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1 Introduction

The theory of special relativity - from now on SR - has
changed in a drastic and profound manner our way of thinking
and has been considered together with quantum mechanics the
most important physical theories, if not at all times, certainly of
the 20™ century. The founder of the theory is considered to be
A. Einstein (born 14/3/1879 in Ulm Germany and died 18/4/1955
in Princeton New Jersey USA) but as we shall see many people
before him made important contributions.

The SR is not, like other scientific theories, a statement
about matter that forms the physical world, but has the form of
a condition that the explicit physical theories must satisfy. It is
thus a form of description a kind of grammar of physics,
prescribing which combinations of theoretical statements are
admissible descriptions of the physical world. The theory came
officially into existence in 1905 as a result of the union of two
previously unrelated ideas, the notion that motion has a reiative
character and the notion that optics and mechanics are not two
independent disciplines but must be rendered consistent one
with the other. SR deals mainly about spacetime and its
properties and admiftedly changed our way of looking at space
and time. However it was not mechanics from which ali started
but optics.

The impact of SR is great also out of the realm of physics
but unfortunately it produced also a great confusion ( as usually
grammar does ) to the non experts (and not only) including
philosophers too! The statement of Poincare:

"According to the principle of relativity, the laws of physical
phenomena must be the same for a fixed observer as for an
observer who has a uniform motion of translation relative to him,
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so that we have not, nor can we possibly have, any means of
discerning whether or not we are carried along in such motion”
when descended upon the world, it caused a great stir to many,
dividing to those that simplified to: Einsteins theory says all is
relative, and that has a profound influence on our ideas and to
others that felt very uncomfortable about SR that asserts that
one cannot determine and detect absolute velocities without
looking outside, claiming that this was self evident. As we shall
see both statements expressed as above are either obvious or
trivial. It is obvious that things depend upon your frame of
reference as can be asserted by many observations (after all a
person looks different from the front than from the back) and
its simply not true that one cannot detect any motion except by
looking outside (uniform rotation about a fixed axis can be).
However people where impressed not because of the
principle of relativity quoted above but rather from the fact
that while for a moment electrodynamics suggested that
absolute motion could be detected, soon to be found
experimentally that it could not.
To better understand all that it is now necessary fo
make a small tour through the physical theories of the

past.



2 History
Who Invented Special Relativity?

2.1 Before 1905

The fact that motion is not an absolute property of a body but a
relation between a body and an observer was known at least as
early as Galileo. From his Dialogue Concerning the Two Chief World
Systems, in his most important work, which he began writing in
1626 he asks the reader to imagine the following though
experiment (excerpts):

...nave the ship proceed with any speed you like, so long
as the motion is uniform and net fluctuating this way and that.
You will discover not the least change in ali the effects named,
nor could you tell from any of them whether the ship wus
moving or standing stili.
This is the first formulation of "The Principle of Relativity". In
other words, "the mechanical laws of physics are the same for
every observer moving uniformly with constant speed in a straight
line". Such an observer who "moves uniformly with constant speed
in a straight line" (i.e., "moves with constant velocity") is a special
type of observer: called an "Inertial" Observer. (From now on, we
use "inertial" instead of "moves with constant velocity") So, we can
restate:

Galileo's Principle of Relativity

The mechanical laws of physics are the same for every inertial
observer. By observing the outcome of mechanical experiments,
one cannot distinguish a state of rest from a state of constant
velocity.
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In this experiment Galileo contradicts Aristotle ( 384-322 b.C))
who considered that uniform motion was a quite different state
from rest, needing some continual intervention to produce it.
However he was the first to set laws and descriptions about space,
time and motion:

o Every sensible body is by its nature somewhere. (PhysicsBook 3,
2050:10)

e Time is the numeration of continuous movement. (Physics, Book 4,
223b:1)

Aristotle was interested in motion. He realised that motion can
be understood by seeing how the location of an object changed.
And that one could talk about "one object moving faster than
another" by comparing how much the location of each changed in
some interval of time. Aristotle believed that "being at rest" was
the natural state of motion of any object. If an object were in
motion, then there must be some agent that is responsible for that
motion. And when that agent stops, the motion stops. According to
Aristotle, there is a privileged being: The Prime Mover. He is the
first agent, responsible for moving
objects, which, in turn, move other objects. The Prime Mover, he
argued, must be at Absolute Rest. By "absolute” rest, we mean that
all observers will universally agree on that state of rest.

Aristotle considered that rest is an absolute state (in which Earth
was) and everything else rotated about. Do not think "oh how wrong
or ignorant he was", of course he was wrong but it took people
more than 2000 years to really understand it.

The considerations of Galileo were taken account of by I. Newton
(1642-1727) who in his Prinzipia adheres to the idea of absolute
space and time but introduces also the concepts of relative space
and relative time. He expresses Galileo's relativity as: The motion
of bodies included in a given space are the same amongst



themselves, whether the space is at rest or moves uniformly in a
straight line. Observe the word rest, that shows his adherence to
the Aristotelian spacetime.

Little progress can be made further than this without
considering the interaction between mechanics and optics. The
earliest detailed discussion of this relation was given by Euler in a
paper he wrote in 1739. At that time there was the controversy
between the wave and particle theories of light and Euler noticed a
critical difference between the theories in the measurement of
aberration (change in the measured position of the stars because of the
motion of the Earth) by Bradley (1728). He calculates the aberration
angle considering a moving source or a moving observer for both
cases (wave and particle theory). For the wave assumption he
derives a different answer and realises that he has to include the
"medium” in which the wave motion took place. Euler was the first
of a long list of investigators (though by far the earliest) to
realise the possibility of an experimental check on the question of
whether a ballistic or a wave theory of light was correct; and so of
a question concerning the relationship between mechanics and
optics.

In 1810 Arago studied the refraction of light through a prism
when the light had come from different stars and was received in
a telescope. If the light consists of a wave motion in a medium
through which the earth is moving, the amount of refraction in the
prism ought to depend on the direction in which the telescope is
pointed (light from different directions will have different speeds
relative to the telescope), however he found no difference and
wrote to Fresnel about this. Fresnel replied by drawing heavily on
analogy of acoustics and deducing from this analogy the way in
which a solid material could be expected to drag along the wave.



Fizeau (1859) in order to test the Fresnels formula measured the
speed of light when it passes through a long pipe containing water.
The value of speed is compared in two cases when the water is at
rest, and when it is moving with speed v. If ¢ is the speed of light
in the air, the speed when the water is at rest is given by ¢/n
where n is the refractive index of water (about 4/3). When the
water moves with speed v the Fresnel formula predicts:

velocity = 4 v(l — —%)

n n

showing that the light is dragged on by the water at a slower
velocity than the water has itself.

The experiment which was the most subtle attempt to detect
the motion of the Earth with respect to the medium of
transmission of light { and so with respect to the preferred
inertial frame at rest!) was that of Michelson (1881) and by
Michelson and Morley (1887) and as we know with negative results.

Even before the astonishing and “paradoxical” result of
Michelson, the wave theory of light had faken a definitive form,
which served to pin-point the difficulties very clearly. Riemann had

noticed that the expression
1/ ux

(where n is the magnetic permeability and k the dielectric
constant) which occurs in transforming from one system of
electrical units to another, has for vacuum a value near fo the
velocity of light (and has the dimensions of velocity). That this was
ho coincidence was strongly emphasised by the measurements of
Weber and Kohlrausch (1856).



James C. Maxwell (1831-1879), greatly influenced by

Riemann’'s coincidence. He completed and unified the theories of
electricity and of magnetism set down by Carl F. Gauss (1777-
1855) Andre M. Ampere (1775-1836) and Michael Faraday (1791-
1867) Although the laws of electricity and of magnetism according
To Gauss, Ampere, and Faraday worked remarkably well, there was
a glaring problem: taken together, these laws did not "conserve
charge”. In other words, for these iaws (as written) to work, one
had to allow charge to be created or destroyed. And this is not a
good thing. (Additionally, from the form of the equations of these
theories, he noticed an interesting symmetry (a similarity) in the
way the electric field and the magnetic field appeared. It wasn't a
perfect symmetry, however.)
Maxwell modified Ampere's Law by adding a single term to it. This
was what was needed fo make the laws consistent with the
conservation of charge. (It also made the above symmetry closer
to being a perfect symmetry.)

However, the addition of this term led to a remarkable
prediction: the existence of electromagnetic waves. With the full
set of equations, Maxwell was able to calculate the speed of these
waves. He found that their speed was a constant, independent of
the nature of the electric and magnetic fields. What Maxwell
found was that electromagnetic waves travelled at the speed of
light. Maxwell had just discovered a fundamental constant of
nature: the speed of light. It just "popped out" of the full set of
equations.

The knowledge that the electromagnetic field was spread
with a velocity essentially the same as the speed of light caused
Maxwell to postulate that light itself was an electromagnetic
phenomenon. Maxwell wrote an article on Ether for the 1878
edition of Encyclopaedia Britannica. He proposed the existence of



!

i A - PR -

gt |

a single ether and the article tells of a failed attempt by Maxwell
to measure the effect of the ether drag on the earth's motion. He
also proposed an astronomical determination of the ether drag by
measuring the velocity of light using Jupiter's moons at different
positions relative to the earth.

Thus, the Maxwell equations not only unify the theories of
electricity and of magnetism, but of optics as well. In other words,
clectricity, magnetism, and light could all be understood as aspects
of a single object: the electromagnetic field. Quite a remarkable
achievement!

As a consequence, the Maxwell equations made the physical
prediction that "light fravels with the same speed, in all
directions". In other words, "a spherical pulse of light will appear
spherical".
But there's a problem....
Galileo's Relativity and Newton's Mechanics
(GALILEO'S SPACETIME)

Maxwell's Electrodynamics

Recall that Galileo's Principle of Relativity says that the
mechanical laws of physics are the same for every inertial
observer. And this led to the understanding that there is no public
notion of speed---no universal agreement on what the speed of an
object is---the speed of an object is a private "relative” concept.
This is what led us to abandon Aristotle's notion of absolute rest
and replace his spacetime with Galileo's Spacetime.

However, there is a serious problem: Galileo's Spacetfime is
incompatible with Maxwell's Laws of Electrodynamics and Optics.
The source of the problem is the appearance of a "constant
speed"--a fundamental constant of nature: the speed of light--



automatically built into the Laws of Electromagnetism and Optics.
(It turns out that if this speed were infinite, then there would be
no conflict between Galileo's Spacetime and Maxwell's Laws of
Electromagnetism and Optics. But, this speed is not infinite. So,
there is a conflict.)

Thus, Maxwell's Electrodynamics is incompatible with Galileo's
Space time.

