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28 PROPERTIES OF X-RAYS |char. 1

pation of heat by water-cooling, conduction, radiation, etc., how long would it
take a 100-gm copper target to melt? (Melting point of copper = 1083°C, mean
specific tgat = 6.65 cal/mole/°C, latent heat of fusion = 3,220 eal/mole.)

~18. Assume that the sensitivity of x-ray film is proportional to the mass ab-
gorption coefficient of the silver bromide in the emulsion for the particular wave-
length involved. What, then, is the ratio of film sensitivities to Cu Ka and Mo Ko
radiation?

CHAFPTER 2

THE GEOMETRY OF CRYSTALS

2-1 Introduction. Turning from the propertics of x-rays, we must now
consider the geometry and structure of crystals in order to discover what
there is about crystals in general that enables them to difiract x-rays. We
must also consider particular crystals of various kinds and how the very
large number of crystals found in nature are classified into a relatively
small number of groups. Finally, we will examine the ways in which the
orientation of lines and planes in crystals can be represented in terms of
symbols or in graphical form.

A crystal may be defined as a solid compesed of atoms arranged in a pal-
lern periodic in three dimensions. As such, crystals differ in a fundamenta)
way from gases and liquids because the atomic arrangements in the latter
do not possess the essential requirement of periodicity. Not all solids are
crystalline, however; some are amorphous, like glass, and do not have any
regular interior arrangement of atoms. ‘There is, in fact, no cssential
difference between an amorphous solid and a liquid, and the former is
often referred to as an "undercooled liquid.”

2-2 Lattices. In thinking about crystals, it is often convenient to ig-
nore the actual atoms composing the crystal and their periodic arrange-
ment in space, and to think instead of a set of imaginary points which has
a fixed relation in space to the atoms of the erystal and may be regarded
as o sort of framewotk or skeleton on which the actual erystal is built up.

This set of points can be formed as follows. Imagine space to be divided
by three sets of planes, the planes in each set being parallel and equally
spaced. This division of space will produce a set of cells each identical in
size, shape, and orientation to its neighbors. Fach cell is a paralielepiped,
since its opposite faces are parallel and each face is a parallelogram. The
space-dividing planes will intersect each other in a set of lines (Fig. 2-1),
and these lines in turn intersect in the set of points referred to above. A
set of points so formed has an important property: it constitutes a point
lattice, which is defined as an array of points in space so arranged that each
point has idenfical surroundings. By “identical surroundings”’ we mean
that the lattice of points, when viewed in a particular direction from one
lattice point, would have exactly the same appearance when viewed in the
same direction from any other lattice point.

Since all the cells of the lattice shown in Fig. 2-1 are identical, we may
choose any one, for example the heavily outlined one, ns a unit cell. The
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IM16. 2-1. A point lattice.

size and shape of the unit cell can in turn be described by the three vee-
tors* a, b, and ¢ drawn from one corner of the cell taken as origin (I%g.
2-2). These vectors define the cell and are ealled the crystallographic ares
of the cell. They may also be described in terms of their lenglhs (a, b, ¢)
and the angles between them (o, 8, v). These lengths und angles are the
lattice constanis or lattice parameters of the unit cell.

Note that the vectors &, b, ¢ define, not only the unit ecll, but also the
whole point lattice through the translations provided by these vectors.
In other words, the whole set of points in the lattice can be produced by
repeated action of the vectors a, b, ¢ on one lattice point located at the
origin, or, stated alternatively, the ¢
veelor coordinates of any point in the p
Inttice are Pa, Qb, and Re, where
P, @, and R are whole numbers. It
follows that the arrangement of
points in a point lattice is absolutely
periodic in three dimensions, points
being repeated at regular intervals
along any line one chooses to draw
through the lattice.

Frc. 2-2. A unit cell.

2-3 Crystal systems. In dividing space by three sets of planes, we ean
of course produce unit cells of various shapes, depending on how we ar-
range the planes.  For example, if the planes in the three sets are all equally

* Vectlors are here represented by boldface symbols. The sume symbol in italics
stands for the absolute value of the vector.

2-3) CRYSTAL SYSTEMS 31

TasLg 2-1
CRYSTAL SYSTEMS AND BRavars LATTICES

(The symbel # implies nonequality by reason of symmetry. Accidental equality
may occur, as shown by an example in Sec. 2-4.)

. Brovais Lattice
System :Axlqls lengths and angles l::l‘;zo symbol
Simple P
Cubic Three equal oxes at r_ighl_ongl:s Bod;-canlemd i
a=h=¢c, a=pg=Y=90
- Face-cenlered F
Three oxes at right angles, two equal Simple P
Tetragonal #=h=e, a=p=7=9° Body-centered |
Simple 4
. Three unequal oxes of right angles Body-centered 1
Orthorhomb 9 g gle ycenlere
(thorhombie a#zh#c, a=p=7v=9" Base-centered C
Face-centered F
Rhombohedral Ih:Z a:u:l a:e:,peluc;!h; g‘;'""’ Simple R

Two equal coplanar axes at 120°,
Hexagonal third axls at right angles Simple P
) a=h#ec, a=p=9% 7 =120°

Three unequal oxes,

Monoclinic one pair not at right angles
a#b#c, u:l}’g90°¢p

Simple P

Base—centered C

Three unequal axes, unequally inclined
ond none at right angles Simple P
a#bdc, afpty £90°

Triclinlc

* Also ealled trigonal.

spaced and mutually perpendicular, the unit cell is cubic. In this case the
vectors &, b, ¢ are all equal and at right angles to one another,ora = b = ¢
and « = 8 = v = 90°. By thus giving special values to the axial lengths
and angles, we can produce unit cells of various shapes and therefore
various kinds of point lattices, since the points of the lattice are located at
the cell corners. It turns out that only seven different kinds of cells are
necessary to include all the possible point lattices. These correspond to
the seven crystal systema into which all crystals can be classified. These
systems are listed in Table 2-1.

Seven different point lattices can be obtained simply by putting points
at the corners of the unit cells of the seven crystal systems. However,
there are other arrangements of points which fulfill the requirements of a
point lattice, namely, that each point have identical surroundings. The
French crystallographer Bravais worked on this problem and in 1848
demonstrated that there are fourteen possible point lattices and no more;
this important result is commemorated by our use of the terms Bravais
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Fig, 2-3. The fourteen Bravais lattices.

lattice and point laltice as synonymous. For example, if a point is placed
at the center of each cell of a cubic point lattice, the new array of points

UL I a1 aat [al . ) at L]
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on a cubic unit cell having lattice points at each corner and in the center
of each face. .

The fourteen Bravais lattices are described in Table 2-1 and illustrated
in Fig. 2-3, where the symbols P>, I, I, etc., have the following meanings.
We must first distinguish between simple, or primitive, cells (symbol P
or t) and nonprimitive cells (any other symbol): primitive cells have only
one lattice point per cell while nonprimitive have more than one. A lattice
point in the interior of a cell “belongs” to that cell, while one in a cell face
is shared by two cells and one at a corner is shared by eight. The number
of lattice points per cell is therefore given by

N N Nf N:

i+ 2 + 5 (2-1)
where N; = number of interior points, N; = number of points on faces,
and N. = number of points on corners. Any cell containing lattice points
on the corners only is therefore primitive, while one containing additional
points in the interior or on faces is nonprimitive. The symbols F and F
refer to face-centered and body-centered cells, respectively, while A, B,
and C refer to base-centered cells, centered on one pair of opposite faces
A, B,or C. (The A face is the face defined by the b and c axes, etc.) The
symbol R is used especially for the rhombohedral system. In Fig. 2-3,
axes of equal length in a particular system are given the same symbol to
indicate their equality, e.g., the cubic axes are all marked a, the two equal
tetragonal axes are marked a and the third one ¢, etc.

At first glance, the list of Bravais lattices in Table 2-1 appears incom-
plete.  Why not, for example, a base-centered tetragonal lattice? 'The
full lines in Fig. 2-1 delincate such a cell, centered on the €7 face, but we
sec that the same array of lattice points can be referred to the simple
tetragonal cell shown by dashed lines, so that the hase-centered arranpe-
ment of points is not & new lattice.
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Fic. 2-4. Relation of tetragonal € Fia. 2-5. Extension of lattice points
lattice (fuli lines) to tetragonal P lat-  through space by the unit cell veetors
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The lattice points in a nonprimitive unit cell can be extended through
space by repeated applications of the unit-cell vectors a, b, ¢ just like those
of o primitive cell.  We may regard the lattice points associated with a
unit cell as being transtated one by one or as a group. In either cuse, cquiv-
alent lattice points in adjacent unit cells are separated by one of the vectors
a, b, ¢, wherever these points happen to be located in the cell (Fig. 2-5).

2-4 Symmetry. Both Bravais lattices and the real crystals which are
built. up on them exhibil various kinds of symmetry. A body or structure
i said 1o be symmetrieal when its component parls are arranged in such
hulice, so Lo speak, that certain operations can he performed on the body
which will bring it into coincidence with itself. These are termed symmetry
operations.  Ior example, if a body is symmetrical with respect to a plane
passing threugh it, then reflection of cither half of the body in the plane
as in » mirror will produce a body coineiding with the other half. Thus a
enbe has several planes of symmetry, one of which is shown in Fig. 2-6(a).

