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Introduction.

A fall and exact treatment of the properties of synchrotron radjation is a pretty
demanding task for the teacher as well as for the student. Trying to give such a
treatment in the limited time for this course should imply that we were to rush through
the material with little time for discussions and interpretations.

I have thus rather chosen o transmit a somewhat more intuitive picture of synchrotron
radiation which mainly is based on the Lorentz transformations and diffraction, both
effects often taught at the high-school level. The bope is then that you will remember
this picture if you in the future will rather be using the synchrotron radiation than
calculating its characteristics. For the future expert in synchrotron light generation, it
might serve as a tool when going to more elaborate studies.

-1. Classical Dipole Radiation.

A charge is situated as shown below at t=0. The clectric field lines are distributed
homogeneously in space. The charge is then suddenly accelerated downwards. If we
now freeze the picture at time t=1, the field lines will move with the charge. Ata
distance L=c¢ T, we will still have the old field lines, since the new signal is
propaganng with the speed of light. We will thus see the vertical field component
moving outwards from the charge with the speed of light.

This moving vertical field will then induce a circular magaet field around the charge
and we have an electromagnetic wave moving outwards from the accelerated charge.
The original vertical electric field lines will remain unchanged and we can thus expect
that no radiated power is emitted in the vertical direction.

q at t=0
9,1d field lines AK/R

\Z

™~ B
new field lines
q att=t

Fig. 1. Electric field from an accelerated charge.
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From this, we can suspect that the outgoing electric field cornponent can be written

E xgacos@ where ais the acceleration of the charge and © is the angle to the
horizontal plane.

The total power emitted is propertional to the square of the electric field or more

exactly
zq 2 a 2
P2 (¢) 0

From this we leamn:

1. The outgoing electric field vector is parallel to the acceleration,
2. The radiated power is proportional to the charge squared.
3. The intensity distribution Jooks like:

Fig. 2. Dipole emission power distribution.
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2. Relativity and 4-vectors.

Synchrotron radiation (SR) is a relativistic version of the classical dipole radiation. To
get the power, spectrum and angular distribution of SR we need a convenient
relativistic formulation.

2.a. Classical transformations (v<<c).

Fig. 3. The two co-ordinate systems.

Let’s assume we are in the (X,¥) system. Another co-ordinate system is moving along

our x-axis with a constant speed v. If someone in that moving sysiem were to measure
a yardstick placed at rest in our system and also need some time for the measurement,
he (she) will measure a shorter distance than we 1n our system.

We write this in the following form:

X =x~vt
y =y
1=t

We put this in the matrix formulation

x' 1 0
Y|={0 1 0|y @)
t 0 0 1 ¢
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2.b The Lorentz transformation in the matrix formulation.

The Lorentz transformation is given by

y'=y (3)

1 [twﬂ) where =-E

A
Ny c

"We will now introduce the 4-vector {r)=(x,y,z,ict) and write the relation above in

matrix form
x' ¥ 0 0 ifyyx
¥ 0 1 0 O iy 1
2|7 o 01 0= where y = -5 @)
icr' -ify 0 0 y J\¢

When working with synchrotron radiation, ¥ =~ 10° — 10*. We can then often

A 4-vector (r)=(x,y,%ict) is invariant under Lorentz transformations, that Is its length

] = .J;I +y* +2° =c*? is constant in all systems. (To prove this, just apply the
Lorentz transformation to the vector (r).)

A special 4-vector is the “proper time”

, X +y+z’ vt
T g ——— I—"T:—
c? V' e ¥

The proper time, that is the time measured in the rest frame system, s thus conserved
in all systems. In the rest frame system =t.

B oo
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Now we can define the 4-velocity

dr dr (dz) o
u= d_‘r = E d_‘f = (Fy.icy)
The 4-velocity must also be conserved under the Lorentz transformations since it
consists of the ratio of two 4-vectors which don’t vary under the Lorentz
transformations.

Then, the 4=miomentum
P mgu=(ymgy, MY, RV, Jdeymy) (5)

must also be 4-vector since we only have multiplied the 4-velocity with a constant
my. ymyc* is the total energy E.

We multiply a 4-momentum with ¢ and get

We have thus the relation between total energy, momentum and rest energy.
Finally, we can now define the 4-force:

dp dpdt dp idE

dr ardr Valea

F ™

which also is an invariant.