At this point one had several possibilities:

A) Maxwel! equations were incorrect

B) Galilean relativity applied to classical mechanics but optics
had a preferred reference system, the frame of which the
luminiferous ether was at rest

C) There existed a relativity principle for both classical
mechanics and optics but it was not Galilean relativity i.e,
mechanics (Newton's law) had to change

Since Maxwell equations were only 20 years old at the time,
it seemed almost obvious that these equations must be wrong so
the thing to do was to change them in such a way that under
Galilean transformation did not change form (covariance) and thus
Galilean relativity was satisfied. When this was tried, the new
terms that had to be included into the equations led to predictions
of new electrical phenomena that did not exist at all when tested
experimentally , so this attempt had to be abandoned.

In the mean time, prompted by Maxwell's ideas, Michelson
began his own terrestrial experiments and in 1881 he reported
"The result of the hypothesis of a stationary ether is shown to be
incorrect, and the necessary conclusion follows that the hypothesis



is erroneous”. So it seemed that also the second hypothesis was
wrong: No special reference system for the light.

Lorentz wrote a paper in 1886 where he criticised
Michelson's experiment and really was not worried by fthe
experimental result which he dismissed being doubtful of its
accuracy. Michelson was persuaded by Thomson and others to
repeat the experiment and he did so with Morley, again reporting
that no effect had been found in 1887. It appeared that the
velocity of light was independent of the velocity of the observer.
[Michelson and Morley were to refine their experiment and repeat
it many times up to 1929.]

Thus only the third choice remained but at the time was not
realised. Already as early as 1887 Voigt first wrote down the
transformations

x'=x-vt,y' =y/g, 2’ =2/g,1t"' =t - vx/c?

and showed that certain equations were invariant under these
transformations. These transformations, with a different scale
factor, are now known as the Lorentz equations and the group of
Lorentz transformations gives the geometry of special relativity.
All this was unknown to Voigt who was writing on the Doppler shift
when he wrote down the transformations. Voigt corresponded with
Lorentz about the Michelson-Morley experiment in 1887 and 1888
but Lorentz does not seem to have learnt of the transformations
at that stage. Lorentz however was now greatly worried by the new
Michelson-Morley experiment of 1887.

In 1889 a short paper was published by the Irish physicist
George FitzGerald in Science. The paper "The ether and the
earth's atmosphere” takes up less than half a page and is non-



technical. FitzGerald pointed out that the results of the
Michelson-Morley experiment could be explained only if:

... The length of material bodies changes, according as they are
moving through the ether or across it, by an amount depending on
the square of the ratio of their velocities to that of light". Lorentz
was unaware of FitzGerald's paper and in 1892 he proposed an
almost identical contraction in a paper which now took the
Michelson-Morley experiment very seriously. When it was pointed
out to Lorentz in 1894 that FitzGerald had published a similar
theory he wrote to FitzGerald who replied that he had sent an
article to Science but I do not know if they ever published it . He
was glad to know that Lorentz agreed with him for I have been
rather laughed at for my view over here . Lorentz took every
opportunity after this to acknowledge that FitzGerald had
proposed the idea first. Only FitzGerald, who didn't know if his
paper had been published, believed that Lorentz had published
first!

Larmor wrote an article in 1898 "Ether and matter” in which
he wrote down the Lorentz transformations (still not written down
by Lorentz) and showed that the FitzGerald-Lorentz contraction
was a consequence. Lorentz wrote down the transformations, now
named after him, in a paper of 1899, being the third person to
write them down. He, like Larmor, showed that the FitzGerald-
Lorentz contraction was a consequence of the Lorentz
transformations.

The most amazing article relating to special relativity to be
published before 1900 was a paper of Poincaré "La mesure du
temps” which appeared in 1898. In this paper Poincaré says

. we have no direct intuition about the equality of two time
intervals.



The simultaneity of two events or the order of their
succession, as well as the equality of two time intervals, must be
defined in such a way that the statements of the natural laws be
as simple as possible.

By 1900 the concept of the ether as a material substance was
being questioned. Poincaré, in his opening address to the Paris
Congress in 1900, asked "Does the ether really exist?” In 1904
Poincaré came very close to the theory of special relativity in an
address to the International Congress of Arts and Science in St
Louis. He pointed out that observers in different frames will have
clocks which will

... mark what on may call the local fime. ... as demanded by the
relativity principle the observer cannot know whether he is at rest
or in absolute motion.

The year that special relativity finally came into existence
was 1905. June of 1905 was a good month for papers on relativity,
on the 5th June Poincaré communicated an important work “Sur la
dynamique de !'electron” while Einstein's first paper on relativity
was received on 30th June. Poincaré stated that It seems that
this impossibility of demonstrating absolute motion is a general law
of nature. After naming the Lorentz transformations after
Lorentz, Poincaré shows that these transformations, together with
the rotations, form a group.

2.2 The Big Moment

In 1905, Albert Einstein published "On the Electrodynamics
of Moving Bodies". -



3. Zur Elcktrodynamik bewegter Korper;
von A. Einstein.

DaB die Elektrodynawik Maxwells — wie dieselbe gegen-
witrtig nufgefabt zu werden pflegt — in ihrer Anwenduug auf
bewegte Korper zu Asymmetrien flihrt, welche den Phinomenen
nicht anzuhaften scheinen, ist bekannt. Man denke z. B. an
die elektrodynamische Wechselwirkung zwischen einem Mag-
neten und einem Leiter. Das beobachtbare Phinomen hangt
bhier nur ab von der Relativbewegung von Leiter und Magnet,
wihrend nach der itblichen Auffassung die beiden Fille, daB
der eine oder der andere dieser Korper der bewegte sei, streng
voneinander zu trennen sind. Bewegt sich ndmlich der Magnet
und ruht der Leiter, so entsteht in der Umgebung des Magneten
ein elektrisches Feld von gewissem Energiewerte, welches an
den Orten, wo sich Teile des Leiters befinden, einen Strom
erzeugt. Ruht aber der Magnet und bewegt sich der Leiter,
so entsteht in der Umgebung des Magneten kein elektrisches
Feld, dagegen im Leiter eine elektromotorische Kraft, welcher
an sich keine Energie entspricht, die aber — Gleichheit der
Relativbewegung bei den beiden ins Auge gefaBten Fillen
vorausgesetzt — zu elektrischen Stromen von derselben GréBe
und demselben Verlaufe Veranlassung gibt, wie im ersten Falle
die elektrischen Krifte.

Beispiele #hnlicher Art, sowie die miBlungenen Versuche,
eine Bewegung der Erde relativ zum ,,Lichtmedium* zu kon-
statieren, fiihren zu der Vermutung, daB dem Begriffe der
absoluten Rube nicht nur in der Mechanik, sondern auch in
der Elektrodynamik keine Eigenschaften der Erscheinungen ent-
sprechen, sondern daB vielmehr fiir alle Koordinatensysteme,
fir welche die mechanischen Gleichungen gelten, auch die
gleichen elektrodynamischen und optischen Gesetze gelten, wie
dies fir die GroBen erster Ordnung bereits erwiesen ist. Wir
wollen diese Vermutung {(deren Inhalt im folgenden ,,Prinzip
der Relativitit:* genannt werden wird) zur Voraussetzung er-
heben und suBerdem die mit ibm nur scheinbar unvertriigliche
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Einstein's paper is remarkable for the different approach it takes.
It is not presented as an attempt o explain experimental results.
In the discussion of the relationship between mechanics and optics
he is directing the attention to the need of a proper operational
definition of simultaneity for distant events. Instead of dealing
with Maxwells equations at the beginning, he starts from
kinematics where he defines simultaneity. In the introduction
Einstein says

... the introduction of a light-ether will prove to be superfluous
since, according to the view to be developed here, neither will a
space in absolute rest endowed with special properties be
introduced nor will a velocity vector be associated with a point of
empty space in which electromagnetic processes take place. The
theory to be developed is based -like all electrodynamics- on
kinematics of the rigid body, since assertions of any such theory
have to do with relationships between rigid bodies (systems of co-
ordinates),clocks, and electromagnetic processes. Insufficient
consideration of this circumstance lies at the root of the
difficulties which the electrodynamics of moving bodies at
present encounters.

Inertial frames are introduced which, by definition, are in
uniform motion with respect to each other. The whole theory is
based

on two postulates:

1. The laws of physics take the same form in all inertial
frames.



2. In any inertial frame, the velocity of light ¢ is the same
whether the light is emitted by a body at rest or by a body in
uniform motion.
(In 1983, the General Conference on Weights and Measures
officially defined the speed of light to be

€ = 299,792,458 meters/second ,
and the meter, instead of being a primary measure, became a
secondary quantity, defined in terms of the second and the speed
of light. See also RADAR ]
Einstein now deduces the Lorentz transformations from his two
postuiates and, like Poincaré proves the group property. Then the
FitzGerald-Lorentz contraction is deduced. With the help of the
mathematician Herman Minkowski (1849-1909) (who gave us the
idea to think in terms of "Spacetime", not just space and time
separately), Einstein proposed a new model for Spacetime to
replace Galileo's Spacetime.
"Henceforth, space by itself, and time by itself, are doomed to
fade away into mere shadows, and only a kind of union of the two
will preserve an independent reality."

Also in the paper Einstein mentions the clock paradox. Einstein
called it a theorem that if two synchronous clocks €1 and C2 start
at a point A and C2 leaves A moving along a closed curve to return
to A then €2 will run slow compared with Cl. He notes that no
paradox results since C2 experiences acceleration while C1 does
not.

In September 1905 Einstein published a short but important
paper in which he proved the famous formula

E = mc?
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2.3 Afterwards

The first paper on special relativity, other than by Einstein, was
written in 1908 by Planck. It was largely due to the fact that
relativity was taken up by someone as important as Planck that it
became so rapidly accepted. At the time Einstein wrote the 1905
paper he was still a technical expert third class at the Bern patent
office. Also in 1908 Minkowski published an important paper on
relativity, presenting the Maxwell-Lorentz equations in fensor
form. He also showed that the Newtonian theory of gravitation was
not consistent with relativity.

The main contributors to special relativity were undoubtedly
Lorentz, Poincaré and, of course, the founder of the theory
Einstein. It is therefore interesting to see their respective
reactions to the final formulation of the theory. Einstein, although
he spent many years thinking about how to formulate the theory,
once he had found the two postulates they were immediately
natural to him. Einstein was always reluctant to acknowledge that
the steps which others were faking due to the Michelson-Morley
experiment had any influence on his thinking.

Poincaré's reaction to Einstein's 1905 paper was rather
strange. When Poincaré lectured in G6ttingen in 1909 on relativity
he did not mention Einstein at all. He presented relativity with
three postulates, the third being the FitzGerald-Lorentz
contraction. It is impossible o believe that someone as brilliant as
Poincaré had failed to understand Einstein's paper. In fact
Poincaré never wrote a paper on relativity in which he mentioned
Einstein. Einstein himself behaved in a similar fashion and Poincaré
is only mentioned once in Einstein's papers. Lorentz, however, was



praised by both Einstein and Poincaré and often cited in their
work.

Lorentz himself poses a puzzle. Although he clearly
understood Einstein's papers, he did not ever seem to accept their
conclusions. He gave a lecture in 1913 when he remarked how
rapidly relativity had been accepted. He for one was less sure.

