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1. Introduction

Both electrostatic and magnetic effects were known since

ancient times:

* amber, when rubbed, will attract small pieces

of matter

* certain mineral ores (e.g. “loadstone”) can attract small

pieces of iron

The study of electrostatics and magnetism proceeded more or
less independently until the 19" Century when a number of

important discoveries were made:

1819: Oersted discovers that an
electric current can produce
magnetic forces the same as those

produced by permanent magnets

QOersted’s
compass




1820-1830 : These effects were studied
systematically principally by Ampere,

Biot and Savart.

1831: Faraday discovers that a
transient flow of current can be

produced by a change in the magnetic

flux threading the circuit

Electricity and magnetism are now linked.

1865: Maxwell’s Equations predict

the existence of electromagnetic

waves




Not only electricity and magnetism are linked, but now light, and
all electromagnetic radiation, are described by a single Unified

theory — Electrodynamics

“the most significant event of the 19" Century”  (Feynman)

Electrodynamics deals mainly with macroscopic phenomena —
bulk effects in which large numbers of atoms and molecules are
involved. Forces between individual atoms, as well as quantum
mechanical effects are therefore not included. Nevertheless,
using only simple models for how electric and magnetic fields
affect materials a wide range of electromagnetic phenomena can

be studied.



2. Reminder on Fields, Vectors and their Derivatives

Fields
A ‘field’ is simply a quantity that is distributed over a region of

space, i.e. any function f(x,y,z)
i/ scalar field:  e.g. the temperature of the air T(x,y,z)

ii/ vector field: e.g. the velocity of the air v (x,y,z),

Electric and Magnetic fields are vector fields:
E=E X+EJ+E 2

Vector algebra

i/ addition of vectors:

i.e. equivalent to adding separately the 3 components:
E.,=E +E,,, E =E +E,,, E =E_+E),



1i/ scalar product:
FOG=PQCOSB=Rth+IJ;,Qy+}:’ZQZ.

e.g. The magnitude of the Electric Field along a given direction

§ (vector of unit length) is given by:
E=Ecos6=E,s, +E,s,+E,s,=Ee§
1ii/ vector product :

PxQ=PQsin6=(P,Q,-P,Q,.P.0,-F0..P,Q, PQ)

ﬂé o) g:

Derivatives of fields
We use the differential operator V: (which is itself a vector)

V=ix+a +_c9_z
x %
The three possible first derivatives are:
or or Jr
VI =grad T = y—, a vector
“ (ax & &z)
: dv, dv, 3v
Vev=divei=—=2+ a scalar
ox 8y 8z

(3v 31’ dv, dv, Jv, av)
a vector

8yazaxaz&yax



The divergence of a vector field
If a vector, e.g. J, corresponds to the flux of some quantity in a

particular direction, per unit time, per unit surface area, then the
flux crossing a surface dS (a vector with magnitude equal to the

area of the surface and direction normal to the surface) is J  dS.

For an elementary cube of size dx, dy, dz

S(JedS)= (Jx ile ) J]dydz+ L
y |
- 1 ! Th+ o o
(J + ) di+ | ¥F—F> T
y ay y y /L....__ _-
[\ 7
.-( aJ ‘/
dz) ]dxd dx
_\ (}Z ¢ 2%
Il 8Jy o, K2
dxdydz; =(Vel)dV
[ax £ 81] ydz =( )

The divergence of a vector is the outward flux per unit
volume.

Integrating over a finite volume, the contribution from adjacent
surfaces cancels everwhere except on the outer surface:

jj odS = IV eJdV  (Divergence Theorem)

We use the same concepts for electric and magnetic fields, even
though there is no real flow.



The curl of a vector field

Curl J is related to the “circulation” of a vector around a closed
loop, defined as §J odl, the integral of the tangential

component around the loop.

For an elementary surface of size dx, dy the integral becomes:

d
Zfodl_=.]xdx—[.l %, dy]dx+ x*3 'J 4
dy =
a, | dy
[Jy +de]d)’_-]y dy ]'3 )[ .ATTW'_%%O{X
K o g

. inlearzfien
i.e. in general intagrefie

§7.di=(va).d§

The curl of a vector in a particular direction, per unit area, is
the “circulation” around a loop perpendicular to that

direction.

