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Abstract

The application of Tikhonov's regularization method
[Tikhonov & Arsenin (1977). Solution of Ill-Posed
Problems. New York: Wiley] for the solution of ill-
posed problems in small-angle-scattering-data treat-
ment is considered. Simple regularization aigorithms
are proposed for solving convolution equations in
data desmearing (slit-width and polychromaticity
problems) as well as for polydispersity problems. A
general indirect approach of data processing based
on the regularization method is described. Com-
parison with other data-treatment methods is made.

Introduction

Small-angle scattering (SAS) is widely used for struc-
ture investigations of substances of different natures.
SAS studies are of much importance for disordered
disperse systems with colloidal inhomogeneities since
their inner structures are difficult to study by other
methods (Glatter & Kratky, 1982; Feigin & Svergun,
1987).

Experimental data processing (the reduction of
instrumental distortions) is the necessary step in the
structural analysis of SAS data. Smearing effects in
SAS owe their origin to finite dimensions and poly-
chromaticity of the radiation beam. The main
equations connecting the experimental data set u(s:)
[s=4m(sin 6)/A, 20 is the scattering angle, A is the
average wavelength] with ideal curve I(s) can for
isotropic scattering be written as

u(s)=uls)+e&

(g, is the statistical error in the point sih

a0

u(s)= _L W, (x)F(s—x)dx (1)
(smearing caused by the slit-width effect},
Fo)= 1 Wi+ a @
(slit-height effect),
sy =] WA)I(s/0) A 3)

0108-7673/88/030244-07803.00

(smearing caused by the beam polychromaticity).
Here the normalized weighting functions W,.(x),
Ww;(1) and W, (A) depend on the experimental condi-
tions.

A number of methods was developed to solve these
equations scparately (step-by-step). The slit-height-
correction problem, which is of much importance in
X-ray SAS investigations, has been treated by many
authors and several reliable algorithms have been
developed (Heine & Roppert, 1962; Schedrin &
Feigin, 1966; Vonk, 1971; Deutsch & Luban, 1978).
Fewer papers have been devoted to slit-width (Taylor
& Schmidt, 1967; Rolbin, Feigin & Schedrin, 1977)
and polychromaticity (Zipper, 1969) problems, which
can now be of value in synchrotron and neutron SAS
studies. When solving (1)-(3), one faces the problem
that they are unstable with respect to experimental
data errors. Therefore, preliminary data smoothing is
frequently necessary to reduce the random noise.
Moreover, the termination effects arise because the
experimental data are known only in a finite angle

l'egion [‘sﬂ'lil'l! Smnx]-
Several methods have been suggested for simul-

taneous reduction of the experimental distortions, ie
for solving the general equation

w @

asr= T T T walmy Wiy W)

-0 —e0 O

x H{{(s—u)+ 2]/3/A}dA dedu. ()

The iteration procedure of Lake {1967) was probably
the first attempt to do this. Another type of general
procedure, the so-called indirect approach, where the
solution is represented by some parametrization, has
recently been developed. Here the methods making
use of the sampling theorem (Moore, 1980; Taupin
& Luzzati, 1982) should be mentioned which allow
one to describe the solution with minimal number of
parameters. Spline functions are also used for the
parametrization (see Schelten & Hossfeld, 1971,
Glatter 1977, 1980a,b).

Among the indirect methods, Glatter's (1977,
1980a,b) approach found widest practical applica-
tion. Here a characteristic function describing the
system in real space is represented as a sum of B
spline functions and the coefficients of the expansion
are to be found. For monodisperse systems the

© 1988 International Union of Crystallography
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parametrization of the distance distribution function
(-]

| .
(=5 I sI(s) ﬂ"s(T‘"—)— ds

[1]

is used; for polydisperse systems, the size distribution
function D(R) is searched for (see below). Indirect
methods are stable to random errors and to termina-
tion effects, being, however, more complicated in use
than the step-by-step algorithms and requiring more
a priori information about the object.

Equations of data treatment represent the so-called
ill-posed problems. Such problems can be effectively
solved with the Tikhonov regularization method
(Tikhonov & Arsenin, 1977). Here the possibilities of
application of the regularization method to SAS data
ireatment are examined in comparison to other de-
smearing procedures.