As far as this lecturer is concerned he finds a certain
satisfaction in the older interpretation according to which the
ether possesses at least some substantiality, space and time can be
sharply separated, and simultaneity without further specification
can be spoken of. Finally it should be noted that the daring
assertion that one can never observe velocities larger than the
velocity of light contains a hypothetical restriction of what is
accessible to us, a restriction which cannot be accepted without
some reservation.

Despite Lorentz's caution the special theory of relativity was
quickly accepted. In 1912 Lorentz and Einstein were jointly
proposed for a Nobel prize for their work on special relativity.
Indeed, Wilhelm Wein proposed that the Nobel prize of 1912 be

awarded jointly to Lorentz and Einstein, saying

The principle of relativity has eliminated the difficulties which existed in
electrodynamics and has made it possible to predict for a moving system ali
electrodynamic phenomena which are known for a system at rest.. From a
purely logical point of view the relativity principle must be considered as one
of the most significant accomplishments ever achieved in theoretical physics...
While Lorentz must be considered as the first to have found the
mathematical content of relativity, Einstein succeeded in reducing it to a
simple principle. One should therefore assess the merits of both investigators
as being comparable.
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The Nobel committee was at first cautious and waited for
experimental confirmation, and thus the prize for 1912 was
awarded to Dalen, and neither Einstein nor Lorentz nor anyone else
was ever awarded a Nobel prize for either the special or general
theories of relativity. By the time such confirmation was available
Einstein had moved on to further momentous work . This is
sometimes considered to have been an injustice to Einstein,
although in retrospect it's conceivable that a joint prize for
Lorentz and Einstein in 1912, as Wein proposed, assessing "the
merits of both investigators as being comparable”, might actually
have diminished Einstein's subsequent popular image as the sole
originator of both special and general relativity. Einstein never
received a Nobel prize for relativity.

On the other hand, despite the fact that special relativity
can, in a sense, be regarded as "just" an interpretation of
Lorentz's theory, it is clearly an extraordinarily profound
interpretation, with consequences extending far beyond Lorentz's
electrodynamics. As Einstein later recalled, the new feature was
the realization that the bearing of the Lorentz transformation
transcended its connection with Maxwell's equations and was
concerned with the nature of space and time in general. In any
case Einstein was only one of several individuals (including Maxwell,
Poincare, Fitzgerald, Lorentz, Planck, Mach, Milne, and Minkowski)
responsible for the "relativity revolution”.



3.1 Speed of light

Aristotle thought it was infinite, Galileo tried unsuccessfully to measure it with
lanterns on hilltops, a Danish astronomer found it first by observing Jupiter's
moons. Rival Frenchmen found it quite accurately about 1850, but a far more
precise experiment was carried out in 1879 in Annapolis, Maryland by Albert
Abraham Michelson.

The first recorded discussion of the speed of light (I think) is in
Aristotle, where he quotes Empedocies as saying the light from the sun
must take some time to reach the earth, but Aristotle himself
apparently disagrees, and even Descartes thought that light travelled
instantaneously. Galileo, unfairly as usual, in Two New Sciences (page
42) has Simplicio stating the Aristotelian position,

SIMP. Everyday experience shows that the propagation of light is
instantaneous; for when we see a piece of artillery fired at great
distance, the flash reaches our eyes without lapse of time; but the
sound reaches the ear only after a noticeable interval.

Of course, Galileo points out that in fact nothing about the speed
of light can be deduced from this observation, except that light moves
faster than sound. He then goes on to suggest a possible way to
measure the speed of light. The idea is fo have two people far away
from each other, with covered lanterns. One uncovers his lantern, then
the other immediately uncovers his on seeing the light from the first.
This routine is to be practised with the two close together, so they will
get used to the reaction times involved, then they are to do it 3 or 4
km apart, or even further using telescopes, to see if the time interval
is perceptibly lengthened. Galileo claims he actually tried the
experiment at distances of about one km, and couldn't detect a time
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lag. From this one can certainly deduce that light fravels at least
ten times faster than sound.

The first real measurement of the speed of light came about half
a century later, in 1676, by a Danish astronomer, Ole Romer, working at
the Paris Observatory. He had made a systematic study of Io, one of
the moons of Jupiter, which was eclipsed by Jupiter at regular
intervals, as To went around Jupiter in a circular orbit at a steady rate.
Actually, Rémer found, for several months the eclipses lagged more and
more behind the expected time, until they were running about eight
minutes late, then they began to pick up again, and in fact after about
six months were running eight minutes early. The cycle then repeated
itself. Romer realised the significance of the time involved-just over
one year. This time period had nothing to do with Io, but was the fime
between successive closest approaches of earth in its orbit to Jupiter.
The eclipses were furthest behind the predicted fimes when the earth
was furthest from Jupiter.

The natural explanation was that the light from Io (actually
reflected sunlight, of course) took time to reach the earth, and took
the longest time when the earth was furthest away. From his
observations, Romer concluded that light took about twenty-two
minutes to cross the earth's orbit. This was something of an
overestimate, and a few years later Newton wrote in the Principia
(Book I, section XIV): "For it is now certain from the phenomena of
Jupiter's satellites, confirmed by the observations of different
astronomers, that light is propagated in succession (NOTE: I think this
means at finite speed) and requires about seven or eight minutes to
travel from the sun to the earth." This is essenftially the correct
value. Of course, to find the speed of light it was also necessary to
know the distance from the earth to the sun. During the 1670's,
attempts were made to measure the parallax of Mars, that is, how far
it shifted against the background of distant stars when viewed



simultaneously from two different places on earth at the same time.
This (very slight) shift couid be used to find the distance of Mars
from earth, and hence the distance to the sun, since all relative
distances in the solar system had been established by observation and
geometrical analysis. According to Crowe (Modern Theories of the
Universe, Dover, 1994, page 30), they concluded that the distance to
the sun was between 64 and 145 million km. Measurements presumably
converged on the correct value of about 149.668 million km soon after
that, because it appears Romer (or perhaps Huygens, using Rémer's
data a short time later) used the correct value for the distance, since
the speed of light was calculated to be 201,168 km per second, about
three-quarters of the correct value of 299,792 km/s. This error is
fully accounted for by taking the time light needs to cross the earth's
orbit to be twenty-two minutes (as Rémer did) instead of the correct
value of sixteen minutes.

The next substantial improvement in measuring the speed of light
took place in 1728, in England. An astronomer James Bradiey, sailing on
the Thames with some friends, noticed that the little pennant on top
of the mast changed position each time the boat put about, even
though the wind was steady. He thought of the boat as the earth in
orbit, the wind as starlight coming from some distant star, and
reasoned that the apparent direction the starlight was "blowing" in
would depend on the way the earth was moving. Another possible
analogy is to imagine the starlight as a steady downpour of rain on a
windless day, and fo think of yourself as walking around a circular path
at a steady pace. The apparent direction of the incoming rain will not
be vertically downwards-more will hit your front than your back.
Bradley reasoned that the apparent direction of incoming starlight
must vary in just this way, but the angular change would be a lot less
dramatic. The earth's speed in orbit is about 32 km /s, he knew from
Romer's work that light went at about 10,000 times that speed. That



meant that the angular variation in apparent incoming direction of
starlight was about the magnitude of the small angle in a right-angled
triangle with one side 10,000 times longer than the other, about one
two-hundredth of a degree. Notice this would have been just at the
limits of Tycho's measurements, but the advent of the telescope, and
general improvements in engineering, meant this small angle was quite
accurately measurable by Bradley's time, and he found the velocity of
light to be 297,728 km/sec, with an accuracy of about one percent.

The problem is, all these astronomical techniques do not have the
appeal of Galileo's idea of two guys with lanterns. It would be
reassuring to measure the speed of a beam of light between two points
on the ground, rather than making somewhat indirect deductions based
on apparent slight variations in the positions of stars. We can see,
though, that if the two lanterns are 15 km apart (i.e in total 30 km) ,
the time lag is of order one-ten thousandth of a second (0.1 msec), and
it is difficult to see how to arrange that. This technical problem was
solved in France about 1850 by two rivals, Fizeau and Foucault, using
slightly different techniques.

In Fizeau's apparatus, a beam of light shone between the teeth
of a rapidly rotating toothed wheel, so the "lantern" was constantly
being covered and uncovered. Instead of a second lantern far away,
Fizeau simply had a mirror, reflecting the beam back, where it passed a
second time between the teeth of the wheel. The idea was, the blip of
light that went out through one gap between teeth would only make it
back through the same gap if the teeth had not had time to move over
significantly during the round trip time to the far away mirror. It was
hot difficult to make a wheel with a hundred feeth, and to rotate it
hundreds of times a second, so the time for a tooth o move over could
be arranged to be a fraction of one ten thousandth of a second. The
method worked.



Foucault's method was based on the same general idea, but
instead of a toothed wheel, he shone the beam on to a rotating mirror.
At one point in the mirror's rotation, the reflected beam fell on a
distant mirror, which reflected it right back to the rotating mirror,
which meanwhile had turned through a small angle. After this second
reflection from the rotating mirror, the position of the beam was
carefully measured. This made it possible to figure out how far the
mirror had turned during the time it took the light to make the round
trip to the distant mirror, and since the rate of rotation of the mirror
was known, the speed of light could be figured out. These techniques
gave the speed of light with an accuracy of about 1609 km per
second.

Albert Michelson was born in 1852 in Strzelno, Poland and his
family soon after migrated to Annapolis USA. Michelson in 1875
became an instructor in physics and chemistry at the Naval Academy,
under Lieutenant Commander William Sampson. Michelson met Mrs.
Sampson's niece, Margaret Heminway, daughter of a very successful
Wall Street tycoon, who had built himself a granite castle in New
Rochelle, NY. Michelson married Margaret in New Rochelle in 1877.

At work, lecture demonstrations had just been introduced at Annapolis.
Sampson suggested that it would be a good demonstration to measure
the speed of light by Foucault's method. Michelson soon realised, on
putting together the apparatus, that he could redesign it for much
greater accuracy, but that would need money well beyond that available
in the teaching demonstration budget. He went and talked with his
father in law, who agreed to put up $2,000. Instead of Foucault's 21
meter to the far mirror, Michelson had about 700 m along the bank of
the river Severn, a distance he measured to one tenth of an inch. He
invested in very high quality lenses and mirrors to focus and reflect
the beam. His final result was 186,355 miles per second, with
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possible error of 30 miles per second ( 299,909.30 km/s with an
error of 48.3 km/s). This was twenty times more accurate than
Foucault, made news in the New York Times, and Michelson was famous
while still in his twenties. In fact, this was accepted as the most
accurate measurement of the speed of light for the next forty years,
at which point Michelson measured it again.