3. Radiated power at relativistic velocities.

Let us rewrite (1) to

P=—2—qi-%-(%z ®

3C3 My~
This is the classical formulation. We now suspect that this classical expression is only

dp dj
an approximation and replace [-—5‘9 force with the four-force (ﬁ] . These

expressions are of course identical in the rest frame system. Assuming that the energy

d . .
loss by the particle is replaced (-‘-j— =0 ), we get the relativistic expression
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_24 z(ﬁ)z '
P= 3cm | \ar )

For a charged particle in a magnet field

dp - ymgv? _ ym i’

dt P Jo
so we end up with
ZQ:C i, 4
P55 (10)

In more comfortable “engineering” units we get the energy loss/tum of an electron in
a storage ring

E*(Gel)

AE(keV) = 885
p(m)

an

4. Angle distribution.

We showed earlier that for the classical case
dP o« g’a’ cos? 85¢
The power is then peaked within +- ] radjans.

‘We can now use a Lorzntz transformation to see how this angle transforms when
moving from the rest frame (unprimed) system to the lab system (primed).

r [ cos@ ( cos8)
P ho ¢ y 0 0 ipr ho ¢
' ing cosé
P'y _ hu,sm _ 0 i 0 0 o ho a2
P ¢ 0 01 ¢
E 0 5 0 0 0
i— v -ipy Y LU
¢ \ ih - ) zhc )
Thus:
v'cosd = y{cosd- f)
v'sind'= vsinv (13)

This gives us the Doppler sluft

V'= 2yv for B=n, B=1 (it

g og
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tanf' = or @'= for small angles.
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Fig. 3. Light intensity distribution in rest frame and lab frame systems.

5. Energy spectrum.

Fig. 4. Wave-front from a relativistic electron.

A relativistic electron is bent in a magnet field. Let’s look on the light waves emitted
at the points a, b and c. The clectron, being relativistic is moving close below the
speed of light. When the elecwon is situated at point ¢, the wave front emitted at point
a is situated at the point a°, the distance a-a’ being somewhat larger than the distance
a-c. The same applies to the light emitted at the point b, but the difference in path
length between b-b’ and b-¢ is somewhat smailer.

The snapshot shown above when the electron is situated at point ¢ shows us the
wavefront being the sum of all previously emitted waves c-b’-a” which is bent to the
right.
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Let us now look at another snapshot where we look at a storage ring with only one
electron circulating from above.

Fig. 5. Snapshot from above of the light emitted from a circulating electron.

As the particle rotates in the ring of circumference O, the light will be emitted in a
spiral D with the distance O between the turns. An observer looking into the storage
ring from the side will thus see light flashes of a frequency ¢/O.

To find the wavelength of the emitted light, we now calculate the width of the wave

front. ié___l_: § ——s{

:/J,Jo

Fig. 6. The observers view of a radiating electron.

@ oo
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We remember that the angle of emission, which is typically 1 radian in the rest frame

1 :
of the electron, is reduced with a factor ":2"? in the lab system. The light from the

electron can thus only hit the observer when the electron is situated between the points
a-b, that is over a distance —f (This distance is in most cases just a mm or $0}). Now

we look at how much the electron is lagging behind the light emitled at point a. This
path length difference must be

)

A= since y>>1

(1-8)~3

x
3

o
'

v
’

The observer will see light pulses of width A separated by the distance O.

‘/, (> : \
A A ;

Fig. 7. Pulse train from the electron in fig 5.

Looking now for the harmonics to the rotational frequency we notice that we have
harmonic coefficients of equal magnitude until we approach wavelengths comparable

with the pulse length A = ;p; the cut-off wavelength. A more strict treatment defines
the critical wavelength

4r p
- 16
h=5T (16)

Half of the total power radiated at wavelengths shorter than the critical wavelength,
half at longer.
The intensity spectrum is shown below.
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Fig. 9. Synchrotron radiation spectral distribution .