Integrating over a finite surface, the contribution from adjacent
loops cancels everywhere except on the outer loop :

§ Jedl = J.(V x J)edS (Stokes’s Theorem)



Illustrating the divergence theorem.,

Tllustrating Stokes’s theorem.



Second derivatives

In all there are 5 combinations of second derivatives involving

grad, div, curl:

curl(gradT)=VXx(VT) =0
div(gradT)=Ve(VT)=V? T

grad(divv) =V (Vey)

div(curl7) =V e(Vx¥)=0

curl(curl ) = VX (Vx7)=V(Vep)-V?p

62 s 82 . 82
ax2 ayZ 822

scalar, or on all components of a vector

where V? =

is an operator that can act on a

NB] knowing the divergence and curl of a vector at every point

specifies completely the vector field.



3. Electrostatics - the study of static electric charges

Coulomb’s Law (1785):

the force between two charges ¢, ¢, is
in\}ersely proportional to the square of
the distance between them, r, and is

directed along the line between them:

F — C ql qu
r
or in vector notation: F=c4 ?2 7
r

In MKS units, with F in Newtons, g in Coulombs, r in metres:

= 1 %;]2’—,
dme  r

o

where €, is an experimental constant (the ‘permittivity of free
space’) = 8.85 102 coulomb? newton™ metre?

The force that charge g, experiences
can be described as being due to the =
presence of an Electric Field

produced by the charge ¢,. Thus:

F=g,E and E:igf
4me,r




Electric Potential

The work done by a force F acting on an object as it moves

through a small distance dI is :
W =Fedl = F.dx+F,dy+F,dz

Applying this to the case of a unit charge in an Electric Field, the
work done by the field is E e dl and the work done against the
fieldis —E odl

The work done against an Electric Field in moving a unit charge
from point A to point B defines a difference in Electric

Potential:

(D:— E.d_

M Oy U1

- the potential is a scalar quantity

- the difference in potential between two points depends only
on the position of the points, not on the path between them

- single valued at any point

- for a distribution of charges, the total potential is the sum of

the potentials for the individual charges



By convention the potential at a distance » from a charge ¢ is the

work done in bringing a unit charge from infinity, where by

definition ¢ =0

g (1 q H q
—_ dr=_2 |2 —_9_
? 2 - 47me,r

dne, v r dme, Lr
Since dp=—Eedl =—(E, dx+E dy+E,dz)
it follows that ¢ = - ¢ = — d¢ =—F

dx o dy Y dz ‘

ie.: E=-grad¢g, or E=-V¢

For any complete loop,

$E odl =05~ 0,)+ (B~ 05+ (91 —0) =0

Hence, by Stokes’s Theorem,

VXE=0

This also follows directly from the fact that E = —V ¢, since for

any vector, curl(gradT)=V(VT)=0



Gauss’s Theorem

- N
: ®

S is a closed surface surrounding a charge g. The integrél of

(a)

the normal component of the Electric Field over the surface is:

JEedS = [Ecosods=—1 jco’;eds

| 4rne,J r
but the solid angle subtended by the element dS is given by:
dQ=dScos@/r* and j dQ2 = 47 for a closed surface, therefore

IF-d§=€i

o

By the same argument the contribution from external charges is

ZE10.



Since this is true for one charge, it must be true also for a

distribution of charges:
2q

fEmiS-—-——
80

(Gauss’s theorem)

The flux of the electric field out of a closed surface is equal to

the sum of the charges within it.

Applying now the divergence theorem:
IEOdg =IVOEdV
and since for a distribution of charge density p(x,y,z)
Zq=IpdV

we have;:

I(VoE)dV=M
)

o

Since this is true for any arbitrary dV it follows that:

- - the differential form of Gauss’s Theorem



Application of Gauss’s Theorem to a hollow conductor

Since charges are free to move in a conductor, it follows directly
that there can be no static charges, or electrostatic field, within a
conductor. Any static charge must therefore reside on the

surface.

Applying Gauss’s Theorem to a surface entirely within a hollow
conductor, since there is no field it follows that the total charge

within the surface is zero.

(a}

Thus either there is no charge (b), or no net charge (a) i.e. the
charge induces equal and opposite charges on the inner surface.

even if the outside surface is charged.