3.2 Gadlilean Transformations

Let O'X'Y'Z' a co-ordinate system moving with respect of the
OXYZ system with uniform velocity v along the X axis:

' ALY
P
- — - \— —
-
O 0} X X'
Z ZI

The position of a point P can be expressed using a set of co-ordinates
(xy,z) or (x'y'.z"). The reiationship of the co-ordinates in the two
systems is clear from the above diagram and can be expressed as:
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Are Newton's laws the same for the moving system? (i.e. proving
Galileo’s relativity)

Take Newton's second law: F= d{m dx /dt )/dt (tacitly assuming that
m is a constant -which as we now know it is not exactly true- we have
F= m d°x/dt? ) and substitute the above transformation. From the
first equation of the transformations we have dx'/d+'= dx/df-v and
d°x'/dt?=d’x/dt? - dv/dt. Since dv/dt=0 ( uniform velocity )
d®x'/dt?=d’x/dt?

We have thus proven that Newton's law keeps its form i.e. is the same
in any inertial system,

This property is called Covariance (=form invariance) and it is
very important since it indicates whether a theory respects the
transformation under question.

3.3 Covariance of the wave equation

The preservation of the form of the equations of classical
mechanics under the Galilean transformations is in contrast to the
change in form of the equations governing wave phenomena. Suppose
that a field y(x',1') satisfies the wave equation
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in the reference frame O'. Here we have partial derivatives that they
transform from x' ' to x, + according to the following rule:

d 8c?x Jd o _d
H K i 3t'c9x S

for the space partial derivative and
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for the time partial derivative. Then the wave equation in the O frame
becomes:

10 2 o 1
Vz_cz EER vvg—?vVvV =0

Thus the form of the wave equation ( including Maxwell's ) is not
invariant under Galilean transformations. Furthermore no kinematic
transformation of y can restore the form.

The lack of invariance is not always a sign of weakness of the
theory. For example for sound waves the lack of invariance under



Galilean transformations is quite acceptable. Sound waves are
compressions and rarefactions in a transmitting medium and the
preferred system is obviously the one where the medium is af rest. So
it was thought also for electromagnetism. However there the medium
seemed truly ethereal with no manifestation or purpose other than to
support the propagation.

NB: The Schrddinger equation is invariant under Galilean transformations since

there is a wave function that can restore the lack of covariance of the partial
derivatives.

3.4 Michelson and the Ether

By the late 1800's, it had been established that light was
wavelike, and in fact consisted of waving electric and magnetic fields.
These fields were thought somehow to be oscillations in a material
ether, a transparent, light yet hard substance that filled the universe
(since we see light from far away). Michelson devised an experiment to
detect the earth's motion through this ether, and the result
contributed to the development of special relativity.

Detecting the ether wind was the next challenge Michelson set
himself after his triumph in measuring the speed of light so accurately.
Naturally, something that aliows solid bodies to pass through it freely
is a little hard to get a grip on. But Michelson realised that, just as the
speed of sound is relative to the air, so the speed of light must be
relative o the ether. This must mean, if you could measure the speed
of light accurately enough, you could measure the speed of light
travelling upwind, and compare it with the speed of light fravelling
downwind, and the difference of the two measurements should be
twice the wind speed. Unfortunately, it wasn't that easy. All the recent
accurate measurements had used light traveiling Yo a distant mirror



and coming back, so if there was an ether wind along the direction
between the mirrors, it would have opposite effects on the two parts
of the measurement, leaving a very small overall effect. There was no
technically feasible way to do a one-way determination of the speed of
light.

At this point, Michelson had a very clever idea for detecting the

ether wind. As he explained to his children (according to his daughter),
it was based on the following puzzle:
Suppose we have a river of width w (say, 100 meters), and two
swimmers who both swim at the same speed v (say, 5 m /s). The river is
flowing at a steady rate, say 3 m/s. The swimmers race in the following
way: they both start at the same point on one bank. One swims directly
across the river to the closest point on the opposite bank, then turns
around and swims back. The other stays on one side of the river,
swimming upstream a distance (measured along the bank) exactly equal
to the width of the river, then swims back to the start. Who wins?

hank B T ¢
—K
FIVer - «— flow
| — Jet
hanlk A

Figure 1 In ftime t, the swimmer has moved ct relative to the water, and
been carried downstream a distance vt.



The swimmer going upstream and back will need 62.5 seconds. The
swimmer going across the flow is trickier but choosing correctly the
upstream angle (from a 3,4,5 m/s triangle) so that the net movement is
directly across, the swimmer gets across in 25 seconds, and back in the
same time, for a total time of 50 seconds. The cross-stream swimmer
wins. This turns out to frue whatever their swimming speed is provided
they can swim faster than the current.

Michelson's great idea was to construct an exactly similar race
for pulses of light, with the aether wind playing the part of the river.
The scheme of the experiment is as follows: a pulse of light is directed
at an angle of 45 degrees at a half-silvered, half transparent mirror,
so that half the pulse goes on through the glass, half is reflected.

b

fa)

Figure 2 This diagram is from the original paper. The source of light is
at s, the 45 degree line is The half-silvered mirror, b and ¢ are mirrors
and d the observer.

These fwo half-pulses are the two swimmers. They both go on to
distant mirrors which refiect them back to the half-silvered mirror. At
this point, they are again half reflected and half transmitted, but a
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telescope is placed behind the half-silvered mirror as shown in the
figure so that half of each half-pulse will arrive in this telescope. Now,
if there is an ether wind blowing, someone looking through the
telescope should see the halves of the two half-pulses to arrive at
slightly different times, since one would have gone more upstream and
back, one more across stream in general. To maximise the effect, the
whole apparatus, including the distant mirrors, was placed on a large
turntable so it could be swung around. ‘

The time delay one expects to find between the arrival of the
two half-pulses of light can be calculated as follows. Taking the speed
of light to be ¢ km/s relative to the ether, and the ether to be flowing
at v km/s through the laboratory, to go a distance D km upstream will
take D/(c-v) seconds, then to come back will take D/(c+v) seconds. The
total roundtrip time upstream and downstream is the sum of these,
which works out to be 2Dc/(c2—v2), which can also be written as

(2D/c) /(l—vz/cz). Now, we can safely assume the speed of the ether is
much less than the speed of light, otherwise it would have been noticed
long ago, for example in timing of eclipses of Jupiter's satellites, this
means v2/c® is a very small number, and we can use some handy

mathematical facts to make the algebra a bit easier.

First, if x is very small compared to 1, 1/(1-x} is very close to 1+x. (You can check
it with your calculator.) Another fact we shall need in a minute is that for small x,
the square root of 1+x is very close to 1+x/2. Anyway, the roundtrip
upstream-downstream time can be taken, to an excellent

approximation, to be (2D/c) (1+v2/c2).
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Figure 3 This is also from the original paper, and shows the expected
path of light relative to the ether with an ether wind blowing.

Now what about the cross-stream time? The actual cross-stream
speed must be figured out as in the example above using a right-angled
triangle, with the hypotenuse equal to the speed ¢, the shortest side
the ether flow speed v, and the other side the cross-stream speed we
need to find the time to get across. From Pythagoras' theorem, then,
the cross-stream speed is the square root of (cz—vz). Since this will be
the same both ways, the roundtrip cross-stream time will be
2D/sqr"r(c2-v2). This can be written in the form (2D/c)/squ(1-v2/c2),
which can be approximated as (ZD/c)squ(1+v2/c2) or (2D/c)(1+v2/2c2).
The two roundtrip times thus will differ by an amount of:

(2D/c) (1+v°/c%)- (2D/c)(1+vP/2¢°)= (2D/cWe/2c?
Now, 2D/c is just the time the light would take if there were no ether
wind at all, say, a few millionths of a second. If we take the ether

windspeed to be equal to the earth's speed in orbit, for example, v/c is
about 1/10,000, so v?/c? is about 1/100,000,000. This means the time
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delay between the pulses reflected from the different mirrors
reaching the telescope is about one-hundred-millionth of a few
millionths of a second. It seems completely hopeless that such a short
time delay could be detected. However, this turns out not to be the
case, and Michelson was the first to figure out how to do it. The trick
is to use the interference properties of the light waves. Instead of
sending pulses of light, as we discussed above , Michelson sent in a
steady beam of light of a single colour. This can be visualised as a
sequence of in going waves, with a wavelength one hundred-thousandth
of a cm or so. Now this sequence of waves is split into two, and
reflected as previously described. One set of waves goes upstream and
downstream, the other goes across stream and back. Finally, they come
together into the telescope and the eye. If the one that took longer is
half a wavelength behind, its troughs will be on top of the crests of the
first wave, they will cancel, and nothing will be seen. If the delay is less
than that, there will still be some dimming. However, slight errors in
the placement of the mirrors would have the same effect. This is one
reason why the apparatus is built to be rotated. On turning it through
90 degrees, the upstream-downstream and the cross-stream waves
change places. Now the other one should be behind. Thus, if there is an
ether wind, if you watch through the telescope while you rotate the
turntable, you should expect to see variations in the brightness of the
incoming light.

To magnify the time difference between the two paths, in the
actual experiment the light was reflected backwards and forwards
several times, like a several lap race. Michelson calculated that an
ether wind speed of only one or two km a second would have observable
effects in this experiment, so if the ether windspeed was comparable
to the earth's speed in orbit around the sun, it would be easy to see. In
fact, nothing was observed. The light intensity did not vary at all.
Some time later, the experiment was redesighed so that an ether wind



caused by the earth's daily rotation could be detected. Again, nothing
was seen. Finally, Michelson wondered if the ether was somehow
getting stuck o the earth, like the air in a below-decks cabin on a ship,
so he redid the experiment on top of a high mountain in California.
Again, no ether wind was observed. It was difficult to believe that the
ether in the immediate vicinity of the earth was stuck to it and moving
with it, because light rays from stars would deflect as they went from
the moving faraway ether to the local stuck ether.

The only possible conclusion from this series of very difficult
experiments was that the whole concept of an all-pervading ether was
wrong from the start. Michelson was very reluctant to think along
these lines. In fact, new theoretical insight into the nature of light had
arisen in the 1860s from the brilliant theoretical work of Maxwell, who
had written down a set of equations describing how electric and
magnetic fields can give rise to each other. He had discovered that his
equations predicted there could be waves made up of electric and
magnefic fields, and the speed of these waves, deduced from
experiments on how these fields link together, would be 186,300 miles
per second. This is, of course, the speed of light, so it is natural to
assume that light is made up of fast-varying electric and magnetic
fields. But this leads to a big problem: Maxwell's equations predict a
definite speed for light, and it is the speed found by measurements.
But what is the speed to be measured reiative t0? The whole point of
bringing in the ether was to give a picture for light resembling the one
we understand for sound, compressional waves in a medium. The speed
of sound through air is measured relative to air. If the wind is blowing
towards you from the source of sound, you will hear the sound sooner.
If there isn't an ether, though, this analogy doesn't hold up. So what
does light travel at 299,792 km per second relative t0?

