united nations ducational, scientific and cultural organization

()

energy agency

international centre for theoretical physics

301/1246-2

Microprocessor Laboratory Third Regional Course on Advanced VLSI Design Techniques 13 November - 1 December 2000

Lima - Peru

INTRODUCTION TO VLSI ASIC DESIGN AND TECHNOLOGY

available also on

http://pcvlsi5.cern.ch/MicDig/VLSI_Trieste/VLSI_Trieste.htm

Paulo Rodrigues S. MOREIRA CERN EP/MIC CH-1211 Geneva 23 SWITZERLAND

These are preliminary lecture notes intended only for distribution to participants.

V

F

ı.

I.

÷

Introduction to VLSI ASIC Design and Technology

P. Moreira, CERN-EP/MIC Geneva Switzerland

Trieste, 8-11 November 1999

Introduction

Outline

- Introduction
- CMOS devices
- CMOS technology
- CMOS logic structures
- CMOS sequential circuits
- CMOS regular structures

"The world is digital..."

- Analogue loses terrain:
 - Computing
 - Instrumentation
 - Control systems
 - Telecommunications
 - Consumer electronics

Trieste, 8-11 November 1999

Introduction

"...analogue will survive"

- Amplification of very week signals
- A/D and D/A conversion
- Very high frequency amplification
- Very high frequency signal processing
- As digital systems become faster and faster and circuits densities increase:
 - Analogue phenomena are becoming important in digital systems

The number of transistors that can be integrated on a single IC grows exponentially with time.

"Integration complexity doubles every three years", Gordon Moore - 1965

Trieste, 8-11 November 1999

Introduction

Trends in transistor count

Trends in clock frequency (1)

Trends in clock frequency (2)

8

Trends in feature size

Driving force: Economics (1)

- Traditionally, the cost/function in an IC is reduced by 25% to 30% a year.
- To achieve this the number of functions/IC has to be increased. This demands for:
 - Increase of the transistor count
 - Decrease of the feature size (contains the area increase and improves performance)
 - Increase of the clock speed

Driving force: Economics (2)

- Increase productivity:
 - Increase equipment throughput
 - Increase manufacturing yields
 - Increase the number of chips on a wafer:
 - reduce the are of the chip: smaller feature size & redesign
 - Use the largest wafer size available

Example of a cost effective product (typically DRAM): the initial IC area is reduced to 50% after 3 years and to 35% after 6 years.

Trieste, 8-11 November 1999

Introduction

11

2001 and beyond ?

Semiconductor Industry Association (SIA) Road Map, 1998 Update

	1999	2002	2014	
Technology (nm)	180	130	35	IEEE Spectrum, July
Minimum mask count	22/24	24	29/30	1999
Wafer diameter (mm)	300	300	450	Special report: "The 100-million transistor
Memory-samples (bits)	1G	4G	1T	IC"
Transistors/cm² (μP)	6.2M	18 M	390M	
Wiring levels (maximum)	6-7	7	10	
Clock, local (MHz)	1250	2100	10000)
Chip size: DRAM (mm²)	400	560	2240	
Chip size: μP (mm²)	340	430	901	
Power supply (V)	1.5-1.8	1.2-1.5	0.37-0	.42
Maximum Power (W)	90	130	183	
Number of pins (μP)	700	957	3350	

Trieste, 8-11 November 1999

Introduction

How to cope with complexity?

- By applying:
 - Rigid design methodologies
 - Design automation

Trieste, 8-11 November 1999

Introduction

13

Design abstraction levels

Trieste, 8-11 November 1999

Introduction

Outline

- Introduction
- CMOS devices
- CMOS technology
- CMOS logic structures
- CMOS sequential circuits
- CMOS regular structures

Trieste, 9-13 November 1998

CMOS devices

CMOS devices

- CMOS devices
- pn-Junction diodes
- MOSFET equations
- What causes delay?
- MOSFET capacitances
- CMOS device hazards

Trieste, 9-13 November 1998

CMOS devices

16

CMOS devices

CMOS devices

CMOS devices

In a CMOS process the devices are:

- PMOS FET's
- NMOS FET's

+ unwanted (but ubiquitous):

- pn-Junction diodes
- parasitic capacitance and
- parasitic bipolars
- parasitic inductance

Trieste, 9-13 November 1998

CMOS devices

pn-Junctions diodes

- Any pn-junction in the IC forms a diode
- Majority carriers diffuse from regions of high to regions of low concentration
- The electric field of the depletion region counteracts diffusion
- In equilibrium there is no net flow of carriers in the diode

CMOS devices

18

pn-Junction diodes

- Under zero bias there is a built-in potential across the junction
- The built-in potential is:

$$\phi_0 = \phi_T \cdot \ln\left(\frac{N_A \cdot N_D}{n_i^2}\right)$$

$$\phi_T = \frac{k \cdot T}{q} \cong 26 \text{ mV } @ 300^\circ \text{K}$$

$$n_i = 1.5 \times 10^{10} \text{ cm}^{-3}$$
 for silicon @ 300° K

Trieste, 9-13 November 1998

CMOS devices

pn-Junction diodes

• Ideal diode equation

$$I_{D} = I_{s} \cdot \left(e^{V/\phi_{T}} - 1\right)$$

• For V> ϕ_{T} (forward bias)

$$I_{F} \cong I_{s} \cdot e^{V/\phi_{T}}$$

• For V<0 (reversed bias)

$$I_{R} \cong -I_{s}$$

• In practical diodes due
to thermal generation

$$I_{R} \cong 100 \text{ to } 1000 \times (-I_{s})$$

Outline

- Introduction
- CMOS devices
- CMOS technology
- CMOS logic structures
- CMOS sequential circuits
- CMOS regular structures

Trieste, 9-13 November 1998

CMOS devices

CMOS devices

- CMOS devices
- pn-Junction diodes
- MOSFET equations
- What causes delay?
- MOSFET capacitances
- CMOS device hazards

Trieste, 9-13 November 1998

CMOS devices

24

CMOS devices

In a CMOS process the devices are:

- PMOS FET's
- NMOS FET's
- + unwanted (but ubiquitous):
- pn-Junction diodes
- parasitic capacitance

and

- parasitic bipolars
- parasitic inductance

pn-Junctions diodes

- Any pn-junction in the IC forms a diode
- Majority carriers diffuse from regions of high to regions of low concentration
- The electric field of the depletion region counteracts diffusion
- In equilibrium there is no net flow of carriers in the diode