(5)

Tikhonov's regularization method

First of all we shall briefly describe Tikhonov's
method for solving incorrect problems. The condi-
lions of correctness (Hadamard, 1932) are as follows:
let us consider the operator equation

Alz]=u,

2€Z ue U; Z and U are some metric spaces.

problem i if{i) a unique solution exists
orany ue U; (ii) the solution is stable with Tes

lo errors in_w _and A (i.e. operator A~" determined
over all U is continuaus). Otherwise the problem is
alled li'posed or Incorreect ™ —————

(6)

" The regularization méthod for iii-posed probiems

vas proposed and substantiated by Tikhonov ( 1943,
1963) and is now of wide application (Tikhonov &
Arsenin, 1977; Hofmann, 1986), main idea of the
method is to use the a priori information abo the
solution. It can be done as follows, Instead of solving
vith respect to function z an ill-posed problem (6),
where the inverse operator A™' exists, but is not

necessarily continuous, function w and operator A
are known with error bounds & and h respectively:

ju-ulyss; sup IATZ-ALw

zcZzv0 “Z"z
iw* and A°® are exact right-hand part and operator,
respectively), a correct problem of minimization of
Tikhonov's functional

Tolz]=||Alz] - u]l},+ a2 z) (7)

istobe solved. Here flufl, and || z|| ; denote the norms
in U and Z spaces, 2 is a non-negative stabilizing
lunctional, a > 0 is a regularization parameter. It was
shown by Tikhonov that if the parameter a is
specifically correlated with 8 and b, then Z,, Minimiz-
ing functional (7), is tending to the exact solution of
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(6) being stable to random errors under & and h
tending to zero. The regularization parameter a may
be chosen, for example, using the generalized dis-
crepancy method (Tikhonov & Arsenin, 1977) as a
solution of the equation

NALza) = ully = (8 + hliz. || )2+ n(u, A),
where
ulu, A)=inf [|A[z] - u]|,.

If the operator A is given exactly, the discrepancy
method can be used:

ALz ] - ully = 8°.

Other ways of choosing the regularization parameter
are considered below.

The stabilizer £2[2] is taken so as to fulfil a priori
information about the solution {boundness, smooth-
ness efc). The squared norm of solution Iz)1% is
frequently used. Then the functional T, is strictly
convex, being minimized by a unique function Z,. So
the preblem of minimization (7) can easily be solved
by standard routines (see Tikhonov, Goncharsky,
Stepanov & Yagola, 1983).

For further considerations of the ill-posed prob-
lems dealt with, the norms in U and Z spaces are to
be defined. With experimental data accuracy and
discretization taken into account, it is natural to take

N
ful},=(/N) E; u'(s,)/ o, (8)

where N is the number of data points, o, is the mean
square deviation in the i{th experimental point. Then
8= |lu’—u|l, =1, being in fact a sum of normalized
random numbers (Brandt, 1970). The Z space can be
defined with the norm

2z = {2*(x}+ pl2'(x)1%} dx, (9)

which demands the function z and its first derivative
to be integrable (p is a constant chosen from the
metric considerations).

Solution of convolution equations
Slit-width correction

Integral equation (1) for the slit-width correction
is a convolution equation. From the convolution
properties of the Fourier transformation (denoted as
F) its solution

F(s)=F {Flu(s))/F{ W..(s)]}
=F {i(w)/ W.(w)) (10)
can be readily derived (Sneddon, 1951). This ‘exact’
solution is, however, rather sensitive to random errors

in u(s). The regularization method enables one to
write down a stable solution. For the stabilizer of



246

type (9) with p=1the function minimizing the func-
tional (7) is (Goncharsky, Cherepaschuk & Yagola,
1978)

@

F.(s)-g'; J

To verify the stability of the solution several model
calculations were made. Model scattering curves were
smeared according to (1) and statistical noise¢ was
jmposed on the smeared curves. After this the curves
were restored from the obtained data sets taken in
intervals [Smins Smax); the @ value was determined by
the discrepancy method. Fig. 1 presents the resuits
of application of the regularization method and of
Taylor & Schmidt’s (1967} algorithmtoa model curve,
One can see that the solution (1 1) is much more stable.