There are in all four macroscopic* symmetry operatlions or elements:
reflection, rolation, inversion, and rolation-inversion. A body has n-fold
rotational symmetry about an axis if a rotation of 360°/n brings it into
self-coincidence.  ‘Thus a cube has a -k-fold rotation axis normul to ench
face, a 3-fold axis along cach body dingonal, and 2-fokl axes joining the
centers of opposite edges. Some of these are shown in Fig. 2-6(b) where
the small plane fignres (square, triangle, and ellipse) designate the varions

Ay

/

AN _ N ‘

i (h) e} h

G, 2-6. Some symmetry clements of a cube. (a) Reflection plane. A, be-
comes A, (b) Rotation axes. 4-fold axis: Ay becomes As; 3-Told axis: Ay becomes
Aa; 2-old axis: Ay becomes A, (¢} Inversion center. Ay becomes As. {(d} Rota-
tion-inversion axis.  4-fold axis: A, becomes Ay, inversion center: 4" becomes As.

* G ealled Lo distinguish them from ecertain microscopic symmetry operations
with whieh we are not concerned here. The macroscopic clements can be deduced
from the angles between the faces of a well-developed crystal, without any knowl-
edge of the atom arrangement inside the erystal. I'he microscopie symmetry ele-
ments, on the other hand, depend entirely on atom arrangement, and their pres-
ence cannot be inferred from the external development of the crystal.

2-4) SYMMETRY g

kinds of axes. In general, rotation axes may be 1-, 2-, 3-, 4-, or G-fold. A
1-fold axis indicates no symmetry at all, while a 5-fold axis or one of higher
degree than 6 is impossible, in the sense that unit cells having such sym-
melry cannot be made to fill up space without leaving gaps.

A body has an inversion center if corresponding points of the body are
located at equal distances from the center on a line drawn through the
center. A body having an inversion center will come into coincidence
with itself il every point in the body is inverted, or “reflected,” in the
inversion center. A cube has such a center at the intersection of its bady
diagonals |Fig. 2-6(c)). Finally, a body may have a rotulion-inversion
axis, either 1-, 2-, 3-, 4-, or G-fold. If it has an n-fold rotation-inversion
axis, it can be brought into coincidence with itself by a rotation of 360°/n
about the axis followed by inversion in a center lying on the axis. Figure
2-6(d) illustrates the operation of a 4-fold rotation-inversion axis on a cube.

Now, the possession of a certain minimum set of symmetry elements
is a fundamental property of each crystal system, and one system is dis-
tinguished from another just as much by its symmetry elements as by the
values of its axial lengths and angles. In fact, these are interdependent.
The minimum number of symmetry elemenis possessed by cach erystal
system is listed in Table 2-2. Some crystals may possess more than the
minimum symmetry elements required by the system to which they belong,
but none may have less.

Symmetry operations apply not only to the unit cells shown in Fig. 2-3,
considered merely as geomelric shapes, but also to the point luttices asso-
cinted with them. The latter condition rules out the possibility that the
cubic system, for example, could include a base-centered point lattice,
since such an array of points would not have the minimum set of sym-
metry elements required by the cubic system, namely four 3-fold rotation
axes. Such a lattice would be classified in the tetragonal system, which
has no 3-fold axes and in which accidental equality of the a and ¢ axes is

TasLe 2-2
S8YMMETRY ELEMENTS
System MInimum symmetry elements
Cubic Four 3 - fold rotalion axes
Tetragonal One 4 - fold rotation (or rototion ~ inversion) axis
Orthorhombic Three perpendicular 2 - fold rotation (or rotation = inversion) axes
fhombohedral One 3 -fold rotation {or rotation - inversion) oxis
Hexagonal One &-fold rotation (or rotation - inversion) axis
Monoc|inic One 2-fold rotation (or rotation - Inversion} axis
Triclinic None
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allowed; as mentioned before, however, this lattice is simple, not base-
centered, tetragonal.

Crystals in the rhombohedral (trigonal) system can be referred to either
a rthombohedral or a hexagonal lattice. Appendix 2 gives the relation
between these two lattices and the transformation equations which allow
the Miller indices of a plane (see Sec. 2-6) to he expressed in terms of
either set of axes,

2-6 Primitive and nonprimitive cells. In any point lattice a unit cell
may be chosen in an infinite number of ways and may contain one or more
lattice points per cell. It is important to note that unit cells do not “exist”
as such in a lattice: they are a mental construct and can accordmgly be
chosen at our convenience. The conventional cells shown in Fig. 2-3 are
chosen simply for convenience and to
conform to the symmetry elements E s
of the lattice. ' L

Any of the fourteen Bravais lattices
may be referred to a primitive unit ¢ AN VR 7 S
cell. For example, the face-centered By~ 4
cubic lattice shown in Fig, 2-7 may ! Cgt-~"
he referred to the pritnitive cell indi-
cated by dushed lines. The latter cel] g b ‘,
is thombohedral, its axial angle « is ‘,',’ T
60°, and cach of its axes is 1/4/2 A%= res
tlmt.es the length of t.he axes of the ¥16. 2-7. Face-centered cubie point
cubic cell. Fach cubic cell has four | 44;00 referred to cubic and rhombo-
lattice points associated with it, each  hedral cells.
rhombohedral cell has one, and the
former has, correspondingly, four times the volume of the latter. Never-
theless, it is usually more convenient to use the cubic cell rather than the
rhombohedral one because the former immediately suggests the cubic
symmetry which the lattice actually possesses. Similarly, the other cen-
tered nonprimitive cells listed in Table 2-1 are prel’crrcd to the primitive
cells possible in their respective lattices.

If nonprimitive lattice cells are used, the vector from the origin to any
point in the lattice will now have components which are nonintegral mul-
tiples of the unit-cell vectors a, b, c. The position of any lattice point in a
cell may be given in terms of its coordinates; il the vector from the origin
of the unit cell to the given point has components rxa, yb, z¢, where =, y,
and z are fractions, then the coordinates of the point are z yz. Thus,
point A in Fig. 2-7, taken as the origin, has coordinates 0 0 ¢ while points
B, C, and D, when referred to cubic axes, have coordinates 0 § 1, 3 0 1,
and 3 3 0, respectively. Point E has coordinates } 4 1 and is equivalent
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to point D, being separated from it by the veetor ¢. The coordinates of
equivalent points in different unit cells can always be made identical by
the addition or subtraction of a set of integral coordinates; in this case,
subtraction of 001 from } } 1 (the coordinates of F) gives 3 10 (the
coordinates of D).

Note tlmt the coordinates of a hody-centered point, for example, are
always 3 3 3 no matter whether the unit cell is cubic, tetragonal, or ortho-
lhomb:c, and whatever its size. The coordinates of a point position, such
as 3 3 %, may also be regarded as an operator which, when “applied” to a
point at the origin, will move or translate it to the position 3 3 1 t
final position being obtained by simple addition of the operator 1 13
and the original position 000. In this sense, the positions 000, 4 1 1
are called the “body-centering translations,” since they will produce the
two point positions characteristic of a body-centered cell when applied to
a point at the origin. Similarly, the four point positions characteristic of a
face-centered cell, namely 000, 03 1, 201, and 3 10, are called the
face-centering translations.  The base-centering translations depend on
which pair of opposite faces are centered; if centered on the € face, for

example, they are 000, 1 3 0.

2-8 Lattice directions and planes. The direction of any line in a lat-
tice may be described by first drawing a line through the origin parallel
to the given line and then giving the coordinates of any point on the line
through the origin. Let the line pass through the origin of the unit cell
and any point having coordinates u » w, where these numbers are not neces-
sarily integral. (This line will also pass through the points 2u 2v 2w,
3u dv 3w, ete.) Then [www], written in square brackets, are the indices
of the direction of the line. They are also the indices of any line parallel
to the given line, since the lattice is infinite and the origin may be taken
at any point. Whatever the values of u, », w, they are always converted

to a set of smallest integers by multi- .
1233

plication or division throughout: thus,
13191 1112], and [224] all represent,
the same direction, but [112] is the
preferred form. Negative indices are
written with a bar over the number,
e.g., [ivw]. Direction indices are illus-
trated in ig. 2-8,

Dircetions related hy symmetry are
called directions of a form, and a set
of these are represented by the indices
of one of them enclosed in angular
brackets; for example, the four body

)

\/—gll

(Y]

\

fU“”/[leul
o

(o

I'ig. 2-8.
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(10
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Indices of directions.
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diagonals of a cube, [111], [1T1], [1T1], and [111], may all be represented
by the symbaol (111}.

The orientation of planes in a lattice may also be represented sym-
holically, according to o system popularized by the English crystallographer
Miller. In the general case, the given plane will be tilted with respect to
the crystallographic axes, and, since these axes form a convenient frame
of reference, we might describe the orientation of the plane by giving the
aclhual distances, measured from the origin, at which it intercepts the

three axes. Better still, by expressing these distances as fractions of the”

axial lengths, we can obtain numbers which are independent of the par-
ticubar axial lengths invoived in the given Iattice. But a difficulty then
arises when the given plane is parailel to a certain crystallographie axis,
beenuse such a plane does not intercept that axis, ie., its “intercept” can
only be described as “infinity.” To avoid the introduction of infinity into
the deseription of plane orientation, we can use the reciprocal of the frac-
tional intercept, this reciprocal being zero when the plane and axis are
parallel.  We thus arrive at a workable symbolism for the orientation of a
plane in a lattice, the Mauller indices, which are defined as the reciprocals of
the fractional intercepts which the plane makes with the crystallographic axes.
¥or example, if the Miller indices of a plane are (&), written in paren-
theses, then the plane makes fractional intercepts of 1/h, 1/&, 1/1 with the
axcs, and, if the axial lengths are a, b, ¢, the plune makes actual intercepts
of a/h, b/k, ¢/, as shown in Fig. 2-9(a). Parallel to any plane in any lat-
tice, there is a whole set of parallel equidistant planes, one of which passes
through the origin; the Miller indices (hkl) usually refer to that plane in
the set which is nearest the origin, although they may be taken as referring
to any other plane in the set or to the whole set taken together.

