dy _{exp(ik;r_“xz [ )dx =
Agpa’ H i
ik [2miH &2
_ 7 , 2
= ; exp(tkH)- lexp(th 12 H)dx
(Tt is taken into account that r =r,, = i).

The integral Iexp(ikxz /2H)dx can be expressed through the Fresnel integral
-X
F(z) = [exp(im® /2)dr

0

w 2
fexp(ike® / 2H ) = el (F(oo) F(-—kX )J (60)
R k H

Substituting (60) to (59), and taking into account that F(e0) = ‘/—I;, F(-z)=-F(2)

we finally obtain
—irt4

N

where R, = 1/% is the Fresnel radius. The modulus of this function is shown

UZ(M)=exp(ikH)|i%+ F(X/RF)}

below.

X/R.
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Thus, under the edge (X=0) the amplitude of the transmitted wave is twice as less of
the amplitude of the incident wave. When the screen is moved to the left (X>0) the
amplitude increases and exceeds that of the incident wave. If the screen is moved to
the right, the amplitude decreases gradually to zero.

It is also possible to estimate a phase of the total transmitted wave. The total field
may be represented as a superposition of ‘pure’ transmitted wave and diffracted wave.
If the transmitted field is deducted from the total field, we obtain a field of the
diffracted wave. It can be shown that a phase of this wave is approximately equal to
kR+m/4, where R is a distance from the point M to the edge of the screen. Thus the
edge of the screen may be regarded as a source of the diffracted wave.