6. Angle of emission.

We have shown earlier, that the angle of emission zt the critical wavelength is 1/y by
using the Lorentz transformation, We will now look into the angle distribution

somewhat more in general.
Lt’s assumme we have a long light source, it could be an undulator or the part of a

dipole source visible to an observer.

i .
| C——
| “MWM———”‘“’”ﬁ:ﬂﬁa
- A () Y =S e ! N
W M—h—'ﬁ———
T e e — _'——-—-_.____‘_
ﬁsy T — = &/
155 S st isire
-_-> olbserver *

Fig. 10. Light emitted from a long, thin light source.

Let us assume that the light is emitted within an angle 0. The observer will then see
the as it came from a shining disk situated in the middle of the line source. This disk
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has then a diameter d=L9. We will then use the Frauenhofer diffraction relation which
tells us

dsinG=dfd= A

d=L16 (18)
which yields
o= =
L
(19)

d=«LA

Let us now take the case of bending magnet radiation:

L=pb6

. F) i

yields 8° = — or < 4>
Yol

Since B=1/y at the critical wavelength we get
1

1 A )3
8= —( 4 ) 20)

7. Matching,.

Some figures of merit for a synchrotron radiation ring are flux and brilliance. The flux

@ is defined as
n
D= / AE expressed in photons/(s, 0/00 energy spread, mrad horizontally)
.v,O /G0 "E— N kY

The brilliance (brightness) B is the flux density in phase space defined as

n
B AL s expressed in
$0/00~—.%,,%, 2,2,

photons/(s, permille energy spread, mm?, mrad?)

Z,is the RMS sum of the electron and photon beam sizes (i=x,¥)

zi = ‘\‘O-lz,e + 0-12./
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and X', is defined likewise for the angular spread.

The flux is mainly defined by the circulating current, the number of emitting poles
and the electron cnergy.

The brilliance case is somewhat more complicated. Let us first consider the electron
and photon beam emittances.

In the electron case we have

£, =0,,0',, ,the emittance being defined by the lattice parameters. The photon
emittance is given by

A ) N
£, SO, T = o (for gaussian distributions).

The photon emittance is defined by the diffraction as discussed earlier and is given by
the radiation wavelength only. If we are to maximise the brilliance from a storage nng
we need to decrease the electron emittance down to the value given by diffraction. If
we are operating in the x-ray domain, say around 1 A, we need an electron emittance
of 10" rad m, which really is 2 challenge. Third generation light sources have an
"horizontal emittance of 107 - 10 *® rad m and a vertical emittance some two orders of
magnitude smaller.

The situation is somewhat different for VUV and soft x-ray rings, which have similar
electron beam emittances but the photon beam emittance is naturally orders of
magnitudes larger than in the X-ray case.

In this context we should also point out the potential of linac-based electron sources.
The electron beam emittance is reduced during the acceleration as

g - .
& = —" where an optimised electron gun can achieve ¢, around 10 rad m. An x-ray

diffraction limited linac source then needs an electron encrgy of at least 10 GeV while
some GeV is needed for a VUV soft x-ray linac. The emittance demands on a IR linac
are more relaxed.

A small electron beam emittance is however not sufficient to optimise the brilliance.
We also need to match the diffraction defined beam size and angular spread to those
of the electron beam. A striking example is to compare the brilliance from a dipole
magnet to that from an undulator.

For this purpose, we can use the parameter nwmnbers for the MAX II ring:

£.=10%radm Bending magnet Straight section
o A 0.1 mm 0.3 mm

e = 0.1 mrad 0.03 mrad
ey,e=10"rad m

Ty = 0.03 mm 0.014 mm
o= 0.003 mrad 0.007 mrad
L= Imm 2.5 m

A=1 nm

o= 0.0002 mnm 0.004 mm
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o= 0.4 mrad 0.02 mrad
x (mroc) x' {mrach
N AN
giffraoction emittance
el beam emittance el belbmn emittance
il %\ x (mr ;::z o X (M
i <
\} cverall emittance dif fraction emttance
DIPDLE SOURCLE LNDULATOR SOURCE

Fig. 11. Electron and photon beam emittances (horisontal).