We may determine the Miller indices of the plane shown in Fig. 2-9(b)
as follows:

e ol -3
1A 2A 3A 4A

(n} )

Fis. 2-9.  Plane designation by Miller indices.

o=ty aeddbon v e e

b e ¥ bl Ak T AR TR =

Axind lengths 4A 8A 3A
Intercept lengths 2A GA 3A
¥'ractional intercepts 1 3 1
e 2 4 1
Miller indices 6 3 3

Miller indices are always cleared of fractions, as shown above. As stated
earlier, if a plane is parallel to n given axis, its fractional intercept on that
axis is taken as infinity and the corresponding Miller index is zero. If a
plane cuts a negative axis, the corresponding index is negative and is writ-
ten with a bar over it. Planes whose indices are the negatives of one
another are parallel and lie on opposite sides of the origin, e.g., (210) and
(210). 'The planes (nk nk nl) are paraliel to the planes (hk!) and have 1/n
the spacing. The same plane may belong to two different sets, the Miller
indices of one set being multiples of those of the other; thus the same plane
belongs to the (210) set and the (420) set, and, in fact, the planes of the
(210) set form every second plane in the (420) set. In the cubic system,
it is convenient to remember that a direction [hkl] is always perpendicular
to a plane (hkl) of the same indices, but this is not generally true in other
systems. Further familiarity with’ Miller indices can be gained from a
study of Fig. 2-10.

A slightly different system of plane mdexlng is used in the hexagonal
system. The unit cell of a hexagonal lattice is defined by two equal and
coplanar vectors &, and ag, at 120° to one another, and a third axis c at
right angles [Fig. 2-11(a)]. The complete lattice is built up, as usual, by

c

m\a‘mu‘ il
Al

(110)

el u\|\|\HHI‘LJ.\HHHMH

i i

=

\

{110} (1) (102)
Fic. 2-10. Miller indices of Inttice planes.
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Fic. 2-11. (a) The hexagona! unit cell and (b) indices of planes and directions,

repeated translations of the points at the unit cell corners by the vectors
a;, 82, ¢. Some of the points so generated are shown in the figure, at the
ends of dashed lines, in order to exhibit the hexagonal symmetry of the
lattice, which has a 6-fold rotation axis parallel to ¢. The third axis aj,
lying in the basal plane of the hexagonal prism, is so symmetrically related
to a, and a; that it is often used in conjunction with the other two. Thus
the indices of a plane in the hexagonal system, called Miller-Bravais
indices, refer to four axes and are written (hkil). The index 1 is the recipro-
cal of the fractional intercept on the a; axis. Since the intercepts of a
plane on a; and a, determine its intercept on a3, the value of ¢ depends on
the values of  and k. The relation is

A4k = —1 (2-2)

Since 7 is determined by h and k, it is sometimes replaced by a dot and
the plane symbol written (kk-1). However, this usage defeats the pur-
pose for which Miller-Bravais indices were devised, namely, to give similar
indices to similar planes. For example, the side planes of the hexagonal
prism in Fig. 2-11(b) are sll similar and symmetrically located, and their
relationship is clearly shown in their full Miller-Bravais symbols: (1010),
(0110), (1100), (1010), (0110), (1700). On the other hand, the abbreviated
symbols of these planes, (10-0), (01-0), (11-0), (i0-0), (01-0), (1T-0)
do not immediately suggest this relationship.,

Directions in a hexagonal lattice are best expressed in terms of the three
basic vectors a,, a,, and ¢. Figure 2-11(b) shows several examples of
both plane and direction indices. (Another system, involving four indices,
is sometimes used to designate directions. The required direction is broken

up into four component vectors, parallel to a;, a2, 43, and ¢ and so chosen
that tha third indav fo tha sameablon oF 4o e £ 4L . 0. 4 o
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[100], for example, becomes [2110], [210] becomes {1010}, [010] becomes
(1210}, ete)

In any crystal system there are sets of equivalent lattice planes related
by symmetry. These are called planes of a form, and the indices of any
one plane, enclosed in braces {hkl], stand for the whole set. In general,
planes of a form have the same spacing buL‘difTeren_t Miller indices. For
example, the faces of a cube, (100), (010), (100), (010), (001), and (00T1),
are planes of the form {100), since all of them may be generated from
any one by operation of the 4-fold rotation axes perpendicular to the cube
faces. In the tetragonal system, however, only the planes (100), (010),
(100), and (010) belong to the form {100}; the other two planes, (001)
and {001), belong to the different form {001}; the first four planes men-
{ioned are related by a 4-fold axis and the last two by a 2-fold axis.*

Planes of a zone are planes which are all parallel to one line, called the
zone aris, and the zone, ie., the set of planes, is specified hy giving the

indices of the zone axis. Buch planes [o1]

may have quite different indices and § zone (1) @10y
spacings, the only requirement being (210) 1 8= [/
their parallelism to a line. Figure (109

2-12 shows some examples. I the . /4

axis of a zone has indices [uvw], then ird E”

any plane belongs to that zone whose

indices (hk!) satisly the relation st 4\

hu 4 kv 4+ hw = 0. (2-3)

(A proof of this relation is given in b
Section 3 of Appendix 15.) Any two yisest
nonparallel planes are planes of a zone el
since they are both parallel to their La!
i interseetion. I their indices )
fine ?rlsnlte'.seiltm}nk 1) t}l(“l:; :T:e in- Fra. 212, All shaded planes in the
‘;Ye { llr lt'}[).‘m (he 2'2[1'1011;](.'}“1‘6; piven cubic latlice shown are planes of the
aiees o 1e1r Zone axis { !

zone [001],
by the relations

W o= k1l2 e ]l"zll,
v = lhy — Lhy, (2-4)
w = hky — haky.

* Certain important erystal planes are often referred to by name wit]un?t any
mention of their Miller indices. Thus, planes of the form {111} in the cubic sys-
tem are often called octahedral planes, since these are the bounding planes of an
octahedron. In the hexagonal system, the (0001) plane is called the basal plane,
planes of the form {1010} are called prismatic planes, and planes of the form {1011

are called pyramidal planes.

g
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Fra. 2-13. Two-dimensional Iattice, showing that hnes of lowest finlices have
the greatest spacing and the greatest density of lattice points.

The various sets of planes in & lattice have various values of interplanar
spacing.  The planes of large spacing have low indices and pass through a
high density of laltice points, whereas the reverse is {rue of planes of small
spacing.  Figure 213 illustrates this for o lwo-dimensional latlice, and
it is equally true in three dimensions. The interplanar spacing ., meas-
ured at right angles {o the planes, is a function both of the plane indices
(hkD) and the lattice constants (u, b, ¢, «, 8, ¥). The exact relation de-
pends on the crystal system involved and for the cubic system takes on
the refatively simple form

a
(Cubie) dyy = —g=——=—; (2-5)

In the tetragonal system the spacing equation naturally involves both
a and ¢ since these are not generally equal:
a

VIEEFIET B (D)

(2-6)

(Tetragonal)  dpr =
Interplanar spacing equations for all systems are given in Appendix 1.

92-7 Crystal structure. So far we have discussed topies from the ficld
of mathematical {geometrical) crystullography and have said practically
nothing aboul actual erystals and the atoms of which they are compaosed.
In fact, sll of the above was well known long before the discovery of x-ray
diffraction, i.e., long before there was any certain knowledge of the interior
urrangements of atoms in crystals.

It is now time to describe the structure of some actual erystals and to
relate this structure to the point lattices, crystal systems, and symmetry

&-1] Lol dadhis a4l whea olh.e R

elements discussed above. The cardi-
nal principle of crystal structure is
that the aloms of ‘a crystal are set in
space cither on the potnis of a Bravais
lattice or in some fized relation o those
points. It follows from this that the
atoms of & crystal will be arranged BCC Fee
periodically in three dimensions and Fie. 2- .

. ) 16, 2-14. Structures of some com-
that this arrangement of atoms will ;04 metals. DBody-centered cubic: a-
exhibit many of-the properties of & Fe, Cr, Mo, V, etc.; face-centered
Bravais lattice, in particular many of cubic: v-Fe, Cu, Pb, Nj, ete.
its symmetry elements.

The simplest crystals one can imagine are those formed by placing atoms
of the same kind on the points of a Bravais lattice. Not all such crystals
exist but, fortunately for metallurgists, many metals erystallize in this
simple fashion, and Fig. 2-14 shows two common structures based on the
body-centered cubic (BCC) and face-centered cubic (FCC) lattices. The
former has two atoms per unit cell and the latter four, as we can find by
rewriting Eq. (2-1) in terms of the number of atoms, rather than lattice
puints, per cell and applying it to the unit cells shown.