Trieste, 9-13 November 1998

CMOS devices

pn-Junction diodes

- Under zero bias there is a built-in potential across the junction
- The built-in potential is:

$$\phi_0 = \phi_T \cdot \ln\left(\frac{N_A \cdot N_D}{n_i^2}\right)$$

$$\phi_T = \frac{k \cdot T}{q} \cong 26 \text{ mV } @ 300^\circ \text{K}$$

$$n_i = 1.5 \times 10^{10} \text{ cm}^{-3}$$
 for silicon @ 300° K

Trieste, 9-13 November 1998

CMOS devices

pn-Junction diodes

Ideal diode equation

Trieste, 9-13 November 1998

CMOS devices

28

Depletion capacitance

- The depletion, the nand the p-type regions form a capacitor
- This capacitor is bias dependent:

$$C_j = \frac{C_{j0}}{\left(1 - \frac{V}{\phi_0}\right)^m}$$

• Simplification: for V<0

$$C_j = k \cdot C_{j0}$$

Trieste, 9-13 November 1998

- Substrate: lightly doped (p-)
- Source and drain: heavily doped (n+)
- Gate: polysilicon
- Thin oxide separates the gate and the "channel"
- Field oxide and field implant isolate the devices

MOSFET equations

• Cut-off region $I_{ds} = 0 \quad \text{for} \quad V_{gs} - V_T < 0$ • Linear region $I_{ds} = \mu \cdot C_{ox} \cdot \frac{W}{L} \cdot \left[\left(V_{gs} - V_T \right) \cdot V_{ds} - \frac{V_{ds}^2}{2} \right] \cdot \left(1 + \lambda \cdot V_{ds} \right) \text{ for } 0 < V_{ds} < V_{gs} - V_T$ • Saturation $I_{ds} = \frac{\mu \cdot C_{ox}}{2} \cdot \frac{W}{L} \cdot \left(V_{gs} - V_T \right)^2 \cdot \left(1 + \lambda \cdot V_{ds} \right) \text{ for } V_{ds} > V_{gs} - V_T$ • Oxide capacitance $C_{ox} = \frac{\varepsilon_{ox}}{t_{ox}} \quad \left(F / m^2 \right)$ • Process "transconductance" $\mu \cdot C_{ox} = \frac{\mu \cdot \varepsilon_{ox}}{t_{ox}} \quad \left(A / V^2 \right)$

Trieste, 9-13 November 1998

CMOS devices

Mobility

MOS output characteristics

Bulk effect

- The threshold depends on the:
 - Doping levels
 - Source-to-bulk voltage
 - Gate oxide thickness

$$V_{T} = V_{T0} + \gamma \cdot \left(\sqrt{2\phi_{F} + V_{sb}} - \sqrt{2\phi_{F}} \right)$$
$$V_{T0} = \phi_{ms} - 2\phi_{F} - \frac{1}{C_{ox}} \left[Q_{b0} + Q_{ox} + Q_{I} \right]$$
$$\gamma = \frac{\sqrt{2q} \varepsilon_{si} N_{A}}{C_{ox}}$$
$$\phi_{F} = \phi_{T} \ln \left[\frac{N_{A}}{n_{i}} \right] \text{ for p - substrate}$$

Trieste, 9-13 November 1998

CMOS devices

34

Bulk effect

- When the semiconductor surface inverts to n-type the channel is in "strong inversion"
- $V_{sb} = 0 \Rightarrow$ strong inversion for:
 - surface potential > $-2\phi_F$
- V_{sb} > 0 ⇒ strong inversion for:
 - surface potential > $-2\phi_{F+}V_{sb}$

Trieste, 9-13 November 1998

CMOS devices

Weak inversion

- Is $I_d=0$ when $V_{gs} < V_T$?
- For V_{gs}<V_T the drain current depends exponentially on V_{as}
- In week inversion and saturation:

$$I_d \cong \frac{W}{L} \cdot I_{do} \cdot e^{\frac{q \cdot V_{gs}}{n \cdot k \cdot T}}$$

- Used in very low power designs
- Slow operation

Trieste, 9-13 November 1998

What causes delay?

Trieste, 9-13 November 1998

- MOS capacitances have three origins:
 - The basic MOS structure
 - The channel charge
 - The pn-junctions depletion regions

MOS structure capacitances

 Source/drain diffusion extend below the gate oxide by:

 x_d - the lateral diffusion

 This gives origin to the source/drain overlap capacitances:

$$C_{gso} = C_{gdo} = C_o \times W$$
$$C_o (F/m)$$

 Gate-bulk overlap capacitance:

$$C_{gbo} = C'_{o} \times L, \quad C'_{o} \quad (F/m)$$

Trieste, 9-13 November 1998

39

- The channel capacitance is nonlinear
- Its value depends on the operation region
- Its formed of three components:
 - C_{ab} gate-to-bulk capacitance
 - C_{as} gate-to-source capacitance
 - C_{ad} gate-to-drain capacitance

Operation region	C _{gb}	C _{gs}	C _{gd}
Cutoff	C _{ox} W L	0	0.
Linear	0	(1/2) C _{ox} W L	(1/2) C _{ox} W L
Saturation	0	(2/3) C _{ox} W L	0

Trieste, 9-13 November 1998

CMOS devices

40

Channel capacitance

Trieste, 9-13 November 1998

- C_{sb} and C_{db} and diffusion capacitances composed of:
 - Bottom-plate capacitance:

$$C_{bottom} = C_j \cdot W \cdot L_s$$

- Side-wall capacitance:

$$C_{sw} = C_{jsw} \cdot \left(2 L_s + W\right)$$

Source/drain resistance

Scaled down devices ⇒ higher source/drain resistance:

$$R_{s,d} = \frac{L_{s,d}}{W} \cdot R_{sq} + R_c$$

 In sub-μ processes <u>silicidation</u> is used to reduce the source, drain and gate parasitic resistance

MOSFET model

Trieste, 9-13 November 1998

CMOS devices

44

CMOS parasitic bipolar

Trieste, 9-13 November 1998

CMOS devices

46

CMOS device hazards

• Sources of latchup:

- Electrical disturbance
- Transient on power and ground buses
- Improper power sequencing
- Radiation
- ESD
- How to avoid it:
 - Technological methods (beta reduction, substrate resistance reduction, trench isolation)
 - Layout rules:
 - Spacing rules
 - Contact distribution
 - Guard rings

CMOS devices

CMOS device hazards

Trieste, 9-13 November 1998

CMOS devices

Outline

- Introduction
- CMOS devices

CMOS technology

- CMOS logic structures
- CMOS sequential circuits
- CMOS regular structures

Trieste, 8-10 November 1999

CMOS technology

CMOS technology

- Lithography
- Physical structure
- CMOS fabrication sequence
- Yield
- Design rules
- Other processes
- Advanced CMOS process
- Process enhancements
- Technology scaling

CMOS technology

- An Integrated Circuit is an electronic network fabricated in a single piece of a semiconductor material
- The semiconductor surface is subjected to various processing steps in which impurities and other materials are added with specific geometrical patterns
- The fabrication steps are sequenced to form three dimensional regions that act as transistors and interconnects that form the switching or amplification network

Trieste, 8-10 November 1999

CMOS technology

51_

Lithography

<u>Lithography</u>: process used to transfer patterns to each layer of the IC

Lithography sequence steps:

- Designer:
 - Drawing the layer patterns on a layout editor
- Silicon Foundry:
 - Masks generation from the layer patterns in the design data base
 - Printing: transfer the mask pattern to the wafer surface
 - Process the wafer to physically pattern each layer of the IC