Note that this provides a sensitive way of testing the inverse-

square law of the electrostatic force on which Gauss’s Theorem

relies.



The Electric Dipole

An electric dipole consists of two
charges of equal magnitude, g,

separated by a small distance, d.

(“Small” means we are only interested
-2
in the fields at large distances, r, with

respect to d)

The potential of such a dipole is:

__Per
¢ dre, r

where p = gd, the dipole moment

Note that the potential decreases as 1r2 , and the field as %3.

The importance of the electric dipole lies in the fact that atoms
can behave as a tiny electric dipole under the influence of an
electric field. Some molecules also have a net dipole moment,

even in the absence of an external field.



Dielectrics

Faraday noticed that when insulating material is placed between
the plates of a capacitor, held at constant voltage,

the charge on the plates increased.

1222

Dielectrics are insulators, i.e. with no free electrons. In the
presence of an Electric Field the charge distribution of each atom
shifts slightly creating a small electric dipole. The net effect is
that the surfaces of the dielectric become charged, inducing
opposite charges on the plates of the capacitor, and hence

increasing the capacitance.

2



Defining the dipole moment (gd) per unit volume as P, the

positive charge passed across a surface dS is given by P edS .

The total polarization charge accumulated in a volume V is then:
Qpot = ~f PedS

Using the Divergence Theorem, and the fact that 0, = I Ppot AV

we obtain:

Ppol = -VeP

The Electric Field then derives from the sum of free charges and

the induced polarization charges:

V.“E— —_ pfree +ppol
£

o

If we define a new vector D such that D = ¢ E + P, then

VeD=p,_. (Gauss's theorem in a dielectric)

NB] The earlier equation is still true, even in dielectrics,
provided both free charges and induced charges are included;
separating out the equation for the free charges only is merely a

convenience.



For a linear, isotropic dielectric

P=yxe,E
x = ‘electric polarizability’, or ‘susceptibility’

D=¢,E+P=¢,(1+x)E
or,

D=ce E

o

where € =1+ x is the ‘dielectric constant’

In this case:

VeE = Plree (linear, isotropic dielectric)
EE

0

However, the relationship between P and E can be more
complicated: P (and hence D) may not be in the same direction

as E, and may not be linearly proportional to it.

O



4. Steady Currents

The current density J is defined as the rate at which charge
passes per unit surface area per unit time (Coulomb s m™, or A

m™?). The total current in a circuit f is then

I=I7-d§

Since electric charges cannot be created or destroyed, the rate of
increase of total charge inside a volume must equal the net flow

of charge into the volume
ie. ja—pdV=—Ifﬁd§
ot

Transforming the surface integral to a volume integral

(Divergence theorem) gives:

I%Odv - —I(VOT)dV

_dp
dt

|

and hence: Ve

known as the “Equation of Continuity”



5. Magnetic effects of steady currents (Magnetostatics)

The magnetic field B at a position 7 due to an element of

conductor ds, in which a current /; is flowing is given by:

dB = 4—7‘:’;3- I, (ds, X F) (Biot-Savart Law)

where p, is defined to be equal to 47107

The force exerted on another conductor element ds,carrying

current [, is then:

Units: with F in Newton, / in Amps, ds in metre, the unit of B

is NA'm, or equivalently Weber m-2, now Tesla (T)

Notice that the field (and force) varies as 1/ as for electrostatic
r2

fields, but has a more complex spatial variation.



i/ Divergence of B

It follows from the Biot-Savart Law that
VeB=0

By comparison with the result for electrostatics, it also means
that there is no equivalent to electric charge,

i.e. there are no free magnetic poles.

ii/ Curl of B

The Biot-Savart Law can also be used to deduce the following:
VXB=u,J

expressing the fact that magnetic field circulates around a

current distribution.

Applying Stokes’s Theorem:
SEE-dl_:_[(VxE)odE=uoffod§=u01

which is Ampere’s Law



The fact that V X B = i, J means that in general the magnetic

field cannot be related to a scalar potential as in the case of
electrostatic fields. However in current free regions VX B =0

and so a scalar potential can be used:

B=-Vy ds

The Magnetic Dipole

The equivalent to an electric dipole is a current loop, for which it

can be shown that (at a sufficient distance away):

arr’

|
I

v

where # = IdS is the magnetic dipole moment. The field

distribution is therefore identical to that for an electrical dipole.

