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SEISMOLOGY A. UDIAS

16. SOURCE MECHANISM

16.1 REPRESENTATION OF THE SOURCE. KINEMATIC AND DYNAMIC MODELS

We have seen in chapter 15, that earthquakes are produced by
fractures in the Earth crust. [n Reid’s model of elastic rebound,
faulting is caused by the sudden release of accumulated elastic
strain when strength of the material is overcome. In seismology
the problem of source mechanism consists in relating observed
seismic waves with the parameters that describe the source. [n the
direct problem, theoretical seismic wave displacements are
determined from source models and in the inverse problem
parameters of source models are derived from observed wave
displacements. The first step in both problems is to define the
seismic source by a mechanical model that represents the physical
fracture. These models or representations of the source are
defined by parameters whose number depends on its complexity.
Simple models are defined by a few parameters while more complex
ones require a larger number (Madariaga, [983; Uddlas, 1991,
Koyama, 1997).

Fracture process can be approached in two different ways,
kinematic and dynamic. Kinematic models of the source consider the
slip of the fault without relating it to the stresses that cause
it. Fracture process is described purely by the slip vector as a
function of coordinates on the fault plane and time. From this
type of models, it is a relatively simple problem to determine the
corresponding elastic displacement field. The second approach
considers the complete fracture process relating fault slip to
acting stress on the focal region. A complete dynamic description
must be able to describe fracture from material properties of the
focal region and stress conditions. Dynamic models present greater
difficulties and their solutions, in many cases, can only be found
by numerical methods.

16.2. EQUIVALENT FORCES. POINT SOURCE

The first mathematical formulation of the mechanism of
earthquakes was presented by Nakano (1923) using the ideas aiready
developed by Lamb (1904) and Love (1945). Nakano used the point
source approximation, valid if observation points are at a
sufficiently large distance compared with source dimensions and
wave lengths also large. Thus he represented the source by a
system of body forces acting at a point. Since these forces must
represent the fracture phenomenon they are called equivalent
forces.
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The problem may be stated as follows. Let us consider an
elastic medium of volume V surrounded by a surface S. In its
interior there is a small region of volume Vo' surrounded bv a

surface Z, that we will called the focal region, where fracture

takes place (Fig. 16.1). This process can be represented by a

distribution of beody forces F(g€ ,t) acting per unit volume inside
1

VO. [f it is assumed that no other body forces are present

(gravity, etc.), the equation of motion {2.54) can be written as,

[
[ lp(x.t} -1 (x,t)ldv =] F(£,t)dV (16.1)
V-V i ijaj i it

A

Where El are the coordinates inside the focal region and x those
1

outside. Elastic displacements and stresses are only considered
outside the focal region. From the static case (2.57), body forces
F'_l are formally related to stresses inside V':J by,

F o=-1 ' (16.2)

In the case of a point source, if volume V is an infinite
medium, equation {16.1), according to (2.57), is given by,

p - T = F (16.3)

Where F are forces at a point that is selected as the origin of
1

X, coordinates where elastic displacements u(x,t) are evaluated.

These forces are the limit of the forces acting on VG as it tends

to zero,

Fi{t) = lim F g .t) av (16.4)
! Ve 0 VO'

For a homogeneous medium, equation (16.3) can be expressed in
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terms of displacements as (2.59],

p -C u = F (16.5}
i ijkt k,lj i

This equation ailows the determination of elastic displacements
u(x,t) produced by a force or system of forces F acting at the
origin of coordinates. In the inverse problem, from observed
elastic displacements we can obtain certain characteristics of
these forces.

Formulation using Green’s function

A more convenient formulation of the problem can be obtained
using the representation theorem in terms of Green's function
(section 2.8). According to (2.88), if body forces are limited to
the focal region Vo (Fig. 16.2) and on its surface I stresses and

displacements are null, we obtain for a volume V surrounded by a
surface S,

> ]
[» o]
u = dt FkG dv + dr | IG. T - u_C_kl Gr vk] ds
i o Vo i - g ji j jkln 14,n
(16.6)
Where Ti = ‘r_l_vj is the stress vector, v the normal to surface
J 1

element dS and Gk, Green’s function of the medium, defined by
1

equation (2.76) in section 2.7. Green's function, a tensor, is
continuous through the whole volume V and represents the
propagating effect in the medium. As we saw in section 2.8, Green
function is the solution of the equation of motien for an
impulsive force and depends on the characeristics (C_U_kl and p of

the medium. If the medium is infinite, conditions on surface S
are homogeneocus (stress and displacement are nuli) and equation
(16.6) becomes, (Fig. 16.3),

ulx ,t) = [ ‘lT[ F (& ,t)G {x.5;€ 1) dV (16.7)
i s _ v k s ki s s

o
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function Gk_ acts as a  ‘'propagator” of the effects of forces
L
Fk, from the points where they are acting (£ inside VO) to points
s
X outside VO where elastic displacement u are produced.For a
i

point focus in the origin of coordinates we have,

ul(x ,t) = F (z]1G (x ,t-1) dTt (16.8)
[ k ki s

-0

Elastic displacements are given now by the time convolution of the
forces acting at the focus with Green's function of the medium.

From the point of view of the representation of the seismic
source by equivalent forces, there are two ways to find elastic
displacements. The first consists in solving directly the equation
of motion (16.1). This implies solving a second order
inhomogeneous differential equation (or displacements or solving a
homogeneous equation and introducing the forces as boundary
conditions. In both cases, the problem is not easy. The second
consists in using equations {(16.6), (16.7) or (16.8). In this case
we have to determine previously Green's function. Since Green's
function is the solution of the equation of motion, this equation
must be solved anyway. However, the advantage of the second
approach is that for a given medium the equation of motion must be
solved only once to find Green's function, while in the first it
must be solved for each system of forces. For example, in tre
point source problem, the first approach requires for each system
of forces the solution of equation (16.5) in the same medium. In
the second approach, equation (2.77} is solved oniy once to {ind
Green’s function. Then for each system of forces, we apply
equation {16.8), that is a convolution of each system of forces
with Green's function.

Single and double couple

Several systems of forces have ben proposed to represen!
source of an earthquake. For point sources, the most common e
those of a couple of forces (SC, single couple) and two o ;..
perpendicular to each other without resulting moment (DC, -1 . -
couple}) (Fig. 16.4 and 16.%9). The second system is alsc equiv .- -
to two linear dipoles of forces (arm in the same direction .-
forces) cerresponding tc pression and tension acting at 45
couples. Bath models were thought to represent a shear fr.
but, as we will see, this is only true for the secon:
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extended sources, models used distributions of single or double
couples on a plane surface.

For a point source, elastic displacements due to a couplle of
forces can be derived from those from a single force. If u are
the displacements due to a force acting at the origin in X,
direction, those of a couple of forces on the plane (xl.xz} with
forces along X axis and arm in X, direction, (Fig. 16.4) are

derived taking a Taylor expansion for each force of the coupie,
displaced s/2 from the origin along the X, axis. For the force n

the positive direction of X, and shifted s/2 from the origin in

the positive direction of xz. elastic displacement is,

u' (16.9)

For the force in the negative direction of X, and shifted s/2 in

the negative direction of X, displacement is,

u = - u? £ 2 (16.10)

U o= s, (16.11)

For a double couple in the (xl.le plane, with forces in the
direction of X, and X, (Fig.16.5), using (16.11), elastic
displacement is given by,

u =5 [u% +u” ) (16.12)
i,2 i,1

[f we substitute (16.11) in (16.8), we obtain the displacement
due to a SC, as defined above, in terms of Green's function,

350



-
[l

MiT) Glzft—r) dr {16.13)

-

Where Mt} = Fit}s is the moment of the couple. For a DC in the
xl and X, directions, using (16,12), we obtain,

o
DC

u o = [ M(T} (G (t-1t) + (G _ (t-T}] 4t (16.14)
i o i1, 2 ie,1

For a SC in an arbitrary orientation, with forces in the direction
of unit vector | and arm in that of n, where n.l = 0, and a DC
with the second coupie with forces in the direction of n and arm
in that of |, general expressions are,

o
sC
u’ = Mln G dt (16.15]
i k! ik, I
~-m
m
oC
u. = M(in +nlt )G drt (16.16)
i - ko1 ki ik,1

Let us consider now two perpendicular linear dipoles with
opposite sign. The linear dipole with forces in positive direction
corresponds to tension and in negative direction to pressure. If

the forces are in the direction of xl and xz‘, in a similar form

as in (16.12), elastic displacement are,

iy =s {u” -u") (16.17)

If the system of coordinates (xl', xz'] in (16.17) is rotated 35°
with respect to (xl, xz) of equation (16.12), both expressicns can
be shewn to be equivalent. If tension and pressure forces are
defined by scalar moment M and unit vectors T and P, in a similar
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form as in (i6.16), elastic displacement in terms of Green's
function is,

5]
Wt o= J MI(TT -PP)G dr (16.18)
k1 k 1 ik,

—al

For the two equivalent systems, relations between the unit vectors
P, T and n, 1 are,

P=7§ (n - 1) (16.19)
T = 7% (n + 1) (16.20)
B=nx<x1=PxT (16.21)

Where B is the unit vector normal to the plane of the forces.
This vector is known as the null axis, since there is no component
of forces in its direction. In this way, for a DC point source, we
can define two orthogonal systems of axes in the direction of unit
vectors {n, |, B) and (P, T, B), to specify the orientation of
the source. We will see that the second system corresponds to the
principle axes of stress.

