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— General properties of the electronic states in crystals
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— Lattice vibrations




Solids

* In a solid, atoms are in fixed positions. The
atom arrangament can be:
(- periodic over a large range (crystals) )
~locally periodic (polycrystals)
— non periodic (amorphous solids)

We can define a “pair correlation function” g(7°)
which is the probability of finding an atom in
the position 7

Crystals

A one dimensional crystal

8(x) o< 6(x — na)




“I'|Radial distribution function|:
-|of a simple cubic structure

Crystals

The structure of a crystal is defined by
its space symmetry and ils point
symmetry.

Space symmetry—periodicity

Point symmetry—operations within a period

The two must be compatible!




Crystals

All the measurable quantities (for
example w(f) associated to the crystal
must be invariant under any space or
point symmetry operation

Space Symmetry

Spatial periodicity: define Bravais
|attices as arrangements of points that
fulfill:

—

f, = mit, +mt, + ity

where t;, ?2 and f; are the primitive
translational vectors. The parallalepiped
they form is the primitive unit cell, which
contains one single lattice point.




Space Symmetr

The choice of
primitive vectors (and

@

® @ @ @& @

of primitive unit cell © ®
is not univocal. It is @ &
customary to choose ¢ @
the one with the o o
highest symmetry. - -
All the possible unit ®
cell have the same © © @© © © @ @
volume:
Q=1 (1, Xt;)
Space Symmetry
Bravais lattices:
X . # of
Dimensions ) :
Bravais lattices
1 1
2 5
3 7




Space Symmetry

The 5 bidimensional
Bravais lattices

18] # iby] ¥ = 90°

Space Symmetry

The 14 three dimensional
Bravais lattices

Crystal
sysem

Triclinic
wbe
oxflay

Manoclinie
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Point symmetry

The possible symmetry operations are:
sinversion

erotations

*SCrew axes

sglide planes

Point symmetry

Inversion changes x into -X so it is described by a
matrix:

-1 0 O
I={0 -1 O
O 0 -1




Point symmetry

Rotations of an angle 2n/n are indicated by C,,
where nis a positive integer <6 and #5

It is impossible
to fill space with
pentagons

Point symmetry

Glide operations are indicated by g:




Point symmetry

Operation

Coordinate
transformation

Operation

Coordinate
transformation

Ty Zz

I

Symmetry

1Cy,
iCa,
6y,

CEE]

operations of the
cubic system
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The rocksalt (NaCl)
structure is a face
centered cubic structure
with a basis:

associate to each point in
the lattice

Cl translated by (0,0,0)
and
Na translated by (1/2,0,0)




The diamond structure:another fcc with basis

Note: no
inversion
symmetry!

For more crystal structure have a look at:

http://www.theophys.kth.se/symmetrier/intro.html




Reciprocal Lattice

Given a crystal with primitive translation
vectors 1,1,,4, it is possible (and useful!)
to define a reciprocal lattice whose
primitive vectors .88, satisfy:

1,- 8. =2md,

l

Reciprocal Lattice

From the definition it is easy to show that:

g =207 i

1 Q 2 3 -------
where

Q=1 -1, Xt,

is the volume of the primitive cell in the
direct lattice
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Reciprocal Lattice

Basic property: every reciprocal lattice
vector is normal to a family of parailel
and equidistant pianes containing all
the direct lattice points the distance
between two of these planes is:

_n
Em

d

Reciprocal Lattice

A plane in a crystal is usually labelled by Miller indices, which are the reciprocal
of the intercepts of the plane with the primitive axis multiplied by the smallest
factor to convert thern into integer numbers.

the reciprocai lattice vector

§n = Mg +myg, + mg,

is perpendicular to the planes {m,,m,,m,)

plane (3,2.6) |




Reciprocal Lattice

The most convenient unit cell in the reciprocal space is called Brillouin zone and
is obtained by bisecting with perpendicular nearest neighbours reciprocal lattice
vectors, second nearest neighbours (and other orders neighbours, if necessary)
and considering the smallest volume enclosed

