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1. Introduction.

vater is present in almost every soil orofile, but
the amount varies with time and rerth as a result of supply
and Gemand by its environrent. If the supnly of water at the
soll surface (e.q. rainfall, irrication, dew, flood) during
a certain period exceeds the extraction of water from a qiven
soll profile {e.o. evaporation fror soil surface, water uptake
by plant roots, deep percolatton), the excess supply during
that period is stored in the soil profile. If the excess supply
surpasses the storage capacity of the soil, water discharges
to lower reatons (i.e. drainace}}. The supply at the soil surface
can also be smaller than the sum of transpiration and evaporation.
In that case, the topsoil dries out, while upward transport of
water frorm the subsoll {capillary rise) may take place.

2. Prlow of water in saturated soil.

A major division in tvpes of flow of water in soil
is that between saturated flow and unsaturated flow. The
reason 1s that the hvdraulic conductivisy of saturated soils
is constant in time and, in a uniform soil, also in position.

Bare o oo

at et
11 analyzine the subsurface movement of water, the
v Ll tertuous vaths of the water molecules as they flow
v emoh pores, eracks and crevices of the gpil are taken as
th raths it the water rolecules moved richt throuch the
«1id pm ticles. The resultinc swmcoth lines of travel of

+'er water rolecules are called streamlines.

Figure 1 shows a system of linear, parallel streamlines

e iow a water table in a vertical cross section of an aquifer
parallel to the direction nf flow. Since the streamlines are
straieht and parallel, the flow of water does not chance with
'isLance. This is called uniform flow, in contrast with non-
w.iform rlow, where the flow changes with distance and strearn
lines may curve, diverge or converce {as for example, in flow

F ¢ roundwater to wells, flow of aroundwater to or from streams
s other two-dimensional, three-dimensional or axlsysmetric

;1w systems) .

_ 1 PEFERENCE _ PLAME 3

viqure 1. Vertical cross secktion of qroundwater flow with
==omEe linear, parallel streamlines.

The one-dirensional flow in fioure 1 is also assumed
ti: be strady, reaning that the flow does not chance with time.
{1 the flow channes with time (as for erample, in connection
w:ith a rising or a fallino groundwater table), the Flow is

1 led nonsteadr or transient.



i{F viezoneters are placed al w0 points on a streamline
(points 1 and 2 in figure 1), the velocily oY tpne qroundwater
in that streamline can be calculated with the equation:

(h, + z) - (h, + 2,)
1 1
v=K T 2 2 ()

where: v = Darcy velocity of water or flux density (length/time)

h, = pressure head at point 1 (length)

z, = elevation at point 1 {length)

h2 = pressure head at point 2 (length)

3, = elevation head at point 2 (length)

L = distance of flow between points 1 and 2 as measured
along streamline (length)

K = hydraulic conductivity of soil or aquifer material
{lenath/time)

Equation (1) or modification therscf are called
Darcy’'s equation, after the French hydrologist Henri Darcy (1856},
who discovered that veloclty was proportional to hydraulic
gradient in the course of his classic investination of éeepaqe
through sand filters in the citv of Dijon (France). The Darcy
velocity is not the real macreoscopic velocity of the water, but
the velocity as if the water were moving therough the entire cross-
sectional area normal to the flow, solids as well as pores.
The pressure head h at a given point in the flow system is the
height to which water will rise in a piezometer inserted down
to that point. The elevation head of a given point is the
vertical distance of that point above an arbitrary, horizontal
refersnce plane. The sum of pressure head and elevation head
at a given point in the flow system is called the total head H.
Thus, hl + 2 in equation {1i) is the total head Hl at point 1,
and h2 + zq is the total head H2 at point 2. The distance L
batween points 1 and 2 wust be measured alonc the streamline
on which the points are located. The ratio (H, - Hzl/L is
called the hydraulic gradient of the flow.