16.3 FRACTURES AND DISLOCATIONS

If an earthquake is produced by fracture of the Earth crust, a
mechanical representation of its source can be done in terms of
fractures or dislocations in an =:astic medium. The theory of
elastic dislocations was developed by Volterra in 1907 and is
discussed in Love (1945). Its first applications to the problem of
the seismic source are by Vvedenskaya (1956), Keylis-Boros
(1956), Steketee (1958), Knopoff and Gilbert (1960) and  Burridge
and Knopoff (1964).

A dislocation consists in an internal surface inside an
elastic medium across which there exists a discontinuity of
displacement or strain. Here we will consider only displacement
dislocations, that is, those where there is discontinuity of
displacement but stress is continuous. The problem will be
formulated using the representation theorem in terms of Green's
function (2.88). The focal region consists in an internal surface
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£ with two sides (positive and negativel. This surface can be
considered as derived from the focal volume VO that is flattened

to form a surface with both sides together without any volume.
Coordinates on this surface are & and the normal at each point
[}

n_(E‘,k). From one side to the other of this surface there 1s a
l

discontinuity in displacement or slip, so that (Fig.16.8),

+ -
uiiﬁk.t) - ui(Ek,t) = Aui(Ek.t} (16.22)

Where the plus and minus signs refer to the displacement at each
side of the surface X. If there are no body forces (F = 0),
stresses are continuous through ¥ ({(their integral is null} and the
conditions on the external surface S are homogenecus (all
integrals on S are null), then equation (2.88) results in,

0
ulx.,t) = dr Aul€ ,T)C_ nl(E )G (€ ,1; x ,t)dS
nos o ) i s ijkl j "s  nk,i s s
(16.23)

In consequence, the seismic source is represented by a dislocation
or discontinuity in displacement given by the slip vector Au on
the surface I, which corresponds to the relative displacement
between the two sides of a fault. This is, then, a non-elastic
displacement that once produced doesn't go back to the initial
position. In the most general case, Au(E_l,T] can have a different

direction for each peoint £ of the surface £ and in each of these
l

points varies with time, starting with a zero value at t = 0, to a

maximum value at a certain time. The normal to the surface Z,

given by unit vector n{£ ), can have different direction at
1

points of the surface, but usually is considered to be constant,
that is, £ is a plane. Green's function G includes the propagation
effects of the medium from points (£) of surface I to points (x_l)
1
where elastic displacements (u) are evaluated. To solve the
i
problem, according to equation {16.23) we must know first the
derivatives of Green's function for the medium, which are also
known as excitation functions.

Equaticn {16.23) corresponds to a kinematic model of the
source, that is, a model in which elastic displacements u are
derived from slip vector  Au, which represents non-elastic
displacement of the two sides of a fault of surface Z. Slip s
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assumed to be known and is not derived from stress cenditions 1n
the focal region as it is done in dynamic models. In eguation
(16.23) derivatives of Green function includes derivatives of
delta function. If we change the order of integration, integral on
time of the product of Au with the derivatives of the delta
function results in time derivatives AU, that s, slip velocity.
Thus, elastic displacements depend not on slip but on slip
velocity. This means that the source radjates elastic energy only
while it is moving. When motion at the source stops it ceases to
radiate energy.

As a particular case, let us consider an isotropic medium of
coefficients A and p, a plane surface Z {n constant) and constant
slip Au with the same direction defined by unit vector L. The
integrand of (16.23) becomes,

Ault) [Alné +pulln +in)l G {16.24)
k k ij ij ji ni

Geometry of the source is now defined by the orientation of the
two unit vectors n and 1. These two vectors, referred to the
geographic system of axes (North, East, Nadir), define the

orientation of the source, namely, n orientation of the fauit
plane and 1 that of slip (Fig. 16.7). Since they are unit
vectors, each has only two independent compeonents. For i = |,

expression {16.24) gives compeonent of displacement normal to the
fault plane which implies changes in volume. If 1 and n are
perpendicular, slip is along the fault plane, there are no changes
in volume, and it represents a shear fracture. In this case {n.l =
0), there are only three independent components of n and I.

In the kinematic model of a dislocation on a plane surface
with constant slip, the parameters of the source are the
following: A and u elastic coefficients of the focal region, four
independent components of n and | defining the orientation of the
fault plane and slip, the magnitude of the slip Au and the area §$
of the fault. There are eight parameters, that added to the four
of the hypocenter {¢o0. Ao, h, to) sum up to twelve. [f the source

is a shear fracture the number of parameters is only ten.

16.4 GREEN FUNCTION FOR AN INFINITE MEDIUM

The problem of «ztermining Green's function is not an easy one

and depends on the characteristics of each medium. As we saw in
section 2.7, Green's function is the solution of the equation of
354



direction cosines, we obtain,

r/f3
o 1
G11 = dnp [ —3(37171— 3 li) T 8(t - 1) dt +
r r/Q
+——1—33 a(t—i)—;[wa'-é ) 8t - &)
2 1 @ 2 71 1i R
ro rR’
(16.56)

This equation correspond to a force in the X, direction. We can

generalize this result for Green's function corresponding to a
force in arbitrary direction given by the vector v,
J

B
GiJ = Inp [;—3 (3ari3'j GU) r/a'r 8(t - 1) dtr +
+ Lz ¥y ¥ &t —g Yy - %(:r_?, -8 ) &8t - (53 )] (16.57)
ro 1) FB L] 1)

This is the expression for Green's functien for an infinite,
homogenecus, isotropic elastic medium with velocities &« and fA.
This is a very important result in elastodynamics, which gives the
elastic displacement field for the most fundamental type of
source. [t constitutes the basic building block in seismic source
studies.

A similar fundamental problem is the static solution for a
constant force acting at a point in the direction of unit vectecr
v. For an infinite homogeneous isotropic elastic medium, static
J

displacements are solution of equation,

«° UT.W) - B Ux(VUxu) =

M

The solution can be found in a similar way as in the previous
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problem expressing displacement and force in terms of potentials
that leads to equations of the form of Poisson’s equation (Lay and
Wallace, 1995). The result for the displacement, in terms of
direction cosines ;r_l, is,

. F [(L.L L,L ,
Y5 T Bmer [ [ 32 & ] LA [ pe + 2 ] 6”.] {16.58)

Subindex j indicates the direction of the force and as in (16.57),
displacements are given by a tensor. This expression, known as
Sommigliana's tensor, is the fundamental equation in
elastostatics.

16.5. SEPARATION OF NEAR AND FAR FIELDS

The first term of Green's function in equation (16.57) depends

with distance as r ° and the other two as r’!. Thus, displacement
represented by the first term attenuates with distance more
rapidly and for this reason is called the near field. This term
depends on both « and B and is a displacement mixed of P and S
motion. The second and third terms constitute the far field where
P and S waves are separated. In both cases, near and far fields,
displacements have two parts, one, called radiation pattern,
depends on the direction cosines and express the spatial
distribution of amplitudes, and other which depends on time or
wave form.