There is another obvious possibility, which is called the emitter
theory---the light travels at 299,792 km/s relative to the source of
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the light. The analogy here is between light emitted by a source and
bullets emitted by a machine gun. The bullets come out at a definite
speed (called the muzzle velocity) relative to the barrel of the gun. If
the gun is mounted on the front of a tank, which is moving forward, and
the gun is pointing forward, then relative to the ground the bullets are
moving faster than they would if shot from a tank at rest. The simplest
way to test the emitter theory of light, then, is to measure the speed
of light emitted in the forward direction by a flashlight moving in the
forward direction, and see if it exceeds the known speed of light by an
amount equal to the speed of the flashlight. Actually, this kind of
direct test of the emitter theory only became experimentally feasible
in the nineteen-sixties. It is now possible to produce particles, called
neutral pions, which decay each one in a little explosion, emitting a
flash of light. It is also possible to have these pions moving forward at
296 740 km/s when they self destruct, and to catch the light emitted
in the forward direction, and clock its speed. It is found that, despite
the expected boost from being emitted by a very fast source, the light
from the little explosions is going forward at the usual speed of
299 792 km/s . In the last century, the emitter theory was rejected
because it was thought the appearance of certain astronomical
phenomena, such as double stars, where two stars rotate around each
other, would be affected. Those arguments have since been criticised,
but the pion test is unambiguous. The definitive experimeni was
carried out by Alvager et al., Physics Letters 12, 260 (1964).

3.5 Lorenz Transformations

Already as early as 1887 Voigt working on Doppler shifts wrote down
transformations that leave invariant the wave and Maxwell's equations.
These transformations with a different scale factor are now known as
Lorentz transformations although he wrote them down in 1899 :



Let us define:

Then the transformations between O and O' read:

x'=y(x-vt)

y=y

7=z

, V
[ = '}/(f — ?'X)
With these transformations the partial derivatives become:
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Squaring them and substituting into the wave equation we arrive at the
following expression after some simple rearranging of terms:
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Which readily becomes:
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and thus the equation remains invariant.
Now how about Newton's laws? Are covariant under Lorentz
transformations?

First let us see how velocities are ftransformed. Taking the
differentials of x' and t' transformations we obtain:

dx’ =y (dx —vdt)

p 1%
dt’ = '}/(df — -?dX)

C

And dividing left and right parts one has:




This is a funny way to "add" velocities but as we shall see it is the
correct way! Remember that with the Galilean fransformations the

denominator was missing.
Differentiating the above expression in dt' and using the fotal

derivative property that:
d dr d
dr’ dt’ dt

One obtains the acceleration that has an equally complicated form:

du, 1 du_
r u_v

And when u=v :

du, % du
dt’ dt

At first sight this transformation seems quite in conflict with
Newton's laws of motion. If in the O' system the second Newton's law
was F=d(mu')/dt’ in the system O assuming m =constant, it will have a
new form i.e. Newton's Law As expressed above, IS NOT
INVARIANT.

However this turns out not to be the case for the following
reason, that provides also the ingredients for the modification. Firstly
we have from the definition of Y the following relation:



And differentiating this gives us:

2dj/ 2u du
y? dt ¢’ dt

As a result is follows that:

=0

4y 1L
dtW ydt ct dt

Since the final result here is exactly the quantity to be defined as the
acceleration we can, by inserting the mass, rewrite Newton's second
law in the form:

d
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A very interesting result as we shall see, but not understood at the
time the Lorentz equations were written



3.6 Relativistic Effects

3.6.1 Fitzgerald Contraction using Formulae

Consider a rigid rod stationary in O' and lying along the X' axis. Let x';
and x'; the two ends so its length as measured in the O' system is
L'=X'2-X'1.

At the instant t in O suppose that these ends occupy the positions x;
and X2 so that L=x2-x4

Under Galilean transformations one can immediately see that the rod
will appear as having the same length in both systems:

Xy, =X,—Vt
’

X, =X, —Vvi
L'=L

However under the Lorentz transformations things are not that simple,
applying the LT one finds that:

L=L"/y

This seems to be funny since it shows that the length L' seen from O
appears different from the length as seen at O'.



Now lets us see how 1/ ¥ is behaving with V:

Therefore the length of the bar suffers contraction when it is moved!
This is called the Fitzgerald contraction.

This contraction is not to be thought of as a physical reaction of
the rod to its motion and as belonging to the same category of physical
effects as the contraction of a metal rod when it is cooled. It is due to
a changed relationship between the rod and the instruments measuring
its length as we shall shortly see.



3.6.2 Relativistic clocks and lengths

In order to define time and simultaneity one has to define a
simple but reliable clock. Imagine that our (inertial) frames of
reference is calibrated (had marks at regular intervals along the walls)
to measure distances, and has a clock to measure time, that is easy to
understand in any frame of reference. Instead of a pendulum swinging
back and forth, which wouldn't work away from the earth’s surface
anyway, we have a blip of light bouncing back and forth between Two
mirrors facing each other. We call this device a light clock. To really
use it as a timing device we need some way to count the bounces, so we
position a photocell at the upper mirror, so that it catches the edge of
the blip of light. The photocell clicks when the light hits if, and this
regular series of clicks drives the clock hand around, just as for an
ordinary clock. We ignore the fechnical difficulties such as: the driving
of the photocell will eventually use up the blip of light , the need of
some provision to reinforce the blip occasionally, such as a strobe light
set to flash just as it passes and thus add to the intensity of the light
etc. Admittedly, this may not be an easy way fo build a clock, but the

basic idea is simple.
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It's easy to figure out how frequently our light clock clicks. If
the two mirrors are a distance D apart, the round trip distance for
the blip from the photocell mirror to the other mirror and back is 2D.
Since we know the blip always travels at ¢, we find the round trip time
to be 2D/c, so this is the time between clicks. This isn't a very long
time for a reasonable sized clock! The crystal in a quartz watch “clicks
" of the order of 10,000 times a second. That would correspond to
mirrors about 15 km apart, so we need our clock to click about 1,000
times faster than that to get to a reasonable size. Anyway, let us
assume that such purely technical problems have been solved.

3.6.3 Looking at Somebody Eise's Clock

Let us now consider two observers, A and B, each equipped with a
calibrated inertial frame of reference, and a light clock. To be
specific, imagine A standing on the ground with his light clock next to a
straight railroad line, while B and his clock are on a large flatbed
railroad wagon which is moving down the track at a constant Speed v. A
now decides to check B's light clock against his own. He knows the
time for his clock is 2D/c between clicks. How long does he think that
B's blip takes to make a round trip? The one thing he's sure of is that
it must be moving at ¢, relative fo him according to the second
postulate of relativity. So to find the round trip time, all he needs is
the round trip distance. This will not be 2D, because the mirrors are on
the flatbed wagon moving down the track, so, relative o A on the
ground, when the blip gets back to the top mirror, that mirror has
moved down the track some since the blip left, so the blip actually
follows a zigzag path as seen from the ground.
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Suppose now the blip in B's clock on the moving flatbed wagon takes
time t to get from the bottom mirror to the top mirror as measured by
A standing by the track. Then the length of the "zig" from the bottom
mirror to the top mirror is necessarily ct, since that is the distance
covered by any blip of light in time t. Meanwhile, the wagon has moved
down the track a distance vt, where v is the speed of the wagon. This
should begin to look familiar---it is precisely the same as the problem
of the swimmer who swims at speed c relative to the water crossing a
river flowing at vl We have again a right-angled friangle with
hypotenuse ct, and shorter sides vt and D.

From Pythagoras theorem , then,
2.2 2.2 2
ct=vit+D

S0
2
(1-—)=D*/c?
C



and, taking the square root of each side, then doubling to get the round
trip time, we conclude that A sees the time between clicks for B's
clock to be:

2D
="y
C

This means that A sees B's light clock to be going slow---a longer time
between clicks---compared to his own identical clock. Obviously, the
effect is not dramatic at everyday speeds. Nevertheless, the effect is
real and can be measured, as we shall discuss later.

It is important to realise that the only reason we chose a light
clock, as opposed to some other kind of clock, is that its motion is very
easy to analyse from a different frame. The observer B could have a
collection of clocks on the wagon, and would synchronise them all. For
example, he could hang his wristwatch right next to the face of the
light clock, and observe them together to be sure they always showed
the same time. Remember, in his frame his light clock clicks every 2D/c
seconds, as it is designed to do. Observing this scene from his position
beside the track, the observer A will see the synchronised light clock
and wristwatch next to each other, and, of course, note that the
wristwatch is also running slow by the factor Y. In fact, all clocks are
slowed down by this factor according to the observer A. The observer
B is ageing more slowly because he's moving|

But this isn't the whole story -- we must now turn everything around
and look at it from B's point of view. His inertial frame of reference is
Just as good as A's. He sees the A's light clock to be moving at speed v



(backwards) so from her point of view his light blip takes the fonger
zigzag path, which means his clock runs slower than B's. That is to say,

each of them will see the other to have slower clocks, and be ageing
more slowly. This phenomenon is called fime dilation. It has been
verified in recent years by flying very accurate clocks around the
world on jetliners and finding they register less time, by the predicted
amount, than identicai clocks left on the ground. Time dilation is very
easy to observe in elementary particle physics, as we shall discuss in
the next section.

3.6.4 Fitzgerald Contraction using reasoning

Consider now the following puzzle: suppose B's clock is equipped with a
device that stamps a notch on the track once a second. How far apart
are the notches? From B's point of view, this is pretty easy to answer.
He sees the track passing under the wagon at v meters per second, so
the notches will of course be v meters apart. But A sees things
differently. He sees B's clocks to be running slow, so he will see the
notches to be stamped on the track at intervals of Y x seconds (so for
a relativistic train going at v = 0.8¢, the notches are stamped at
intervals of 5/3 = 1.67 seconds). Since A agrees with B that the
relative speed of the wagon and the track is v, he will assert the
notches are not v metfers apart, but v x Y meters apart, a greater
distance. Who is right? It turns out that A is right, because the
notches are in his frame of reference, so he can go over to them with a
tape measure and check the distance. This implies that as a result of
the motion of the B observer, B observes the notches to be closer
together by a factor 1/Y than they would be at rest. This is calied the

Fitzgerald contraction, and applies not just to the notches,
everything looks somewhat squashed in the direction of motion!



3.6.5 Experimental Evidence for Time Dilation: Dying Muons

The first clear example of time dilation was provided over fifty years
ago by an experiment detecting muons. These particles are produced at
the outer edge of our atmosphere by incoming cosmic rays hitting the
first traces of air. They are unstable particles, with a "half-life" of 1.5
microseconds, which means that if at a given time you have 100 of
them, 1.5 microseconds later you will have about 50, 1.5 microseconds
after that 25, and so on. Anyway, they are constantly being produced
many km up, and there is a constant rain of them towards the surface
of the earth, moving at very close to the speed of light. In 1941, a
detector placed near the top of Mount Washington (at 2000 meters
above sea level) measured about 570 muons per hour coming in. Now
these muons are raining down from above, but dying as they fall, so if
we move the detector to a lower altitude we expect it to detect fewer
muons because a fraction of those that came down past the 2 km level
will die before they get to a lower altitude detector. Approximating
their speed by that of light, they are raining down at ¢, which turns out
to be, conveniently, about 300 meters per microsecond. Thus they
should reach the 1550 meter level 1.5 microseconds after passing the 2
km level, so, if half of them die off in 1.5 microseconds, as claimed
above, we should only expect to register about 570/2 = 285 per hour
with the same detector at this level. At the lkm level, about 280/2 =
140 per hour, are expected, at 550 meters about 70 per hour, and at
ground level about 35 per hour (approximately).