Lithography

Basic sequence

- The surface to be patterned is:
 - spin-coated with photoresist
 - the photoresist is dehydrated in an oven (photo resist: light-sensitive organic polymer)
- The photoresist is exposed to ultra violet light:
 - For a positive photoresist exposed areas become soluble and non exposed areas remain hard
- The soluble photoresist is chemically removed (development).
 - The patterned photoresist will now serve as an etching mask for the SiO₂

Trieste, 8-10 November 1999

CMOS technology

5**3**

Lithography

- The SiO₂ is etched away leaving the substrate exposed:
 - the patterned resist is used as the etching mask
- Ion Implantation:
 - the substrate is subjected to highly energized donor or acceptor atoms
 - The atoms impinge on the surface and travel below it
 - The patterned silicon SiO₂ serves as an implantation mask
- The doping is further driven into the bulk by a thermal cycle

- The lithographic sequence is repeated for each physical layer used to construct the IC. The sequence is always the same:
 - Photoresist application
 - Printing (exposure)
 - Development
 - Etching

Trieste, 8-10 November 1999

CMOS technology

Lithography

Trieste, 8-10 November 1999

CMOS technology

Lithography

anisotropic etch (ideal)

isotropic etch

undercut-

preferential etch

resist

layer 1

layer 2

resist

layer 1

layer 2

resist

layer 2

57

Etching:

 Process of removing unprotected material

- Etching occurs in all directions
- Horizontal etching causes an under cut
- "preferential" etching can be used to minimize the undercut
- Etching techniques:
 - Wet etching: uses chemicals to remove the unprotected materials
 - Dry or plasma etching: uses ionized gases rendered chemically active by an rfgenerated plasma

CMOS technology

Physical structure

NMOS physical structure:

- p-substrate
- n+ source/drain
- gate oxide (SiO₂)
- polysilicon gate
- CVD oxide
- metal 1
- L_{eff}<L_{drawn} (lateral doping effects)

NMOS layout representation:

- Implicit layers:
 - oxide layers
 - substrate (bulk)
- Drawn layers:
 - n+ regions
 - polysilicon gate
 - oxide contact cuts
 - metal layers

Trieste, 8-10 November 1999

CMOS technology

Physical structure

PMOS physical structure:

- p-substrate
- n-well (bulk)
- p+ source/drain
- gate oxide (SiO₂)
- polysilicon gate
- CVD oxide
- metal 1

PMOS layout representation:

- Implicit layers: — oxide layers
- Drawn layers:
 - n-well (bulk)
 - n+ regions
 - polysilicon gate
 - oxide contact cuts
 - metal layers

Trieste, 8-10 November 1999 CMOS technology

59

CMOS fabrication sequence

0. Start:

- For an n-well process the starting point is a p-type silicon wafer:
- wafer: typically 75 to 230mm in diameter and less than 1mm thick

1. Epitaxial growth:

- A single p-type single crystal film is grown on the surface of the wafer by:
 - subjecting the wafer to high temperature and a source of dopant material
- The epi layer is used as the base layer to build the devices

2. N-well Formation:

- PMOS transistors are fabricated in n-well regions
- The first mask defines the n-well regions
- N-well's are formed by ion implantation or deposition and diffusion
- Lateral diffusion limits the proximity between structures
- Ion implantation results in shallower wells compatible with today's fine-line processes

CMOS fabrication sequence

3. Active area definition:

- Active area:
 - planar section of the surface where transistors are build
 - · defines the gate region (thin oxide)
 - defines the n+ or p+ regions
- A thin layer of SiO₂ is grown over the active region and covered with silicon nitride

4. Isolation:

- Parasitic (unwanted) FET's exist between unrelated transistors (Field Oxide FET's)
- Source and drains are existing source and drains of wanted devices
- Gates are metal and polysilicon interconnects
- The threshold voltage of FOX FET's are higher than for normal FET's

CMOS technology

Trieste, 8-10 November 1999

CMOS fabrication sequence

- FOX FET's threshold is made high by:
 - introducing a channel-stop diffusion that raises the impurity concentration in the substrate in areas where transistors are not required
 - making the FOX thick

4.1 Channel-stop implant

 The silicon nitride (over n-active) and the photoresist (over n-well) act as masks for the channel-stop implant

4.2 Local oxidation of silicon (LOCOS)

- The photoresist mask is removed
- The SiO₂/SiN layers will now act as a masks
- The thick field oxide is then grown by:
 - exposing the surface of the wafer to a flow of oxygen-rich gas
- The oxide grows in both the vertical and lateral directions
- This results in a active area smaller than patterned

Trieste, 8-10 November 1999

CMOS technology

CMOS fabrication sequence

- Silicon oxidation is obtained by:
 - Heating the wafer in a oxidizing atmosphere:
 - Wet oxidation: water vapor, T = 900 to 1000°C (rapid process)
 - Dry oxidation: Pure oxygen, T = 1200°C (high temperature required to achieve an acceptable growth rate)
- Oxidation consumes silicon
 - SiO₂ has approximately twice the volume of silicon
 - The FOX is recedes below the silicon surface by 0.46X_{FOX}

66
5. Gate oxide growth

- The nitride and stress-relief oxide are removed
- The devices threshold voltage is adjusted by
 - adding charge at the silicon/oxide interface
- The well controlled gate oxide is grown with thickness t_{ox}

Trieste, 8-10 November 1999

CMOS technology

67

CMOS fabrication sequence

6. Polysilicon deposition and patterning

- A layer of polysilicon is deposited over the entire wafer surface
- The polysilicon is then patterned by a lithography sequence
- All the MOSFET gates are defined in a single step
- The polysilicon gate can be doped (n+) while is being deposited to lower its parasitic resistance (important in high speed fine line processes)

CMOS fabrication sequence

7. PMOS formation

- Photoresist is patterned to cover all but the p+ regions
- A boron ion beam creates the p+ source and drain regions
- The polysilicon serves as a mask to the underlying channel
 - This is called a self-aligned process
 - It allows precise placement of the source and drain regions
- During this process the gate gets doped with p-type impurities
 - Since the gate had been doped n-type during deposition, the final type (n or p) will depend on which dopant is dominant

Trieste, 8-10 November 1999

CMOS technology

CMOS fabrication sequence

8. NMOS formation

- Photoresist is patterned to define the n+ regions
- Donors (arsenic or phosphorous) are ion-implanted to dope the n+ source and drain regions
- The process is self-aligned
- The gate is n-type doped

9. Annealing

- After the implants are completed a thermal annealing cycle is executed
- This allows the impurities to diffuse further into the bulk
- After thermal annealing, it is important to keep the remaining process steps at as low temperature as possible

CMOS technology

Trieste, 8-10 November 1999

71

CMOS fabrication sequence

10. Contact cuts

- The surface of the IC is covered by a layer of CVD oxide
 - The oxide is deposited at low temperature (LTO) to avoid that underlying doped regions will undergo diffusive spreading
- Contact cuts are defined by etching SiO₂ down to the surface to be contacted
- These allow metal to contact diffusion and/or polysilicon regions

11. Metal 1

 A first level of metallization is applied to the wafer surface and selectively etched to produce the interconnects

Trieste, 8-10 November 1999

CMOS technology

73

CMOS fabrication sequence

12. Metal 2

- Another layer of LTO CVD oxide is added
- Via openings are created
- Metal 2 is deposited and patterned

13. Over glass and pad openings

- A protective layer is added over the surface:
- The protective layer consists of:
 - A layer of SiO₂
 - · Followed by a layer of silicon nitride
- The SiN layer acts as a diffusion barrier against contaminants (passivation)
- Finally, contact cuts are etched, over metal 2, on the passivation to allow for wire bonding.