Near field

The time dependence of the near field (16.57) can be rewritten
as {Knopoff, 1967),

o

B
t &(t - T)dT = J"r s(t - TIH(T - E) - H(t - %)]dr (16.59)

r/a -

Where H(t) is the step or Heaviside's function. According 1o the
properties of step and deita functions, the integral in (16.59]
results,
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[ Jdr = tHt-)-1tH-5 (16.60)
- a R

Each of these two terms can be written as,
tHt -5 =t - HeE -5+ Dl -5 (16.61)
o o a a o

Term (t - r/a) H(t - rr/a} is a ramp function of slope unity. The
complete expression for the near field can be written as,

N1 - L _r -0 -L _r
N anp (awiwj 6,‘1_){ 3 [(t a)H(t a) (t B}l-{(_t B)]
i I r l r

Time dependence of the near field has now two parts that depend on

distance as r° and r %, both depending on velocities of P and §
waves. The first part is the difference between two ramp functions
and the second the difference between two step functions of
different amplitude. The result is shown in figure 16.12. The part

that depends on r_:3 is formed by a ramp of unit slope starting at

t = r/a until t = r/8. From this time on the displacement has a
constant amplitude of 1/8 - l/a. The part that depends on r% s
a step function starting at t = r/a and amplitude 1/a followed

at t = r/B by one of amplitude |Ya - {/B. Displacement in the near
field has a part that remains constant with time. The radiation
pattern is common to the complete near field displacement.

Far field

The far field {(part that depends on l/r} of Green's function
is formed by separate P and § waves,
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CE— yy 8t -C) (16.63)
H drwpo v

S = =l (yy -8 )8t~z (16.64)
1] 4anZr i ij B3

Time dependence is in both cases a delta function. The far field
is, then, formed by two impulses that propagate with velocities «
and 8, that is, P and S waves of impulsive form (Fig. 16.13).

The radiation patterns for P and S waves are different (i16.63
and 16.64). To represent radiation patterns we take polar
coordinates (r,8) with center at the focus and considered the

distribution of normalized amplitudes. If the force is in X,

direction, normalized components of displacement of P waves in
(xl.xg) plane are given by (Fig. 16.14),

G!:l = ¥ = cos B cos @ {16.65)
P -
G31 = 2,7 = cos O sen 6 (16.66)

it can be easily seen that displacement is in radial direction as
expected for P waves and its modulus,

16" | = cos e (16.67)
11

For § waves, normalized displacement components are,

G“:‘l = -y, -1 = sen © sen © (16.68)
s . N

G° = - = - 16.69)
a1 3173 sen O cqs O (

Resulting displacement is in transversal direction and
modulus is,
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| = san @ (16.70)

Displacements of P and S waves are in radial and transversal
direction as corresponding for each type of waves. Giving values
to 8 from O to 360 degrees, we obtain radiation patterns. [n both
cases the pattern has two lobes (Fig. 16.15). For P waves,
displacements are radiai, in the right lobe outwards, that Iis,
compressions and in the left inward or dilatations, with maxima
at 0 = 0 and r (Fig 16.15a). For S waves, displacements are
transversal that converge toward the direction of the force in
both lobes with maxima at 6 = n/2 and 3n/2 (Fig. 16.15b). P waves
have a nodal plane (xz.xa). normal to the force and S waves the

plane (xl.le that contains the force.

16.6 SHEAR DISLOCATION OR FRACTURE. POINT SOURCE

Let us consider the seismic source represented by a shear
dislocation fracture, with fault plane Z of area S and normal n,
slip Au{g,¥) in the direction of unit vector 1, contained on the
plane so that I and n are perpendicular (n . 1 = 0}). For an
infinite, homogeneous isotropic medium, displacement according to
(16.23) and (16.24} is,

o
u = [ dr [ Aup {ln +1n) G  dS {16.71)
_ T ij ji ki, )

’
grs}

If distance from observation point to the source is large in
comparison with the source dimensions (r > Z) and the wave
lengths are also targe, the problem can be approximated by a point
source and equation (!6.71) takes the form,

o

uft) =uS (ln + 1in) J ault)G (¢t - 1) dT (16.72)
k ] il —w ki, ]

Displacements are given by time convolution of slip with the
derivatives of Green's function.

For the far field, Green's functions for P and S waves are
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given by (16.63) and (16.64). Derivatives for P waves are,

P _ 1 gl l _r
dnpo j

If in the derivat i ves we keep only the terms that depend on the

least negative power of r (1/r),

ar
g
J

)

RIN

- _ b i _
s(t - } o= = 7Y, St

RIN

! S
r Y% €
]

Substituting the direction cosine we obtain for P waves

P 1 . r
G = . yyy 8(t- =)
ki, j 4rtpa3r 1%k’ ; o
In a similar form for S waves,
] -1 : r
G o= ——— {y ¥y -8 )y &t - ) (16.75)
Ki,] 4“PB3F ik ik j B

This approximation is consistent with the far field. Now, we
substitute (16.74) and (16.75) in (16.72) and take into account
the property of the derivative of the delta function,

-

w0 N -
J Ault) 8(t - L - par = Auft - L } (16.76)
o &

The final result, after this substitution, gives for displacements
of the P and S waves in the far field,
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b .
U =LS—~——(nl+n1)73rz sult - S {(16.77)
J 3 K i 1k [ S | 24
dnpa r
s HS

=
[}

—(n 1 I )is - ault - 5 ) (16.78)
4Ttp(33t“ nk i+ ni k ij ?ia‘j]?k ul 3

It is important to notice, as we have mentioned in section 16.3,
that elastic displacements depend on slip velocity or slip rate.
The source radiates elastic energy only while it is moving and
ceases when it stops. If the source time function is a step
function Auft) = Au H(t), its derivative is the delta function,
and we obtain from (i6.77) and (16.78),

M
P _ 0 . r
s ——— (nkli + nilk] 3111(11_ alt p ) (16.79)
dnpa’r
s Mo r
u, = —— {n 1 + n.lk)(a_‘_ - 3.7_)71( 8t - 3 ) (16.80)
4an r i i ij P
Where we have substituted seismic moment M0 = pAuS (15.23).

Therefore, for a step source time function, elastic displacements
in the far field for P and S waves are impulses that arrive at a
distance r at times, t = r/a and t = r/RB.

Radiation pattern

The radiation pattern consists in the spatial distribution of
amplitudes around the source. Let us consider a shear fracture on
plane (xl,xz), with slip in X direction, that is, n = (0,0,1)

and 1 = (1,0,0) (Fig. 16.16). In a similar form as we did fer
Green's function, normalized displacements in (xl,xa) plane in

polar coordinates (r,8} for P waves are,
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ur: = 2 yf 7, = sen 28 cos 6 (16.81}
P 2 * ’
u, = 2 7, ¥ = sdn 28 sen O (16.82)

And for S waves,

u‘:' = (]l - 27?) ¥, = - cos 26 sa'n 2] (16.83)
s 2
u, = (1 - 273) ¥y, = cos 268 cos 8 (16.84)

We can see that displacement of P waves is in radial direction and
that of $ waves in transversal. If we define components U and

ug in these two directions, we obtain, .

u: = sén 29 {16.85)
5
u9 = cos 20 (16.86)

In both cases, the radiation pattern has four lobes or quadrants.
For P waves lobes have alternating direction of motion, outward or
positive (compression} and inward or negative {dilatation). There
are two nodal planes, (xl.xz) and (xa,xz), the first corresponds

to the fault plane and the second, normal to this and to the
direction of Au, is called the auxiliary plane. Maxima of
displacement are at 45 degrees of directions of 1 and n (Fig.
16.17a). In the four lcbes of the radiation pattern of S waves,
motion change direction. Maxima coincide with directions of 1 and
n and nodal planes are at 45 degrees from them (Fig. 16.17b). In
both cases, radiation pattern is symmetrical and we can
interchange n and 1 with the same result. This is consequence of
the symmetrical form respect to n and 1 of expression (16.71}.
For this reason, radiation patterns of P and S waves do not
identified the fault plane from the auxiliary plane. This
ambiguity is present in the methods to determine the orientation
of the fault plane from far field displacements of P and S waves.