The next degree of eomplexity is encountered when two or more atoms
of the same kind are “associated with' each point of a Bravais lattice, as
exemplified by the hexagonal close-packed (HCP) structure common to
many metals. This structure is simple hexagonal and is illustrated in
Fig. 2-15. There are two atoms per unit cell, as shown in (a), one at 000
and the other at 23 3 (or at 4 % 3, which is an equivalent position).
Figure 2-15(b) shows the same structure with the origin of the unit cell
shifted so that the point 100 in the new cell is midway between the atoms
at100and % } 1 in (a), the nine atoms shown in (a) corresponding to the
nine atoms marked with an X in (b). The “association” of pairs of atoms
with the points of a simple hexagonal Bravais lattice is suggested by the
dashed lines in (b). Note, however, that the atoms of a close-packed
hexagonal structure do not themselves form a point lattice, the surround-
ings of an atom at 000 being different from those of an atom at 1 §.
Figure 2-15(c) shows still another representation of the HCP structure:
the three atoms in the interior of the hexagonal prism are directly above
the centers of alternate triangles in the base and, if repeated through space
hy the vectors a; and ag, would also form a hexagonal array just like
the atoms in the layers above and below.

The HCP structure is so called because it is one of the two ways in
which spheres can be packed together in space with the greatest possible
density and still have a periodic arrangement. Such an arrangement of
spheres in contact is shown in Fig. 2-15(d). If these spheres are regarded




CHAPTI:R 3
DIFFRACTION I: THE DIRECTIONS OF DIFFRACTED BEAMS

3-1 Introduction. After our preliminary survey of the physics of x-rays
and the geometry of crystals, we can now proceed to fit the two together
and discuss the phenomenon of x-ray diffraction, which is an interaction
of the two. Historically, this is exactly the way this field of science de-
veloped. For many years, mineralogists and crystallographers had accumu-
lated knowledge about crystals, chiefty by measurement of interfacial
angles, chemical analysis, and determination of physical properties. There
was little knowledge of interior structure, however, ‘although some very
shrewd guesses had been made, namely, that crystals were built up by
periodic repetition of some unit, probably an atom or molecule, and that
these units were situated some 1 or 2A apart. On the other hand, there
were indications, but only indications, that x-rays might be electromag-
netic waves about 1 or 2A in wavelength. In addition, the phenomenon
of diffiraction was well understood, and it was known that diffraction, as
of visible light by a ruled grating, occurred whenever wave motion en-
countered a set of regularly spaced scattering objects, provided that the
wavelength of the wave motion was of the same order of magnitude as the
repeat distance between the scattering centers.

Such was the state of knowledge in 1912 when the German physicist
von Laue took up the problem. He reasoned that, if crystals were com-
posed of regulurly spaced atoms which might act as scattering centers for
x-rays, and if x-rays were electromagnetic waves of wavelength about
equal to the interatomic distance in crystals, then it should be possible to
difiract x-rays by means of crystals. Under his direction, experiments to
test this hypothesis were carried out: a crystal of copper sulfate was set
up in the path of a narrow beam of x-rays and a photographic plate was
arranged to record the presence of diffracted beams, if any. The very
first experiment was successful and showed without doubt that x-rays
were diffracted by the crystal out of the primary beam to form a pattern
of spots on the photographic plate. These experiments proved, at one
and the same time, the wave nature of x-rays and the periodicity of the
arrangement of atoms within a crystal. Hindsight is always easy and
these ideas appear quite simple to us now, when vicwed from the vantage
point of more than forty years’ development of the subject, but they were
not at all obvious in 1912, and von Laue's hypothesis and its experimental

verification must stand as a great intellectual achievement.
7Q
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The account of these experiments was read with greal interest by two
English physicists, W. H. Bragg and his son W. L, Bragg., The latter,
although only a young student at the time—it was still the year 1912-—
successfully analyzed the Laue experiment and was able to express the
necessary conditions for difiraction in a somewhat simpler mathematical
form than that used by von Lauc. He also attacked the problem of erystal
structure with the new tool of x-ray diffraction and, in the following year,
solved the structures of NaCl, KCl, KBr, and KI, all of which have the
NaCl structure; these were the first complete crystal-structure determina-
tions ever made.

3-2 Diffraction. Diffraction is due cssentially to the existence of cer-
tain phase relations between two or more waves, and it is advisable, at
the start, to get a clear notion of what is meant by phase relations. Con-
sider a beam of x-rays, such as beam 1 in Fig. 3-1, proceeding from left to
right. For convenience only, this beam is assumed to be plane-polarized
in order that we may draw the electric field vector E always in one plane.
We may imagine this beam to be composed of two equal parts, ray 2 and
ray 3, each of half the amplitude of beam 1. These two rays, on the wave
front AA’, are said to be completely in phase or in step; i.e., their electric-
field vectors have the same magnitude and direction at the same instant
at any point z measured along the direction of propagation of the wave.
A wave front is a surface perpendicular to this direction of propagation.

A 1

A
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Fie. 3-1.  Effect of path difference on relative phase.
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Now consider an imaginary experiment, in which ray 3 is allowed to
continue in a straight line but ray 2 is diverted by some means into a
curved path before rejoining ray 8. What is the situation on the wave
front BB’ where both rays are proceeding in the original direction? On
this front, the clectric vector of ray 2 has its maximum value at the instant
shown, but that of ray 3 is zero. The two ruys are therefore out of phase.
If we add these two imaginary components of the beam together, we find
that beam 1 now has the form shown in the upper right of the drawing.
If the amplitudes of rays 2 and 3 are each 1 unit, then the amplitude of
beam 1 at the left is 2 units and that of beam 1 at the right is 1.4 units, if
1 sinusoidal variation of E with z is assumed.

Two conclusions may be drawn from this illustration:

(1) Differences in the length of the path traveled lead to differences in
phase.

(2) The introduction of phase differences produces i change in ampli-
tude.

The greater the path difference, the greater the difference in phase, since
the puth difference, measured in wavelengths, exactly equals the phase
difference, also measured in wavelengths. If the diverted path of ray 2 in
Fig. 3-1 were a quarter wavelength longer than shown, the phase differ-
ence would be a half wavelength.  The two rays would then be completely
out of phase on the wave frout BB’ and beyoud, and they would therefore
annul each other, since at any point their electric vectors would be either
both zerv or of the same magnitude and opposite in direction. If the dif-
fercnce in path length were made three quarters of a wavelength greater
than shown, the two rays would be one complete wavelenglh out of phase,
a condition indistinguishable from being completely in phase since in both
cases the two waves would combine to form a beam of amplitude 2 units,
just like the original beam. We may conclude that two rays are cotn-
pletely in phase whenever their path lengths differ either by zero or by a
whole number of wavelengths.
¢ Differences in the path length of various rays arise quite naturally when
we consider how a crystal diffracts x-rays. Figure 3-2 shows a section of a
crystal, its atoms arranged on a set of parallel planes A B C D, ...,
normal to the plane of the drawing and spaced a distance d’ apart.  Assume
that a beam of perfectly parallel, perfectly monochromatic x-rays of wave-
fength A s incident on this crystal at an angle 8, called the Bragg angle,
where 8 is measured between the inecident beam and the particular erystal
planes under consideration.

We wish to know whether this incident heam of x-rays will be dilfracted
by the erystal and, if so, under what conditions. A diffracted beam may be
defined as a beam composed of a large number of scaltered rays mutually rein-
Jorcing onc another. Dillraction is, thercfore, essentially a seatlering phe-
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1 plane normal . \a', 24

Fia, 3-2,  Diffraction of x-ruys by a erystal.

nomenon and not one involving any “new” kind of interaction between
x-rays and atoms. We saw in Sce. 1-5 that aloms scatter incident x-rays
in all directions, and we shall sce presently that in some of these directions
the sealtered heams will be completely in phase and so reinforee each other
to form diffracted beams.

For the particular condilions described by Fig. 3-2 the only diffracted
beam formed is that shown, namecly one making an angle 8 of reflection*
equal to the angle 8 of incidence. We will show this, first, for one plane of
atoms and, sccond, for all the atoms making up the crystal. Consider
rays 1 and la in the incident beam; they strike atoms K and P in the first
plane of atoms and are scattered in all directions. Only in’the directions
1’ and 1a’, however, are these scattered beams completely in phase and so

" capable of reinforcing one another; they do so hecause the difference in

their length of path between the wave fronts XX’ and YY" is equal to
QK — PR = PK cos6 — PK cos 8 = 0.

Similarly, the rays scattered by all the atoms in the first plane in a diree-
tion parallel to 1’ are in phase and add their contributions to the diffracted
beam. This will be true of all the planes separately, and it remains to find
the condition for reinforcement of rays scattered by atoms in different
planes. Rays 1 and 2, for example, are scattered by atoms K and L, and

* Note that these angles are defined differently in x-ray diffraction and in gen-
eral optics. In the latter, the angles of incidence and reflection are the angles
which the incident and reflected beams make with the normal to the reflecting
surface,
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the path difference for rays 1K1’ and 2L2' is
ML+ LN = d’sing + &' sin@.