Trieste, 8-10 November 1999

CMOS technology

Yield Yield total number of chips Yield tendency 100 The yield is influenced by: 80 - the technology 60 · the chip area <u>ම</u> 40 · - the layout Chip edge Yield Scribe cut and packaging also contribute to the final 20 · yield 1.0 defects/cm² -2.5 defects/cm² Yield can be approximated 5.0 defects/cm² 10 · 0 by: $Y = e^{-\sqrt{A^2D}}$ 2 6 8 10 4 A - chip area (cm²) D - defect density (defects/cm²)

CMOS technology

Design rules

- The limitations of the patterning process give rise to a set of mask design guidelines called <u>design rules</u>
- Design rules are a set of guidelines that specify the minimum dimensions and spacings allowed in a layout drawing
- Violating a design rule might result in a <u>non-functional</u> circuit or in a <u>highly reduced yield</u>
- The design rules can be expressed as:
 - A list of minimum feature sizes and spacings for all the masks required in a given process
 - Based on single parameter λ that characterize the linear feature (e.g. the minimum grid dimension). λ base rules allow simple scaling

Trieste, 8-10 November 1999

CMOS technology

77

Design rules

- Minimum line-width:
 - smallest dimension permitted for any object in the layout drawing (minimum feature size)
- Minimum spacing:
 - smallest distance permitted between the edges of two objects
- This rules originate from the resolution of the optical printing system, the etching process, or the surface roughness

CMOS technology

Design rules

- · Contacts and vias:
 - minimum size limited by the lithography process
 - large contacts can result in cracks and voids
 - Dimensions of contact cuts are restricted to values that can be reliably manufactured
 - A minimum distance between the edge of the oxide cut and the edge of the patterned region must be specified to allow for misalignment tolerances (registration errors)

CMOS technology

79

Design rules

- MOSFET rules
 - n+ and p+ regions are formed in two steps:
 - the <u>active</u> area openings allow the implants to penetrate into the silicon substrate
 - the <u>nselect</u> or <u>pselect</u> provide photoresist openings over the active areas to be implanted
 - Since the formation of the diffusions depend on the overlap of two masks, the nselect and pselect regions must be larger than the corresponding active areas to allow for misalignments

- Gate overhang:
 - The gate must overlap the active area by a minimum amount
 - This is done to ensure that a misaligned gate will still yield a structure with separated drain and source regions
- A modern process has may hundreds of rules to be verified
 - Programs called <u>Design</u>
 <u>Rule Checkers assist the</u>
 designer in that task

Trieste, 8-10 November 1999

CMOS technology

Other processes

P-well process

- NMOS devices are build on a implanted p-well
- PMOS devices are build on the substrate
- P-well process moderates the difference between the p- and the ntransistors since the P devices reside in the native substrate
- Advantages: better balance between p- and n-transistors

Twin-well process

- n+ or p+ substrate plus a lightly doped epi-layer (latchup prevention)
- wells for the n- and p-transistors
- Advantages, simultaneous optimization of p- and n-transistors:
 - threshold voltages
 - body effect
 - gain

Trieste, 8-10 November 1999

83

CMOS technology

Other processes

• Silicon On Insulator (SOI)

- Islands of silicon on an insulator form the transistors
- Advantages:
 - No wells \Rightarrow denser transistor structures
 - Lower substrate capacitances

- Very low leakage currents
- No FOX FET exists between unrelated devices
- No latchup
- No body-effect:
 - However, the absence of a backside substrate can give origin to the "kink effect"
- Radiation tolerance
- Disadvantages:
 - Absence of substrate diodes (hard to implement protection circuits)
 - Higher number of substrate defects \Rightarrow lower gain devices
 - More expensive processing

Trieste, 8-10 November 1999

CMOS technology

85

Other processes

- SOI wafers can also be manufactured by a method called: Separation by Implantation of Oxygen (SIMOX)
- The starting material is a silicon wafer where heavy doses of oxygen are implanted
- The wafer is annealed until a thin layer of SOI film is formed
- Once the SOI film is made, the fabrication steps are similar to those of a bulk CMOS process

Trieste, 8-10 November 1999

Advanced CMOS processes

- Shallow trench isolation
- n+ and p+-doped polysilicon gates (low threshold)
- source-drain extensions LDD (hot-electron effects)
- Self-aligned silicide (spacers)
- Non-uniform channel doping (short-channel effects)

CMOS technology

Trieste, 8-10 November 1999

87

Process enhancements

- Up to six metal levels in modern processes
- Copper for metal levels 2 and higher
- Stacked contacts and vias
- Chemical Metal Polishing for technologies with several metal levels
- For analogue applications some processes offer:
 - capacitors
 - resistors
 - bipolar transistors (BiCMOS)

Technology scaling

- Currently, technology scaling has a <u>threefold</u> objective:
 - Reduce the gate delay by 30% (43% increase in frequency)
 - Double the transistor density
 - Saving 50% of power (at 43% increase in frequency)
- How is scaling achieved?
 - All the device dimensions (lateral and vertical) are reduced by $1/\alpha$
 - Concentration densities are increased by α
 - Device voltages reduced by $1/\alpha$ (not in all scaling methods)
 - Typically $1/\alpha = 0.7$ (30% reduction in the dimensions)

Trieste, 8-10 November 1999

CMOS technology

89

Technology scaling

•	The scaling variables	are:		
	 Supply voltage: 	V_{dd}	\rightarrow	V_{dd} / $lpha$
	 Gate length: 	L	\rightarrow	L/α
	 Gate width: 	W	\rightarrow	W/a
	 Gate-oxide thickness: 	t _{ox}	\rightarrow	t _{ox} / α
	 Junction depth: 	X_{j}	\rightarrow	X _j / α
	 Substrate doping: 	N _A	\rightarrow	$N_A \times \alpha$
			•	

This is called **constant field** scaling because the electric field across the gate-oxide does not change when the technology is scaled

If the power supply voltage is maintained constant the scaling is called <u>constant voltage</u>. In this case, the electric field across the gate-oxide increases as the technology is scaled down.

Due to gate-oxide breakdown, below 0.8µm only "constant field" scaling is used.