The significance is that, as already suggested at the time by
Ampere, we can model - at least macroscopically - the effects of

natural magnetism in terms of circulating atomic currents.



Magnetic Materials

Magnetic materials are those that exhibit a
magnetic*‘polarization”, i.e. a magnetic dipole moment.
In the case of permanent magnets, this can occur even in the

absence of an external field.

Let M be the magnetic dipole moment per unit volume of material,
called simply the Magnetization. For an elementary loop in the x-y

plane, with magnetization in the z-direction:
=M, dxdydz/dxdy=M, dz

I=Mod = +IM 2
H A _'(1 2 I‘:f (‘f"z 5)2(d’()d
Me mz"'a’”z# X
4 ® M\
b = >
. X \
2 < le r

If M is constant, the current from neighbouring loops cancel, but

in general:

oM oM
I,= [M (M +——5x-’-dx)]dz =-= tdvdz

le. J, =——%



Similarly a current loop in the y-z plane, with an associated M,
can lead to a current in the y-direction. In total therefore:
J = oM, M,
" a
The right-hand-side of the above is the z-component of VX M.

Similar expressions can be derived for the other directions, so
that finally:

In a uniformly magnetized material V x M is zero everywhere
except at the boundary i.e. the equivalent currents circulate
around the surface of the material.

How big is this current ?
Suppose the magnetization changes from M, to zeroin a

distance Ax, then Jy =a—M4=~%and hence I, =M_A.,.
& Ax YR

If u,M =1Tesla, then for a 1 cm length of material, the
equivalent current flowing on the outside is 8 kA !

0/



The previous expression for curl B must therefore be modified to
include also the magnetization currents as well as conduction
currents:

VX E =N, (jcond. + jmag.) = H, jcond. + uo(v X M)

As in the electrostatic case, we can if we wish separate out the
conduction currents from the magnetization currents by defining

a new vector, H

so that: VxH=J

cond.

In many materials, the Magnetization is linearly proportional to

the field:
M=yH

where ¥ is the “‘magnetic susceptibility”. Then
B=u,(H+M)y=pu,(1+)H=ppu, H

where 1 =1+ ¥ is the “magnetic permeability”, a similar
quantity to the dielectric constant in electrostatics.

In this case,

VxB=puu,J

cond.



e

The Magnetic Vector Potential

We saw above that in general we cannot define a scalar potential

function (B = -V )since VX B #0.
We can however make use of the fact that Ve B =0.

Since for any vector, div(curly)=Ve(VXvy)=0

we can write
B=VxA

where A is called the magnetic vector potential.

One difficulty however is that this definition is incomplete since

if A is one solution, so also is A + V¢:
VX(A+V@)=(VxA)+(VxVp)=(VxA)

In magnetostatics it is convenient to solve this problem by

defining: Ve A =0

The potential of a magnetic dipole is:

_ u o
A=—"2L-(mMXF
47rr3( )




6. Magnetic Induction
Faraday’s experiments:

* When the first coil is connected to a battery, a current flows in

the second coil causing a deflection of the magnetic needle

» If a permanent magnet is moved near a coil (or a coil is moved

in the field of a magnet) a current is induced




Faraday’s results can be summed up as follows:

When the magnetic flux through a circuit is changing an

electromotive force (e.m.f.), V, is induced in the circuit,

which is proportional to the rate of change of flux.

The direction of the e.m.{f. is given by Lenz’s Law:

The current induced is in such a direction to oppose the flux

change causing the e.m.f.

Thus:
d(J.EOdg)
V=-
At
But since V=IE0df
o d(jB‘«E)
We have IEOdl=—
dt

Using Stokes’ Theorem IE odl = I(V x E)edS, ans since this
is true for any surface, it must be that:

VxE=—d—B
dt




7. Maxwell’s Equations

Maxwell realised that Ampere’s Law :
VxB=u,J

was not entirely correct.
Since for any vector V e(V x P) =0, when applied to Ampere’s
Law gives —

Ve(VxB)=u, VeJ=0

which contradicts the equation of continuity: Ve J = ———

How to resolve the problem ?

Combining Gauss’s Law and the equation of continuity gives the

following :
Vel=- ¢ LveE) =—¢gvelL
dt dt
1.e.

