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1 Scattering by Policrystals and Amorphous Ma-
terials

1.1 Theory

This lesson is based on the References {1], {2}, [3], [4], [3].

During World War 1 scientists in two different parts of the world indipen-
dently discovered that there existed a characteristic x-ray diffraction effect from
a fine-grained crystalline aggregate. This discovery was made by Debye and
Scherrer in Germany and almost simuitaneously by Hull in the United States.

Although much information is lost or degraded by using an aggregate in place
of a single crystal, this method of investigating crystal has proved to be exceed-
ingly useful in those cases where single crystals are not available, are difficult to
obtain or one wishes to examine a crystalline material which is not in the form
of discrete single crystal, for example, a metal. There are many applications
of the powder method, but two of these are of primary importance. Funda-
mentally, the powder method provides a way of investigating, within limits,
the crystallography of the crystal in the powder. Secondarily, since the powder
diffraction diagram produced by a crystalline substance is a characteristic of
that substance, the powder method can be used as a means of identification of
crystal.

Each crystal may be envisaged as a reciprocal lattice. Since an ideal policrys-
talline material or powder is an ensemble of a very large number of randomty
oriented crystallites, the reciprocal lattices associated with them are randomly
oriented also. The origin of all these lattices, however, lie at the point where
the direct beam leaves the sphere of refiection.

Consider the reciprocal-lattice point hki at the end of the vector opu in Fig,.
1. If there is an infinite number of crystals in the powder,there must be an

x-ray

Figure 1: (b,



infinite number of such points hkl, all lying at a vector distance oriy from the
origin. Since these vectors are randomly directed in space, the reciprocal-lattice
points kkl must lie on a sphere centred at the origin.

This is obviously true of any reciprocal-lattice point hkl. The sum total of
all reciprocal-lattice points, therefore, comprises a set of concentric spheres of
radii ong; centered at an origin which lies on the sphere of reflection. These
reciprocal-lattice spheres, therefore, intersect the sphere of reflection in small
circles. Since a diffracted beam develops whenever a reciprocal-lattice point
intersects the sphere of reflection, the diffracted beams form cones emanating
from the center of the sphere of reflection, as illustrated in Fig.2 for one such
cone.

Figure 2: a1,

The principles involved in the production of a powder diagram can be appre-

ciated by considering the simplified experimental arrangement shown in Fig.3.
An X-ray beam is defined by the pinhole system, just described. A photographic
film is then placed normal to the x-ray beam. The powder sample is introduced
into the path of the x-ray beam. As the beam travels through the powder
sample, it meets thousands of powder grains, each a tiny crystal in a different
orientation.
Among these grains many are so oriented that a particular set of planes hkl
makes the appropriate glancing angle 8 (for the plane) with the x-ray beam.
Such grains are in the position to reflect X-rays. The reflection occurs in a di-
rection making an angle 20 with the direct x-ray beam. The locus of directions
making an angle 26 with a given direction is a cone of hall opening angle 24.
For each solution of the Bragg equation

a1 Am
¢ =sin (2-dhk1 (1)
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Figure 3: i,

there exists such a cone.

We remember that in a space lattice each Miller index triplet is represented by
a series of parallel equispaced planes containing all the lattice points. In actual
crystals these planes are the loci of the atomic or molecular units of the crystal
pattern. dnk:, the interplanar spacing, is the perpendicular distance between
successive planes of a series.

A simply way to record the diffraction pattern of a policrystalline material
is by placing a film perpendicular to the incident X-ray beam. The diffraction
cones will, in this case, give rise to a series of concentric rings each satisfying
the Bragg law (Fig. 4).

Alternatively, a narrow strip of film can be placed on the cylinder centred
on the sample. In this case, the cones will generate concentric arcs, which are
segments of the rings, on the strip (Fig. 5).

A final possibility is to reduce the strip to a line, that is simply to record the
position and the intensity of the diffracted radiation on any plane that contains
the incident X-ray beam. In this last case, one only measures the radius of
the cone and the diffracted intensity at a single position. If the sample can be
considered perfectly isotropic this single measurement is sufficient to completely
characterize the diffraction pattern. The parameters reported are 28, that is
the angle made by any vector with origin in A (see Fig. 2) and lying on the
diffraction cone surface and the incident X-ray beam, and the relative intensity
of the radiation along any direction on the cone (Fig. 6).

Let us consider now, a diffracting object in which the relative positions of
the atoms are fixed. We assume that the object rotates in such a manner that
all possible orientations with respect to the incident beam are equally probable.
‘We also assume that this motion is sufficently rapid so that one observes only
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Figure 4: (1]
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Figure 5:

the average diffracted intensity. This is equivalent to observing the diffraction
by a collection of identical objects with random orientations and positions. We
shall call such object a perfect powder.

The Debye formula for the intensity is

I= Z z frnn Smhf"’““) (2)

mn

Let us consider an object composed of atoms or of identical group of atoms
with structure factor F. We consider first in Eq. (2) the N terms related to a
given atom, and we notice that each pair is counted twice, the distance r,,, being
equal to rnm. We shall call r, the interatomic distances in the object. There



1o w0

. a
- 20

26+
50—

300 .
b 18! N 420

e d ol Tl Ty

0 30 H B o 26

Figure 6: 2.

are [N(N —~ 1)]/2 of these. According to the Debye formula the interference
function is

F(h)=ﬁ%:l+%zm (3)

The powder diagram depends only on the lengths of all the interatomic
vectors, it does not depend on their mutual orientations.