Some consequencies 30% scaling in the constant field regime ($\alpha = 1.43$, $1/\alpha = 0.7$):

• Device/die area:

 $W \times L \rightarrow (1/\alpha)^2 = 0.49$

- In practice, microprocessor <u>die size grows</u> about 25% per technology generation! This is a result of added functionality.
- Transistor density:

(unit area) /(W × L) $\rightarrow \alpha^2 = 2.04$

 In practice, <u>memory density</u> has been scaling as expected. (not true for microprocessors...)

Trieste, 8-10 November 1999

CMOS technology

51

Technology scaling

Gate capacitance:

W × L /
$$t_{ox} \rightarrow 1/\alpha = 0.7$$

Drain current:

$$(W/L) \times (V^2/t_{ox}) \rightarrow 1/\alpha = 0.7$$

• Gate delay:

 $(C \times V) / I \rightarrow 1/\alpha = 0.7$ Frequency $\rightarrow \alpha = 1.43$

- In practice, microprocessor frequency has doubled every technology generation (2 to 3 years)! This faster increase rate is due to two factors:
 - the number of gate delays in a clock cycle decreases with time (the designs become highly pipelined)
 - advanced circuit techniques reduce the <u>average gate delay</u> <u>beyond 30%</u> per generation.

Power:

 $C \times V^2 \times f \rightarrow (1/\alpha)^2 = 0.49$

Power density:

 $1/t_{ox} \times V^2 \times f \rightarrow 1$

Active capacitance/unit-area:

Power dissipation is a function of the operation frequency, the power supply voltage and of the circuit size (number of devices). If we normalize the power density to $V^2 \times f$ we obtain the active capacitance per unit area for a given circuit. This parameter can be compared with the oxide capacitance per unit area:

$$1/t_{\alpha x} \rightarrow \alpha = 1.43$$

- In practice, for microprocessors, the active capacitance/unitarea only increases between 30% and 35%. Thus, the twofold improvement in logic density between technologies is not achieved. qع

Trieste, 8-10 November 1999

CMOS technology

Technology scaling

- Interconnects scaling:
 - Higher densities are only possible if the interconnects also scale.
 - Reduced width → increased resistance
 - Denser interconnects → higher capacitance
 - To account for increased parasitics and integration complexity more interconnection layers are added:
 - thinner and tighter layers → local interconnections
 - thicker and sparser layers → global interconnections and power

Interconnects are scaling as expected

Technology scaling

Parameter	Constant Field	Con	stant Voltage
Supply voltage (V _{dd})	1/α	1	<u>+</u>
Length (L)	1/α	1/α	
Width (W)	1/α	1 /a	Scaling
Gate-oxide thickness (t _{ox})	1/α	1/α	Variables
Junction depth (X _j)	1/α	1/α	ł
Substrate doping (N _A)	α	α	Ļ
Electric field across gate oxide (E)	1	α	†
Depletion layer thickness	1/α	1/α	
Gate area (Die area)	1/α ²	1/α²	Device
Gate capacitance (load) (C)	1/α	1/α	Repercussion
Drain-current (I _{dss})	1/α	α	
Transconductance (g _m)	1	_α	↓
Gate delay	1/α	1/α ²	<u></u>
Current density	α	α^3	
DC & Dynamic power dissipation	1/α²	α	Circuit Repercussion
Power density	1	α^3	
Power-Delay product	$1/\alpha^3$	1/α	

Technology scaling

Lithography:

Optics technology	Technology node
248nm mercury-xenon lamp	180 - 250nm
248nm krypton-fluoride laser	130 - 180nm
193nm argon-fluoride laser	100 - 130nm
157nm fluorine laser	70 - 100nm
13.4nm extreme UV	50 - 70nm

Technology scaling

Lithography:

- Electron Beam Lithography (EBL)
 - Patterns are derived directly from digital data
 - The process can be direct: no masks
 - Pattern changes can be implemented quickly
 - However:
 - Equipment cost is high
 - Large amount of time required to access all the points on the wafer

Trieste, 8-10 November 1999

CMOS technology

97

Outline

- Introduction
- CMOS devices
- CMOS technology
- CMOS logic structures
- CMOS sequential circuits
- CMOS regular structures

CMOS logic structures

- CMOS logic: "0" and "1"
- The MOST a simple switch
- The CMOS inverter
- The CMOS pass gate
- Simple CMOS gates
- Complex CMOS gates

Triest, 9-13 November 1998

CMOS logic structures

99

CMOS logic: "0" and "1"

- Logic circuits process Boolean variables
- Logic values are associated with voltage levels:

$$-V_{IN} > V_{IH} \Rightarrow "0"$$

$$-V_{\rm IN} < V_{\rm IL} \Longrightarrow "0"$$

• Noise margin:

$$- NM_{H} = V_{OH} - V_{IH}$$

 $- NM_L = V_{IL} - V_{OL}$

The MOST - a simple switch

Triest, 9-13 November 1998

CMOS logic structures

101

MOSFET's in digital design

- Important characteristics:
 - It is an unipolar device
 - NMOS charge carrier: electrons
 - PMOS charge carrier: holes
 - It is a symmetrical device
 - Source = drain
 - High input impedance (Ig=0)
 - Low standby current in CMOS configuration
 - Voltage controlled device with high fan-out

The CMOS inverter

Triest, 9-13 November 1998

CMOS logic structures

103

The CMOS inverter

Triest, 9-13 November 1998

CMOS logic structures

Regions of operation (balanced inverter):

V _{in}	n-MOS	p-MOS	V _{out}
0	cut-off	linear	V_{dd}
$V_{TN} < V_{in} < V_{dd}/2$	saturation	linear	$\sim V_{dd}$
V _{dd} /2	saturation	saturation	V _{dd} /2
V_{dd} - $ V_{TP} $ > V_{in} > $V_{dd}/2$	saturation	linear	~0
V _{dd}	linear	cut-off	0

Triest, 9-13 November 1998

CMOS logic structures

The CMOS inverter

Triest, 9-13 November 1998

- Propagation delay
 - Main origin: load capacitance

$$t_{pLH} = \frac{C_L \cdot V_{dd}}{k_p (V_{dd} - |V_{TP}|)^2} \approx \frac{C_L}{k_p \cdot V_{dd}}$$
$$t_{pHL} = \frac{C_L \cdot V_{dd}}{k_n (V_{dd} - |V_{TN}|)^2} \approx \frac{C_L}{k_n \cdot V_{dd}}$$
$$t_p \approx \frac{1}{2} (t_{pLH} + t_{pLH}) = \frac{C_L}{2 \cdot V_{dd}} \left(\frac{1}{k_n} + \frac{1}{k_p}\right)$$

- To reduce the delay:
 - Reduce C_L
 - Increase k_n and k_p. That is, increase W/L

Triest, 9-13 November 1998

CMOS logic structures

107

The CMOS inverter

- CMOS power budget:
 - Dynamic power consumption:
 - Charging and discharging of capacitors
 - Short circuit currents:
 - Short circuit path between power rails during switching
 - Leakage
 - Leaking diodes and transistors