_ dE
VeJ+u eVe—=0
Juo o ILLO (o] dt

which is therefore consistent with:

— - dE
VXB=u J+ —
uo ILLO Odt



Illustration of the new term

Consider a capacitor
being charged by a
battery, and two surfaces
bounded by the same
loop: Ampere’s Law
must be true for both

surfaces

Surface S, is threaded by the current, I
ff)l? odl=u,l
Surface S, is has no current, but a changing Electric Field:

§E-dl‘=uosoj'%?-d§=uo SO%IE-dE

L J.p dV q
Applying Gauss’s Law: I E odS = -9
£, g,

° dt

i.e. results are therefore consistent (as they must be !).

29.



VXEH:/“’O‘T*-”O O%El:_

Note that in both the “proof” and in the illustration above, there

are currents and free charges present. However the result is true

in all cases.
In particular, when J = 0 we see that :
a changing electric field creates a
circulation of magnetic field,

just as foz—d—B
dt

implies
a changing magnetic field creates a

circulation of electric field
Adding the new term has not simply patched up a hole in the
theory, but, as realised by Maxwell, leads to a whole new range

of electromagnetic phenomena.

Qu. Why was it never discovered experimentally ?



The full set of Maxwell’s Equations are therefore:

VeE=F Gauss’s Theorem
80

VeB=0 No free magnetic poles

— - dE : .
VxB=u,J+u,¢, 7 Ampere’s Law, modified
by Maxwell
—~ dB )

VXE = T Faraday’s and Lenz’s Law of

magnetic induction

Remembering that :

pP= pcond. + ppol.

with ppol. =—Ve P_
and J=1J cond. TJ mag. T Jpol.
with J ..=VxXM and J _dP

pol-




8. Electromagnetic Waves

In a vacuum, with no conductivity (J = 0) or charges (o = 0)

Maxwell’s Equations become:

VeE=0( VeB=0
vxE=-28 VXB=yu, OEJ—E—
dt dt

A set of partial differential equations, that can be solved by

eliminating one of the variables, using the relationship
VX(VXE)=V(VeE)-V*E

Substituting in the above, we get:

Vxéﬁ:i(Vxﬁ):VzE
dr dt
hence;
— d*E
V’E=u ¢
Ho dr?
similarly we can obtain:
_ d*B
V:B=yu ¢
Hoto™ 42

Both of which are of the general form of a wave-equation !



1d*X
2
ViX=—7—7

ve dt

where X can be either a scalar or vector quantity.

Thus electric and magnetic fields can be propagated at a speed of
b= 1
w, )"
When Maxwell put in the numbers for u,, £, he obtained that the
velocity agreed with the experimental value for the velocity of

light, c.

“We can scarcely avoid the inference that light consists in the
transverse undulations of the same medium which is the cause of

electric and magnetic phenomena” (J. C. Maxwell)

3.7x10%-7.5x10"¥ Hz
Visible {Optical)
400-800 nm
=—blue —red =

~

| | [} 1

| I n 1

| 0.01-20 nm , 4 800-10°nm i pore than 10° nm

| Lo Infrared ! .

! X-rays oo 1 I Radio

| b 3x100 0= :

. 1.5x10® —3x10¥ Hz | :: 3.7x10% Hz | lessthan 3x101THz
1 1 I

1 1 |

RS / N\

less than 0.01 nm 20400 nm
Gamma Rays Ultraviolet
more than 3x10'% Hz 7.5x10% —1.5x101€ Hz

Highest energy Lowest energy

The Electromagnetic Spectrum
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Plane Waves

- waves in which there is no variation in a plane perpendicular to

the direction of motion.

Assuming propagation along the z-axis, then 0

Jd_9_
ox dy
OE, OE, OB, OB,

0
oz ot dr ot

which implies:

1.e. no z-components of electric or magnetic field;

the wave is purely transverse.

Examining the other components, they form two pairs:

JE _0B, OB,  _ OE
oz o o Ho %o ot
and
JdE, OB, OB, oE,
== ’ =—H, &~
dz ot dz ot

One pair involves (E,, B)) the other (E,, B, ).

Thus we have two independent solutions, in each of which B is

perpendicular to E, differing only in the plane of polarization.

Since the Electric field is generally of most importance, we label

the polarization according to this component.