This is also the path difference for the overlapping rays scattered by 8 and
P in the direction shown, since in this direction there is no path difference
between rays scattered by S and L or P and K. Secattered rays 1’ and 2'
~ will be completely in phase if this path difference is equal to a whole num-

“ber n of wavelengths, or if
nh = 2d' sin 6. (3-1)

This relation was first formulated by W. L. Bragg and is known as the
Bragg law. It states the essential condition which must be met if diffrac-
tion is to occur. n is called the order of reflection; it may take on any
integral value consistent with sin 8 not exceeding unity and is equal to
the number of wavelengths in the path difference between rays scattered
by adjacent planes. Therefore, for fixed values of A and d’, there may be
several angles of incidence 8y, 6, 6; ... at which diffraction may occur,
corresponding to n =1, 2, 3, .... In a first-order reflection (n = 1),
the scattered rays 1’ and 2’ of Fig. 3-2 would differ in length of path (and
in phase) by one wavelength, rays 1’ and 3’ by two wavelengths, rays 1’
and 4’ by three wavelengths, and so on throughout the crystal. The rays
scattered by all the atoms in all the planes are therefore completely in
phase and reinforce one another (constructive interference) to form a dif-
fracted beam in the direction shown. In all other directions of space the
scattered beams are out of phase and annul one another (destructive inter-
ference). The diffracted beam is rather strong compared to the sum of all
the rays scattered in the same direction, simply because of the reinforce-
ment which occurs,* but extremely weak compared to the incident beam
since the atoms of a crystal scatter only a small fraction of the energy
incident on them.

* If the scattering atoms were not arranged in a regular, periodic fashion but in
some independent manner, then the rays scattered by them would have a random
phrse relationship to one another. In other words, there would be an equal proba-
bility of the phnse difference between any two seattered rays having any value be-
tween zero and one wavelength. Neither constructive nor destructive interference
takes place under these conditions, and the intensity of the beam scattered in a
particular direction iz simply the sum of the intensities of all the rays scattered in
that direction. I there are N scattered rays each of amplitude A and therefore of
intensity A? in arbitrary units, then the intensity of the scattered beam is NAZ,
On the other hand, if the rays are seattered by the atoms of a erystal in a direction
satisfying the Bragg law, then they are all in phase and the amplitude of the scat-
tered beam is N times the amplitude A of each scattered ray, or NA. The inten-
sity of the scattered benm is therefore N24?, or N times as large as if reinforcement
had not occurred. Since N is very large for the scattering of x-rays from even a
small bit of crystal, the role of reinforcement in producing a strong diffracted beam
is considerable.
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We have here regarded a diffracted beam as being built up of rays scat-
tered by successive planes of atoms within the erystal. It would be a
mistake to assume, however, that a single plane of atoms A would diffract
x-rays just as the complete crystal does but less strongly.  Actually, the
single plane of atoms would produce, not only the beam in the direction 1’
as the complete crystal does, but also additional beams in other directions,
some of them not confined to the plane of the drawing. These additional
heams do not exist in the diffraction from the complete erystal precisely
because the atoms in the other planes seatter beams which destructively
interfere with those seattered by the atoms in plane A, except in the divee-
tion 1’. »

At first glance, the dilfraction of x-rays by erystals and the reflection of
visible light by mirrors appear very similar, since in both phenomena the
angle of incidence is cqual to the angle of reflection. It scems that we
might regard the planes of atoms as little mirrors which “yeflect” the
x-rays. Diffraction and reflection, however, differ fundamentally in at
least three aspects:

(1} The diffracted beam from a crystal is built up of rays seattered by
all the atoms of the crystal which lie in the path of the incident beam.
The reflection of visible light takes place in a thin surface layer only.

(2) The diffraction of monochromatic x-rays takes place only at those
particular angles of incidence which satisfy the Bragg law. The reflection
of visible light takes place at any angle of incidence.

(3) The reflection of visible light by a good mirror is almost 100 pereent
efficient. The intensity of a dilfracted x-ray beam is extremely small com-
pared to that of the incident beam.

Despite these differences, we often speak of “reflecting planes’ and

“reflected beams” when we really mean dilfracting planes and diffracted
beams. This is common usage and, from now on, we will frequently use
these terms without quotation marks but with the tacit understanding that
we really mean diffraction and not reflection.*
» To sum up, dilfraction is essentially a scattering phenomenon in which
a large number of atoms cooperate. Since the atoms are arranged period-
ically on a lattice, the rays seattered by them have definite phase relations
between them; these phase relations are such that destructive interference
occurs in most directions of scattering, but in a few directions constructive
interference takes place and diffracted beams are formed. The two essen-
tials are a wave motion capable of interference (x-rays) and a set of periodi-
cally arranged scattering centers (the atoms of a crystal). ¢

* ¥or the sake of completeness, it should he mentioned that x-rays ean be totally
reflected by a solid surface, just like visible light by a mirror, but only at very
small angles of incidence (below ahout one degree). This phenomenon is of little
practical tinportance in x-ray metallography and need not conecern us further.
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3-3 The Bragg law. Two geometrical facts are worth remembering:

(1) The incident beam, the normal to the reflecting plane, and the dif-
fracted beam are always coplanar.

(2) The angle between the diffracted beam and the transmitled beam
is always 20. This is known as the dilfraction angle, and it is this angle,
rather than 8, which is usually measured experimentally.

As previously stated, diffraction in general oceurs only when the wave-
length of the wave motion is of the same order of magnitude as the repeat
distance hetween scattering centers.  This requirement follows from the
Bragg law. Since sin § cannot exceed unily, we may write

nA

— =ginf < I 3-2)

2l
‘Fherefore, nk must be less than 24, For diffraction, the smallest valuc of
nis 1. (n = O corresponds to the beam diffracted in the same direction
as the transmitted beam. 1t cannot be observed.)  Therefore the condi-
tion for dilfeaction at any observable angle 28 is

A< 24 (3-3)

For most sets of erystal planes d’ is of the order of 3A or less, which means
that A cannot exceed about 6A. A erystal could not possibly diffract ultra-
violet radiation, for example, of wavelength about 500A. On the other
hand, if A is very small, the diffraction angles are too small to be con-
veniently measured.
The Bragg law may be written in the form
d
A= 2—sinb. (3-4)

n
Sinee the coefficient of X is now unity, we can consider a reflection of any
order as a first-order reflection from planes, real or fictitious, spaced at a
distance 1/n of the previous spacing: This turns out to be a real con-
venience, so we set d = d’/n and write the Bragg law in the form

A =2dsin6 |- (3-5)

This form will be used throughout this book.

This usage is illustrated by Fig. 3-3. Consider the second-order 100 re-
ficction™® shown in {a). Since it is second-order, the path difference ABC
between rays scattered by adjacent (100) planes must be two whole wave-

* This means the reflection from the (100) planes. Conventionally, the Mitler

indices of a reflecting plane Akl, written without parentheses, stand for the re-
1teqd heam from the plane (hkl).

Fats
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Fic. 3-3. Equivalence of (a) a second-order 100 refleetion and (h) a first-order
200 reflection.

lengths. If there is no real plane of atoms between the (100) planes, we
can always imagine one as in Fig. 3-3(b), where the dotted plane midway
between the (100) planes forms part of the (200) set of plunes. For the
same reflection as in (a), the path difference DEF between rays scattered
by adjncent (200) pianes is now only one whole wavelength, so that this
reflection can properly be called a first-order 200 reflection. Similarly,
300, 400, ete., reflections are equivalent to reflections of the third, fourth,
ete., orders from the (100) planes. In gencral, an ath-order reflection
from (hkl) planes of spacing 4" may be considered as a first-order reflection
from ihe (nh nk nl) planes of spacing d = d’'/n. Note that this convention
is in accord with the definition of Miller indices since (nh nk nl) are the
Miller indices of planes parallel to the (hk) planes but with 1/ the spacing
of the latter.

3-4 X-ray spectroscopy. Lxperimentally, the Bragg law can be uti-
lized in two ways. DBy using x-rays of known wavelength A and measuring
8, we can determine the spacing d of various planes in a cryslal: this is
struelure analysis and is the subject,
in one way or another, of the greater
part of this book. Alternatively, we
can use a erystal with planes of known
spucing d, measure 8, and thus deter-
mine the wavelength M of the radia-
tion used: this is z-ray speclroscopy.

The essential features of an x-ray
spectrometer are shown in Fig. 3-4.
X-rays from the tube 7' are incident
on a crystal ¢ which may be set at
any desired angle to the incident ¥ia. 3-4.  The x-ray snectromster.




APPENDIX 15
THE RECIPROCAL LATTICE

A156-1 Introduction. All the diffraction phenomena described in this
book have been discussed in terms of the Bragg law. This simple law,
admirable for its very simplicity, is in fact applicable to a very wide range
of phenomena and is all that is needed for an understanding of a great
many applications of x-ray diffraction. Yet there are diffraction effects
which the Bragg law is totally unable to explain, notably those involving
diffuse scattering at non-Bragg zngles, and these effects demand a more
general theory of diffraction for their explanation. The reciprocal Iattice
provides the framework for such a theory. This powerful concept was
introduced into the field of diffraction by the German physicist Ewald in
1921 and has since become an indispensable tool in the solution of many
problems.

Although the reciprocal lattice may at first appear rather abstract or
artificial, the time spent in grasping its essential features is time well spent,
because the reciprocal-lattice theory of diffraction, being general, is ap-
plicable to all difiraction phenomena from the simplest to the most intri-
cate. Familiarity with the reciprocal lattice will therefore not only provide
the student with the necessary key to complex diffraction effects but will
deepen his understanding of even the simplest.