W, (—w)i#(w) exp (~iws) dw

W"(—N)Ww(w)+a(l+w2) . (11)

Correction for polychromaticity

The same idea can be applied to the equation of
polychromaticity. On taking the Mellin transform
from both parts of (3) and using the convolution
theorem for this transform (Sneddon, 1951), one

obtains

Jey=Te/ R,
where K(A)=AW,(A), and

7 =:I':f(s)sf" ds

is a Mellin image of the function f(s). Svergun &
Semenyuk (1986) showed that for the stabilizer (9)

gt

-2

[ LI 002 0-03 L

Fig. 1. Restoration of mode! scattering intensity of homogened
sphere smeared by slit-width effect: — exact curve, +-++ smear
curve with statistical noise of 3% xxx and OOC are desmeared
curves according to Taylor & Schmidt (1967) and as obtained
by the regularization technique, respectively.
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the regularized solution can be written as

c+ i

1
I.(s)-z—ﬁ I

c=loo

Here ¢ is a constant which can be chosen so as to
facilitate the computations.

The solution was tested on model examples and
compared with several other methods for solving (3).
The restoration of a homogeneous-sphere scattering
curve by Glatter's {1977) method, Lake's (1967) iter-
ation procedure and the regularization method is
presented in Fig. 2. The jteration procedure is
unstable, Glatter's method, although stable, con-
sumes more computer time and memory (it also needs
more parameters adjusted). It should be noted here
that Glatter's indirect approach offers much wider
possibilities than polychromaticity corrections (see
[ntroduction). However, comparison with the
approach was done since up to now it has in fact
been the only reliable method for polychromaticity

correction.

L RMOI@stdE
R @R &)+ +eh

Polydispersity equation

The regularization approach using the convolution
properties can also be applied to solve the equation
of polydispersity. If the investigated system is rep-
resented by an ensemble of randomly oriented similar
particles described by a distribution function D{(R)=
m3(R)Dn(R) [m(R) is the scattering length, Dy(R)
the number of particles of size R), then the SAS
intensity is given by

lel
I(s)= | D(R)I(sR)dR,

Rywin

(13)

~
1
A

Fig. 2. Corrections for polychromaticity: — exact curve; Xxx
smeared curve with 3% noise; restoration by AAA Lake (1967),
BEN Glatter (1977), 000 regularization technigue.

——— e s

-
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where I,(sR} is the form factor of particles, R,,;, and
R... are the minimal and maximal sizes of particles
in the ensemble. The problem of finding D(R} under
the given I(s) and I(sR) is of great practical value.

Several methods have been proposed for solving
{13). Among them the analytical approach (Fedorova
& Schmidt, 1978} is of wide practical application,
where the exact solution is written for some types of
form factor [the solid-sphere form factor is used most
frequently, see Letscher & Schmidt (1966), Walter,
Gerber & Kranold (1983)). The solution is, unfortu-
nately, rather sensitive with respect to termination
effects, therefore strong artificial oscillations may
deteriorate the resulting D(R) function. Another
simple method proposed by Plavnik, Troshkin,
Kozhevnikov, Ruzinov & Khrustaleva (1985) allows
on¢ to estimate both the D{R) function and the
anisometry of the particles (however, only rough
estimation can be achieved). The indirect method
(Glatter, 1980a) enables reliable solutions to be
obtained but requires a priori information about the
range of definition of the D(R) function.

This proves that the polydispersity equation can
be easily solved using the Mellin transform, as for
the polychromaticity problem. In fact, substituting
x=1/R in (13) and denoting W(x)= RD(R), one
gets

1(s) =I W(x)I(s/x) dx/x (14)

and similar to (12) the regularized solution can be
written as

1T Ielor: g
DR=35 | WoL@+aarigyr 9

(g L]

The reguiarization approach was compared to the
methods of Letscher & Schmidt (1966) and Glatter
(1980a), Fig. 3 illustrates the results obtained with
the bimodal volume distribution function Dy(R) =
m(R)Dy(R). One can see that atl the methods enable
one to restore the model distribution fairly wetl;
however, it should be noted that a special extrapola-
tion procedure was applied to avoid termination
effects in Schmidt's approach whercas the regulariz-
ation method is stabie with respect to these effects,
As to Glatter’s method, the same reasoning as for the
polychromaticity problem can be repeated.