The Debye formula applies, in particular to a crystalline powder of identical
particles. Let us consider grains of a simple cubic crystal having the form of
cubes measuring (n — 1)a, a being the lattice parameter of the unit cell. The
scattering power is

6n%(n — 1) sin(ha)  12n{n — 1)? sin(ha)v/2
+ 3 + 3
n ha ik hav/2

This equation gives the intensity of the Debye-Scherrer powder diagram,
taking into account the shapes of the lines due to the size of the elementary
crystal. It is not obvious from this equation that the intensity is zero everywhere,
except in the immediate neighbourhood of the lines corresponding to the Bragg
angles. A complex calculation shows, however, that this expression is equivalent.
to that derived from the classical expression valids for a small crystall having the
shape of a parallelopipedon with edges Nya1, N2as, Nzas parallel to the crystal
axes @1a2a3:

F(h) =1 (4)

osin?[(m/A){s — 8q) - N1a4] sin?[{(w/X)(8 — 8o) - Naaa] sin®[(n/A)(s — 30) - Nzas]

I=LF sin®[(w/A}s — sg) - @1] - sin’[(w/\)(s — 8o) - @2) Sinz[('ir/)\)(e&; sa) - @3]
where
8 — Sp| _ 2sin8
A T




y = (sin? Nz)/sin? r is a peak function essentially zero everywhere except in
the immediate vicinity of 2 = nm where it rises to high maxima and the peaks
are, accordingly, higher and sharper when N increases. Hence the intensity, I,
will be essentially zero unless the three quotients are simultaneously close to
their maximum values. For I to be a maximum, we must simultaneously satisfy

the three conditions
(m/A)(s — 80) -@1 = h'w

(71'//\)(3 - 80) az = k'm
(x/A)(s — 50} - @3 =l'w

where h’, k', I’ are three integers. Rearranged and written in the form below,
these are called the three Laue equations:

(s —80)-ar=Hh2Xx
(8 - 80) Qg = KA (6)
(s — 30)-ag=1'A

Since a diffracted beam exists only if the three Laue equations are simultaneously
satisfied, the three equations together must be equivalent to the Bragg law.

In the powder method, a monochromatic beam falls upon a powder sample
containing an enormous number of very small crystals having completely random
orientations. For any set of planes hkl with spacing dpg, there will be a few
crystals whose planes hkl make the correct angle with the primary beam to
allow a Bragg reflection such that the corresponding powder pattern shows a
sequence of line profile characteristic of the crystalline system investigated.

1.2 Line Broadening Analysis

Esperimentally a diffraction line profile is the result of the convolution of a num-
ber of independent contributing shapes, some symmetric and some asymmetric.
It can be represented as:

h(z) = f g(z") f(x — z')dz' + background = g(z) * f(z) + background

where x measures the angular deviation of any point from the theoretical scat-
tering angle 26, =’ is the variable of integration in the same x domain, g(x) is
the instrumental profile function, f(x) is the intrisic diffraction profile function,
and h(x) is the resulting observed profile function.

Recently powder profile refinement methods devoted

1) to deriving structural parameters such as atomic coordinates in
the unit cell, thermal motion etc.

2) to extract physical information such as: phase identification, crys-
tallite size, lattice disorder



have been developed. In order to describe the experimental profiles, symmetric
analytical profile functions such as: Gaussian, Lorentzian, pseudo-Voigt, Pear-
son VII etc. have been used.

Eq.5 can be used to show the effect on the diffraction pattern of various
crystal imperfections such as small crystallite size, strains and faulting. Since
it is the simplest kind of imperfection we shall deal mostly with the effect of
small crystallite size remembering that the diffraction line becomes broader as
the crystal size decreases.

The first treatment of particle size broadening was due to Scherrer.

He showed that
KA

- B(28) cost

wherein # and A have their usual meaning, L is the mean dimension of the
crystallites composing the powder, B(26) is the full width in radians subtended
by the half maximum intensity width of the powder pattern peak, and K a
costant approximately equal to unity and related to the crystalline shape.

A more general treatment was proposed by Warren and Averbach {Fourier
method) in which some information about strains can also be provided. It can
be summarized as follows:
the experimental broadened profile has to be deconvoluted from the instrumental
and spectral effects in order to obtain the corrected Fourier transforms A(L) (L
is the variable in the direct space). According to Warren and Averbach the
coefficients A(L) {or the Fourier transforms) are the products of size coefficients
A,(L) and distortion coeflicients Ag(L):

A(L) = A(L)Aa(L) (8)

L {(7)

where A, (L) is indipendent of the peak order and A4(L) is dependent upon the
order of the diffraction peak. If at least two orders of refiections of the same
plane family are known, by means of the following expression:

1 L
mA (L, —— ) =InA (L) —2n® < &(L) > —— 9
n4 (L) =D 26" < 80 > o ®)

where hkl are the Miller indices, < €2(L) > is the squared microstrain averaged
over all distances L, and dpy; is the interplanar spacing, it is possible to separate
the crystalline size contribution from that of lattice distortion.

1.3 Amorphous Materials

For very small cluster containing few atoms it is preferable to calculate the pat-
tern from the Debye formula. If we consider a liquid, it has no structure with
respect to a fixed origin since the atoms are continually moving about. In an
amorphous solid (glasses, glassy metals, resins, unoriented solid polymers}, the
atoms have permanent neighbours but there is no repeating structure, only local
configurations. Although there is no sharp dividing line between crystalline and
the so called amorphous materials, for clarity in this discussion we somewhat



arbitrarily designate as crystalline those materials characterized by three di-
mensional periodicity over appreciable distances, say, of the order of six or more
unit translations. Conversely, materials possesing only one or two-dimensional,
or lesser, degrees of order are referred to as amorphous.