The solution for forward propagating plane waves of a single

frequency f, with corresponding wavelength A, is :

_ i(kz—wt) _ A i(kz—wt)
E =Ae , By = —; e

Thus, the oscillations of E, and B, are in phase :

Electro magnetic Wave

B Magnetic field
BB CElectric field

Flow of Energy in Electromagnetic Waves

The flow of energy per unit area per second is given by the

Poynting vector: S=EX B
H,
Ex B 2
In the case of a plane wave S,=—=2=¢,cE
H,



Polarization

A general wave is composed of a superposition of plane waves.
Consider a superposition of horizontally and vertically polarized

radiation:

E,=E,, cos(wt)
E,=E,, cos(wt+¢)

In the general case, there are 3 independent parameters
Exo, Eyo, . $=90° with Exo = Eyo corresponds to circular
polarization

A more useful description in terms of directly measurable
quantities was introduced by G.G. Stokes (1852) :

Stokes Parameters difference in intensity
between radiation polarized -
Si=1,-1, - linearly, in x, y directions
S, =1 450~ I 450 - linearly, in +450, -450 directions
S=I-1If - circularly, right and left-handed

and
So =1, +1, =1, +I_450 =Ig+1; total intensity

The relationship between them is :

S2 =52 +57+57

>4



Normalizing to the total intensity (So) the polarization rates (or
degrees) are defined as follows :

P p S S
SO SO SO

- where, 1= P12 + P22 + Pg

The above holds for a single wave only.
In general there is a summation of waves due of different
sources, which leads to an un-polarized component :

: S, =S?+53+83 + S,

1 =+PE+P}+P} + P,



Electromagnetic Waves in Isotropic Dielectric/Magnetic

Materials

In the most general case:

VeE =0 VeB =0
.  dB _ — dE dP
VXE =—— VXB= VXMY+u € —+ 14 —
dt Hol )+ &, dt Ho dt

In the linear approximation:

P+e,E=¢ce,E and "B_—,uO]W=£
U

(4]

We get the same results as before with ¢, and u, replaced by

€€, and uu, respectively.

The wave velocity therefore becomes
B 1 <
(Mp,€€,)*  (ue)”

Vv

. c i . .
Since n = —, defines the refractive index of the medium, we
v

obtain the following approximation:

n=(ue)"



Electromagnetic Waves in a Conductive Medium

now we need to include also the conduction curent in the

expression for curl B,

VXB=up,c€e, i—f+uuoaf

where Jeond. =CE (Ohm’s Law)

C

o is the conductivity.

5 — -
which gives: V?E=uu ce, ddtf + U “odil_f

i.e. an extra damping term. Thus in a conductive medium there is

dissipation of energy which gives a reduction of amplitude with

distance travelled, E ~ ¢ ¥°

In a good conductor, an approximate expression for the 1/e

distance (the “skin depth”) is the following:

iz
5:[#}
owuu,

e.g. for copper, 3 pm at 500 MHz



9. Application of Electromagnetism to Accelerators

Motion of Charged Particles

From the force on an element of current carrying conductor
F =1(dsxB)
if in length ds there are N charges the force per charge is:
F=" (asxB)
N

If the charges are of magnitude g, travelling with velocity v:

_Q_Ng
t ds/v
ie. F=q(vxB)

Adding the force due to an electric field, the total force in

general is:

F=qE +q(vXB) (Lorentz force)

For fast particles, the forces due to magnetic fields are much

larger than those of electric fields — but are only transverse !



Circular Motion
requires a vertical magnetic field of strength:

2

qgvB= rm, ¥
1.e. 1 98
r ym,v

where r is the radius of curvature of the particle trajectory

Example (ELETTRA):

For 2 GeV electrons, ¥ = E/m,c* =3914. With B=1.2T, we
obtain r = 5.5 m. |

To give a total angle of 360° we need a total magnet length of
27 r = 34.9 m. Dividing into 24 units, the length of each “dipole

magnet” is 1.45 m.



Focusing Fields

To achieve focusing we need a field that has a different direction

on either side of the axis:

What about the other plane ?
We could try to rotate the previous picture:

/f"_ ai__) ]
—_—

— - I; . g_ -.! )

o1

Not a good idea. (Why ?)