To study the radiation pattern in three dimensions we use

spherical coordinates (r.8,¢). The focus is located at the center
of a sphere of umt vadius (focal sphere) and displacements are
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evaluated for npoints of its surface. A system of Cartesian
coordinates (xl,xz,xj) with origin at the center of the sphere,

called the source system, is defined so that (xl.xz) Is the
fault plane, n is in X, direction and 1 in that of X - For a point

on the surface of the sphere, direction cosines of r with respect
to the three axes are,

¥, = sén 8 cos ¢ {16.87)
¥, = san sén ¢ (16.88)
¥, = cos 2] (16.89)

Where 8 is measured from X and ¢ from X . At each point of

the spherical surface, we define a system of Cartesian coordinates
with unit vectors (er, g’ e¢) in the direction of the increments
of r, 8, and ¢. Components of displacements in these directions
correspond to P, and twc components of S waves respectively (Fig.
16.18). Normalized amplitudes are given by,

P u. = san 20 cos o {16.90)

51 ug = cos 28 cos ¢ {16.91)

S2 : u¢ = cos 8 sen ¢ (16.92)
Displacement of P waves have two nodal planes, 8 = n/2, (x14.~<‘l

and ¢ = n/2, (xz.x:’]. Displacement of Sl component have a nowlal
plane for ¢ = m/2, (xz,xg} and is nuil alse for points f

intersection of the surface of the focal sphere and the
angle 8 = mn/4 and 3n/4. Displacement of SZ2 have two @ 1
planes for 8 = n/2, (xl,xz) and ¢ = O, (xl,xj).

Geometry of a shear fracture

As we have seen, orientation of a shear fracture is z:. -
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two orthogonal unit vectors n and |. These two vectors must be
expressed in refation to the geographical reference system defined
by the axis (xl, X x3). positive in North, East and Nadir

directions. With respect to these axes we define now the spherical
coordinates 8, measured from X, and ¢ from x, on the (xl,xz)

(horizontal) plane. In reference to this system the vector n is
given by, :

n = s-cn 8 cos ¢ (16.93)
1 n n

n, = sen 8§ sen ¢ (16.94)

n = cos B (16.95)
3 n

And in a similar way for vector 1 “1' lz. 13}. Since 1 and n are

orthogonal unit vectors only three components are independent. We
saw in section 15.1 that a fault or shear fracture can be also
defined by angles ¢, & A (Fig. 15.1). These angles can be
expressed in terms of those defining the geographical orientation
of vectors | and n (Fig. 16.19),

n
¢ = ¢n+—2- {16.96)
8§ = 8 (16.97)

n

- cos E)1
A = sen [—_sén 5 ] (16.98)

n

Components of n and ! referred to geographical axes

(xl.xz.xal can be written in terms of ¢, 8, A, in the form,
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- send séng (16.99 )

n =

1

n2 = sénd cosg (16. 100Q)
n_o=- coss (16.101)
l‘ = COSA cOS¢ + COsS sdanA san¢g (16.102)
12 =  COSA sinqb - cos3 senA cose¢ (16.103)
1, = - send send (16.104)

In every case, orientation of the source is given uniquely by

three parameters, namely, ¢, &, A, or Bn' cpn. 91. Since, as we

mentioned already, there is always an ambiguity respect to vectors
n and 1, source orientation given by (en, ¢n). and (ei, qbl),

doesn’t assume a distinction between fauit and auxiliary planes.
Given in terms of ¢, &, A, we assumed that this is the
orientation of the fault plane. If we don't know which one is the
fault plane, we must give values of ¢, 8, A for both nodal planes.

Displacement of P waves and SV and SH components of S waves
can be referred to the geographical coordinate axes through the
direction of the seismic ray. In the focal sphere, this is a
straight line from the center to the surface. If ¢ is the azimuth
of the ray measured from North and i the take-off angle of the ray
measured from the downward vertical, direction cosines of the ray
respect to the geographical axes (North, East, Nadir) are,

¥, = seni cos¢ (16.105)
7, = s&ni seng (16.106)
?3 = cosi (16.107)

Components of P, SV, and SH displacements along the geographical
axes are (Fig. 16.20},
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SV cosi cos¢  SH = -SH seng

Pl = P seni cos¢ S\/5 = 1

F’2 = P seni seng SV2 = SV cosi s;:nq': ‘SH2 = SH cos¢
P =P cosi SV_ = -SV seni SH. = 0

3 3 3

Where P, SV and SH amplitudes depend on the location of the
observation point with respect to the source orientation. For
points on the focal sphere, observation point is given by (¢, i)
and orientation of the source by (¢, &, A) or (Bn. qbn. 91)'

16.7 SOURCE TIME FUNCTION

The source time function (STF} Aul(t) represents the slip
dependence on time and is an important characteristic of focal
mechanism. We have already considered the most simple STF, namely,
the step function. There are other functions, some commonly used,
including the step function, are, (Fig. 16.21),

Au(t) = Au H(t) ' (16.108)
Au v , 0=t=rT1
T
Ault) = (16.109)
Au , t>T
Au(t) = au HOU - e VT, (16.110)
In all cases, the slip of the fault starts at t = 0, and once it

reaches its maximum value Au, it stays constant. The fault doesn’t
return to its initial state. In the first (16.108}), Au(t) has the
form of a step or Heaviside function where the slip reaches its
maximum value instantaneously at time, t = 0. In the second
(16.109), Ault) increases linearly from t = 0 to t = 1, and at
that time reaches its maximum value. This STF introduces a new
parameter of the source, namely, T time it takes slip to reach its
maximum value, or rise time. [n the third (16.110), Au(t) is a
continuous function for t > 0. Slip reaches asymptotically with
time its maximum value. For the rise time, Aul(T) = 0.63Au.

We have seen in equations (16.77) and (16.78) that elastic
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Allp,t) = AV [H(t - B ) - H(t + e - %)1 Hla - p) (18.40)

v

In this model, slip velocity takes a constant value A4 = AV in
each point of the fault as rupture front arrives at t = p/v that
remains constant as long as t < {a - p)/v and ceases for t z (a -
pl/v. This means that slip velocity lasts in each point of the
fault until fracture stops at the border p = a (Fig. 18.10}. The
way to stop motion in the fault is not physically possible, since
it implies that information of the stop of the fauit at the
border reaches instantaneously (with infinite velocity) all points
of the fault. This can be solved by introducing a finite velocity,
for example, velocity of P waves to bring the information of the
stop of rupture at the border to all points of the interior of the
fault. This can be done by substituting the second term inside the
square brackets of (18.40) by H[t - as/v - (a - plal. Now slip
velocity becomes zero at each point of the fault as a* P wave
arrives from the fault border, once motion has stop. This wave is
called the healing front, since it heals the fault stopping Iits
motion. In kinematic models healing of rupture inside the fault
must be introduced in some way.

Models represented by (18.32) and (18.40) have slip and ship
velocity time dependence of a step function. As in  point sources,
we can introduce a rise time in these models. As rupture frent
reaches each peint of the interior of the fault, slip veiocity
starts to increase from zero to a maximum value during a time T
Slip velocity is brought down to zero in each peint of the f[aul:
as a healing front arrives from the border of the fault where t
has stopped. More realistic kinematic models can be establiched
with different shapes, generally rectangular, where slip and sip
velocities decrease gradually as rupture near to the border of the
fault and fracture velocity, maximum slip and slip velocity ana
rise time vary along the fault plane {Archuleta, 1984; Mendoza wund
Hartzell, 1989). In general, kinematic models of faulting can e
made to correspond quite realistically to conditions on a fault
but they are not completely exempt of certain arbitrariness Scme
conditions on the faulting process must be imposed a priori, sud
as velocity of rupture propagation, stopping at the border &aw
healing process.
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® 1 b
fix) 8lax - b) dx = = f(=) (18.36)
a a

The integral of (18.35) can be extended to the interval (-o, w)
since it is zero outside the interval (0, a), and thus applying
(18.36), we obtain,

r r r
ulr 1) = 2rAu v2 H(t - =) (t - — M1 - Hiv(t - =) - al}
4] o [r 4 [+4

(18.37)
According to this expression,
o o a
ts-— and t =z — +- ulr ,t) = 0 {18.38)
@ o v 0
o To a ‘ 2 To
- Kt — += :oulr ,t) = 2rAuv(t- — ) (18.39)
o o v o a
Displacement starts at t = ro/a and increases linearly with time
until t = a/v + ro/a when it drops to zero (Fig. 18.9b).
According to the approximation used (r = ro), time . of the

discontinuity corresponds to the arrival of the signal from the
stop of the fracture at the border (p = al, which is called the
stopping phase. Displacement drops discontinuously to =zero and
velocity and acceleration becomes infinite,