To summarise: given the known rate at which these raining-down
unstable muons decay, and given that 570 per hour hit a detector near
the top of Mount Washington, we only expect about 35 per hour fo
survive down to sea level. In fact, when the detector was brought down
to sea level, it detected about 400 per hour! How did they survive? The



reason they didn't decay is that as observed from us in their frame of
reference, much less time had passed. Their actual speed is about
0.994c, corresponding to a time dilation factor of about 9, so in the 6
microsecond trip from the top of Mount Washington to sea level, their
clocks register only 6/9 = 0.67 microseconds. In this period of time,
only about one-quarter of them decay.

What does this look like from the muon's point of view? How do
they manage to get so far in so little time? To them, Mount
Washington and the earth's surface are approaching at 0.994c, or
about 298 meters per microsecond. But in the 0.67 seconds it takes
them to get to sea level, it would seem that to them sea level could only
get 204 meters closer, so how could they travel the whole 2 km from
the top of Mount Washington? The answer is the Fitzgerald
confraction---fo them Mount Washington is squashed in a vertical
direction (the direction of motion) by a factor of Y, the same as the
time dilation factor, which for the muons is 9. So, to the muons, Mount
Washington is only 204 meter high---this is why they can get down it
so fast!

3.6.6 Simultaneity

Suppose we want to synchronise two clocks that are some distance
apart. We could stand beside one of them and look at the other through a
telescope, but we'd have to remember in that case that we are seeing the
clock as it was when the light left it, and correct accordingly. Another way
to be sure the clocks are synchronised, assuming they are both accurate,
is to start them together. How can we do that? We could, for example,
attach a photocell to each clock, so when a flash of light reaches the
clock, it begins running. If, then, we place a flashbulb at the midpoint of
the line joining the two clocks, and flash it, the light flash will take the



a = . -

wed

same time to reach the two clocks, so they will start at the same time, and
therefore be synchronised.

Let us now put this whole arrangement - the two clocks and the
midpoint flashbulb - on a train, and we suppose the train is moving at some
speed v to the right. Let's examine carefully at the clock-synchronising
operation as seen from the ground. In fact, an observer on the ground
would say the clocks are not synchronised by this operation! The basic
reason is that he would see the flash of light from the middle of the train
travelling at c relative to the ground in each direction, but he would also
observe the back of the train coming at v to meet the flash, whereas the
front is moving at v away from the bulb, so the light flash must go further
to catch up. In fact, it is not difficult to figure out how much later the
flash reaches the front of the train compared with the back of the train,
as viewed from the ground. First recall that as viewed from the ground
the train has length,

Ly

Outgoing flash
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Letting tg be the time it +akes the flash to reach the back of the train, it
is clear from the figure that

L
Vi, +Cly = ——

2y
In a similar way, the fime for the flash of light to reach the front of the
train is (as measured by a ground observer)
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Therefore the time difference between the starting of the two clocks, as
seen from the ground, is:
1 1 L 1%
Ip—1Ip = ( - ) =Y 7
c—v c+tv 2y C

L

Remember, this is the time difference between the starting of the train’s
back clock and its front clock as measured by an observer on the ground
with clocks on the ground. However, to this observer the clocks on the
train appear to tick more slowly, by the factor 1/Y, so that although the
ground observer measures the time interval between the starting of the
clock at the back of the train and the clock at the front as shown above,
he also sees the slow running clock at the back actually reading vL/c?
seconds at the instant he sees the front clock to start.

To summarise: as seen from the ground, the two clocks on the train (which
is moving at v in the x-direction) are running slowly, registering only 1/Y,
seconds for each second that passes. Equally important, the clocks-which
are synchronised by an observer on the train-appear unsynchronised when
viewed from the ground, the one at the back of the frain reading vL/c?
seconds ahead of the clock at the front of the train, where L is the rest
length of the train (the length as
measured by an observer on the train).

Note that if L = 0, that is, if the clocks are together, both the
observers on the train and those on the ground will agree that they are



synchronised. We need a distance between the clocks, as well as relative
motion, to get a disagreement about synchronisation.

- SPACE AND TIME INFLUENCE
EACH OTHER AND ARE REALLY LOCAL !

3.7 Einstein's derivation

As we have seen Einstein found all that with good reasoning and needed
not to know about the Lorentz transformations. Got it by
understanding that each system has its own time. Now how one can get
from first principles those transformations? How one can reformulate
mechanics? This is a vast subject but I will try and give you some flair.
The only assumptions made are the two postulates of relativity and the
homogeneity and locality of space and time.

Let O(t,x,y,z) a co-ordinate system and O'(T.£n,() moving with
velocity v relatively to O. If we place x'=x-vt, it is clear that a point at
rest in O' must depend from x'y,z and must be independent of time T.
Thus as a first step we determine T as a function of x',y,z, and t.

From the origin of O’ let a ray be emitted at the fime Tg along
the X-axis to x' and at the time T; be reflected thence to the origin O'

arriving at Ty . Obviously
T1=(’E2+’L’o)/2

Since light has constant velocity also in O we must have x'=ct-vt or x'=
ct+vt i.e. t=x'/(c-v) or t=x'/(c+v) depending from the direction of the



ray relative to the origin O. Assuming T to be function of the O co-
ordinates then we have:
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Hence if x' is chosen infinitesimally small and expanding around
7(0,0,0,1) we obtain:
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Since T should be a linear function (homogeneity) the solution of the
above differential equation is:

Vv

T=a(t—— x")

cC —V

2

Where a=a(v) a still unknown function. Substituting the x’ value from
x'=x-vt in The above equation and observing that 1+ YZ (vVe/c?)= v © we
have:

r=mwﬁu—§w)



defining o(v)=a(v) Y the transformation is identical to Lorentz apart
the function ¢(v).

To obtain the spatial transformation assume a light ray emitted
at T=0 to the direction of increasing £ so we have & = ¢ T and from
X'=x-vt by substituting to the equation for T expressed int and x:

E=a)y’x'=a(v)y*(x—vi)

Whereas the perpendicular co-ordinates simply are

=0y, {=0()z

The function ¢(v)=a(v) Y has still to be found. To found it consider a
third inertial system O" that moves with velocity -v in respect of O',
Then by twofold application of the transformations one has:

X" = @(=v)y (=v)(E +vt) = p(V)P(—V)x

However since O and O" are at rest should x=x" therefore o(v) d(-v)=1
i.e. identical transformation. On the other hand from symmetry the
length of a perpendicular rod should not depend upon the direction of
motion, thus

y _ Y
ov)  o(-v)

or o(v)= o(-v) and together with o(v) o(-v)=1 => ¢(v)= 1
Thus the Lorentz transformations have been obtained from the
postulates of relativity using first principles.




3.8 Space-time

From cll the above I hope it is clear now that what was needing
reformulation was not electrodynamics but mechanics. Furthermore
the very concept of time (and space) had to change since their relative
measurement depend upon motion (e.g. simultaneity for one observer
does not apply to another moving with velocity v). Thus the old way of
mapping the position of a particle by using spatial co-ordinate systems
and time as a universal parameter had to change. Since then lengths
and times are not invariant what can be constructed that is invariant
under the new theory? The constancy of the velocity of light will give
the clue:

Assume tThat at time t=T=0 , when the origin of O and O’ co-
inside, a light flash is emitted (spherical wave) propagated with
velocity ¢ . If (x,y,z) be a point in O just attained by the wave then:

X2+y2+y2:C2t2

being the equation of a sphere. Performing the Lorentz transformations
for the O’ system it is easy to find that:

§2+n2+g2 :C2T2

which is a spherical wave Yoo with the same propagation velocity ¢ when
viewed from O'. Thus the above quantity is invariant!

A mathematical device due to H. Minkowski has now to be employed.
A 4-vector is defined that has 3 space and 1 time components. Since all
components should have the same units, the time component should be ct,
in fact we replace the time co-ordinate t by a purely imaginary co-ordinate



x’zict. Thus a point in this system has co-ordinates x,y,z with respect to « .
rectangular Cartesian set of space axis and time t. In fact this has to be
interpreted as a rectangular Cartesian four-dimensional Euclidean space (1
is now a dimension not a parameter) called Minskowski space-time. A point
P in this space-time is called an “event"”:

0

: 1
X =1ct, X

2 3
=X, X =y, X =2

The interval between 2 events P1 and P2 is defined to be:
s = (&) () (&) ()

and is easily shown to be invariant under Lorentz transformations. If a
clock travels from Pl to P2 then the time interval it measures between
these two events is called proper time At with cAt=As. As can be easily
shown, for a light ray travelling from P1 to P2, As?=0 and the interval is

called light-like i.e this interval can be reached only by light. If As®> O the
interval is called time-like and can be reached by travelling from P1 to P2
with velocities less than that of light. Why we call it so? It has to do with
the proper time. Suppose that a point P is in motion in O defining the
events P1 and P2, Since cAt=As one can in general write:

2
dr:\/(dﬁ—izdsz) = Ja-2) dr
C c

From the above relation it is obvious that if t is the time of clocks
stationary at O, the proper time is the time shown by a clock moving along
(as also defined) and its rate is slowed down by 1/Y . Lets define a new
inertial frame O’ moving along the line connecting those two events with
v=ds/dt <c. Relative to this frame the two events will occur at the same



point and therefore dté=dt? . Clearly in this case 120 . That is why it is
called time-like. Finally for As®< O the interval is called space-like the

proper time is negative 7%<0 and the events P1 and P2 are having no
"causal” connection i.e. no information can pass from P1 fo P2 because then
it should travel faster than light, since ds/dt > c¢. In this case whatever
happens to P1 can not have influence on P2 and vice versa.

A good way to keep frack of these concepts is the space-time
diagram. A space-time diagram is nothing more than a graph showing the
position of objects as a function of time. The usual convention is that time
runs up the diagram, so the bottom is the past, or early times, and the top
is the future, or late times. An event, on this graph describes both a
position (the horizontal or x coordinate) and a time (the vertical or t
coordinate).

The picture below shows a space-time diagram of the Earth going around
the Sun. This figure uses perspective to try to show two spatial
dimensions and the time axis on a two dimensional sheet of paper, but
usually we will just show one spatial axis and avoid perspective.