Dynamic power dissipation

- Function of the transistors size

- Gate and parasitic capacitances
- To reduce dynamic power dissipation
 - Reduce: C_L
 - Reduce: V_{dd} ⇐ The most effective action
 - Reduce: f

CMOS logic structures

.40g

The CMOS inverter

Triest, 9-13 November 1998

CMOS logic structures

111

The CMOS pass gate

The CMOS pass gate

The CMOS pass gate

Regions of operation: "0" to "1" transition

V _{out} < IV _{TP} I	NMOS and PMOS saturated
V _{TP} < V _{out} < V _{dd} - V _{TN}	NMOS saturated, PMOS linear
$V_{out} > V_{dd} - V_{TN}$	NMOS cutoff, PMOS linear

Regions of operation: "1" to "0" transition

$V_{out} > Vdd - V_{TN}$	NMOS and PMOS saturated
$V_{dd} - V_{TN} > V_{out} > V_{TP} $	NMOS linear, PMOS saturated
$V_{TP} > V_{out}$	NMOS linear, PMOS cutoff

Both devices combine to form a good switch

CMOS logic structures

 Delay of a chain of pass gates:

$$t_d \propto C \cdot R_{eq} \cdot \frac{N \cdot (N+1)}{2}$$

- Delay proportional to N²
- Avoid N large:
 - Break the chain by inserting buffers

Triest, 9-13 November 1998

CMOS logic structures

115

Simple CMOS gates

Simple CMOS gates

CMOS logic structures

117

Simple CMOS gates

Triest, 9-13 November 1998

Simple CMOS gates

Triest, 9-13 November 1998

CMOS logic structures

119

Simple CMOS gates

Simple CMOS gates

Triest, 9-13 November 1998

CMOS logic structures

Complex CMOS gates

Triest, 9-13 November 1998 CMOS logic structures

Complex CMOS gates

Triest, 9-13 November 1998

CMOS logic structures

123

Complex CMOS gates

Complex CMOS gates

Triest, 9-13 November 1998

CMOS logic structures

125

Complex CMOS gates

- Can a compound gate be arbitrarily complex?
 - <u>NO</u>, propagation delay is a strong function of fanin: $(EI)^2$

$$t_p = a_0 \cdot FO + a_1 \cdot FI + a_2 \cdot (FI)^2$$

- FO \Rightarrow Fan-out, number of loads connected to the gate:
 - 2 gate capacitances per FO + interconnect
- FI \Rightarrow Fan-in, Number of inputs in the gate:
 - Quadratic dependency on FI due to:
 - Resistance increase
 - Capacitance increase
- <u>Avoid large FI gates</u> (Typically $FI \le 4$)

Complex CMOS gates

Outline

- Introduction
- CMOS devices
- CMOS technology
- CMOS logic structures
- CMOS sequential circuits
- CMOS regular structures

CMOS sequential circuits

- Sequential circuits
- Interconnects
- Clock distribution
- DLL's and PLL's

Triest, 9-13 November 1998

CMOS sequential circuits

129

Sequential circuits

Sequential circuits

Triest, 9-13 November 1998

CMOS sequential circuits

131

Sequential circuits

CMOS sequential circuits

Triest, 9-13 November 1998

CMOS sequential circuits

133

Sequential circuits

Triest, 9-13 November 1998

CMOS sequential circuits

Sequential circuits

Triest, 9-13 November 1998

CMOS sequential circuits

135

Sequential circuits

- The previous result assumes that signals can propagate instantaneously across interconnects
- In reality interconnects are metal or polysilicon structures with associated resistance and capacitance.
- That, introduces signal propagation delay that has to be taken into account for reliable operation of the circuit

CMOS sequential circuits

Interconnects

Interconnects

Triest, 9-13 November 1998

CMOS sequential circuits

139

Interconnects

Film	Sheet resistance (Ω /square)
n-well	310
p+, n+ diffusion (salicided)	4
polysilicon (salicided)	4
Metal 1	0.12
Metal 2, 3 and 4	0.09
Metal 5	0.05
	(Typical values for an advanced process)

Interconnects

 Via or contact resistance depends on:

- The contacted materials
- The contact area

Via/contact	Resistance (Ω)
M1 to n+ or p+	10
M1 to Polysilicon	10
V1, 2, 3 and 4	7

Triest, 9-13 November 1998

CMOS sequential circuits

144

Interconnects

Interconnects

• Three dimensional field simulators are required to accurately compute the capacitance of a multi-wire structure

Triest, 9-13 November 1998

CMOS sequential circuits

143

Interconnects

- Delay depends on:
 - Impedance of the driving source
 - Distributed resistance/capacitance of the wire
 - Load impedance
- Distributed RC delay:
 - Can be dominant in long wires
 - Important in polysilicon wires (relatively high resistance)
 - Important in salicided wires
 - Important in heavily loaded wires

Triest, 9-13 November 1998 CMOS sequential circuits

Clock distribution

- Clock signals are "special signals"
- Every data movement in a synchronous system is referenced to the clock signal
- Clock signals:
 - Are typically loaded with high fanout
 - Travel over the longest distances in the IC
 - Operate at the highest frequencies

- "Equipotential" clocking:
 - In a synchronous system all clock signals are derived from a single clock source ("clock reference")
 - Ideally: clocking events should occur at all registers simultaneously ... = t(clk_{i-1}) = t(clk_i) = t(clk_{i+1}) = ...
 - In practice: clocking events will occur at slightly different instants among the different registers in the data path

Triest, 9-13 November 1998 CMOS sequential circuits

147

Clock distribution

- Skew: difference between the clocking instants of two "sequential" registers: Skew = t(CLK_i)- t(CLK_{i+1})
- Maximum operation frequency:

$$T_{\min} = \frac{1}{f_{\max}} = t_{dFF} + t_{int} + t_{p,comb} + t_{int} + t_{setup} + t_{skew}$$

- Skew > 0, decreases the operation frequency
- Skew < 0, can be used to compensate a critical data path <u>BUT</u> this results in more positive skew for the next data path!

Triest, 9-13 November 1998

CMOS sequential circuits

Clock distribution

- Different clock paths can have different delays due to:
 - Differences in line lengths from clock source to the clocked registers
 - Differences in delays in the active buffers within the clock distribution network:
 - Differences in passive interconnect parameters (line resistance/capacitance, line dimensions, ...)
 - Differences in active device parameters (threshold voltages, channel mobility)
- In a well designed and balanced clock distribution network, the distributed clock buffers are the principal source of clock skew

150

Clock distribution

- Clock buffers:
 - Amplify the clock signal degraded by the interconnect impedance
 - Isolate the local clock lines from upstream load impedances

Triest, 9-13 November 1998

CMOS sequential circuits

151

Clock distribution

Triest, 9-13 November 1998

CMOS sequential circuits

Delay locked loops

Delay locked loops

Delay locked loops

Delay locked loops

Triest, 9-13 November 1998

CMOS sequential circuits

Phase Locked Loops

Triest, 9-13 November 1998

158

Triest, 9-13 November 1998

CMOS sequential circuits

159

Phase locked loops

Phase locked loops

Triest, 9-13 November 1998

CMOS sequential circuits

Phase locked loops

Triest, 9-13 November 1998

CMOS sequential circuits

.