In Savage's model siip passes instantaneously from zero to its
maximum value in each point of the fault as rupture propagates
from the center outwards. $lip velocity is a pulse that propagates
in the same way until it reaches the border of the fault. Since
elastic displacements depend on slip velocity, other rmodels
specify directly this vaine (as was done for STF in Secticn 16.6)
(Molnar et al., 1973! ¢ a circular fault the slip velocity can
be expressed as,
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In the center of the fault (p = 0), slip at t = 0, passes
instantaneously from zero to Au. For a value at distance p (0 <
g < a) from the the center, slip is 0 until t = p/v when it
becomes Au. For p = a, rupture stops and for p z a, slip is zero
for all values of t Fig. 18.8)

For a point of observation on X, axis, that is, over the
center of the fault at distance Ty (Fig. 18.9a), the form of P

waves according to (18.2) is given by,

2| .3

u(ro,t] = [ J Al (p, t - & ) p dpde {18.33)
o jo

Since rupture propagates in p direction with velocity v, as in
(18.13), slip can be written as Ault - r/a - p/v). Substituting in
(18.33) and in an approximation for TS »a, r = Lo after

integration over ¢, we have,

a e
u(ro,t) = 2Z2n OAu (v - e T 7 Jlp dp (18.34)

Taking the time derivative in (18.32) and substituting in (18.34),
displacement is given by,

a

-
u{r ,t) = 2rdu H(t - —OJJ 3t -
o] 4 s

< |
-

- Eolll - Hip - alp dp
(18.35)

To evaluate this integral we use the relation,
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Where "a" is the radius of the fault. The spectrum (18.29} has a
flat part at low frequencies as they tend to zero and decreases as

-2 . . .
w ~ for high frequencies, starting at the corner frequency w =

b. If stress droF is not total, for ¢ small (¢ = 0.0l), spectrum
decreases as w . Fault radius can be deduced from the corner
frequency of S waves,

a = 2338 (18.31)

Brune's model is commonly used to obtain fault dimensions from
spectra of § waves for small to moderate size earthquakes (M < 6)
for which the circular fault is a good approximation. We have
mentioned (section 15.1) that earthquakes take place in the
brittle part of the crust (about 20 km thickness) or seismogenic
layer. For dimensions less than 20 km (M < 6), fault planes are
contained inside the seismogenic layer. Fractures start at a
point and grow unhindered in all directions with near circular
form (L = W) and can be approximated by Brune's model. Larger
earthquakes have larger dimensions, since its width is limited to
about 20 km, its length must be larger than its width (L > W),
In these cases, Haskell's rectangular model is a better
approximation.

17.4  NUCLEATION, PROPAGATION AND STOP OF RUPTURE

Haskeli's model doesn't include the effect of either the
beginning or nucleation of rupture or its stop or arrest. The
first kinematic model that include both effects was proposed by
Savage {l966). Savage's model consists in an elliptical fault in
which slip begins in one of the foci and stop when it reaches the
border of the ellipse. The model can be simplified for a circular
fault of radius a, where slip Au (constant for all points) begins
at the center, propagates radially with constant rupture velocity
v and circular rupture fronts and stops at the circular border. We
use polar coordinates {p, ¢} on the fault plane, p with origin at
the center of the fault and ¢ measured from X - Then, time

dependence of slip is a step function and slip is only a function
of p given in the form,

sulp,t) = Au H(t - % )1 - Hip - all (18.32)
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X

Ac(x,1) = Ae H{t - i ) (18.25)

Shear displacement Au, for

x = 0, is obtained by integration
of (18.25), since in this case, ¢ =

uau/dx,
Ault) = H(t) 3‘5 At (18.26)
[ts Fourier transform is,
M) = - 2B (18.27)

2
pw

The effective stress is the difference between tectonic stress 0‘0

acting on the fault plane and friction stress L (A = o, ",
= ea‘o). This coincides with the stress drop defined in  {15.25}
with ¢ = ¢ For total stress drop (Ac = T, and € = )

.
displacement of $ waves in the far field at distance r, not
including radiation pattern and dependence with distance, is,

. r
-blt - 2)

ut) = 2B - L. B (18.28)

i R
Its spectrum is,

Ulw) = 298 21— (18.29)

H w® + bl
b = i;ﬁ (18.30)
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Corner frequencies of P waves are always lower than those of S
Usually, observed corner frequencies w correspend to W, and
c

from this value we can obtain source dimensions,

vV LW = 17a  _ 3.8 (18.24}
P 5 i
c

Difference between w, and w, depends on the relation between [

and W. If W < L, that Iis, fault is long and narrow, the
difference is large and if L = W, the three frequenci~s
practically coincide.

18.3 CIRCULAR FAULT. BRUNE'S MODEL

Another fundamental modei of an extended seismic source s
that ‘of a circular fault known as Brune's model (Brune, 1972}
This model consists in a circular fault plane with finite racus
on which a shear stress pulse is applied instantaneously (Fig
18.7). Since this model specifies stress on the fault, this is net
exactly a kinematic model. Because the stress pulse is appiied
instantaneously on the whole fault area, there is nao frac{ue
propagation. The shear pulse generates a shear wave tlhat
propagates perpendicularly to the fault plane. Adapting Brume's
notation to the one we have used, we call Aec to Brune's effective
shear stress and * Au to the displacement on the fault plane (thus
is, for x = 0O, where x is the distance normal to the fault
plane). The stress pulse has a time dependence given by 3 step
function and for a distance x is,
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Sén[uL/ZC (c/v - cosd)| [c/v + cos8)
sqn{wlL/2c (c/v + cosB8)} (c/v - cosd)

(18.23)

Where ¢ is the wave velocity. This function has a series of maxima
and minima for frequencies that depend on L and v and can be used
to determine source dimensions and velocity of fracture
propagation. This is =asier for surface waves, since 8 represents
the azimuth at the focus with respect to the trace of the fault.

Another effect of equation ({18.20) is on the form of the
radiation pattern ({section 16.5, figure 16.17). If wave length is
much larger than source dimensions (A > L), X tends to zero and
senX/X is unity for all values of 8. Amplitudes are not affected
and radiation pattern corresponds to that of a point source. If
wave length is of the same order as the dimensions (A = L),
amplitudes are affected by the factor senX/X that depends on @&
and the radiation pattern is modified. According to {18.19),
this factor is maximum for 8 = 0 and minimum for 8 = =, that
is, amplitudes are larger in the same direction as f{racture
propagation (86 = 0) and smaller in the opposite direction (8 = n)
(Fig. 18.5). This effect is called focusing of energy in the
direction of fracture propagation and is a phenomenon present in
all propagating sources.

The kinematic model of a rectangular unilateral fracture with
constant rupture velocity has shown us the effects of source
dimensions in the radiated displacement field. Amplitude spectra
of displacements have constant value proportional to seismic
moment in low frequencies and decrease with frequency 'in high
frequencies starting at the corner frequency. If the STF includes

. . . 2 N

a rise time, this decrease corresponds to l/w . Radiation pattern
is also affected by dimensions, with greater energy radiated in
azimuth corresponding to the direction of rupture propagation.

Haskell's model with bilateral fracture, rupture velocity v =

0.98 and STF given by (18.22) has two corner freguencies w and w,

instead of one (Savage, 1972). For frequencies between zero and

W, spectrum is flat, hetween w and w, decreases as w and for
. . -2 . :

frequencies higher th.an w, decreases as w = (Fig. 18.6). A third

corner frequency W defined by the intersection of the flat

part and the decav v o . For P and S waves wl, wz and w3 are

given by,
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Where we have replaced i = e . The form of the amplitude
spectrum depends on the factor senX/X. We have discussed the form
of this function in Section 12.2. It has value unity for X = 0,

roots for X equal to integer multiples of m, and its envelope
decreases as 1/X (Fig. 18.3). Since for fixed values of & and L,
X depends on w, in the limit when w tends to =zero (low
frequencies), the factor equals unity and for high frequencies its
enveloped decreases with 1/w.