A15-2 Vector multiplication. Since the reciprocal lattice is best for-
mulated in terms of vectors, we shall first review a few theorems of vector
algebra, namely, those involving the multiplication of vector quantities.

The scalar product (or dot product) of two vectors* & and b, written
a-b, is a scalar quantity equal in magnitude to the product of the absolute
values of the two vectors and the cosine of the angle « between them, or

a-b = abcos a.

Geometrically, Fig. A15-1 shows that the scalar product of two vectors
may be regarded as the product of the length of one vector and the projec-
tion of the other upon the first. If one of the vectors, say a, is a unit vector
(a vector of unit length), then a-b gives immediately the length of the pro-
jection of b on a. The scalar product of sums or differences of vectors is

formed simply by term-by-term multiplication:
(a4 b)-(c —d) = (a-¢) — (&-d) + (b-c) — (b-d).

* Dold-face symbols stand for vectors. The same symbol in italic stands for
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Fra. A15-1. Scalar product of tuwo

vect: Fia. A15-2. Veetor produet of twe

vectors.,

The order of multiplication is of no importanee; i.e
P ey

a-b=b-a.

lhl;! .um:!or prodicct (or cross product) of two veetors a and b, writien
a X b, is @ vector ¢ at vight angles Lo the plane of a and b, and equal in mag-
n.ltude to the product of the absolute values of the two veetors and the
sme of the angle « hetween them, or ’

t=aXh,
¢ = absin .

The magnitude of ¢ is simply the area of the parallelogram constructed
ona and b, as suggested hy Fig. A15-2. The direction of ¢ is that in whicl
a right-hand screw would move if rotated in such a way as to bring a into b
It follows from this that the direction of the vector product ¢ is river ] f
the order of multiplication is reversed, or that .

aXb=—(bxa)

A16-3 The reciprocal lattice. Corresponding to any crystal lattice, we
can co?struct a reciprocal lattice, so called because many of its propel'"tivs
are reciprocal to those of the crystal lattice. Let the crystal lattice h'wo‘q
u_mt cell defined by the vectors 4y, ag, and a3. Then the correspoﬁ:'iin' re-
ciprocal lattice has a unit cell defined by the vectors by, by, and b,, w?wro

b, =%(&2Xﬂa). (n
b, = ! (a3 X ay)

? , (2)
by = l(ﬂl X ay)

7 ' (3)

and V is the vthme of the crystal unit cell. This way of defining the vec-
tors l.)., bs, by in term.s of the vectors a,, a,, a, gives the reciprocal lattice
certain useful properties which we will now investioate
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§ by

Fra. A16-3. Loeation of the peviprocul-lattice axis ba.

Consider the general triclinie unit. cell shown in Fig. A15-3. The recip-
rocal-laitice axis by is, according to Eq. (3), normal to the plane of a, anid
4y, #s shown,  Its length is given by
lay X ag

‘.'

,]=

(area of parallelogram 0ACB)
(area of parallelogram 0ACB)(height of cell)

1 1

or dmll

since OF, the projection of ag on by, is equal Lo the height of the eell, which
in tarn is simply the spacing d of the (001) planes of the erystal lattice.
Similarly, we find that the reciprocal lattice axes by and by are normal to
the (100) and (010) planes, respectively, of the crystal lattice, and are equal
in length to the reciprocals of the spacings of these plancs.

By extension, similar relations are found for all the planes of the erystal
lattice. The whole reciprocal lattice is built up by repeated translations
of the unit cell by the vectors by, by, bs. This produces an arruy of points
each of which is labeled with its coordinates in terms of the basic vectors.
Thus, the point at the end of the by veetor is labeled 100, that at the end of
the by vector 010, ete. This extended reciprocal lattice hus the following
propertics:

(1) A veetor Huw drawn from the origin of the reciprocal lattice to any
point in it having coordinates hkl is perpendicular to the plane in the crys-
tal attice whose Miller indices are htl, This vector is given in terms of its
coordinates by the expression

HM‘[ = }lb] + I\'bg + lb;;.

(2) ‘The length of the vector Hip is eqqual to the reciprocal of the spacing

d of the (hkl) planes, or
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based on mutually perpendicular vectors, i.e., cubic, tetragonal, or ortho-
rhombie. For such crystals, by, by, and by are pa.:_‘allel, respectively, to
a,, 8, and ag, while by, by, and b are simply the _reclprocals .of ay, as, m"ul
az. In Figs. A15—4 and A15-5, four cells of the reciprocal lattice are sho“'n,
together with two H vectors in each case. B}.' means of the scalz_as shown,
it may be verified that each H vector is equal in length to the I‘eClTpl"O(‘a;] of
the spacing of the corresponding planes and norrrtal tn' them. Note t a;
reciprocal lattice points such as nh, nk, nl, where_n is an integer, colrrespon-
to planes parallel to (hkl) and having 1/n their spacing. Thu's, Hsqp is
perpendicular to (220} planes and the.refore parallel to H’!n‘ since {110)
and (220) are parallel, but Hay is twice as long as Hyye since the (220)
planes have half the spacing of the (110) planes. .

Other useful relations between the crystal and l:e0|procal vectors follow
from Eqgs. (1) through (3). Since b;, for example, is normal to both a, and
a,, its dot produet with either one of these veetors is zero, or

b3'ﬂl = b_';‘ag = {.
The dot. product of by and a3, however, is unity, since (see Fig. A15-3)

bs-ag = (b3} (projection of a; on bg)

()or

= 1.

In general,
& an-b, =1, ifm=n, (4)

=0, ifm=n (5)

The fact that Hau is normal to (Rkl) and Hyy is the reciprocal of du
may be proved as follows. Let ABC of Fig. A15-6 be part of the plane
nearest the origin in the set (hkl).
Then, from the definition of Miller
indices, the vectors from the origin
to the points A, B, and C are a,/h,
a,/k, and a/l, respectively. Con-
sidler the vector AB, that is, a vector
drawn from A to B, lying in the
plane (hkl). Since

a8 2
~+AB =
then Fio. Al15-6. Relation between re-
B2 A& ciprocal-lattice vector H and crystal
AB =% plane (kD).

Forming the dot product of H and AB, we have
as a
HAB=(hbl+kb2+lb3) ' -"C"—-; '

Evaluating this with the aid of Eqs. (4) and (5), we find
HAB=1-1=0

Since this product is zero, H must be normal to AB. Similarly, it may be
shown that H is normal to AC. Since H is normal to two vectors in the
plane (kkl}, it is normal to the plane itself.

To prove the reciprocal relation between H and d, let n be a unit vector
in the direction of H, i.e., normal to {hkl). Then

a;
d=0N=—"".n
h
But
H
n= —.
I
Therefore
| 8] H
d=— . —
h I
_a (hby, + kb, 4+ by
h H
1
o

Used purely as a geometrical tool, the reciprocal lattice is of considerable
help in the solution of many problems in crystal geometry., Consider, for
example, the relation between the planes of a zone and the axis of that zone.
Since the planes of a zone are all parallel.to one line, the zone axis, their nor-
mals must be coplanar. This means that planes of a zone are represented,
in the reciprocal lattice, by a set of points lying on a plane passing through
the origin of the reciprocal lattice. If the plane (hkl) belongs to the zone
whose axis is [urw], then the normal to (hkl), namely, H, must be perpen-

dicular to {uvw]. Express the zone axis as a vector in the crystal Iattice
and H as a vector in the reciprocal lattice:

Zone axis = ua, + va, + wag,
H = kb, + kb, + (b,
If these two vectors are.perpendicular, their dot product must be zero:
(ua; + vay + wag)- (hby + kb, + Iby) = 0,
hu+ kv + lw = 0.
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This is the relation given without proof in Sec. 2-6. By similar use of
reciprocal-lattice vectors, other problems of crystal geometry, such as the

derivation of the plane-spacing equations given in Appendix 1, may he

greally simplified.

A16-4 Diffraction and the reciprocal lattice. The great utility of the
reciprocal lattice, however, lies in its connection with diffraction problems.
We shall consider how x-rays scattered by the atom O at the origin of the
crystal lattice (Fig. A15-7) are affected by those seattered by any other
atom A whose coordinates with respect to the origin are pag, ga and rag,
where p, 4, and r are infegers. Thus,

OA = pay + Ggay + ras.
Iet the incident x-rays have a wavelength A, and let the incident and dif-
fracted beams be represented by the unit vectors Se and S, respectively.

S,, S, wnd OA ure, in general, not coplanar.
To determine the conditions under which diffraction will occur, we must

determine the phase difference between the rays scattered by the atoms
O and A. The lines O and Ov in Fig. A15-7 are wave frontls perpendicular
to the incident beam Sy and the diffracted heam S, respectively.  Let 8
be the path difference for rays seattered hy 0 and A, Then

5= ul 4+ v
= Om + On
= §,-OA + (—8) 0A
= —O0A-(S — Sy.

(8 — 8uy)

Fig. A15-7. XN-ray seattering by atoms at O and A. (After Guinier, X-Ray
Crystallographic T'echnology, Hilger & Watts, Ltd,, London, 1952.)
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The corresponding phase difference is given by

- 278
¢=.—-—_
X

= —2 .
L ( N ) OA. (6)

Diffraction is now related to the reciprocal lattice by expressing the vector
(S — Sy)/A as a vector in that lattice. Let

S-5

= Ih'bl + kbz + [ba.