Brillouin zone for the face centered cubic lattice
(truncated octaedron). Some high symmetry
points are I'={0,0,0); X=(2n/a}(1,0,0};
L=(2nfa)(1/2,1/2,1/2); W=(2n/a)(1/2,1,0)

Determination of crystal
structures: diffraction

Bragg's law. Radiation of

wavelength A is reflected by the
lattice plane. The outgoing
waves interfere. Inteference is
constructive only if the
difierence of optical path is a

multiple of A:

2dsin® = nA
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Diffraction Probe E()) Scatterers
2nhe
E=7
Bragg's law implies that | XS | 12400 electrons
the wavelength A must be AA)
of the same order of Ez(znh)’(ljz
magr.utude as the lattice electrons 2m \4/ | electrons and
spacing, typically =5 A Blev) = 1304 nuclei
Ay’
_ @1 :
neutrons ST (AJ nuclei
_8.19-10*
BV =Gy
L 2mAy’ (1Y
atoms "z (A) electrons
(e.g. He) | g,y 205107
=Gy
Diffraction

i
If one considers the wavevector k of the plane wave

E(’—;, t) — E-Oei(k-?'—a)t)

with k=2m/A, Bragg's law can
be expressed in a more Ak =k¢-k;
general vectorial form:

~_~~ —ki

-
-~
-

‘!
-
-

k; ks
et

T T™

- H .
where G is a W Ya
reciprocal lattice . Y

7
vector ' d sint a\simp




Diffraction

The Ewald construction (reciprocal space!)

Diffraction

If the Ewald sphere does not intersect any reciprocal space
point there are no diffracted beams. It is necessary to change k
in modulus (i.e change the wavelength of the incoming beam)
and/or direction (i.e. rotate the crysial) to get diffraction.

15



Diffraction

As an example, one can use a continuous range of wavelengths
to get more diffracted beams (Laue method)

Diffraction
A Laue pattern: Si(100)




Diffraction

Bragg's law shows that the angular distribution of diffracted
beams is related to hte space symmetry of the lattice.

The intensities of the beams are related to the point symimetry

F (é) = NZ g_i(—;ﬁ . (é) structure factor

d
\ sum over all atoms

in the unit cell

— _iAE-F . ]
fa(G) — je ! rna(r)d? atomic form factor

electrondensity of atoma

Tutorial programs:

http://www.ruph.cornell.edu/sss/sss.htmi
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Lecture two:
electronic levels

» Schrodinger equation for a crystal
¢ Bloch's theorem
* Band structure

Schrodinger equation

The total non-relativistic Hamiltonian for a
crystal is: i

P ~-Ze e’ 1 Z,Z,e
Z +22M EZ Z +221'é1_"|

2 - FF-E 22

glectrons-nuclei [

attractive potential

kinetic energy of repuision
the electrons between nuclei

repulsion between

kinetic energy of
electrons

the nuclei




Schrodinger equation

Nuclei are much heavier than electrons. If we
want to study the electrons, we can neglegt
the motion of nuclei (Born-Oppenheimer
approximation).
pl -7, e’
ROV TR DY

izj | —F

+ const
Jl

Schrédinger equation

Further approximation: the independent
electron approximation. The wave function is

written as a Slater determinant

vi(t) wi(1) .. w(Ty)
1 wa(T) Wi (Ty) . WL(Ty)

W(TITZ...TN)—ﬁ

Wy (7)) Wy(Ty)
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Schrodinger equation

Introducing Slater's determinant into Schrédinger equation we get:

N A w,( )uf,() s
VY () mei(m[ I ]w,-(r)+

[2 J- W (F )%(r ) ﬁ}%(;): Ey, (F)

r - r
/ This is stil a
“exchange” difficult problem!?
interaction

Schrodinger equation

We assume it is possible to define a mean crystal field so that:

h2

—V* + U, () W (F) = Ey(F)
2m

is Schrédinger equation for each electron




Schrodinger equation

The problem of finding an appropriate form for U, is difficult but
we know it must be invariant under symmetry operations! In
particular it has to have translational periodicity and can be
expressed as a Fourier series:

U, (P =Y UG, )e*"
Em

where the g, are reciprocat lattice vectors

Schrodinger equation

Consider the matrix element:

<ei;2‘-f

The integrals vanish uniess

g —k+k=0

Uppoa ™) = D UG, e F "0 ar
Em

i.e. the wavevectors must differ by a reciprocal lattice vector and
wavevectors within the first Brillouoin zone are good quantum
numbers which can be used to classify the eigenstates

21



Schrodinger equation

The wavefunctions can be written as:

(k.7 =Y a,(k)e® 07 =
én

periodic
function

Bloch’s theorem

The wavefunctions of the crystal Hamiltonigp can be wiitten as
the product of a plane wave of wavevector k within the first
Brillouin zone, times an appropriate periodic function

LY



Energy bands

In a weak periodic potential,
the energy bands have little
deviation fron the parabolic
free electron behavior. The
most important piece of
news is the opening of
energy gaps.

Energy bands

Free electron
bands in an
fce crystal.




Energy bands
A semiconductor: Germanium

k-2_7f(.lll k= {000) k =27(100)
al2z 2 2 a

Energy bands

A metal: Aluminum

-t = “
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Energy bands

Experimental determination of
band structure

The photoemission experiment

B
Ezhv E= o2
. Zm
Photon
polarization spin
€ Pt QOutgoing
Incoming A\' o 4 electron

photon 3¢

Oriented single
crystai

-4 ]

Magnetization
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The eleciron must overcome
the sample work function
Duampre 10 order to reach the
vacuum, afterwards its energy
is changed by the differcnce in
work function between the
analyzer and the sample. So:

meas
E, =hv-E '¢ana.!yzer

Valence band %

Adsorbate
level ~

4 Kimatic energy

Msasured
SPECLIHN  hye

<.

"‘%nm:\!e

=~ h""Ei‘.'ﬁ:-malvzrr

analyzer

Momentum conservation

The surface breaks the traslational symmetry along ©

-
Conserved (i.e. = Ky in the sample)

A g o 2K
I “2m outgoing
kp;{raJlel

“/_,/-"’:

-

perpandicular

A

electron

<— NOT Conserved

Oriented single
crystal




Band mapping: GaAs

Gaas H10) HORMAL EMISSION SPECTRA
GaAs ENERGY BANDS Eix) ALONG KX

INITIAL STATE ENERSY Ejlev)

| IR B A B N L5 41
-5 B 5 Er
MITIAL STATE ENERCY E; (V)

Optical properties

Macroscopic theory
Drude-Lorentz theory
Interband transitions

Examples

- Metals
- Semiconductors
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Macroscopic theory

Maxwell equations
(no charge, no current)

V-D=0 Properties of the
V-B=0 medium
L 5 D=E+47P
VxE=—~1—a—B . - -
c ot B=H+4nM
Txfg=-Ld An5
cod ¢

Macroscopic theory

Linear approximation

D=¢E
e=1+4nc

Y

At B o
Il 1l
& &

o is the conductivity — absorption
o is the polarizability — dispersion




Macroscopic theory

For a periodic electric field E= Eoe_m

" . . y . Ano
it is convenient to introduce E=g +ie,=€+1i

a complex dielectric function 0

to treat absorption and dispersion simultaneously.
This is similar to the concept of complex impedance
for the analysis of a.c. circuts

Macroscopic theory

by inserting the complex . 7 azE
dielectric  function into V*E — ——=0
Maxwell equations we find: /C ot

waves travellig at v=c/e,

solutions of the form

2
— — . —~.-_ C
E=FEe""" ™ tcce. —— & =549

2
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Macroscopic theory

The introduction of the compex dielectric function
allows us to introduce other complex functions
(complex refraction index, complex reflectivity...) and
extend the relations found in simple optics keeping
into account absorption and dispersion

simultaneously.
n=n+ikK
~2 ~
L =€
complex refraction index:
n’~k’=¢
2nK =€,

Macroscopic theory

~ Kramers-Kronig dispersion relations
The dielectric constant describes the response of the
system to an e.m. field.