The line representing the position of the Earth as a function of time is
called a worldline. The slope of the woridline for a particle shows ifs
velocity in the reference frame of the diagram. Because the speed of light
is special in relativity, space-time diagrams are often drawn in units of
seconds and light-seconds, or years and light-years, so a unit slope {45
degree angle] corresponds to the speed of light.
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The set of all light speed world lines going through an event defines the
light cones of that event: the past light cone and the future light cone. An

example of light cones is shown abave.

Sap

Jun

Mar

Doac

Sep




3.9 4-vectors

We have seen how the space-time 4-vector is defined. Without going
into details one can re-formulate all mechanics by defining invariant (i.e.
tfransform under Lorentz transformations) 4-vectors accordingly. Thus
another 4-vector, the 4-velocity can be defined:

0 . 1
V:lc‘y,v:}/\)x,v:‘y\)y,v:wz

Where y here contains the amplitude of the velocities and the v, etfc. are
the standard components of the velocity meaning that in time df the
distance travelled along tThe x direction will be v, dt. Note that the
Lorentz transformation takes the same form for all four vectors,
therefore the square of each such 4-vector is invariant. The invariant of
the velocity 4-vector is c®. To see that assume that we have motion only in
the direction of x axis and take the sum of the squares of the
components:

2 2.,2 2..2 2,0 2 2 2
Vi=cy =y vii=y"(c"=vx)=c" =const

Next 4-vector to be defined is the 4-momentum. The key role here
plays the momentum conservation. Demanding 22MV to be conserved , from
the definition of the 4-velocity we have XMV = 2M ¥ (v,ic) . We know
from the third law of Newton that Xmv =conserved so to have momentum

conservation must M y = ma very important relation indeed. This relation
shows that in the new mechanics the mass is not a constant but depends on
the relative velocity! With this assumption we have re-established the
conservation of momentum. Then from the O™ component of the relation
we have that XM Y ic = Xm = constant i.e. conservation of mass.



Thus in the new mechanics the conservation of the 4-momentum gives both

the conservation of momentum and mass of Newtonian mechanics. Now for
v=0 => M=m therefore M is the of a particle when measured in an inertial
frame in which it is stationary. M will be referred as the rest mass or

proper mass and is usually denoted by mo then m= Y mg a very important
relation that shows that the mass (inertia) increases with the relative

velocity. Thus the definition of the 4-momentum P = mg V Since mg is an
invariant and V is a vector P is a vector too, with components:

P’ =imc , P1=px : P2=py , P3=pZ

p is the classical momentum. The invariant for the 4-momentum is the rest
mass: .

(P0)2 _(f,)z = mic? — p* = my 2 (c? —?) = m e

The Newton's second law can now be written as:

podb_, 4V

drt dt

Where we note that the differentiation is with respect to the proper time
which is a Lorentz scalar (scalar that transforms according to LT).
From the relation:

d

F=—
drt

(ime, p) = y(i‘fi—mc,ﬂ
[



One can define the 4-force components as:

F—}/cg—— F=vy
dt

where i=1,2,3 and fi (with i=x,y,z) the components of the classical three
dimensional force.

The fact that the vectors V and F are orthogonal ( vi=c? and
differentiating with respect to proper time one has VdV/dt = VF=0 } is
having very important consequences: Substituting for V and F we obtain
that:

2 .
vVf—c'm=0
But by definition vf is the rate at which f is doing work. It follows that
the work done by the force acting on the particle during a time interval is:

I ]
j vfdt = C2J‘ mdt = m,c* —mc’

f 2

The classical equation of work is work done = increase in kinetic energy
where T=mv’/2 is the classical kinetic energy. However the above formula
suggests that in SR we have to define the kinetic energy as:

T=m c®+constant and for v=0 since T=0, the constant is -mg c?

Thus T=mg Y - mo c® and if v/c is small the factor Y (remember algebraic
rules ) approximates as 1 + v2/2 c® and then T=mv®/2, i.e. the classical
mechanics expression. Thus the classical mechanics can be considered the
low velocity limit of the relativistic mechanics.



The equation T= mg Y - mo ¢® shows that any increase of kinetic energy
increases the mass of the particle. However other forms of energy, like
heat, can also be considered as an increase of the kinetic energy of the
atoms. In general one can say that an increase of the energy increases the
mass. The distinction between mass and energy that existed in classical
mechanics does not exist in the new relativistic mechanics. All forms of
energy E like mechanical ,thermal, electromagnetic are now taken to
posses inertia of mass m according to Einstein's general equation:

E = mc¢”

showing also that the only difference between mass and energy stays in
conversion of units. This equation of Einstein is maybe the most known and
famous, having the most dramatic confirmation of all fimes.

3.9.1 The special Lorentz transformations

Imagine now that the co-ordinate system O' rotates through an angle
a parallel to the xgx; plane,

X0 Xo

A




The origin and axes x2, x3 unaffected by the rotation for simplicity.
From the above figure clearly we have:

’/

X, = —Xx;slna+ x,cosa

’

X, = X,cosa+x,sina

’—
Xy = Xy
,—
Xy = X3

(remember that xo=ict) Writing the above in 4-vector form we have that
V'=AV where A is a 4X4 matrix:

"cosa —sina 0 O]

sina cosa O O
0 0 1 O
0 0 0 1

To interpret the above equation consider a stationary plane relative to O
with equation bx'+cy'+dz'+e=0 for all 1. Its equation in the O system will
then be: (bcosa)x+cy+dz+e+ictbsina=0. If c=d=e=0 the plain is the oYy'?
and we obtain: x=-ict tana i.e it is a plane parallel to Oyz displaced a
distance -icttana along Ox. So if v is the speed of translation we have that



vy =Ictana

This equation indicates that the angle a is imaginary and it is directly

related to the speed of translation. We have tana=iu/c and hence:
(from the well known formulae cos=1/sqrt(1+tan®) and sin=tan/sqr(1+ tan?))

COSa =

=Y , Slna =

Thus the matrix A becomes:

y =iy 0 O
By v 0 O
0 0O 1 O
0 0 0 1

This matrix has been obtained just by rotating co-ordinate systems in the
space-time and it is nothing else than the LT in a matrix form. Any 4-
vector should be transformed according to V'=AV ( in this case A is
expressed in a simple form since the y,z transforms are not included)



3.9.2 The Relativistic Doppler Shift

This is a particular example of the Doppler Effect, first
discussed in 1842 by the German physicist Christian Doppler for sound
waves. Sound is generated by a vibrating object sending a succession of
pressure pulses through the air. These pressure waves are analogous to
the flashes of light. If you are approaching a sound source you will
encounter the pressure waves more frequently than if you stand still.
This means you will hear a higher frequency sound. If the distance
between you and the source of sound is increasing, you will hear a lower
frequency. This is why the note of a jet plane or a siren goes lower as
it passes you. The details of the Doppler Effect for sound are a little
different than those for light, because the speed of sound is not the
same for all observers - it's 330 meters per second relative to the air.

The phase of a plane wave is an invariant quantity, the same in all
coordinate frames. This is because the elapsed phase of a wave is
proportional to the number of the wave crests that have passed the
observer. Since this is a merely a counting operation it must be
independent of coordinate frame. The phase thus can be written:

6=t —kx =t —k'x’

Where o is the frequency and k the wave vector. The wave vector k
can be generalised to a 4-vector with @ =ckoand k the wave number,
thus must transform as k'=Ak. (having established that k is a four
vector (iky k) the invariance of phase comes naturally out since is the
invariant scalar of 4-vector products ) The transformation is:



ko =y (ky — B];)
||,: j/(k” — bk,
k' =k,

For light waves k=ko n with n the unit vector; thus from the first
equation we have:

@ =yw(l— Lcosh)

where O is the angle between the wave vector and the direction of
velocity. This equation is the customary Doppler shift modified by the
Y factor. However its presence means more than a "just” relativistic
correction, it shows the existence of a transverse Doppler shift. When
0 = m/2 we have ®" =y w. This relativistic transverse Doppler shift
has been observed spectroscopically with atoms in motion.(Ives-
Stilwell experiment 1938)

An important astronomical application of the Doppler Effect is
the red shift. The light from very distant galaxies is redder than the
light from similar galaxies nearer to us. This is because the further
away a galaxy is, the faster it is moving away from us, as the Universe
expands. The light is redder because red light is low frequency light
(blue is high) and we see low since galaxies are moving away from us.



4 Elements of covariant formulation in Electrodynamics
4.1 Current density

As we have said at the very beginning Maxwell's equations are
invariant under LT. Since the subject of Electromagnetism is been
covered by Dr. R. P. Walker I will only pin-point some formulation
techniques.
Relative to an inertial frame O let p be the charge density and v its
flow of velocity. Then, if j is the current density we have: j= p v Since
the charge can neither be destroyed or created, the equation of
confinuity

ap
=0
ot

will be valid for the charge flow in O. This equation must be valid in
every inertial frame and hence must be expressible in a form which is
covariant in space-time. Introducing the space-time co-ordinates X
the continuity equation becomes:

Vj+—

Jd . 7,
F(ICP) + ?&T(V,-P) =0
where i=1,2,3 <-> x,y,z and repeated indexes are summed. This equation
is covariant as required if (ic p Pvx, PVy, PVz ) are the four

components of a vector in space time. For, if J is this vector we have

—a——JJ =0

ox'
with i=0,1,2,3 and this is covariant. Now since J= (icp, pv) from the
definition of 4-velocity V we have that J= p YV and thus J is an
invariant vector if p Y is an invariant. Denoting the invariant by p, we



have py=p v. It follows that for v=0 p,=p and p, is the called proper
charge density and J is called the 4-current density, J=p,V = (icp, j)

4.2 Electric charge invariance

Let dog be the volume of of a small element of charge as measured in
the inertial frame O. The total charge Qo= p, dwg. Due to the
Fitzgerald contraction the volume measured in the system O’ will be
do =y dwp and therefore Q= dw p =y dwgp = P, dwg = Qg g.e.d

One working further along these lines can define a 4-vector
potential that has as components the scalar and vector potentials (¢,A)
[see lecture by Dr. R. P. Walker ] continue to define the
electromagnetic field tensors etc. all respecting SR and LT.

4.3 Electric field of moving point charge
Consider the electric field about a point charge. The full vector field is

_ . 4. 5 _T

E=K,—e, , e =—

r r
(ke = k; /27 and k, =4 ©t in Gaussian (cgs) units or 1/¢ in ST units, where ¢ is
the electric permitivity). For simplicity consider just a field in the xy

plane. Thus r=(x,y,0) and the filed components are:

Ex(y) =K.9q ) 3
(% +y°)?

for the x (or y) field component.