Fig. 7 is 2 two dimensional illustration of the difference between the arrange-
ment of atoms in a hypothetical crystal A and glass B of the same chemical
composition, 4203.

A)

Figure 7: @,

However, atoms have well-defined sizes and closest distances of approach,
and hence both liquids and amorphous solids have definite structures relative to
an origin at the center of an average atotn. This type of structure is expressed
by a Radial Distribution Function (RDF) 4nr2p(r) such that dwr?p(r)dr is the
average number of atom centres between distances r and r+dr from the center
of an average atom.

Eq. (2) makes it possible to estabilish the correct atomic configuration by
inverting the experimental intensity function by means of the Fourier integral
theorem as first suggested by Zernike and Prins, and so to obtain the RDF of
the specimen.

The application of the Fourier integral theorem is perfectly straightforward
in the case of a substance consisting of only one kind of atom. Then Eq. (2)
becomes

sin (AT ma)
I=Nfy —-T7 10
s );uj — (10)
if it is assumed that the enviroment of one atom is the same as that of any other
atom.

Since in performing the summation of eq. (10) each atom in turn becomes
the reference atom, there are N terms due to the interaction of each atom with

10



itself. The value of each of these terms is unity, since in the limit as rm, — 0,
ﬂhfr@l) -+ 1. So eq. {10) may be written

I=Np (1 + § S hrmn) (hr’"“)) (11)

hrmn

if it be understood that the summation excludes the origin atom. The distribu-
tion of atoms about any reference atom may now be regarded as a continuous
function and the summation replaced by an integral

I=Njf? [1 + [Oojlwp(r)%r—) dr] (12)

Here p(r) is the number of atoms per unit volume at a distance r from the
reference atom, and 4nr?p(r}dr, as reported above, is the number of atoms
contained in a spherical shell of radius r and thickness dr. Letting po be the
average density of atoms in the sample, eq.(12) may be rewritten as

I=Nf? {1 + /00411'1‘2 [o(r) — po) sin(hr) dr + ‘/ojlfrrzpo sinéhr) dr} (13)
0 0

hr r

The integral of the last term of eq.(13) represents the scattering by a hypothet-
ical object of the same form as the specimen but of rigorously uniform electron
density. This is the central scattering, which occurs at such small angles as to
be unresolvable from the direct beam. Hence, if attention is limited to experi-
mentally observable intensities, i(h), eq.(13) can be simplified to the form

I o in{f
T /0 4772 [p(r) — po S‘“}ET’") dr

By means of the Fourier integral theorem, this expression can be transformed
to

r[o(r) — po] = 2—11;5 [D “hi(h) sin(hr) dh

oo}
472 p(r) = dnrpg + -2;:; [ hi(h) sin(hr) dh
0

where I
The case of the presence of more than one kind of atom will be treated in
section 2.

11
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1.4 Rietveld Method

This lesson is based on the Reference [6].

In these last years, dedicated powder diffractometers are in operation at
many synchrotron sources. In contrast to conventional radaition source, the
main properties of synchrotron radiation are

1) the extremely good instrumental resolution over extended angular
ranges (for example, full widths at half maximum of < 0.01° out to
a d-spacing of 14 at a wavelength of 0.74),

2) excellent peak-to-background discrimination,

3) peak shapes which are very well described by the commonly-used
pseudo-Voigt function (including a simple and reliable asymmetry
correction for axial divergence at lower angle),

4) high brightness (large amount of flux in a well collimated beam)
5} an intense continuos wavelength distribution spectrum, for which
monchromatized X-radiation can be selected and the consequent
possibility of using anomalous scattering as a general probe of cation
distribution for elements with Z2>35.

As an example Fig.8 shows the variation in instrument-only contributions
to the peak full width at half maximum (FWHM) as a function of diffraction
angle for a number of modern neutron and X-ray diffractometers.

In this part, some of the most important aspects will be treated in relation
to their applications in Material Science. In particular, beside some general
considerations on the application of the broadening analysis and kinetics of
crystallization, the Rietveld method, thin films analysis, anomalous scattering
and their relative applications will be briefly reported.

In the mid-sixties, it became apparent to various diffractionists that much
more information could be obtained from a powder pattern if the full power
of computers could be applied to full-pattern analysis. The recognized point
was that in a step-scanned pattern, for example, there was some information
attached to each intensity at each step in the pattern, even if it were the negative
information that there was no Bragg-reflection intensity there or the partial
and the scrambled information that the intensity at a step was the sum of
contributions from the details of several Bragg reflections. It was Rietveld who
first worked out computer-based analytical procedures to make use of the full
information content of the powder pattern.

In the Rietveld method the least-squares refinements are carried out until
the best fit is obtained between the entire observed powder diffraction pattern
taken as a whole and the entire calculated pattern based on the simultaneously
refined models for the crystal structure(s), diffraction optics effects, instrumental
factors, and other specimen characteristics (e.g. lattice parameters) as may be
desired and can be modelled.

A powder diffraction pattern of a crystalline material may be thought of as a
collection of individual reflection profiles, each of which has a peak height, a peak

12
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Figure 8: Variation in the instrumental-only peak FWHM as a function of
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position, a breadth, tails which decay gradually with distance from the peak
position, and an integrated area which is proportional to the Bragg intensity,
Ix, where K stands for the Miller indices, k, k, L Ix is proportional to the
square of the absolute value of the structure factor, FZ. In all powder diffraction
patterns but those so simple that the Rietveld method is not needed in the first
place, these profiles are not all resolved but partially overlap one another to a
subtantial degree.