It is possible to apply the causality principle (i.e. the
response must follow the stimulus) and derive
relations between the real and imaginary part:

sl(wo)=1+%PI——d(m)

£,(W,) = __p f_l_(_a)_)__ldw

T 0) CO




Macroscopic theory

Lorentz-Drude model

A medium composed of charged particles whose
density is N behaving like harmonic oscillators

- 47Ne* 1
E=1+ 5 —
m (W, —W)—1yw
@y resonance
y damping
Macroscopic theory

Lorentz-Drude model

A medium composed
of N charged particles
behaving like
harmonic oscillators

v

| S N N | :l T S SR N { |
6 7 8 9 101112 13 14




Macroscopic theory

Metals
Lorentz-Drude model with wy=0.

' 2
plasma 0 = 4me’N
frequency d m

Macroscopic theory

Metals

Reflectivity

B U VU R SN VN JSVNN U E I N S S S L

1 2 3 4 5 6 7 8 19

hw (V)

10 1




Macroscopic theory

Metals

Reflectivity ofa & &
real metal: g
Aluminum 3
| @
I

k4 Il | ]

1 1

10 12 14 16
hw {eV)

18 20 22

Quantum Theory

The hamiltonian for a system with an external em fieid,described by a
vector potentiaI_A and a scalar potential ¢ is:

- 2
1 A(7,t

—e@(7,1)+ V(F)
2m

With the transverse gauge (no charges, no currents)

33



Quantum Theory
We can wiite: H = Hy + Hy

ieh -
where H, = ;A -V is the perturbation.

The incoming radiation can be described as a superposition of plane waves of the form:
A(F.0)= A, e @0
We put all this into the time dependent perurbation theory to get.
E; - E

epa =22 By {7 a[

For opticat transitions the wavelength A=2mq| is always much longer than the size of the atomns.

So we can approximate the exponential with 1

S E,-E _ E,-E
cra= 22 A e w- L) <2 3, (e w2

this formula represents the so-called dipoie approximation

Quantum Theory

In a solid one has to consider all possible energy conserving
transitions:

2[2‘”‘ B3 E.(B) - B, - ho)

v,c BZ




Quantum Theory

It is often possible to neglect the variation of the matrix element with
momentum so for a pair of bands &, is proportional to:

2dk
(2m)’

J,,(hw)= | S(EC(E) ~E(k), - ha))

4

the joint density of states, which can be written as:

2dS high contribution

| J. (hw) = = = from parallel
EC(E)—}E‘[E)‘FMU I V (E(k)- E(k)v)l bands

hrer (V)

Comparison between theoretical (--) and experimental (—)
determination of the optical properties of Germanium

35



(1.00) {$10) (3.2.0) {0.0.0)

Optical transitions in Ge with high joint density of states

Lattice vibrations

Consider an axpansion of the total ground state energy:

J*E,
05,05,

E,({s,}) = E,(0)+ %Z( ansn, +0(s*)

nn

where the s's are displacements of the nuclei with respect
to their equilibrium positions




Lattice vibrations
Consider an axpansion of the total ground state energy:
i’j

where the s's are displacements of the nuclei with respect
to their equilibrium positions and the |'s represent
equivalent lattice points

Lattice vibrations

vibrations must be consistent with bloch’'s theorem and

therefore
S; (k)=

which gives

2 =0
—0°ms; = ZDUU,S,,(]C)
i’y
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Lattice vibrations

Unidimensional monoatomic case. First neighbour interaction

ms,=C(s,,; =S, 5,

b ) Gt 2

Lattice vibrations

Unidimensional monoatomic case. First neighbour interaction

~0’ms, = C(e™ + " —2)s,

4C| . ka
sin

m




Lattice vibrations

Unidimensional biatomic case. First neighbour interaction

mS,, = C(S2p+l =8, TS T S2p)

MyS8s 01 = C(S2p+2 =8y, T8, S2p+l)

Lattice vibrations

Unidimensional biatomic case. First neighbour interaction

t

|

I

]

|

|

!
T
2a
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Lattice vibrations

Frequency (crm—}

Frequency (om™)

Lattice vibrations

Experimental
determination by
synchrotron
radiation
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