We can see from fig 11 above, that the matching in phase space between the
" diffraction induced photon emittance and the electron beam, emittance is poor. The
overall emittance must be transported down the beamline and we have diluted phase-
space a factor of four. The situation is even worse in the vertical phase space where
we have a dilution of a factor of 100.
If we now turn to the undulator case, we notice that the angle of emission of the
emitted light is decreased considerable, due to the longer light source. The situation is
also shown above for the horizontal phase space and we have no dilution at all. The
dilution in vertical phase space is a factor of two only.
The undulator source brilliance is increased compared to the dipole case of two
reasons; first we can use some 100 undulator poles and second the matching is some
factor 100 better. We can thus expect the undulator brilliance to be some four orders
of magnitude higher than in the dipole case, provided we have a relatively small
electron beam emittance.
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Below, we see the brilliance curves for the MAX T and MAX I storage rings. The
undulator brilliance is as pointed cut above some four orders of magnitude higher than

_ ) ) 1240
that from bending magnets. The abscissa is given in energy units (£, = “—/l(- /f_;}_ )

e BRILLANSE (055 mrodesZ menna2 00 AJ;
N - — |
3 I
R o !
B Jnd Mi 1
5 1 |
7 4 :
g' >
‘B sr 1
E".-——""f |
i i
w1
E |
1 |
13 A
3 T ]
2
7 4 -
1 z 3 : s 10
BHITON TNERCY {ov]
Fig. 13. Brilliance from dipoles and undulators in MAX 11
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Aug 7, 1992 LUNTDX/ANMT-7020)/1-8/(1992)
DIFFRACTION FROMSYNCHROTRON RADIATION SOURCES.

Mikael Eriksson
MAX-lab, Box 118, S-221 00 Lund, Sweden

Abstract. The Fraunhofer diffraction properties for a slit are recapitulated. The same
technique is then used o deduct the diffraction relation for a gaussian wansverse disuibution
of the light field. A synchrotron light source, could be a bending magnet or an undulator, is
then wreated in the same way as used for the other cases. Finally, the maiching between the
parameters of the electron beam and those for the light fields is discussed.

1. The single slit. A plane elecuomagnetic wave is passing a slit as shown in fig. 1. In the
Frauenkof diffraction picture, each line segment at the slit is treated as a source point for
spherical waves. Since the light intensity is constant over the slit, so is the electric field
vector E. The difference in path length between different source points is

£Th

HETA

\

x \( X SIN THETA

—_—

L \

Fig? 1. Slit diffraction.

AX=xsin8=xwwhere w=sin 0
The difference in phase is given by

¥y _2n
Ad= Y 2rn=xwkwhere k= -
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We can integrate over the slit to get the distant angle distribution of the light field

E = const L/2 eikadx_: 25in(kwL/2
—L/2 kw

The light intensity is just the square of the field which gives us the the intensity disuibution

sin® (k wL/2)
(kw)?

I=const

The intensity distribution is seen in fig. 2 and we see that the first minimum 1s when
kwlL/2=mnor Lsin@=»A

which is the diffraction relation for a single slit.
1.00

0.90 -

0.80 -

§F = i b % 3
0.70 4 FOO=(sini{x) /A x) %2

1

0.60

0.50

0.40 -

oo | \
|
1

0.20

010 ++

P"‘*\ /—\
0.00 { t } t i } F
00 400  S00

I |
-500 -400 =300 -200 =160 000 100 200 3
Fig. 2. Slit diffraction disaibution.

2. Gaussian distributed beam.

We now proceed in the same way but replace the slit, which gives us a rectangular intensity
distribution of the intensity with a light beam of gaussian distributon. The application is
cvident, the electron beam in a storage has a gaussian distribured intensity.

We treat here the one-dimensional case. The two-dimensional case gives easily the same
result.

@o
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We assume a gaussian distributed intensity

2 2
I=conste X720

We then get

2
E = const e"’”""’2

Now, looking for the angular distribution we integrate the contibutions from all parts of the
field

._2 2 . _ 2 - . 2 3 - s
E=consr_[e X /4 G e‘kxwd;c:const_[e 174 6" (x=~2iC kw) e (Skw) 7.

This integral is easily soviled and we get

2
E=conste” (FEW)

The intensity angular distnbution is then given by

w265

-Z{Ckwf:consre

f=conste
This gives us the standard deviation for the angular distibution of the intensity

1
Oy ="

20k

or the well-known dispersion relation for gaussian distributions

—
YU T 4q

3. Long light sources.

A relativistic electzon passing a magnet structure will emitt synchrotron radiation in the
forward direction. Let us start with a very simple model.