If y; is the numerical intensity value recorded at each of equal increments
(steps),i, in the pattern the quantity minimized in the least-squares refinement
is the residual, §y:

Sy = Z wiy; — yci)2

where w; = 1/y;; y; =observed intensity at the ith step; ye =calculated intensity
at the ith step, and the sum is overall data points. It is a crucial feature of
the Rietveld method that no effort is made in advance to allocate abserved

13



intensity to particular Bragg reflections nor to resolve overlapped reflections.
Consequently, a reasonably good starting model is needed. The method is a
structure refinement method. Typically, many Bragg reflections contribute to
the intensity, y;, observed af any arbitrary chosen point, {, in the pattern. The
calculated intensities y,; are determined from the values calculated from the
structural model by summing of the calculated contributions from neighbouring
(i.e. within a specified range) Bragg reflections plus the background:

Yi=sY Li|Fx|*$(26; ~ 20x)Px A + yus
K

where

s is the scale factor,

K represents the Miller indices, h&l, for a Bragg reflections,

Ly contains the Lorentz, polarization, and multiplicity factors,
¢ is the reflection profile functicn,

Pk is the preferred orientation function,

A is the absorption factor,

Fy is the structure factor for the Kth Bragg reflection, and

y3: is the background intensity at the ith step.

The usual refinable parameters are listed as follow:

For each phase present

* I, Ui, %, Bi, N; (24, y; and z; are position coordinates, B; is an isotropic
thermal parameter, and N; is the site-occupancy multiplier, all for the ith
atom in the unit cell)

¢ Scale factor (note quantitative phase analysis possibility)
» Specimen-profile breadth parameters

+ Lattice parameters

¢ Overall temperature factor (thermal parameter)

¢ Individual anisotropic thermal parameters

e Preferred orientation

e Crystalline size and microstrain (through profile parameters)

Global parameters
s 20-Zero

o Instrumental profile

14



Profile asyrﬁmetry

Background

Wavelength

Specimen displacement,

¢ Specimen transparency

Absorption.

As an example, in Fig. 9 the final fitted profile of Lithium Disilicate, using
Pearson VII functions, is reported
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Figure 9: (7

In the presence of multiple phases, Rietveld analysis can provide very ac-
curate estimates of the relative and/or absolute abundaces of the component
phases according to

W, = _SZMY)
Yo, Si{(ZMV)
where W is the realtive weight fraction of phase p in a mixture of n phases; 5,
Z, M and V are, respectively, the Rietveld scale factor, the number of formula
units per unit cell, the mass of the formula unit (in atomic mass units) and the
unit cell volume (in A?).

15



1.5 Thin Film

This lesson is based on the References [8], [9].

X-ray diffraction methods are widely used for the characterization of thin
films. The increasing use of thin films with special tailored properties, for exam-
ple for electronic devices, has stimulated the need for improved characterization
methods. The properties are determined by the thin-film material and its crystal
structure. The microstructure is critically dependent on the various parameters
used in the deposition of the film, and their effect on the required properties can
be followed by x-ray diffraction. It is well known that thin films are usually not
uniform, and indeed it may be desiderable to purposely vary the microstructure
as a function of the thickness to obtain the desired properties. Methods that
obtain diffraction patterns from different filin depths are now essential for com-
plete structural characterization. The high intensity of a Synchrotron radiation
is an important factor in measuring the weak scattering from thin films.

1.5.1 Reflection Geometry

In the microstructural analyses of thin films, special experimental techniques
have to be employed to obtain diffraction patterns with sufficient statistical
accuracy in a reasonable counting time. Since films and coatings are normally
supported by a relatively thick substrate, one is forced to use the reflection
geometry, shown in Fig.10.

In any case, the conventional x-ray methods, when used for thin films, the
x-ray beam usually penetrates the entire film making it impossible to follow
structural variations as a function of film depth.

The depth of x-ray penetration into the film depends on the angle of inci-
dence . When the incident angle becomes < than a certain angle a., specific
of the material, the depth is very small (usually about 50-100A). The critical
angle o, for the total reflection is given by

a. = (2602 = 1.6-107%pA

where a. is in radians, p is the density in gcc™! and X is the wavelength in A.
This ignores anomalous dispersion, which has a significant effect even on the
long wavelength side of the absorption edge.

For o < a, the penetration depth ¢’ is determined by the total external
reflection process and is given by

A
! —
'S Bl — ot (4
The thinnest layer that can be sampled is determined by the density of the
film. For a > a. the penetration depth is dependent on the linear absorption
coefficient p:
t' = 2afm (15)
Fig. 11 shows the penetration depth in the iron oxide film as a function of o
and A as calculated by egs. 14 and 15.

16
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Figure 10: Reflection geometry with parallel X-ray beam, defined by the incident
beam slits S; and Ss. In the fixed incidence: 28 scanning, the sample surface
makes a fixed angle o with the direction of the incident beam. The detector
sees the same sample area at any angle of reflection 3. The scattering angle is
defined as 2 = a + 3. In 8 : 28 scanning, the angle of incidence & = 8 and the
sample continuously bisects the angle 26, so that 3 = 6 @,

1.5.2 Seemann-Bohlin Geometry

For many years, researchers have employed the Seemann-Bohlin geometry (see
Fig.12) for the measurements of the powder patterns of thin films. In the
Seeman-Bohlin focusing geometry, the specimen is set at a fixed small angle
(about 5° minimum) and the detector is moved around the focusing circle by
a special linkage. However mechanical restriction prevents using smaller an-
gle required for grazing incidence and any departure from the strict focusing
requirements causes large geometrical aberration in the pattern.