This' is now.in .the form of a vector in reciprocal space but, at this point, no
particular significance is attached to the parameters h, k, and 1 They’a.re
continuously variable and may assume an i oni

- v values, integral or nonint
Equation (6) now becomes ’ ¢ el

¢ = —2w(hby 4 kby + Ib3)-(pa, + qas + raz) = —2x(hp + kg + Ir).

A dl!fl-a(:ted heam will be formed only if reinforcement occurs, and this
requires t.-hat, ¢ be an integral multiple of 2z. This can happen 0;11y ifh k
and ! are integers, Therefore the condition for diffraction is that the vec’tm:
(S — 8y)/A end on a point in the reciprocal lattice, or that

S—-5
) = H = Kby + kby + Ibg

N

where &, k, and ! are now restricted to integral values.

Both the Laue equations and the Bragg law can be derived from Eq. (7)
The fPrmer are obtained by forming the dot product of each side of thn;
equation and the three crystal-lattice vectors a,, a,, ay successively. For
example,

S — S,
al'( )=al‘(hb|+kbz+lb3)

A
= h,
or
a;-(S — 8y) = A\
Similarly, 1 ) (8)
a;-(S — S¢) = kA, (9)
a3 (S — Sp) =1\ (19)
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Equations (8) through (10) are the vector form of the equations derived
by von Laue in 1912 to express the necessary conditions for diffraction.
They must be satisfied simultaneously for diffraction to occur.

As shown in Fig. A15-7, the vector (§ — Sp) bisects the angle hetween
the incident beam Sy and the diffracted beam 8. The diffracted beam S
can therefore be considered as being
reflected from a set of planes perpen- POD
dicular to (S — Sp). Infact, Eq. (7)
states that (8 — Sg) is parallel to
H, which is in turn perpendicular to
the planes (hkl). Let 6 be the angle
between S {or Sp) and these planes.
Then, since S and S are unit vectors,

(S — So) = 2sin 8.

sphere of

Therefore .
reflection
2ginf S -8 1
= ° = H = Fic. A15-8. The Ewald construc-
A A d tion. Seection through the sphere of
or reflection containing the incident and

A =2dsind. diffracted beam vectors.

The conditions for diffraction expressed by Eq. (7) may be represented
graphically by the “Ewald construetion” shown in Fig. A15-8. The veec-
tor So/ is drawn parallel to the incident beam and 1/A in length. The ter-
minal point O of this vector is taken as the origin of the reciprocal lattice,
drawn to the same scale as the vector So/A. A sphere of radius 1/X is
drawn about C, the initial point of the incident-beam vector. Then the
condition for diffraction from the (hkl) planes is that the point hil in the
reciprocal lattice (point P in Fig. A15-8) touch the surface of the sphere,
and the direction of the diffracted-beam vector S/A is found by joining C
to P. When this condition is fulfilled, the vector OP equals both Hyw
and (8 — Sg)/A, thus satisfying Eq. (7). Since diffraction depends on a
reciprocal-lattice point’s touching the surface of the sphere drawn about
C, this sphere is known as the “sphere of reflection.” i

Our initial assumption that p, ¢, and r are integers apparently excludes
all erystals except those having only one atom per cell, located at the cell
corners. For if the unit cell contains more than one atom, then the vector
OA from the origin to “any atom” in the crystal may have nonintegral
coordinates. However, the presence of these additional atoms in the unit
cell affects only the intensities of the diffracted beams, not their directions,
and it is only the diffraction directions which are predicted by the Ewald
construction. Stated in another way, the reciprocal lattice depends only
on the shape and size of the unit cell of the crystal lattice and not at all
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on the arrangement of atoms within that cell. If we wish to take atom
ar::angement‘ into comsideration, we may weight each reciprocal-lattice
point hkl‘ with the appropriate value of the scattering power (= |FJ?
where F is the structure factor) of the particular (hki) planes involved,
Sorpe planes may then have zero scattering power, thus eliminating some;
reclprocal—la.ttice points from consideration, e.g., all reciprocal-lattice points
having odd values of (k + k + 1) for body-centered crystals.

The common methods of x-ray diffraction are differentiated by the
methods used for bringing reciprocal-lattice points into contact with th
surface 91’ the sphere of reflection. The radius of the sphere may be varies
by varying thfa incident wavelength (Laue method), or the position of the
reCIpr?cal lattice may be varied by changes in the orientation of the crystal
(rotating-crystal and powder methods). o

AIG—E- The .rot‘ating-crystaj method. As stated in Sec. 3-6, when mono-
chromatic radiation is incident on a single crystal rotated ab(')ut one of its
axes, the.reﬁected beams lie on the surface of imaginary cones coaxial with
the rot'atlon axis. The way in which this reflection occurs may E;e shown
very nicely by the Ewald construction. Suppose a simple cubic crystal is
rotated. about the axis [001]. This is equivalent to rotation of the recipro-
cal lattice about the by axis. Figure A15-9 shows o portion of thc‘ recigro-

cal lattice oriented in this manner, togeth i :
. ) er with th
reflection. & ! e adjacent sphere of

rotation axis rotation axis of
of erystal and reciprocal lattice
axis of film

sphere of
-

reffection

Fira. Al5-9.  Reciprocal-lutuice treatment of rotating-crystal methuol.
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All crystal planes having indices (hkl) are represented by points lying
on & plane (called the “f = 1 layer”’) in the reciprocal lattice, normal to bs.
When the reciprocal lnttice rotates, this plane cuts the reflection sphere in
the small circle shown, and any points on the I = 1 layer which touch the
sphere surface must touch it on this circle. Therefore all diffracted-beam
veetors S/x must end on this circle, which is equivalent to saying that the
diffracted beams must lie on the surface of a cone. In this particular case,
all the k1 points shown intersect the surface of the sphere sometime dur-
ing their rotation about the by axis, producing the diffracted beams shown
in Fig. A15-9. In addition many £kO and hi1 reflections would be pro-
duced, but these have been omitted from the drawing for the sake of clarity.

This simple example may suggest how the rotation photograph of a erys-
tal of unknown structure, and therefore having an unknown reciprocal lat-
tice, can yicld clues as to the distribution in space of reciprocal-lattice
points. By taking a number of photographs with the erystal rotated sue-
cessively about various axes, the erystallographer gradually discovers the
complete distribution of reflecting points. Once the reciprocal lattice is
known, the erystal lattice is casily derived, because it is a corollary of Egs.
(1) through (3) that the reciprocal of the reciprocal lattice is the crystal

lattice,

A16-6 The powder method. The random orientations of the individual
erystals in a powder specimen are equivalent to the rotation of a single
crystal about all possible axes during the x-ray exposure. The reciprocal
Jattice therefore takes on all possible orientations relative to the incident
beam, but its origin remnains fixed at the end of the So/A vector.

Consider any point hkl in the reciprocal lattice, initially at Py (Fig.
A15-10). This point can be brought into a reflecting posilion on the sur-
face of the reflection sphere by & rotation of the lattice about an axis through
0O and normal to OC, for example. Such a rotation would move P to Ps.
But the point hkl can still remain on the surface of the sphere [i.e., reflec-
tion will still occur from the same set of planes (hkl)] if the reciprocal lat-
tice is then rotated about the axis OC, since the point hkl will then move
around the small circle PyPs. During this motion, the H vector sweeps
out o cone whose apex is at 0, and the diffracted beams all lie on the surface
of another cone whose apex is at C. The axes of both cones coincide with
the incident heam.

The number of different Akl reflections obtained on a powder photograph
depends, in part, on the relative magnitudes of the wavelength and the
crystal-lattice parameters or, in reciprocal-lattice language, on the relative
sizes of the sphere of reflection and the reciprocal-lattice unit cell. To find
the number of reflections we may regard the reciprocal lattice as fixed
and the incident-beam vector So/M as rotating about its terminal point

called the “limiting sphere” (Fig. Al5-11).
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Fie. Al15-10. Formation of
- a cone Fia. A
of diffracted rays in the powder method, for the plu‘?;(}rl:;' :;lgfhlm::lmng ephere

t::rou;‘;.h_ull pussible }?(Jsitiuns. "The reflection sphere therefore swings about
¢ origin of the reciprocal lattice and sweeps out a sphere of radius 2/A
e All reciprocal-latti ints
within the limiting sphere can t he reflection Cohors
ouch th i
wichin the Tmiting sphero c e surface of the reflection sphfzre
re:;:-, ,ﬁcillsfu& izgr::lri{a:y ?lf Etz's] (1) through (3) that the volume » of the
d - it cell is the reciprocal of the volume V
’ ) : of the ¢
unit cell. Since there is one reciprocal-lattice point per cell of the mcigjz:.:

lattice, the number of reciprocal-latti i ithi
i procal-lattice points within the limiting sphere is

= (47/3)(2/0\)3 _ 32V
. " = . (11)