The light is now assumed to be emitted at an angle © towards the particle trajectory. An
observer will see an shining disk placed at the middle of the magnet STUCCUIe as seen innig
3. For smal 6, we can approximar the diameter of this disk, the apparent source size 0
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Fig. 3. Light from a long source.
d=1L§
The dispersion relation for slits will then give
do=A
or
L 9% =X\ which givesus 0= AL

Let us now look a bit deeper into the problem (Fig. 4.). At tirne 1=0, the electron is a1 position
x=0 and ernitts a spherical light wave. A moment later, when the particle is at positon x, it
likewise emitts another spherical wave. These waves are out of phase

AD=x((1—-cos0)+{(1~-B))4k
where {3 ¢ is the effective speed in the x-direction of the paruicle.

The angle-dependent part of the phase shift can then be written for small angles

2
Ad‘?:x%"k
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- x{1l~betad

Fig. 4. Wavelength slip at long sources.

Integration over the 1o1al length of the magnet structure

2
. 4]
Excon.stra XX T dx

The light intensity is then given by

.2 L o¢
k........._
sin“( 52

2
g

I = const

(k

The angular intensity distribution is seen in fig. 5. The first intensity zero takes place for

8=V2A/L
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4. The gaussian approximation.

We are left with one problem: the electron beam is gaussian disuibuted and we must take
this into account when calculating the total effective source size and angular spread of the
light. We will now make a gaussian approximation of the angular spread o’y induced by
diffraction. Then, we will use the diffraction relation for gaussian distributions to calculate
the source size induced by diffraction, o r.-We can then add the standard deviations for the
elecron beam and the diffraction related ones quadratically to get the peak light intensity in
phase space, the briliiance.

The goal to get the peak light intensity in phase space leads us to choose a standard deviation
for the gaussian approximation so that the peak of the two disaibutions coincide.

A rotational symmetric gaussian distribution has the following normalized form

2, 2
Jeauss (8 )= 1 g~ 9/208

21c02

and the comresponding one for the diffracton distribution

] _2a s'ngaez) 2Zn L
JaiF (8) = 2 (aez)z where a = X a4

Equalizing the peak values of the two distributions yields

CH=0"7r= \’—?—L—

2L

The corresponding (not to equal-looking) distributions are seen in fig, 3.
The diffraction relation for gaussian diszibutions gives us now
O = YA L

TT22 x

In this approximation we get the total intensity distribution in phase space

a1 _ I 1 8Ll ~8ny] N8 5y
dexdeyd.xd} (23'02 Z’xz,ny:(}'

where I o is the total number of photons per time unit and energy interval,
Zi= ‘J;z + Sr

zi=Vol+ o7

Aoz
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Fig. 5. Gaussian approximation.
It is now natural to define the brilliance as the maximum intensity density

B= Is 1
en? LIy Xz Ly

5. Matching.

From the brilliance definition, we see that it pays off to decrease the electron beam eminance
Ei=0ieTie

untl it reaches the diffraction-induced emittance Or 0'r O

This is, however, not enough. The elecron beam must also be matched to the diffraction
conditions.The latter can be expressed as

o

e
™
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The corresponding relation for the electron beam emittance can be written

Cie
G'i,e

=PB; where P is the Twiss function.
The design aim rust then be to get

S
Bi=—-

Let first concider & bending magnet source. In this case ¢’y approximately equals 1/y which

through the dispersion relation for gaussian distributions yields 6, = ——-1

The optimum B value is then

Or A

C'r 4%

which for most typical cases is around 1073 - 10°° m while the minimum [ function which
can be attained is around 0.1 m. The electron beam is thus heavily mismatched to the light
characteristics. The ¢lectron beam size is generally three orders of magnitude to large while
the electron bearn angulars spread is much smaller than the diffracdon defined one.

A much better matching is achieved when long undulators can be used. The minimum mean
function value which can be attained in a straight section of length L is around B=L/2. This is
only a fector of © from a perfect match.

Acknowledgements. Thanks are due to prof Helmut Wiedemann, SSRL, and dr Richard
Walker, ELETTRA, for most interesting discussions.
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