Go back to the previous picture and see what happens in the

other plane:
dB, JB

— X

or oy

Since V x B =0, we have that

A gradient in that plane also !

\ g



The simplest case is a linear variation: B, = Gx, B, =Gy,

produced by a “‘quadrupole magnet™:

) 4@
- A /”74!
D

But it is defocusing in the other plane !

Solution:
a sequence of focusing magnets of alternating sign, so that the
net effect in both planes can be focusing.

(The principle of “Alternating Gradient Focusing”)



Dipole and Quadrupole Magnets

Ampere’s Law with magnetic materials:

B —
Vx;—_—uo Jcond. ,» OT —=U, 1

[J. )uiron

In general B, ~ B, (infact at the pole tip B, = B,;,, Why ?)

ron

and u >>1, so that to a good approximation (a few %):

B, = Ha(ND
g

where we have introduced the fact that the total current threading
the circuit is the product of the current, /, and the number of

turns in the winding, N.

NI is known as the “Ampere-turns”

e



80 - gq}f
e.g. (“:' 7,:;?2 "5_3

for the ELETTRA dipole magnet with B=1.2 T, and
g = 70 mm, we need 68,000 Ampere-turns, which is achieved

with a current of 1400 A and 48 turns.

A similar calculation can be performed for the gradient, G (T/m),

in a quadrupole magnet, giving:

G- 2u, (2NI)
R

where R is the inscribed radius of the magnet.



Acceleration
We need an electric field in the direction of motion:

d 1%
F.=qk, =-——~0Z:" )

Why not use electrostatic fields ?
Can be used, but the maximum energy obtainable is limited by
the maximum accelerating voltage that can be physically

realized.
Also, cannot circulate the beam through a static E-field:

If 9/dr =0, Vx E =0 and hence for any circuit in static fields

§E e dl =0 - no net acceleration !

One possibility is to use a time-varying magnetic field, i.e.

magnetic induction, making direct use of the relationship

VXE = _4B and hence
dt

_%j§0d§=I(VxF)0d§=§E0di

such as in the betatron accelerator, but this technique is limited

to relatively low energies and is no longer used.



&
The main solution is to use time-varying electric fields,
arranging that the particles arrive at the right moment to be

accelerated.

Two examples of this type of acceleration, using relatively low

frequency variation of the electric field-

“Drift-tube’ linear accelerator:

~\RF
Generator
Particl | %
Source ~
Cyclotron:
Guide field, B )
. _ lons produced
Radius of gyrahion at centre
Extraction
4+ electrode

R F driving
force

Deés Extracted beam

Both of these can be used for non-relativistic proton and heavier

particle acceleration, not electrons.



Electrons (and higher energy protons) require using higher

frequency fields.

Consider the simplest single accelerating element, two plates of

a capacitor, excited with a sinusoidal voltage:

E, = E cos(wt)
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According to-Maxwell’s Equation:

Vxl_i’zizg—li r
¢ dt

the varying electric field introduces an azimuthal magnetic field:
— . — - 1der= =
VxB)edS =pBedl=——|EedS
I ( ) 3€ ¢? dt-f

ie. B, ~ —wsin(wr)



This magnetic field then in turn induces a change in the electric

field according to:

VXE = _4B
dt
1.e. ok, _ 95, ~w* cos(wr)

d o

The combined effect 1s to reduce the electric field towards the

edges of the capacitor plates

¥



A better approach is to consider the solution to Maxwell’s

Equations:
vip-L4E
¢ dr’
i.e.
2 2 2
J°E, +c9 E, _12_d E,

the solution of which is:

E,=E cos(\/_c)cos(j_);)cos(ax)

We see that the variation in x and y, not present in the static case,

depends on the frequency.

Let’s examine the effect at x =0.1 m

f (MHz) I- cos( «/_c)
1 10°
10 10
100 0.01
500 0.26

Only at very high frequencies does the effect become significant



According to the above, at some point the field goes to zero :

e.g.x=1mat 100 MHz, 0.1 mat 1 GHz.

At this point the capacitor can be closed without affecting the

field ! We have created a simple form of “resonant cavity”.
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v
Resonant cavities, of various forms, are the structures used to

accelerate particles at high frequency. The dimensions of the

structures are inversely proportional to the frequency.

‘Liz

Baam tube

\- SC cavity
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