1.5.3 Parallel Beam reflection geometry

Because of the limitations of the Seeman Bohlin geometry, it might be advan-
tageous to adopt the parallel beam geometry with a fixed angle of incidence «
(in Fig.13 6,) as shown in Fig.13. Since the specimen has a finite dimension,
say 30 mm in width, one must limit the width of the primary beam to 1 mm
in order to reach a low incidence angle @ = 2°. In this case, the detector is

17
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Figure 11: o,

always looking at the entire irradiated area, and one must install a set of Soller
slits whose blades are placed perpendicular to the diffraction plane so that the
diffraction angle is well defined.

1.5.4 Grazing Incidence Scattering

As shown above, if one whishes to employ the effect of total reflection of the
incident beam for the analysis of angstrom thick layers, one must reduce the
angle of incidence o to a value less than the critical angle a. which is only a
fraction of one degree. Thus, the method of grazing incidence scattering (or
diffraction) requires a very narrow x-ray beam because of the finite sample
size and a strong primary beam, available with synchrotron sources. In this
technique, one can scan the diffracted beam in the same way as presented in
Fig.10, with the diffraction plane, containing the incident and diffracted beams,
perpendicular to the specimen surface (method 1), i.e., using the parallel beam
geometry.

One can also scan the diffracted beam almost parallel to the specimen sur-
face as shown in Fig.14, i.e., the incident beam ;. iq.n: strikes the specimen at

18



Focussing Cirtla

Focaf Spat F

Figure 12: Focussing Seeman-Bohlin diffractometer. The sample S remains fixed
at constant angle of incidence «, while the detector slit moves along SD by the
amount Rgp = Rsin (28 -- &)/ sine to remain on the focussing circle of radius

Rro = Rso = R/(2sina), where R is the radius of the diffractometer. 8]

an angle a; < @, and the diffracted beam is detected at a second grazing angle
ay. The diffraction angle 28 is defined as the angle between the projections of
a; and ay onto the specimen surface (method 2). As an example in Fig.15
are reported the grazing incidence diffraction profiles, a = 0.25°, A = 1.75, of
unbroadened Si(111) powder and broadened 6.5h annealed iron oxide film (111):
peak intensities normalized. Quter profile fitted with symmetrical Lorentz func-
tion.
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Figure 13: Parallel beam X-ray optics used in & : 28 and grazing incidence: 24
scanning. (=}

2 Anomalous X-ray Scattering

This lesson is based on the References [10], [11].

Even if the usefulness of the anomalous X-ray scattering has also been con-
firmed in structural investigation of polycrystalline samples (some examples will
be reported during the lecture), we focalize our attention in Amorphous Ma-
terials (in which the atomic arrangement is not spatially periodic) containing
more than two kinds of atoms in order to evaluate the partial radial distribution
function.

The diffraction pattern from an amorphous sample (i.e. a glass) exhibits
broad features, indicating the lack of translational symmetry in its structure.
The quantity obtained from a conventional scattering experiment is the radial
distribution function (RDF), which is a description of the average environ-
ment of an atom, for example, in a glass. The RDF is defined as 4nrZp(r),
where p(r) is the radial density function and r is the radius; p(r) is the average
number density of atoms at a distance r from an average atom at the origin.
The RDF, therefore, is the number of atoms in a shell of unit thickness at a
distance r. The number of neighbours coordinating a central atom is obtained
by integrating a peak in the RDF, and the average distance of these neighbours
is obtained from the peak position.
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Figure 14: Schematic diagram showing grazing incidence scattering X-ray
diffraction.

Even in one-component system, the interpretation of the RDF is difficult
because the local structure is spherically averaged. In a multicomponent system,
the problem is even more complex because the average environment portrayed
by the RDF might bear little resemblance to the actual environment of any
given component. Anomalous scattering experiments permit species-specific
distribution functions to be obtained, which give a more direct view of the
amorphous structure {such structural information is very similar to the results
by EXAFS measurements).

When the X-ray energy is close to an absorption edge of an atom, the X-
ray scattering factor changes significantly through the anomalous scattering
factors (ASF’s) f” and f". For example, the scattering factor of Se is reduced
from its maximum value by approximately 10 electrons at the K absorption
edge energy. Therefore, Se (atomic number Z=34) scatters more like Cr (Z=24).
Suppose scattering patterns are obtained from an Ag-Ge-Se glass at two X-ray
energies close to the Se K absorption edge. The scattering behaviour of Se is
different at each energy, but the behaviour of Ge and Ag is the same. The
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difference between the two patterns can be related to the distance correlations
involving Se atoms. The result of this type of experiment is the difference
distribution function (DDF) around Se. The DDF is 4rr?ps.(r), where
pse(r) is the density of atoms at a distance r from a central Se atom.