The form of the amplitude spectrum depends also on the form of
AU(w), the transform of the source time function (STF) (18.20). If
Auft) = AuH{(t) its transform is AU{w) = Aw/iw. From (18.20) we
obtain that Ulw) is proportional to the seismic moment {MO= uLWau)

for the limit of low frequencies and decreases as 1/w for high
frequencies. I[f the STF has a rise time T that Au takes in
getting its maximum value at each point of the fault plane
{Section 16.7), the spectrum depends on the transform of the STF.
For example, transforms of STF given by (16.109) and (16.110J,
are,

-iwT
(a) Ault) = { But/T: OCt<r gy o Bull — e ) (g5
Au ot=t 2
w T
~-t/T Au
(b) Ault) = Au H(t)(l-e Y, AU{w) = (1R.22)

(1 + lwt )iw

In both cases, transforms depend on l/uz. If we substitute these
values of AU{w) in {18.20), envelope of Uf{w) decreases with
frequency as l/wz. If we represent the spectrum respect to
logarithm of frequency, its form is a flat part in low frequencies
and from a certain frequency wc. called the corner frequency,

its envelope is a straight line of slope -2 (Fig. 18.4). This
form of the spectrum is due to the combined effect of source
dimensions and rise time. [f we consider a particular case for 8
= n/2, and that W corresponds to X = m/2, we obtain w = 2v/L,

that is, corner frequency is proportional to the inverse of source
length. Observed  spectra  of gseismic  waves show these
characteristics indicating the finite dimensions of the source and
presence of rise time (Aki, 1967).

Infiluence of source dimensions can be isolated by means of the
directivity function D{w), defined by Ben-Menahem (1961}, as the
quotient of spectral ampiitudes of waves that leave the source in
opposite directions, that is, with angles 8 and 8 + m According
to (18.19) and (18.20), this quctient is,
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2 +]

J aatt - &) e @) g L AU 7 (18.16)
-

Where AUf{w) is the transform of Au(t), the transform of Au(t) is
iw AUlw) and that of Au(t - d) = AU(w) expl-iwd). Therefore,
equation {(18.15) becomes,

-lwr /o r‘ _.lE_u ((E - cosf)
o v
(8]

Ulx w) = W iw AU() e d¢  (18.17)

To evaluate the integral in [(18.17), we substitute b = ~w/ala/v -
cos8), and obtain,

L ;oL .
b .. 2 . bL 2 _ . senX _iX
J'o e d€ = 5 sen(—z) e =L < © (18.18)
Where,
_bL _ wL [
X = > = 55 [ 5 ~ cose ] (18.19)

Final form for the transform of elastic displacements of P waves
U(xi,w), according to (18.17), is,

er
. —i[ % . x -
Sé‘;X e L @ (18.20

U(xi,w] = WLo AU(w)
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18.2 RECTANGULAR FAULT. ‘HASKELL'S MODEL

A simple kinematic model of finite dimensions, knc_wn &5
Haskell's model, is a rectangular fault of length L and width W

where slip Au propagates only along L direction with constant
velocity v (slip moves instantaneously along W) (Haskell, 1964)
Coordinate along L is £, with origin in one end of the fault and
4u has only ocne component (Fig. 18.2). Fractures that propagate
only in one sense (from O to L) are called unilateral fracture
and in both senses (from 0 to L/2 and from O to -L/2)
bilateral. For unilateral fracture, according to (18.6),
prescinding from radiation pattern, dependence on distance and the
other factors of (18.1), the form of P waves in the far field. is
given by,

L

Py = € cos@
U(xl.t) = W Au ( £, t-
0

. 4 (18.12)

If slip moves in the positive direction of £ with constant
fracture velocity v, then, Au(€,t) = ui{t - £/v) and we obtain,

- 5 { % - ¢cos6 ) ] d§’ (18.13)

If we substitute

o
n
?lo”

£
+—&(

<IR

- cos@ )} (18.14)

The Fourier transform of u(xi.tl is,

L -]
Ulx ) = W J de [ aalt - d) e iwlt=d) 4 (18.15)
[+] -

But we have that,
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SEISMOLOGY A. UDIAS

18. MODELS OF FRACTURE
18.1 SOURCE DIMENSIONS. KINEMATIC MODELS

In chapters 16 and 17 we have considered in some detail the
characteristics and displacement field corresponding to point
sources. A more complete representation of the seismic source must
include its dimensions and consider its effects on wave radiation.
First considerations of dimensions of the seismic focus proposed
models consisting in spherical cavities of finite radius with
uniform distribution of stresses on its surface {Jeffreys, 193l;
Nishimura, 1937; Scholte, 1962).

The first models for extended sourceés of shear fracture were
kinematic models consisting in slip that propagates with constant
velocity over a surface with finite area. Ben Menahem (1961,
1962) described extended sources by distributions of single and
double couples propagating with a certain velocity over a
rectangular surface, and determined the corresponding
displacements of body and surface waves. Berckhemer (1962)
studied the effect of circular fractures of finite radius that
propagates from its center on the width of time pulses. Burridge
and Knopoff (1964} treated shear dislocations that propagate con a
certain area and showed their equivalence with propagating double

couples. Haskell (1964, 1966) proposed a rectangular model of
fracture and Savage (1966) an elliptical fault and studied the
effects on spectra of body and surface waves. Brune (:970}

presented a model with shear stresses suddenly applied on a
circular fault and studied elastic displacements in near and far
fields. More recent kinematic models include propagating shear
fractures on finite faults with variable slip, rupture velocity
and rise times (Hartzell, 1989).

Let us consider first some general characteristics of
kinematic models of extended sources represented by a surface X
over which a shear dislocation Au(€ ) propagates with constant

1

velocity v In one direction, from the origin (€ = 0) to a final
]

point over a distance L {Fig. 18.1) (Aki and Richards, 1980).
Velocity of fracture propagation is assumed to be constant and
less than velocity of wave propagation (v < 8 < «J, that is, we
treat subsonic fractures (a common value is v = 0.78). From
equations (16.15) and (16.69), displacements of P waves in the far
field for an infinite, homogeneous, isotropic medium can be
written as,
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- . 7
+ cos2i (cos¢ mo., o seng mzs” (1
T | S -
U, = B [seni (E sen2g¢ m._, 3 senze¢ mo* cos2¢ m,

i - sé 7
+ cosi {cosg m, . s dneg mla)] (1

These three equations are for a general form of moment tensor
without assuming any particular condition.

17.6. TEMPORAL DEPENDENCE

For a point source, moment tensor, if all components have the
same time dependence, the source time function is given by MO{t).

As we saw in (17.39) and (17.40), displacements depend on moment

rate M(t) and its time dependence is also called the STF. This
function represents the form moment rate changes with time and its
integral or area under its curve is the scalar seismic moment Mo.

As for time dependence of slip rate, for a simple source a
bR
commonly used function for Mo(t) is a triangle or a trapezoid

(Fig. 17.7). We have discussed the properties of this STF in
section 16.6 {Fig. 16.22). Since the size of an earthguake s

given by h:[o. the same size will result with two different

functions of moment rate one with greater modulus and shorter
duration and another with smaller modulus and longer duration. We
must remember that this is a point source representation, duraticn
of the moment rate function is related in an extended source with
time duration of the fracture process and thus with 1
dimensions. For a complex source, moment rate may be represent-|
by several triangles of different size (Fig. 17.8). Relative v

of these sources show how the moment radiation with time or mcmen?
release takes place. In some cases, the greatest part of mnmene
release occurs in the first part of the shock and a minor past
follows later. {Fig. 17.8a). Other possibility is that ther- s
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Where SV and SH are unit vectors in SV and SH directions and
[} L

we have taken into account that SVy = 0 and SHy = 0. Since 7,
11 [} L

is a unit vector in the ray direction, P displacements are in its
same direction and those of S are perpendicular (Fig.16.20). If
the problem is referred to geographical axes (North, East, Nadir),
for an homogeneous medium, yi, SV1 and SHi can be given in terms

of azimuth ¢ and take-off angle i of the ray,

sdn i cos ¢

3’1 =
7, = sén i sen ¢ (17.44)
73 = ¢cos 1|
SVl = cos 1 cos ¢
SV2 = cos | sen ¢ (17.45)
SV_ = - seén i

3
SH = - sen ¢
SH2 = cos ¢ (17.46)
SH = O

3

Displacements Moe U, and U, can finally be given in terms of i

and ¢ (Fig. 17.6) and components of the moment tensor,
substituting equations (17.44) to {17.48) in equations (17.41)
to  (17.43),
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17.5. DISPLACEMENTS DUE TO A POINT SOURCE

According to (17.10), displacements due to a point source can
be expressed by a time convolution of the moment tensor with
derivatives of Green function,

x

ulx ,t) = [ M (o) G (t~1ldr (17.37M
i n o kj ik, ]

Derivatives of Green function for P and S waves in the far field
for an infinite, homogeneous isotropic medium are given by
{16.74) and (16.75). For P waves, time convolution according to
(16.76) is given by,

[+ -] . -
J Mot -S-1)dr = M(t-2) (17.38)
i [+ 4 ij [+

If we separate the modulus and time dependence from orientation in
the form M_”_(t) = Mo(t) m , according to (16,77} and (16.78), we
ij

obtain elastic displacements of P and S waves in the far field,

. M (- )
U s —— 7 77y m (17.39)
k ki
4npa r
y r
s Mo(t - f§)
u = (é,k - zrlyk)‘a_ m._ (17.40)
4an r i i ] i)

Elastic displacements depend on time derivative of moment or
moment rate. Displacement for P waves and for SV and SH
components of S waves are, (calling A and B the factors in
(17.39) and (17.40)),
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The source represented by DC + CLVD corresponds to a shear
fracture in which, during the rupture process, the shear modulus
in the focal region changes suddenly. This separation represents
the best solution that maximize the DC part of the source.