Now consider a frame O' moving with velocity v in the positive x direction.
The charge is now at rest at this system at the position O' and we would
like to see how the field is seen by an observer located in the frame O
with co-ordinates (0,b,0,1). In the frame O' the observer's point P (where
the field is to be evaluated) has co-ordinates x'= -vt'y'=b,z'=0 and is at
distance r'=SQRT(b2+(vT‘) 2). The only co-ordinate needing transformation
is ‘r':y(T-(v/cz) x)= Y t . Since O is the rest frame for the charge the
fields are:




The LT transformations for the electric field components, are:
R 4 . ’
E.=E , E =YE,

Thus:

[
E W T Ey=KCq v 3

(b2 +(wt)’ )5 (b2 + (wt)2)2

Taking the magnitude of the transformed field E= (Ex® + Ey®) 172 and
expressing it in terms of r = (><2 + Yz) 12 =( (v1‘)2 + bz) 2 sfter some
tedious but straightforward manipulations we have:

r

E=K_q 3
, b )2
r2

Yy 1-

since sing=b/r where ¢ is the angle defined by the lines electric charge -
observation point P and the x-axis. Hence,

;.’

r3}/2(1 — 3% sin’ q))%

E=x_gq



This field is radial but the lines of force are isotropically distributed only
for B=0 while for § = O is weaker in the direction of motion than

perpendicular to it. This is shown schematically in the next figure:
E

Figure: The electric field of a moving charge is concentrated in the
directions perpendicular to the direction of motion. Thus for ¢ =0 we have

Whereas for ¢ =rn/2

Therefore the ratio is:



——

3
E 2\
L=~

L
and for B=1 (speed of light) the longitudinal component is zero. The angle
of the opening of field lines is 2tan™ (1/y°) thus for v =1 (stationary)

2tan’1= m/2 and the longitudinal and transverse fields have the some
magnitude.

Note that the electric field in the new frame is symmetric in the
forwards and backwards directions. This follows immediately from the
behaviour of the sine function and its appearance there in squared form.
Physically though, the symmetry follows from the same behaviour of the
tilted stick and the instantaneous nature of E.

44 Accelerators

As it has been mentioned before, Newtonian mechanics is the low
velocity limit of the relativistic mechanics. In everyday life we do not
observe clocks that delay or lengths that shorten or masses that grow
larger. In some other cases relativistic effects like magnetism and
electromagnets function without people realising that. However there
are people that use relativity in their every day life like the high
energy experimental physicists. Particle accelerators would not
function if their builders did not know anything about SR.

A typical example is that of a Cyclotron. '

» Cyclotrons- A brief detour

Before the cyclotron was invented by Lawrence in 1929, the best method
for accelerating nuclear particles to high energy was to put high voltage



across a gap. Atoms of a gas were ionised near the gap, and an electric
field across the gap accelerated the positively charged ions to an energy E
given by the charge q fimes the voltage V: E=qV. The limitation on the
evergy was the voltage that could be held across the gap before sparking
occurred. Another method of acceleration was to use a linear accelerator
containing a number of gaps whose voltage alternated in time to match the
particle position, but this proved to be a very long and unwieldy machine at
the time.

These difficulties suggested to Lawrence the idea of using a magnet
to bend the ions around in cirles through high-voltage electrodes, which
were called "dees" because of their shape.
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Figure 4.4-1: A cyclotron showing beam of particles being accelerated by dees in an
electromagnet. Air is removed from the acceleration region by vacuum pumps.
(Magnetic field lines are shown.)

An alternating accelerator dosage would be applied to the two dees.
At a gap between the dees, the particles would be accelerated by the
voltage, just as in a single gap accelerator. While a particle is completing a
half-revolution inside the dee, the voltage would reverse and the particle
would again be accelerated to the next gap.

Figure 2: Particle orbit in cycﬂl‘d.‘r.r.'o'r.l dees éhoﬁiﬁg gap crbssings. Dee voltage reverses
while particle is inside dee, giving acceleration at each gap.

This repetitive acceleration would continue until the particle would reach a
high enough energy to get to the edge of the magnet. Much higher
energies could now be obtained than in direct-current machines, because
each gap was used many times instead of once.

The basic principle that made the cyclotron possible is the fact that
an orbiting particle in a magnetic field takes the same time to make one
revolution, regardless of radius or energy. Thus the alternating voltage on
the dees can be set to match the revolution frequency of all the particles
in the cyclotron. This is sometimes called the resonance condition, because



the accelerating force varies so as to be always in the direction of particle
motion, as it is when you push a swing. Mathematically the particle
revolution frequency can be derived as follows. A particle of mass m and
charge q moving with speed v through a magnetic field of strength B feels
a force qvB bending it in a circle of radius r. Setting the mass times the
acceleration (v°/r) towards the center equal to the force toward the
center (Newton's second law of motion), one gets:

2
my

——=qVvB
r

The angular velocity is v/r. So we find that:

v _4B
rm

But the revolution period T=2nr/v therefore the revolution frequency
f=1/Tis:

__1 gB
27T m

So the revolution frequency is thus independent of radius or energy (still
velocity v is very low). The particle will remain in step, or in renosance,
‘with the constant-frequency altering voltage on the dees. Using this
principle, Lawrence built a series of cyclotrons at Berkeley in the 1930’s,
culminating in the 60-inch Croker Cyclotron in 1939. The 60-inch cyclotron
accelerated protons to 12 MeV and alpha particles to 48 MeV.



At these energies an interesting effect began to appear. Einstein's
theory of relativity predicts that when particles are accelerated to high
speeds, they become heavier. Thus from the above equation the revolution
frequency would decrease, and the particle would cross the dee gaps
successively later. In the 60-inch cyclotron, the particles reached a speed
16% that of light. At this speed the relativistic effect makes them 1%
heavier than when they were at rest. So they would circulate 1% too
slowly, and in 25 revolutions they would slip 25%, or from the peak to zero
voltage at the gap crossing.

Another condition that limits the maximum energy of a conventional
cyclotron is the requirement for keeping the beam centered vertically
inside the dees. The vertical beam space is only 2 or 3 inches. Since the
beam travels about 1000 feet during it's spiral path outward, there must
be a force to push the particles back towards the central , or median,
plane between the magnet poles, when they deviate from in. This force is
provided by the curved magnetic field lines in the magnet gap. The force
on the particle is perpendicular to the velocity and magnetic field lines. Tt
thus provides a restoring or focusing action back toward the median plane,
for particles above or below it. To obtain this focusing , the magnetic field
must decrease at larger radius. This causes the particle rotation
frequency to decrease with radius. Unfortunately this change in frequency
is in the same direction as that due to the relativistic mass increase. As a

result, the number of particle revolutions in a conventional cyclotron is
limited to about 40 before the particie slips to the decelerating part of
the dee voltage. With the normal dee voltages of 175 kilovoits dee-to-dee,
this gives an energy of 12-MeV protons. Since this energy is much higher
than in the direct-current accelerators of the 1930's, many conventional

cyclotrons were built throughout the world until the 1950's. One way to
correct the phase slip factor is to decrease the frequency of the Dee
voltage as the particle accelerates. The decrease in dee frequency wouid



just much the decrease in particle frequency and acceleration would
continue for thousands of furns to a very high energy (Synchro-cyclotrons,

McMillan at Berkeley and Veksler in Russia)

s Synchrotrons

Lets take as our second example ELETTRA the 250 m of
circumference, 2 GeV third generation synchrotron light source of
Trieste. A synchrotron is a circular accelerator which has an (or more)
electromagnetic resonant cavity to accelerate the particies as they
pass through the cavity many times. As the particle’s energy increases,
the strength of the magnetic field that is used fo steer them must be
changed. This change must be carefully synchronised with the energy
change, hence the name synchrotron. Due to synchrotron radiation -
which is an electromagnetic radiation emitted by the charged particles
when they are accelerated (i.e. when their velocity vector changes with
time either in amplitude or in direction) -that comes out of the bending
magnets and the insertion devices the electrons loose energy. This
energy is given back to the electrons by the electromagnetic resonant
cavity so that the energy does not change thus no further change in
field is needed. However in ELETTRA electrons are injected at the
energy of 1 GeV while they are used at 2 or 2.4 GeV for synchrotron
light. During this process we have fo change the magnetic field to keep
the electrons at the same trajectory else they will get lost on the
vacuum chamber wall. So to say from an initial mass of m;=mo+1 GeV/c

the electron finally arrives at my= mo+ 2 GeV/ ¢t

Firstly lets us see what is the electron's velocity at those
energies. From m=y mg therefore y =m /mo = E/Ep = 1+T/ Ep Since
E0=0.51099 MeV/c® (remember that mass and energy differ only by a



conversion factor) we get y; = 1957 and vz = 3913.9 Defining as B = v/c
we have Py =0.999999869 or v = 0.999999869 ¢ and Bz = 0.999999967
or v = 0.999999967 c Thus the electrons move practically at the speed
of light and therefore no frequency slip occurs when increasing the
energy. ( For comparison the velocity of a proton with 2 GeV kinetic
energy would only be Vp=0.947642 ¢ while at 1 GeV Vp=0.875¢ )

Now in order to calculate the strength of the magnetic fields one
needs to keep the electrons in a closed trajectory, the necessary field
strength is given from the requirements of the radius of curvature and
of course from the energy and circumference of the ring. For
ELETTRA the radius of curvature or bending radius is 5.5 m. It can be
proven that this bending radius is given from the following relation
(using the Lorenzt force on a charge and the centrifugal force)

B(T) = P(GeV/c)
0.2998 p(m)

Where in the parenthesis are the units (Tesla, meters and GeV/c). P is
the particle momentum P=mv or in our case P=mc. One can easily prove

that
P= Eo‘\/ (72 _1)

C

with Eg rest mass of the particle = 0.51099 MeV/c?. Putting all this
together we find that the field strength should be 1.2 T ( or 12
kGauss). The field needed to bend a very slow moving electron at the
same radius is 7=0.0003 Tesla or 3 Gauss (only 5 times larger than
earth’'s magnetic field). Accelerators appreciate the mass increase and
so understand relativity!



Thus partially thanks to SR (and also to the Italian government)
ELETTRA can function well.

I hope that by now it became evident to you that relativity is
not that far away from our every day life as some of us
already know.

5  Reminder Summary

Just reminding you the SR important formulae. Let the rest frame be
unprimed. Then:

With:

1

y:_"z_ ’ B_Z
y1-P ¢

To get a visual idea of the contraction consider a moving meter:
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The Lorentz-Fitzgerald transformation formula for length contraction is
given above, Here is a normal meter stick, with the contracted one below

it.
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The ruler at 0.7¢ is 0.8 meters Idrig.
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Also, one second has dilated to seconds.

Conceptual Framework of Relativity

Idea

Experiment

The measurement of absolute
velocity is impossible

Michelson - Morley

The velocity of light is independent
of source or detector velocity- a
universal constant

Aberration of star positions
Sharp double-star images

Lorentz transformations

Galilean transformations and
concept of universal time should be
abandoned

Length contraction

Muon decay in atmosphere

Time dilatation

Muon decay, relativistic Doppler
effect, fine structure in atomic
spectra

Relativistic mass

Accelerators, Cyclotron

Velocity of light ¢ as speed limit

Cerenkov radiation

Energy mass relationship
E=mc®

Binding energy of nucleons, Nuclear
fission and fusion
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