The idea of obtaining structural information from the derivative of the scat-
tered X-ray intensity with respect to energy was first proposed by Shevchik
[12], [13]. However, the differential anomalous techniques (DAS) technique
outlined above was first developed and applied experimentally to amorphous
GeSe and glassy GeSe; by Fuoss [14], [15] Because the X-ray energy must be
near an absorption edge, the DAS technique cannot be applied to atoms whose
atomic numbers are less than 24 (Cr). As the edge energy decreases, the region
of reciprocal space that is accesible to measurement becomes smaller, with the
effect, that the resolution of the DDF in real space is degraded. The potential
of anomalous scattering experiments is not limited to obtaining DDF’s. It is
possible to obtain the partial distribution function (PDF), in which the in-
tensities of both the central atom and its neighbors are known. The af PDF
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describes the distribution of 3 atoms around a central o atom; it is equal to
4172 paps(r), where pas(r) is the number density of 8 atoms at a distance r from
an ¢ atom at the origin. The total number o — 3 distances in the structure is
constant, leading to the condition

Xopaplr) = Xopaa(r)

where X is the mole fraction. The RDF and the DDF’s are related to the PDF’s
by

M M M
RDF =Y X.DDF, =3 Xo» PDFug
a=1 a=1 #=1

Keating demonstrated how M{M-1)/2 independent scattering experiments
can be used to determine the same number of indipendent PDF’s. In each
experiment, the scattering factors of one or more of the components must be
altered in indipendent way. The energy dependence of the anomalous scattering
factors provides one means to accomplish this. If we consider a three components
glass, six scattering patterns must be collected, two in the vicinity of the K
absorption edge of each component. The PDF’s are difficult to obtain because
the independence that can be achieved by varying the anomalous scattering
factors is limited. In practice, the results are very sensitive to experimental
error.

2.1 Anomalous scattering factors

The X-ray scattering factor of an atom is the amplitude and phase of the wave
scattered coherently from the atom relative to the amplitude and phase of the
wave scattered by an isolated, or free, electron. In general, the atomic scattering
factor f is complex and is written as

f = folh) + f'(h, E) +if"(h, E)

which explicitly states the dependences on E, the X-ray energy, and h, the
magnitude of the scattering vector:

47 sinéd
h= A

where 26 is the scattering angle, and X is the X-ray wavelength. The quantity
fo is the scattering factor when the X-ray energy is much greater than the
largest ionization energy for the atom. At such energy, all electrons in the
atom scatter as if they where free. If the X-ray energy is comparable to or less
than the ionization energies of some of the electrons, the ASF’s f' and f" are
nonzero. The ASF’s correct the amplitude and phase of fp for the fact that these
electrons do not scatter as free electrons. Values for fp have been calculated from
theory for isolated atoms and ions. The anomalous scattering factors can be
calculated theoretically or determined experimentally. The ASF’s determined
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theoretically (see Fig.16) are guite accurate when the X-ray energy is not close
to an absorption edge. However, in the immediate vicinity of the edge, solid
state effects cause significant deviations from the isolated atom results. The
ASF’s used in DAS experiments, therefore, should be measured experimentally.
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Figure 16: Cromer and Liberman calculation of the ASF’s for Ge near the Ge
L Absorption Edge (11103 &v).[10]

The method commonly employed for DAS experiments is to use the optical
theorem to calculate f* from a measurement of the absorption cross section as
a function of energy; f' is calculated from f" via the Kramers-Kronig relation.
The optical theorem can be derived by relating the composite effect of the
scattering by individual atoms in a substance to the complex index of refraction
characterizing the material as a whole. The imaginary part of the index of
refraction corresponds to the absorption of a wave as it travels in the material
and can be expressed in terms of the total absorption cross section o. The
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optical theorem relates f” to o:

wo oy mewa(w)
filw) = “are?

where f" is in electrons, ¢ has units cm?®/atom, m and e are the mass and
charge of an electron, w the X-ray angular frequency, and c the speed of light;
all units are cgs. The Kramers-Kroning relation is

=2 [" 5

wi —wz

in which the integral is understood to be the Cauchy principal value.

2.2 RDF Analysis

Under the assumptions of the kinematic theory of X-ray diffraction, the co-
herently scattered intensity in electron units (eu) from a collection of atoms

is
Lu(h) = 373 f7 fiezp(ih - rys) (16)
i
where the summations over i and j are for all atoms in the sample, h is the
scattering vector, ry; the vector from atom i to atom j, and the asterisk denotes
the complex coniugate. The scattering is uniform with respect to sample orien-
tation. Therefore, after taking the spherical average of the experimental term,
separating the indipendent scattering (i=j) terms, and grouping the distances
between two specific types of atoms together, the equation can be rewritten as

ST ATAISS Zfafazzj Tea) )

=1 =1 =1

in which a and S refer to kinds of atoms in an M component system, i and j
are now summations over the o and 3 types respectively, and N, is the number
of @ atoms. Next, the continuous partial density function p,a{r) is defined in
terms of the discrete interatomic distances present in the structure:

N Nﬁ

4qr? Pap(r)dr = = Z 25 r—Ti;) (18)

& =1 i=1

Here, § is the delta function. At large radii pop(r) approaches the average den-
sity of b atoms pgg. Equation (18} is introduced into eq.(17) as the average
density pgo and the deviation from that density pas(r) — pgo. Warren showed
that the contribution from the average density is only significant at small scat-
tering angles, where the intensity is not experimentally measured. The result,
neglecting the small angle scattering term, is

Lulh) = ZNIfal o3 S NSl [ 45 1pnotr) - oo

a=1 =1

m(h,r)

dr (19)
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Defining the partial structure factor as

Soa®) = 3 [ 477100 (r) = poclsin(hr)dr (20)

and utilizing Napag = Npppe to group dependent density functions together,
Eq(19), on a per-atom basis now, becomes

M M

L) = {2 =3 3 XoTupRelf2fs)Sap(h) (21)

a=1f=a

where the brackets {} denote the molar average, X is the molar fraction and T4
equals 2 when a # 5 and 1 otherwise.

This is the basic equation for amorphous scattering. It breaks the ob-
served scattering pattern into the coherent independent scattering from individ-
ual atoms and the structure-dependent scattering due to distance correlations
between atoms. The latter is expressed as the weighted sum of M(M+1)/2
independent partial structure factors.