In conclusion, a seismic point source of general type can be
represented by the moment tensor. This source may involve changes
in volume, shear fracture and sudden changes in rigidity at the
source, and thus be separated in the form,

M = M o« M . MEHYP (17.36)

This partition separates shear fracture, considered as the
standard model for the source of earthquakes, from other effects
that may be also present. The isotropic part is in many problems
assumed to be zero as a previous condition. Deviatoric source is
and formed by the sum DC + CLVD. Deviation from a pure DC is
sometimes represented by & = |0‘3/0"1|. greatest and least

eigenvalues. For pure DC, & = |

When the moment tensor is obtained from observations, presence
of non-DC components may be due to errors in observations or in
propagation effects that have not been taken into account, rather
than from the source itself. There is always a certain amount of
ambiguity between effects that are due to the source and to
propagation. Perfect separation of these two effects is not always
possible.
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don't impose any condition and result for some earthquake
sourcesin the presence of certain amounts of  non isotropic and
non double-couple components. For this reason, is convenient to
separate the moment tensor in three parts, one isotropic, .
corresponding to changes in volume, one of pure shear fracture or -
double couple (DC) and a third that may be of different kinds
(Strelitz, 1989). This analysis is called partition or separation
of the moment tensor and can be expressed by,

M = M+ M o+ MF (17.33)

The isotropic part (17.28) hasR been already defined. Partition of
the deviatoric part (M~ + M ) can be made in several ways. The
simplest is to separate this part into two DC, major and minor.

To do this we take into account that for a deviatoric tensor o‘z

= —c':'1 - 0-3. and obtain,

o‘l o 0 O‘L O 0 0 o 0
0 o, 0 = 0 -0'1 0O + 0 o 0 (17.34)
0 o ¢ O 0 o 0 0 o

3 3

The two DC have different orientation, the major DC with moment Mo

= u‘l and the minor with M0 =0

A more efficient separation is that proposed by Randall and
Knopoff (1970),

o 0 O Yo -o) O 0 /2 0 0
1 2 1 3 2
o 0 = 0] 4] 0 + 0 c 0 .
2 . 2 »
0O 0O 5 0 0 —;é(crl-cra)) 0 0 -0'2/2
(17.35} )
As before c'2 = - 0‘1 - o‘a. The first term is a DC source. The

second is called a compensated linear vector dipole {CLVD}. ITs .
physical meaning is a sudden change in the shear meodulus in a -
direction norma! to the fault plane, without changes in volume.
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pressure and tension axes, P and T. The third axis corresponding
to zero eigenvalue is the null axis B. In terms of unit vectoers P
and T, the moment tensor is given by,

M = M I(TT -PP) (17.32)
0 i P

This result is analogous to that found in section 6.1, regarding
the equivalence of a double couple with pressure and tensions
forces at 45 degrees from the couples.

17.4 TYPES OF SOURCES AND SEPARATION OF THE MOMENT TENSOR

We have already said that the moment tensor represents a very
general type of source. The analysis of its eigenvalues indicates,
in each case, the type of source. The most general case
corresponds to three different eigenvalues o, * c, * 0., whose

sum is not zero, a‘l + 0'2 + o‘a # 0. Then, the source has changes

in volume and after separation of the isotropic part (17.29), the
deviatoric part is of a general type and no necessarily a shear
fracture or double couple.

If 0‘1 = 0'2 = 0‘3, as we have seen, the source (s an isotrcpic

expansion or contraction depending on the sign. In each case o -

v, * o, represents the increase or decrease in volume For

positive sign the source represents an explosion.

For sources without net volume changes, o'1 + 0-2 + o o= R

moment tensor is purely deviatoric. This conditions is «2iten
impose in earthquake sources. In this case, only two of
eigenvalues are independent, since ¢, =-0¢ -0,

For a shear fracture or double couple source, the m
tensor is deviatoric and must satisfy the condition o= -

o = 0.
2

Earthquake sources are supposed to be shear fracuv.:-
nearly so. However, this may not be always the case i
presence of changes in volume cannct be completely rul .
Methods of inversion of moment tensor from observations
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(o0 = o©_ + 63} (17.28)

If we subtract this from tensor M ., we obtain the deviatoric
i]
tensor M’ whose sum of the diagonal elements is always zero and
13
doesn’t include changes in volume,

M = M -8 ¢ (17.29)
1} ij i] Q .

According to (17.29), the moment tensor can be separated intec two
tensors, one isotropic, M = & T, and the other deviatoric M;J.
1)

1)

M = M. o+ M (17.30)

Changes in volume are, thus separated, from other parts of the
moment tensor. Moment tensor that represent an explosive source
({17.19) is purely isotropic and that for a shear fracture (17.22}
purely deviatoric.

If we represent the moment tensor for an explosive source
referred to its principal axis we obtain the same result as in
(17.19). An explosive source is purely isotropic and any reference
system is equivalent to the principal axes. For the shear fracture
of (17.22) (fault plane normal to X, and slip in X direction],

the eigenvalues of matrix (17.22) are 1, -1, 0. The eigenvectors
are found by substitution in (17.25) resulting for ¢ = L1, (1/V2,
0, 1/¥2) and for ¢ = -1, (i/v2, 0, -1/¥2).The tensor referred to
its principal axes is,

M =M o 0 O (17.3D

This tensor represent two linear dipoles of positive and negative

forces or tension amd pressure forces along the principal axes,
that is, in (xl.le plane at 45 degrees from the direction of
slip. Thus, for & .. v fracture, eigenvectors corresponding to
eigenvalues oooant o iefine the principal axes of stress or
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17.3. EIGENVALUES AND EIGENVECTORS

As we saw in the discussion of stress and strain tensors
(Section 2.1), we can also make an eigenvalue and eigenvector
analysis of the moment tensor. Since this tensor is symmetric its
eigenvalues are real and its eigenvectors mutually orthogonal
They satisfy the equation,

M -8 cJv =0 (17.25}

Where the three eigenvalues da’ 0'2, 6‘3 are the roots of the cubic

equation resulting from putting equal to zero the determinant of
(17.25). Substituting each eigenvalue in (17.25) we obtain the
three eigenvectors v;, vi. vf:. which form the principal axes. In

reference to these axes, the moment tensor have the form,

c, 0] 0O
M = 0 ¢ 0O (17.26)
ij 2 .
0 0 [
3

In this system, moment tensor is formed by three linear dipoles in
the direction of the principal axes and thus represent the

principal stresses. If we order the eigenvalues a-l > T, > 0'3.
then, o, corresponds to the greatest stress, T, to the least
stress, and ¢ to the intermediate stress. The sum of the

2
elements of the principal diagonal is the first invariant of the
tensor and has the same value for any reference system,

M+M22+M =0 + o + O (17.27)

This sum represents the change in volume, as we saw for the
explosive source. Thus we can define the isotropic part of the
moment tensor as,
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The sum of the principal diagonal is null, ndicating that there
is no change in volume.