}I:L(:;tea" of thetse n points will cause a separate reflection: some of them may
a zero structure factor, and some ma,  di
. ' _ ) ¥ be at equal distances f
reciprocal-lattice origin, i.e., corres i
- , 1.e., pond to planes of the.same spacin
Eg‘:i ‘l;t]tlf;egezi; f;s taktenlcare of by the multiplicity factor, since th;:; givfs;
erent planes in a form having the same spaci
: pacing.) How-
cver,b Eq. (11) may always be used directly to obtain an upper li;gt to t:\l:f
:;Jm er of possible reflections. For example, if V = 50A3 and X = 1 54Ae
bct;n“g“—i) :(:Edu (I:(f!dtl;e spefcnmen brelongs to the triclinic system, this ;lum:
) vy & factor of only 2, the multiplicity f:
powder photograph will contain 230 se' ifraction ot he the
) parate diffraction lines! As th
symmetry of the erystal increases, so d iplici e e and the
: the multiplicity f
fraction of reciprocal-lattice poi , ch Dt et e
: i - points which have zero structure fact
‘ : ) v or, re-
sulting in a decrease in the number of difiraction lines. For example, the
H

powder pattern of a diamond cubic ¢ i
values of V and A assumed above, rystel has only 5 lines, for the same



A15-7 The Laue method. Difiraction occurs in the Laue method be-
cause of the continuous range of wavelengths present in the incident beam,
Qtated alternatively, contact hetween s fixed reciprocal-lattice point and
the sphere of reflection is produced by continuously varying the radius of
the sphere. There is therefore a whole set of reflection spheres, not just
one; each has a different center, but all pass through the origin of the re-
ciprocal lattice. The range of wavelengths present in the incident beam is
of course not infinite. It has a sharp lower limit at Aswy, the short-wave-
length limit of the continuous spectrum; the upper limit is less definite but
is often tnken as the wavelength of the K absorption edge of the silver in
the emulsion (0.48A), because the
effective photographic intensity of the
continuous spectrum drops abruptly
at that wavelength [see Fig. 1-18(c)].

To these two extreme wavelengths
correspond two extreme reflection
spheres, as shown in Fig. Al15-12,
which is a section through these o Su b A CID /'B‘}

120 reflection

: 1410

\:Ilvul o

410

spheres and the ! = 0 layerofa recip- . —

rocal lattice. The incident beam is Y N

along the b; vector, ie., perpendicular T Jro e A
to the (R00) planes of the crystal. T\&j/

The larger sphere shown is centered Ty T

at B and has o radius equal to the Sy s
reciproenl of Aswy, while the smaller WL )

. . Fie. A15-12. Reciprocal-lattice
sphere is centcred.atzl andhasaradius oo "t the Laue method.
equal to the reciprocal of the wave- (g — §)/A = H.
length of the silver K absorption edge.

There is a whole series of spheres lying between these two and centered
on the line segment AB. Therefore any reciprocal-lattice point lying in
the shaded region of the diagram is on the surface of one of these spheres
and corresponds to a set of crystal planes oriented to reflect one of the in-
cident wavelengths. In the forward direction, for example, a 120 reflection
will be produced. To find its direction, we locate a point C on AR which is
equidistant from the origin O and the reciprocal-lattice point 120; C is
therefore the center of the reflection sphere passing through the point 120.
Joining C to 120 gives the diffracted-beam vector S/X for this reflection.
The direction of the 410 reflection, one of the many backward-reflected
beams, is found in similar fashion; here the reciprocal-lattice point in ques-
tion is situated on a reflection sphere centered at D.

There is another way of treating the Laue method which is more con-
venient for many purposes. The basic diffraction equation, Eq. (7), is

rewritten in the form

Both sides of t}fis equation are now dimensionless and the radius of th
sphere of reflection is simply unity, since S and S, are unit vectors. B ;
the position of‘ the reciprocal-lattice points is now dependent on the.\' .
!ength used, since their distance from the origin of the reci 1 "ﬂ\"e-
is now given by AH. procal lattie
Irf the L:}ue method, each reciprocal-lattice point (except 00 0) is draw
out into a line segment directed to the origin, because of the range of 'd o
length? present in the inctdent beam. The result is shown in I‘?i ) Al"“:;;e;
which is (.lrawn to correspond to Iig. A15-12. The point nearesgt' thed-' i
on each line segment has a value of A{ corresponding to the shortest ‘Or“g"ﬂ
length' present, while the point on the other end has a value of A\H ot
spor?dm.g to the longest cffective wavelength. Thus the 100 reci C““'el'
la_ttlcc line extends from A to B, where OA = \,;./ 05 and OB = ) P;‘;(‘a )
Since the length of any line increases as H increases, for a given r:ax tooi-_
wavelengths, overlapping occurs for the higher or(ie;"s :15( s%mwn gng‘;ﬂg
3.00, 400, etc. The reflection sphere is drawn with unié radius, and ):'eﬁ :
tion oceurs whenever a reciprocal-lattice line intersects the spl;ere surfuec_
qrziphlcal]y, the advantage of this construction over that of Fig. Al3 cleﬂ
;s t':t.at. f).ll diffracted beams are now drawn from the same p()ilf;t: C zlﬁluq
t?;:l:a.tmg the comparison of the diffraction angles 26 for different ;‘eﬁec—
This construction also shows why the diffracted beams from planes of
zone are arranged on a cone in the Laue method. Al reciprocal-latti ]
lines representing the planes of one zone lic on a plane passing‘throu;;:

120 rellection

sphere of reflection
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Fic. A15-13.  Altern: reciprocil-latti
S _ 8 = ML ternate reciprocul-lnttice treatment of the Laune method.

. . _ -
, tt.ln tluls fjgu:e, ns wgll as in Figs. A15-11 and A15-12, the size of the reciprocal
attice, relative to the size of the reflection sphere, has been exaggerated for clurify

Vo)
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&i

{n) (h)
Fra. A15-14.  The effect of thermal vibration on the reciproeal Iattice.

the origin of the reciprocal lattice. This plane cuts the reflection sphere in
u cirele, and all the dilfracted heam vectors S must end on this circie, thus
producing a conical array of diffracted beams, the axis of the cone coineid-
ing with the zone axis.

Another application of this construction, to the problem of temperature-
diffuse scattering, will illustrate the general utility of the reciprocal-lattice
method in treating diffuse scattering phenomena. The reciprocal lattice
of any crystal may be regarded as a distribution of “scattered intensity”
in reciprocal space, in the sense that a seattered beam will be produced
whenever the sphere of reflection interseets a point in reciprocal space
where the “scatiered intensity™ is not zero. I the erystal is perfect, the
scattered intensity is concentrated at points in reciprocal space, the points
of the reciprocal lattice, and is zero everywhere else. But if anything occurs
to disturb the regularity of the erystal lattice, then these points become
smeared out, and appreciable scattered intensity exists in regions of re-
ciprocal space where h, k, and [ are nonintegral. For example, if the atoms
of the crystal are undergoing thermal vibration, then each point of the re-
ciprocal lattice spreads out into a region which may be considered, to a
lirst approximation, as roughly spherical in shape, as supgested by Fig.

AlS-14(a). In other words, the thermally produced clastic waves which
attice so disturb the regularity of the atomic
planes that the corresponding H vectors end, not on points, but in small
spherical regions,  The seattered intensity is not distributed uniformly
within each region: it remains very high at the central point, where h, k,
and ! are integral, and is very weak and diffuse in the surrounding volume,

as indicated in the drawing.

run through the erystal 1

el el v ad ke e JuiD

What then will be the effect of
thermal agitation on, for example, a
transmission Laue pattern? If we
use the construciion of Fig. A15-13,
i.e., if we make distances in the recip-
rocal lattice equal to AH, then each
spherical volume in the reciprocal
lattice will be drawn out into a rod,
roughly cylindrical in shape and di-
rected to the origin, as indicated in
Fig. Al5-14(b), which is a section
through the reflection sphere and one
such rod. The axis of each rod is a
line of high intensity and this is sur-
rounded by a low-intensity region,
This line intersecls the reflection
sl?here at a and produces the strong
dlﬁ'rac.ted beam A, the ordinary Laue Fie. Al5-15. Transmission L
reflection. But on either side of A  Ppattern showing  thermal :lﬁtvl';:ll:le
there are weuk scattered rays, extend-  Aluminum crystal, 280°C, 5 min ex-
ing from 3 to €, due to the intersce- posure.
tion, cxtc.nding from b to ¢, of the diffuse part of the rod with the spl
of re_:ﬂectlon. In a direction normal to the drawing, however, the Zpﬂ’. 5o
'rod intersects the sphere in an are equal only to the; rod dia,n,leter \l'] L'ISIe
is much shorte.r t-hnn the arc be. We are thus led to expect, on a ﬁlrr; ; "C(;
in the transmission position, a weak and diffuse streak ;-unnin pi%cfl
th;(‘).ugh the usual sharp, intense Laue spot. B et

figure Al5-15 shows an example of this phe e
the.rma.l asterism because of the lI'Jadiu.l directiﬁezﬁnlizoz,iﬁzitenstmlIlfd
This photograph was obtained from aluminum at 280°C in 5emire9£ .
Actually, thermal agitation is quite pronounced in aluminum even atnu .
temperature, and thermal asterism is usually evident in overexposed -rl(‘)00m

temperature photographs. Even in Fig. 3-6(a), which was gi.vl;n an romi
exposure of about 15 minutes, radial streaks are faintly visible I: 3] ;
lela.]t-ter photograph, there is a streak near the center which does. not pals':
:u rf}?f}:- ;]r:})(r.tliaaue's;lmt: itisduetoa reci?rocal-]attice rod so nearly tangent
e and‘n::;li:: :;li-: that the latter intersects only the diffuse part of