The present development has assumed that I, is the intensity of the coher-
ent scattering. Experimentally, I, could contain Compton scattering as well.
In that case, the Compton scattering must be subtracted from I,.. If only one
scattering pattern is available, no basis exists for distinguishing the separate
contributions of the partial structure factors to the total pattern. Let us treat
the pattern as if it originated from a structure consisting of identical "average”
atoms. The scattering factor of these fictitious atoms will be taken as {|f]) .
By analogy with eq. (21), we write

Lu(g) = {|£*)) = (|7 ])*S(h) (22)

where, with reference to eq.(20), the total structure factor S is related to the
real space structure by

S(h) = % f anr[p(r) — po] sin(hr)dr (23)
0

In effect, eqs. (22) and (23) define S(h) and p(r). From eq. (23), it is apparent
that the two functions are related by a Fourier sine transform. After obtaining
S(h), from experimental data using eq.(22), the reduced RDF, G(r), is calculated
as

G(r) = drrlp(r) - po] = % /0 ™ hS(h) sin(hr)dh (24)

From G(r), the radial density function p(r) and the RDF 4nr®p(r) can be ob-
tained. The reduced RDF of a multicomponent system describes the structure
in terms of fictitious atoms, which are defined by the average atomic scattering
factor. The relationship of G(r) to the pag(r)’s, which describe the correla-
tions of the actual atoms in the structure, becomes clear by equating eq.(20) to
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eq.(21) and Fourier transforming. The result is

60~ 33 KT Betle = I G (25)

a=1 f=a

in which Z.sy = Z + f', Z being the atomic number. The reduced PD¥ is
defined as

Gap(r) = 4nrlpap(r) = poo} = f hSap(h)sin(hr)dh  (26)

According to eq.(25), G(r) contains contributions from each Gap{r), weighted
according to the composition and the scattering abiliyt of the atoms involved.
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2.3 Anomalous SAXS Applications to Catalysts
This lesson is based on the Reference [57).

2.3.1 Introduction

Heterogeneous catalysis deals with the transformation of molecules at the inter-
face between a solid {the catalysts) and the gaseous or liquid phase which carries
these molecules [16]. Consequently quantitative characterization of these sys-
tems, concerning both the exposed surface and the bulk structure, is a matter of
obvious importance in understanding the mechanisms of the chemical reactions
and in developing new catalysts with higher performance. Moreover, although
most practical catalysts are highly complex materials, it has been widely shown
that their catalytic activity can be affected by their microstructure. The most
common technique employed to characterize catalysts is the selective chemisorp-
tion of a suitable gas onto the surface of the active component, though this
technique is generally of little use for non metallic catalysts. The other major
methods are based on X-ray diffraction, photoelectron spectroscopy and electron
microscopy {17], [18]. Obviously, any of the above-cited techniques is affected
by its own limitations. For example, the adsorption stoichiometry (the average
number of surface metal atoms associated with the adsorption of each adsor-
bate molecule) used for chemisorption measurements is not always well defined.
X-ray line broadening analysis gives the size of the crystallites (very often not
coinciding with the particles) larger than 1.5nm. Also, electron microscopy has
its drawbacks: the micrographs can be affected by artifacts or do not give an
exhaustive picture of the sample and so on.

For all these reasons, in principle SAS could be very advantageous, since it
does not require a knowledge of the crystal structure of the scattering particles
to determine their size, and an experiment can sample all the particles in a
specimen. Moreover, industrial heterogeneous catalysts are utilized in the form
of pellets, extrudates and spheres of some millimeters in size, but they are
manufactured as a powder. Consequently, they can be analyzed, without any
problems, by any SAS set-up used in an ordinary research laboratory.

2.3.2 Supported Metal Catalysts

Supported metal catalysts are of particular interest for a variety of reactions
involving hydrogen, such as hydrogenation, hydrogenolysis and catalytic re-
forming. They are mostly composed of an active phase (metal), responsible for
the principal chemical reaction, and a support, or carrier. Generally, the metal
is highly dispersed on the support in aggregates so small that many of the atoms
present are on the surface. A proper interpretation of heterogeneously catalyzed
reaction kinetics requires a precise knowledge of this number of active atoms,
exposed on the surface, or, more precisely, of the value of dispersion. The dis-
persion of the active fraction of a catalyst is defined by the ratio between the
number of the active atoms exposed at the surface and the total number of
active atoms present in the catalyst. For systems, where the active fraction is
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present as separate particles, distinguishable from the carrier and characterized
by definite shape, simple relationships can be found among the dispersion, the
surface area and the size of the active particles.

Supports Before talking about catalysts, a short summary of the SAS studies
on supports will be given here. Supports, or carriers, perform many functions,
but the most important is the maintenance of a high surface area for the active
component. High area supports commonly used in catalyst manufacturing are
activated carbon, active alumina, amorphus silica gel, zirconia, clays, titania
and magnesia.

Some of these porous solids have been the object of extensive SAS litera-
ture. For example, I would like to mention all the papers concerning the fractal
properties of some of these systems published in these last few years [19], [20].
However, a description of these results is beyond the aim of the present pa-
per, even if these works can give useful information on the preparation of good
supports.

Instead, I will focus mostly on the fact that SAS can provide useful infor-
mation on the pore structure and surface area measurements of these systems.
Usually, N; adsorption isotherms are widely used to obtain these microstruc-
tural features, but when a microporous structure with closed pores is analyzed,
this technique is incapable of measuring the whole surface of the pores [21]. Gen-
erally, the scattering curves of amorphous silica gel, active alumina and zirconia
display a well-developed high angle region, where the slit-smeared intensities
vary as h=3 (Porod’s law region) [22], [23], [24]. Nevertheless, the study of some
supports, in particular activated carbon with a high surface area, is usually com-
plicated by the presence of a continuous positive deviation from the Porod’s law
of the scattering intensity. This experimental evidence has induced researchers
to develop new approaches [19], [25], perhaps less "traditional”, as far as the
measure of specific surfaces is concerned, but still providing a physical picture
of the porous structure.