Unit vectors n and | referred to geographical reference system

can be written in terms of angles Bn, qbn and 81, ¢l' respectively

{Fig. 17.4). By substitution in (17.21), expressicns for the
components of n, according to (16.85), {16.86) and (l6.87) and
similarly for |, we obtain for the six components of the nermalize
moment tensor,

= 9ee ' 7.23)
m Zsenan cos;!bn 'semel cosq}l (1
b hd - ]

rn22 = Zsenen senqbn sen(%)l sentpl

m__ = 2cos8_ cos8
. 33 n !

rn12 = senel cos:pl sdnan se.nqbn + 50.41'16‘1 sunq{)l ssnen cosqbn

mm = senel cos¢[ cosen + cosse1 sanen cc:»sq)n

mza = senBl senqbl cosen + scnqbn senen cosF)l

As we have seen, a shear fracture can be also specified by
angles ¢, 8 and A (Section 16.6). Using the relation between ¢,
8, A and n and | equations (16.99) to {16.104), from (17.21},

1

1
the components of the moment tensor are (Fig. 17.5),

m o= - sand cosA senZe¢ - san2d sen’¢ seni (17.24)
m,, = Send cosA s&anp - sén23 cosqu s'en}\

m:m = san23 seni

m, = $4n8 cosA cos2¢ + 1/2 sen23 san2¢ senA

m. = - S&NA seingb cos2d - cosd cosA cos¢

m,, = cos¢ s€nA c0S28 - COSS COSA sémﬁ

In (17.23), expressions are symmetric with respect to n and | and
don't imply a selection of the fault plane from the two possible
planes. In (17.24), equations are related to the orientation of
motion on the selected fault plane (Fig. 17.5). Naturaily, the
result is the same for values of ¢, 8, A, of the second plane.
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An explosive source mayv be considered as an expansion 1372
the three coordinates axes. This situation 15 represented 5y
linear dipoles (1 and n in the same direction) aleng =ach axis,
that is, {1,0,0J), (0,1.0} and (0,0,1;. The moment tenser 1s the
sum of the three and using (17.18) we obtain {(Fig. 17.3a),

(0
m =Kaul|O 1 © (17.19)
i
o 1

Where K = A + 2/3 p is the bulk modulus (2.22). The sum of
elements of the principal diagonal gives the velume increase per
unit volume.

m + m + m = 3 K Au (17.20)

Shear fracture
In a shear fracture slip, tu is along the fault plane, that

is, n and 1 are perpendicular. Using equatien (17.i8) and the
definition of Mo after integration over the source surface of area

S, the moment tensor for a point source is,

M = Mo(lln +1in) (17.21)

For a particular case when the fault plane is plane (xl,xz), that
is, n = (0,0,1) and the slip in the X, direction, 1 = (1,0,0),
{Fig. 17.3b), -we obtain,

M =M o 0 0 (17.22)
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17.2. MOMENT TENSOR AND ELASTIC DISLOCATIONS

If we compare equations (17.9) and (16.15), we can define the
moment tensor density corresponding to a dislocation with slip &u
on a surface I of normal n,

m = C Au n {17.16)

and for an isotropic medium,

m =AndAu & + pulAun + Aun) (17.17)
ij kK k 1j ij 11
If the slip direction is given by unit vector |1 equation f{i» -
becomes,
m = Aulraln & + plln +1ln)) {17.18)
ij K Kk §] i ] ]

From this expression we can find the moment tensor for - .
types of sources, specifying orientaticns of n and L.
] 1

Explosive source
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Moment tensor density m corresponds to the first non zero term
y

in Taylor's expansion of (17.12), and thus 15 called the first
order moment tensor. This term s associated to the first
derivatives of Green's functions. We can also derive moment
tensors of higher order that are associated to higher derivatives
of Green functions. For example, the second order moment tensor,
third term in il7.12), which represents its variations with space.

According to (17.15), components of m_ correspond to force
ij

couples or dipocles. Components m,. m, and m_, are linear

dipoies without moment, that is, the arm is in the same direction
as the forces. The other components have the arm perpendicular to
the forces and are coupies with moment (Fig. 17.1). Condition of
zero net moment implies that the tensor is symmetric mlJ = mJ.l
couples with opposite moment must be equal. We have seen that
Green's function represents displacements due to impulsive forces,
their derivatives, represent displacements due to couples or
dipoles of impulsive forces. In  consequence, according to
equations (17.8) and (17.9), elastic displacements are given by
convolution of distributions of dipoles or couples of forces
representing the source (moment tensor) with displacements due to
couples of impulsive forces (derivatives of Green’s function).

Components of moment tensor are expressed with relation to a
cocordinate system of reference, usually, the geographic system,
with origin at the focus of the earthguake. For example, Cartesian
coordinate system (xl, xz, x3) cr (x, y. 2z), positive In

direction North, East, Nadir (Fig. 17.2b) or also North, West,
Zenith. Other system also used is referred to geocentric spherical
coordinates of the focus (r, 8, ¢) where r, is in the radial
direction, 8 geocentric colatitude and ¢ geocentric longitude.
In the focus a Cartesian coordinate system is formed with  unit
vectors €. €4 e¢, {in direction of positive increments of r,

8, ¢). This system have positive axes in direction Zenith, South,
East (Fig. 17.2a). Correspondence of the six compenents of the
moment tensor in the three systems is,
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The physical meaning of rthe moment tensor can be understood o
relation to the equivalent body forces. According 1o [i6.71,
elastic displacements are given by,

w0

ulx t) = | dr | F(€,00G (x ,LE TV (17.11)
i s cw v k s ik s s

C

If we make a Taylor's expansion of Gk around the origin, Ek = 0,
1

the first three terms are,

_ ik 3 ik
Gik(Es) = Gik{O) + &s = t Z E g @és + .. (17.12}

Taking only the first two terms and substituting in (17.11), the
first term is zero by the condition that the sum of internal

forces must be zero,

J F{0) G (0,x)dv =20 (17.13)
v k ik

0

Therefore, we obtain,

u = I dt [ FE G dv (17.14)
i k7] ik,j
~ \'

By comparison of (17.14) with (17.8), we find,

- 7.
mJ_k &j Fk (17.15}
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u = m G  dr =« dt m G dv
i Kj j . kj ik,
) -® V
ol
[n the absence of external forces and torques, the sum of all
internal forces and moments are null, then by an appropriate chose
of the origin of coordinates, m Gk_ = (0, and we obtain,
i ki
@x
u o= dr m G‘k - dv (17.8)
i o Vo Jooik,)

If the moment tensor is defined only on a surface I, we use m ,

i
the moment tenscr density per unit surface,and we write (17.8] as
a surface integral,

u = dt m G ds (17.9)
i kj ik,}
—- 5

Equations (17.8) and (17.9) show that elastic displacements
outside the focal region can be derived from the seismic moment
tensor and the derivatives of Green's function integrated over the
focal region (V0 or ZJ). Since we have not specified its form,

m can represent a very general type of source. It corresponds to
£

any system of internal body forces according to (17.6), provided
the net effect of their sum and the sum of their moments are
null. The moment tensor is, thus, a very convenient form to
represent the source of an earthguake in a general way.

For a peint source, equations (17.8) and (17.9) can be written
in a ccmpact form using an asterisk to express time convoluticn,

u = M * G (17.10]
i k) %,
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disptacements depend on slip veiocity AU, For this reason, time
dependence of slip velocity is often also called STF. For the
first two models (16.108 and (16.109) we obtain,

Aalt) = AV 8(t) {16.111}
au(t) = AV {H(t) - H{t - ]l (16.112}
In these two models for 't = O, slip velocity jumps instantaneously

from O to its maximum value AV (Fig. 16.22a, b). In the first,
slip velocity is an impulse and in the second it has a duration <
with constant value. More realistic is to define a STF with slip
velocity that increases from zero to its maximum value and then
decreases to zero after a time t. A model that satisfies these
conditions is a triangular function (Fig. 16.22¢),

0 t < O
2t T
AV —_E | 0 =1 = —2-
Al = {16.113)
av 2T =Y T ag
T 2
O t>T

Slip velocity increases tinearly from zero at t= 0, to reach its
maximum value (AV) at t = t/2 and then decreases to zero for t =
t. In the first part of the process, slip acceleration (A) is
positive and in the second negative. If we want to increases
duration of the source process we can use a STF of trapezoidal
form (Fig. 16.22d). In this case, slip velocity maintains its
maximum value during a certain time before decreasing to zero
value at t = T.

The models of STF we have mentioned represent simple scurces
consisting of a singie event. A complex source can be represented
by a STF consisting of several triangles or trapezoids of
different height. In this way we represent with a point source a
mechanism that has several accelerations (A > 0), decelerations
(A < 0) and stops (Au” = 0), during the total process of fracture
(Fig. 16.23).

16.7 EQUIVALENCE BETWEEN FORCES AND DISLOCATIONS

We have seen tia' the source of earthquakes can be represented
by systems of for--s (16.7) or by displacement dislocations
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