A Fortran-77 program package based on the con-
sidered regularization procedures has been written
{the slit-height-correction routine of Schedrin &
Feigin (1966) was also used]. Selection of the regu-
larization parameters was done by the discrepancy
method; with no information about the input errors
avallable, reasonable a estimation could be obtained
from the condition [|A[z,]~u|% =min (Svergun &
Semenyuk, 1986). The package was applied 1o
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neutron SAS data processing for the ‘Membrane-2’
diffiractometer (Institute of Nuclear Physics, Gat-
china, USSR). Here the collimation and especially
polychromaticity smearing effects were rather strong
(see Agamalyan, Drabkin, Deriglazow & Krivshich,
1984; Agamalyan, Krivshich, Svergun & Semenyuk,
1985). Model calculations with spectral and collima-
tion functions of the diffractometer have proved the
high reliability of the package. Fig. 4 illustrates the

O(A)
o-08} “
!
P
f :
soul fool
/
f L,
/ \
002} ; k*
a 645'-9%‘! _’? §
i % %
) i \%
7 . '\:*..%
r - . 1 NE,
40 50 60 70 R

Fig. 3. Restoration of model volume distribution function for a

polydisperse system of homogencous spheres: — exact curve;
OOQ Letscher & Schmidi’s (1966) method; xxx Glatter's
(1977) method, +++ regularization technique.

3 5& N
2 o %,
- = Sk .
-._"‘. .
TN
N _§
o-01 603 0-06

Fig. 4. Application of the regularization procedures for neutron-
scattering-data trestment of polystyrens latex sample: OCO
experimental data; +++ after collimation corrections; --- com-

pletely desmeared curve.
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application of the package for the desmearing of the
experimental scattering intensity of polystyrene latex
samples; the restored size distribution function is
shown in Fig. 5 together with the histogram obtained
by electron microscopy. This example illustrates the
reliability of the regularization procedures described
and their usefulness in the data treatment problems.

General method of SAS data treatment

This is a substantial shortcoming in the application
of the step-by-step algorithms of data processing.
Although ill-posed problems (1)-(3) can be solved
successfully, only a rough estimation can be obtained
about the error bounds in each solution, Therefore,
a full account of experimental data accuracy cannot
be expected. A general approach of SAS data treat-
ment using the regularization technique is described
below,

Let us consider scattering by monodisperse and
polydisperse systems. For the monodisperse system,
ideal scattering intensity is connected to the function
p(r) by

‘l“ll

I(s)=4m | p(r)sin (sr)/srdr, (16)
[13

I ax is @ maximal chord in the particle. For the poly-
disperse system of similar particles, scattering
intensity is connected to the size distribution function
according to (13). In these important cases the prob-
lem of data treatment can be solved indirectly by
finding a finite distribution  function (see
Introduction).

The indirect approach can be realized in a simple
way without parametrization of the solution to be
found. Let us substitute integral expressions (16) and

—

05

0 -

Fig- 5. Volume distribution function of polystyrene lalex as calcu-
lated by regularization technique (---) and electron microscopy

{—=).
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(13) in (4) and change the order of integration. Thus,
for monodisperse systems onc can write

u(s) "T Ki(s, p(r) dr, (7)
where
Kis,=dert | 1] WGW0 W)
x (sin {[{s = x)*+ ]"*r/AD)
x {[(s=x)*+¢2)"2r/A} " dA dr dx. (18)
For polydisperse systems we obtain
| u(s)= :I Ka(s, R)D(R) 4R, (19)
where
Kals, )= 1 T Twaowiowad)
% I{{(s—x)*+ £IR/A} dA dt dx. (20)

The kernels K, and K, are fixed under given experi-
mental conditions and can be evaluated with any
quadratures.

Therefore, the problem of data treatment for
monodisperse and polydisperse systems is reduced
to the solution of (17) and (19) respectively, which
are in fact Fredholm integral equations of the first
kind. The Tikhonov functional for (17) can be written
as

T.[pl= _El (4s;/a?) [Ar z Ky(si, 1)p(r;}— u(Sa)]

ra [Ar 5 pir)+p(an”

j=i

M 2

XL [p(r,)-p(r;-.)]]
j=2
=min.

Here As, = 5, — Si-1. and the function p(r) is searched
for at M equidistant points, 4r= Loen/ (M —1).
Differentiating T,[ p] over p(r;) and putting the result
tozeroforj=1,..., M, we obtain an M x M system
of linear equations [ p(r) are unknowns] with a sym-
metric positive-definite matrix, which can easily be
solved by standard routines.

A similar equation can be written for the D(R}
function. Special cases of monodisperse systems
[lamellar particles, long rods, see Glatter (1980b)]
can also be treated in this way.