162

Outline

- Introduction
- CMOS devices
- CMOS technology
- CMOS logic structures
- CMOS sequential circuits
- CMOS regular structures

Trieste, 9-13 November 1998 CMOS regular structures

163

CMOS regular structures

- Memory classification
- Write/read cycle
- Memory architecture
- Read-only memories
- Nonvolatile read-write memories
- Read-write memories
- Sense amplifiers

Memory classification

- Memory: logic element where data can be stored to be retrieved at a later time
- Read-Only Memory (ROM)
 - The information is encoded in the circuit topology
 - The data cannot be modified: it can only be read
 - ROM's are not volatile. That is, removing the power source does not erase the information contents of the memory.

Trieste, 9-13 November 1998

CMOS regular structures

Memory classification

- Read Write Memories (RWM)
 - RWM's allow both reading and writing operations
 - RWM can be of two general types:
 - Static: the data is stored in flip-flops
 - Dynamic: the data is stored as charge in a capacitor
 - Both types of memories are volatile, that is, data is lost once the power is turned off
 - Dynamic memories require periodic "refresh" of its contents in order to compensate for the charge loss caused by leakage currents in the memory element

466

- Nonvolatile Read-Write Memories (NVRWM)
 - These are non volatile memories that allow write operations
 - However:
 - The write operation takes substantially more time than the read operation
 - For some types of NVRWM's, the write operation requires special lab equipment
 - Examples of such memories are:
 - EPROM (Erasable Programmable Read-Only memory)
 - E²PROM (Electrically Erasable Programmable Read-Only Memory)

Trieste, 9-13 November 1998 CMOS regular structures

\$6₩

Memory classification

- Memories can also be classified according to the way they allow access to the stored data:
 - Random Access: memory locations can be read or written in a random order
 - First-In First-Out (FIFO): The first word to be written is the first word to be read
 - Last-In First-Out (LIFO): The last word to be written is the first word to be read (stack)
 - Shift Register: information is streamed in and out.
 It can work either as a FIFO or as a LIFO

- <u>Read-access time:</u> delay between read request and data valid
- Write-access time: delay between write request and the actual writing
- <u>Read or write cycle time:</u> minimum time required between successive read or write operations

Memory architecture

- The memory is organized in N words, each of M bits wide
- One word at a time is selected for read/write using a select signal
- A decoder is used to convert a binary encoded address into a single active word select line
- This structure is not practical, it results in very big aspect ratios

Memory architecture

- Memories are organized to be almost square in layout:
 - Multiple words are stored in the same row and selected simultaneously
 - The correct word is then selected by the column decoder
 - The word address is split in two fields:
 - row address: enables one row for R/W
 - column address: selects a word within a row
 - Even this structure is impractical for memories bigger than 256Kbits

Trieste, 9-13 November 1998

CMOS regular structures

471

Memory architecture

- The silicon area of large memory cells is dominated by the size of the memory core, it is thus crucial to <u>keep the size of the basic</u> <u>storage cell as small as possible</u>
- The storage cell area is reduced by:
 - reducing the driving capability of the cell (small devices)
 - reducing the logic swing and the noise margins
- Consequently, sense amplifiers are used to restore full rail-to-rail amplitude

Memory architecture

- Large memories start to suffer from speed degradation due to wire resistance and capacitive loading of the bit and word lines
- The solution is to split the memory into "small" memory blocks
- That allows to:
 - use small local word and bit lines \Rightarrow faster access time
 - power down sense amplifiers and disable decoders of non-active memory blocks ⇒ power saving

Trieste, 9-13 November 1998 CMOS regular structures

173

Read-only memories

- Because the contents is permanently fixed the cell design is simplified
- Upon activation of the word line a 0 or 1 is presented to the bit line:
 - If the NMOS is absent the word line has no influence on the bit line:
 - The word line is pulled-up by the resistor
 - A 1 is stored in the "cell
 - If the NMOS is present the word line activates the NMOS:
 - The word line is pulled-down by the NMOS
 - A 0 is stored in the cell
- The NMOS isolates the bit from the word line

Trieste, 9-13 November 1998

CMOS regular structures

Read-only memories

- A ground contact has to be provided for every cell
 - a ground rail has to be routed through the cell
 - the area penalty can be shared between two neighbor cells:
 - the odd rows are mirrored around the horizontal axis

Trieste, 9-13 November 1998 CMOS regular structures

175

Read-only memories

- Use close to minimum size pulldown devices to:
 - make the cell size small
 - reduce the bit line capacitance
- R(pull-up) > R(pull-down) to:
 - ensure adequate low level
- Since for large monories the bit line capacitance can be of the order of pF's, low to high transitions will be slow
- A wider pull-up device can be used resulting in a higher V_{OL}
 - this reduces the noise margin but speeds the low-to-high transition
 - to interface with external logic, a sense amplifier is required to restore the logic levels
 - an inverter with adjusted switching threshold can be used as a sense amplifier

- $0 \Rightarrow$ metal-to-diffusion contact
- 1 \Rightarrow <u>no</u> metal-to-diffusion contact
- only the contact mask layer is used to program the memory array

Trieste, 9-13 November 1998

CMOS regular structures

Read-only memories

- Disadvantages:
 - V_{OL} depends on the ratio of the pull-up/pull-down devices
 - A static current path exists when the output is low causing high power dissipation in large memories
- Solution:
 - Use pre-charged logic
 - Eliminates the static dissipation
 - Pull-up devices can be made wider
 - This is the most commonly used structure

- The bit lines are first precharged by the pull-up devices
 - during this phase the word lines must be disabled
- Then, the word lines are activated (word evaluation)
 - during this phase the pull-up devices are off

Trieste, 9-13 November 1998

CMOS regular structures

47

Nonvolatile read-write memories

- The same architecture as a ROM memory
- The pull-down device is modified to allow control of the threshold voltage
- The modified threshold is retained "indefinitely":
 - The memory is nonvolatile
- To reprogram the memory the programmed values must be erased first
- The "hart" of NVRW memories is the Floating Gate Transistor (FAMOS)

Nonvolatile read-write memories

- A <u>floating</u> gate is inserted between the gate and the channel
- The device acts as a normal transistor
- However, its threshold voltage is programmable
- Since the t_{ox} is doubled, the transconductance is reduced to half and the threshold voltage increased