Some porous materials, which are sometimes used as supports, are also good
catalysts. A typical example are pillared clays used as cracking catalysts, capa-
ble of converting heavy oil fractions containing large refractory molecules. Pil-
lared clays generally present textural complexity, geometrical constraints and
possible chemical heterogeneity induced by pillaring. As far as surface area and
porosity measurements by physical adsorption of nitrogen are concerned, this
overall complexity introduces difficulties in interpretation. Moreover, suitable
methods of preparation can be used to tailor the pore sizes. However, in spite
of the extensive literature, the contribution, to the knowledge of the texture of
these porous materials given by SAS measurements is very poor [26].

Catalysts One major practical difficulty with an SAS investigation of sup-
ported metal catalysts is that they are three-phase systems. Consequently, the
porous structure of the support can produce a parasitic scattered intensity which
can interfere with the scattering from metal particles.
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Two main approaches have been developed to overcome this difficulty. The
first one was aimed at reducing the magnitude of the void scattering through
some experimental procedures. Gunn [27] found that the scattering from micro-
pores of a silica-alumina cracking catalyst could be eliminated by the sorption of
liquids with electron densities very close to those of the support. This procedure,
known as the pore-maskant method, has been used in some SAXS laboratories
{28], [29], {30], [31], {32], but it is limited by the fact that the imbibition liquids
may affect the catalyst in unknown ways, and it is difficult to assure repro-
ducibility in filling the pores. Nevertheless, this is the only method that can be
used for the study of many metal catalysts, which are mostly supported on ac-
tivated carbons or active aluminas since the scattering intensity of the catalyst,
due to the interference phenomena between pores and metal particles, shows dif-
ferent features from the support intensity. The intensities thus obtained can be
used to determine the average particle sizes and/or the particle size distribution
N(d) (d=characteristic dimension of the particle). Usually, the size distribution
of metallic particles of supported catalysts are log-normal-like [33]. This is re-
lated to the growth of the particle in accordance with a coalescence mechanism.
Basically, there are three methods of evaluating N{(d). The first one assumes
a simple distribution function for N(d) which contains only a few parameters,
which can be evaluated from the measured intensity [34]. The second one de-
termines N(d) by numerical analysis methods without any assumption as to the
form of the distribution [35], [36], [37]. The third one is based on the Fourier
tranform of the scattered intensities [38], [39], [40].

A different procedure was proposed by Somorjai et al. [41]. With this
method which, however, is no longer applied, the porous structure was com-
pressed at very high pressure, in order to convert the catalyst into a two-phase
system. The second method is theoretical, and proposes a model based on some
physical assumptions in order to calculate also the metal-void surface area or
the particle size distribution of the metal phase. The simplest way to proceed,
when interference effects are absent, is to consider as additive the scattering due
to the different phases present in the system. Using this hypothesis, the effect
due to the porous support is subtracted from the total scattering curves after
their normalization on the same scale. After the subtraction the intensities can
provide the same parameters obtained with the pore maskant method.

Although some empirical relationships between the phases had been pro-
posed [42], a significant contribution to the theoretical approach was made by
Brumberger and Goodisman [43], [44], [22]. In 1981 they first proposed, on
the assumption that the introduction of the metal reduces the pore space in
direct proportion to the increase in the metal, a method which is able to de-
termine numerical values for the specific surfaces between metal and support
and metal and vacuum, from only two separate experiments on the catalyst and
the support. This idea has been further developed in some other papers, using
some other physical assumptions {45}, or different functional! parametrizations
of the scattered intensity [46]. Finally, new models based on the concept of
Voronoi cells [47], [48], [49], [50], [23] have been proposed. All this work is very
important: first, because it shows the great potential of SAS in the study of
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catalysts and second, because it makes available, to the researchers involved
in catalysis, a very powerful method of investigating the microstructural prop-
erties of these systems. Usually, the data reported in the literature show a
fairly good agreement between SAS and other techniques {30], [42], [32]. As
expected, the average size of the metallic particles calculated by SAS is larger
than the crystallite size obtained by WAXS. Meanwhile, the agreement with
the chemisorption and TEM results is sometimes strongly related to the type of
catalyst investigated [51], [52], [53].

Finally, I will make some comments about the use of synchrotron radiation,
as a possible improvement of SAS studies on supported metal catalysts. It is
well known that, by tuning the incident photon energy close to the absorption
edge of an element, in our case a metal, its atomic scattering amplitude can
be varied. Since the scattering due to the support does not change apprecia-
bly for small changes in photo energy, the difference between two scattering
intensities measured at a photon energy very near the metal absorption edge,
and at some tens of €V away, can give the scattering due to the metal particles
alone. This kind of approach has already been successfully applied to some Pt
catalysts supported on silica gels and alumina using wide-angle X-ray scattering
measurements [54]. Recently, this approach known as Anomalous Small Angle
X-ray Scattering (SAXS) has been applied to a series of metal supported cata-
lysts containing Au and Pd supported on active carbon and silica and measuring
strategies were optimized in order to obtain reliable results {55, {56]. The re-
sults seem to be very promising since we have been able to detect also small
nanoclusters (size of about 2nm) which remained undetected until now.
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