Fast and reliable choice of the regularization par-
ameter is probably the most important problem. It is
known that when solving equations of type (17) the
best a value proves to be somewhat smaller than the
value provided by the discrepancy method (sce e
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Hofmann, 1986). To avoid oversmoothing of the solu-
tion, several methods were tested for refining the
regularization parameter, in particular, the so-called
quasioptimality criterion (|« dp,/da|| = min, a>0;
(Tikhonov & Arsenin, 1977)], point-of-inflection
criterion [—a| p. |l/da =min, a>0, see Glatter
(1977)]. 1t proved that rough estimation of a by the
generalized discrepancy method followed by its
refinement with the quasioptimality criterion ensures
reliable determination of the a value.

A Fortran 77 program using the approach described
has been written which allows data treatment via both
p(r} and D(R) functions. Economic computing
algorithms (Tikhonov et al, 1983) are used for fast
solving the Euler equation for different « values; the
selection of a is performed as a straightforward
routine. Fig. 6 presents an example of application of
the method to a model curve smeared with both
collimation and polychromaticity effects.

[ Mol

1 +h) ol
+ulfu A)

praasssesnnseres vones’

Igw

-8 =7 a,ey -8 -5 w -4

(b)

Fig. 6. Restoration of the model curve smeared with collimation
and polychromaticity effects using the regularization approach.
(a) The scattering curves: — exact curve; +++ smeared curve
with $% noise; OOQ restored curve. (b) Selection of regulariz-
ation parameter: QOO general discrepancy method gives oy
value; +++ point of infiection method: a, value; — quaziop-
timal method: ay value.

The approach described is similar to the indirect
transform techniques (in particular to Glatter's). In
Fig. 7 a model example is presented where the two
methods are compared. They give nearly the same
results being rather stable with respect to statistical
errors and termination effects. Both of them require
information about the range of definition of the p(r)
[or D{R)] function. At the same time, the fact that
no parametrization is used makes the regularization
approach more general; automatic choice of the regu-
larization parameter facilitates its application (a

g

! 502 764 008 &
(a)

st
(] 100 180 [TT] . |

(&)

Fig.- 7. Comparison of Glatter's method with the regularization
technique. (@) The scattering curves: — eéxacl scattering curve
from the sphere of radlus R =100; OOO smeared curve with
5% noise, Smin ® 0016, Smax =006 A™1; xxx and ©@O® restor-
ation with the two methods, respectively, I, = 240. () The
distance distribution functions: notations are the sume as in (a).
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similar parameter in Glatter's approach needs to be
selected by the user).

The regularization method has been also applied
by Provencher (1982) for inverting noisy linear
operator equations. A general Fortran 1V program
described in the paper allows a constrained solution
to be found by means of quadratic programming
algorithms; the discrepancy method is used 1o select
the a value. One may expect that Provencher's
package as applied to SAS problems would lead to
gimilar results. At the same time our algorithm differs
from Provencher's in computing procedures (type of
stabilizer, solving the least-squares problems, choice
of regularization parameters). Moreover, the pre-
sented algorithm is designed especially for SAS
problems being much more compact in program
realization,

Concluding remarks

Two possibilities of application of the regularization
method in SAS data treatment have been considered.
The use of the method for solving the convolution
equations shows a number of advantages in com-
parison with other methods. Simple and stable regu-
larized solutions can be written for the problems of
slit-width and polychromaticity desmearing as well
as for the polydispersity equation. Therefore the
application of the regularization technique combines
reliability of the indirect transform methods with the
simplicity of standard routines.

The general approach based on regularization is
similar to several indirect algorithms (e.g. those of
Moore, Glatter and Provencher}). However, some
features (such as the ways of using a priori informa-
tion, stabilization of the solution, computing
algorithms) are different in these methods. A forth-
coming paper is planned where the problems of con-
straints, choice of stabilizers and error propagation
will be discussed.

The question may arise whether it is better to use
stepwise procedures or an indirect approach. One
cannot answer this definitely. In fact, with appropriate
information in hand one can obtain excellent results
by indirect methods even if the quality of the experi-
mental data is not very good (poor accuracy, small
angular range measured). On the other hand, when
the experimental data set is representative it would
be better to use stepwise algorithms which do not
require a priori information about the object.

SMALL-ANGLE-SCATTERING-DATA TREATMENT
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