Trieste, 9-13 November 1998

CMOS regular structures

179

Nonvolatile read-write memories

- Programming the FAMOS:
 - A high voltage is applied between the source and the gate-drain
 - A high field is created that causes avalanche injection to occur
 - Electrons traverse the first oxide and get trapped on the floating gate (t_{ox} = 100nm)
 - Trapped electrons effectively drop the floating gate voltage
 - The process is self limiting: the building up of gate charge eventually stops avalanche injection
 - The FAMOS with a charged gate is equivalent to a higher V_T device
 - Normal circuit voltages can not turn a programmed device on

Nonvolatile read-write memories

- The non-programmed device can be turned on by the word line thus, it stores a "0"
- The word line high voltage can not turn on the programmed device thus, it stores a "1"
- Since the floating gate is surrounded by SiO₂, the charge can be stored for many years

Trieste, 9-13 November 1998

CMOS regular structures

181

Nonvolatile read-write memories

- Erasing the memory contents (EPROM):
 - Strong UV light is used to erase the memory:
 - UV light renders the oxide slightly conductive by direct generation of electron-hole pairs in the SiO₂
 - The crasure process is slow (several minutes)
 - Programming takes 5-10µs/word
 - Number of erase/program cycles limited (<1000)
- Electrically-Erasable PRC^M (E²PROM)
 - A reversible tunneling mechanism allows
 E²PROM's to be both electrically programmed and erased

Read-write memories

- Static Read-Write Memories (SRAM):
 - data is stored by positive feedback
 - the memory is volatile
- The cell use six transistors
- Read/write access is enabled by the word-line
- Two bit lines are used to improve the noise margin during the read/write operation
- During read the bit-lines are pre-charged to V_{dd}/2:
 - to speedup the read operation
 - to avoid erroneous toggling of the cell

CMOS regular structures

bit-line

Read-write memories

- SRAM performance:
 - The read operation is the critical one:
 - It involves discharging or charging the large bit-line capacitance through the small transistors of the cell
 - The write time is dominated by the propagation delay of the cross-coupled inverter pair
 - The six-transistor cell is not area efficient:
 - It requires routing of two power lines, two bit lines and a word line
 - Most of the area is taken by wiring and interlayer contacts

word-line

word-line

M4

Q

мз

 \cap

Mß

bit-line

M2

M

Q

_____Q

bit-line

bit-line

184

Resistive-load SRAM

- employs resistors instead of PMOS's
- The role of the resistors is only to maintain the state of the cell:
 - they compensate for leakage currents (10^{-15A})
 - they must be made as high as possible to minimize static power dissipation
 - undoped polysilicon 10¹²Ω/
- The bit-lines are pre-charged to V_{dd}:
 - the low-to-high transition occurs during precharge
 - the loads contribute "no" current during the transitions
- The transistor sizes must be correctly chosen to avoid toggling the cell during read

Trieste, 9-13 November 1998

CMOS regular structures

185

- **Read-write memories**
- Dynamic Random-Access Memory (DRAM)
 - In a dynamic memory the data is stored as charge in a capacitor
- Tree-Transistor Cell (3T DRAM):
 - Write operation:
 - Set the data value in bit-line 1
 - Assert the write word-line
 - Once the WWL is lowered the data is stored as charge in C
 - Read operation:
 - The bit-line BL2 is pre-charged to Vdd
 - Assert the read word-line
 - if a 1 is stored in C, M2 and M3 pull the bit-line 2 low
 - if a 0 is stored C, the bit-line 2 is left unchanged

CMOS regular structures

Read-write memories

- The cell is inverting
- Due to leakage currents the cell needs to be periodically refreshed (every 1 to 4ms)
- Refresh operation:
 - · read the stored data
 - put its complement in BL1
 - enable/disable the WWL
- Compared with an SRAM the area is greatly reduce:
 - SRAM \Rightarrow 1092 λ^2
 - DRAM \Rightarrow 576 λ^2
 - The are reduction is mainly due to the reduction of the number of devices and interlayer contacts

(from J. M. Rabaey 1996)

Trieste, 9-13 November 1998

CMOS regular structures

187

Read-write memories

- One-Transistor dynamic cell (1T DRAM)
 - It uses a single transistor and a capacitor
 - It is the most widely used topology in commercial DRAM's
- Write operation:
 - Data is placed on the bit-line
 - The word-line is asserted
 - Depending on the data value the capacitance is charged or discharged

Read-write memories

- Read operation:
 - The bit-line is pre-charged to V_{dd}/2
 - The word-line is activated and charge redistribution takes place between C_s and the bit-line
 - This gives origin to a voltage change in the bitline, the sign of which determines the data stored:

$$\Delta V = \left(V_{BIT} - \frac{V_{dd}}{2} \right) \frac{C_S}{C_S + C_{BI}}$$

- C_{BL} is 10 to 100 times bigger than $C_S \Rightarrow$ ∆V≅250mV

Trieste, 9-13 November 1998

- The amount of charge stored in the cell is modified during the read operation
- However, during read, the output of the sense amplifier is imposed on the bit line restoring the stored charge

CMOS regular structures

189

Read-write memories

- Contrary to the previous cases a 1T cell <u>requires</u> a sense amplifier for correct operation
- Also, a relatively large storage capacitance is necessary for reliable operation
- A 1 is stored as V_{dd}-V_T. ThiS<sup>torage Node Poly reduces the available charge: 2nd Field Oxid
 </sup>
 - To avoid this problem the word-line can be bootstrapped to a value higher than Vdd

Trench capacitor

(from T. Mano et al., 1987)

Sense amplifiers

- Sense amplifiers improve the speed performance of the memory cell:
 - they compensate for the low driving capability of the cells
- Contribute to power reduction by allowing to use low signal swings on the heavily capacitive bit-lines
- They perform signal restoration in the refresh and read cycles of 1T dynamic memories
- They can be differential or single ended

Trieste, 9-13 November 1998

CMOS regular structures

Sense amplifiers

SRAM read cycle:

- pre-charge:
 - pre-charge the bit-lines to
 V_{dd} and make their voltages
 equal
- Reading:
 - disable the pre-charge devices
 - enable the word lines
 - once a minimum (≅0.5V) signal is built up in the bitlines the sense amplifier is turned on
- The grounded PMOS loads limit the signal swing and facilitate the next pre-charge

Sense amplifiers

- A cross-coupled inverter pair can be used as a sense amplifier
- To act as a sense amplifier:
 - The bit-lines are equalized: this initializes the flip-flop in its metastable point
 - A voltage is built over the bit lines by the selected cell
 - The sense amplifier is activated once the voltage is large enough
 - The cross-coupled pair then toggles to one of its stable operating points
 - The transition is fast due to positive feedback
- Ideal for an 1T DRAM: inputs and outputs are merged

Trieste, 9-13 November 1998

CMOS regular structures

Sense amplifiers

- The memory array is divided in two: the sense amplifier in the middle
- On each side "dummy" cells are added
- These cells serve as a reference during the reading
- EQ is asserted and both halves pre-charged to V_{dd}/2
- The dummy cello are also precharged to V_{dd}/2
- If a cell in one of the halves of the bit line is selected, the dummy cell on the other half is used as a reference for the sense amplifier

Trieste, 9-13 November 1998