Dy 's law . o4s.cally states that v is directly

. a.-. o hydran ic gradient (equation (1)). The
fa : ot pr portionility K 1s a property of the soil or
ro~i paterial, and it is called the hydraulic conductivity.
+..i. K is the Darcy velocity at unit oradient. Since the

1 aulic oradient is dimensionless, K has the same dimension
4: v, wi length divided by time. A convenient unit for K is
oot o per day. The value of K depends on the size and nusber

pores in the soil. Orders of wagnitude for K of granular

vaterials are:

0.01 - 0.2 wday
1078 - 1072 w/day

clay soils
Jeep clay beds

toam soils 0.1 - | m/day
11ne sand 1 -~ 5 m/day
redium sand w0 m/de
coarse sand 20 - 100 w/day
gravel 100 - 1000 w/day

The hydraulic coaductivity of sandstone is considerably
less than that of unconsolidated sand with the same grain sizas,
due to cementation and hlcher density of the sandstone. K valuea
of viher consolidated waterials depend entirely on the secondary
rcusity of the rock (fractures, weathering, sclution channels
i carbonate rock etc...). General rances of K for consolidated

materials are:

sandatone 0.001 - 1 m/day
~arbonate rock with secondary porosity 0.01 - ; n/day
shale 10 ° m/day

dense, solid rock < 10_5 n/day
iractured or weathered rock {aguifers) 0.001 - 10 w/day
sractured or weathered rock (core samples) alwost 0 - 300 m/day

volecanic rock almost O - 1000 m/day

Since v in equation (1) is the velocity as if the water
were movino through the entire porous material, solids as well as
., the volume rate of flow through s glven cross-sectional
area perpendicular to the flow is simply calculated as:



n=v.A (2)

where: N = volure rate of flow (lenqtﬁytine)
Darcv velocity {length/time)
A = area norral to flow direction (lenqtﬂ5

v

For example, 1f the Darcy velocity in an aquifer
is 0.1 m/day and the aquifer normal to the flow direction is
10 m thick and 1000 r wide, the flow in the aquifer is
1000 n]/day.

2.2. Hydraulic conductivity.

The hydraulic conductivity, acain, I's the ratio of
the flux to the hydraullic aradient, or the siope of the flux
versus qradient curve (ficure 2.

yith the dirensions o* flux beina LT-I, those of
hydraulic conductivity depend on the dimensions assinned to the
drivinae force (the potential cradient). The simplest wav to
exvress the potential dradient {s bv use of length, or head,
units. The hydraulic heat qradient H/L, beina the ratio of a
lencth, is dimensionless. Accordinaly, the dimensions of
hvdraulic conductivity are the same as the dimensions of flux,

namely et

Sandy 01!
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In a saturated soil of gtable structure, as well as in
riaqld porous mediur such as sandstone, for instance, the hydraullic
conductivity is characteristically constant. Its order of
magnitude is about ]0-2 - !0—3 em/sec in a sandy soil and
w - 107 cmp/sec tn a clayey soil.

To appreciate the practical sionificance of these
values in more familiar terms, consider the hypothetical case
of an unlined (earth-botton) reservoir or pond in which one
wishes to retain water acainst losses caused by downward seepage.
1s the seepaqe into and throuch the underlying gsoll is by gravity
alone (1.e. no pressure or suction gradients in the soll), we
can assume 1t will take place at a rate approximately eaual to
the hydraulic conductivity. A coarse sandy soil miqht have a
K wvalue of say 10-2 cr/sec and would therefore lose water at the
enormous rate of nearly 10 m/dav. A tine loan soil with a
K value of 10" cm/sec would lose "only" about 10 cn/day.
Finallv, and in contrast, a bed of clay with a conductivity of
10"% cm/sec would allow the seepace of no more than 1 mm/day,
fwuch less than the expectable rate of evaporation. 50, the
retention of water In earthen dams and reservoirs and the
prevention of seepace frow'unlined canals can be creatly alded
by a bed of clay, particularly 1f the cla» is dispersed to
further reduce its hydrautic conductivity.

In many soils, the hydraulic conductivity does not
in fact remain constant. Because of various cherical, physical
and biolocical processes, the hvdraulic conductivity may chanae
as water permeates and flows in a soil. Chances occurrina in the
composition of the exchanaeablc-ion comrplex, as when the water
entering the snil has a different commosition or concentration
of solutes than the oriaginal soil sotution, can creatly chance
the hrdraulic conductivity. In reneral, the conductivitv decreases
with decreasine concentration of elestrolytic solutes, due to
swelline and dizpersion ohenorena, vhich are also affected by
tl.e npecies of cations present. ™ b hrent and micratlon of
¢lav particles dnrinc nrolonact fhoy may result in the ctoéuinﬂ

toperes. the intera Piomes 0 codgtes with the soil matviy, and



their effect on hydraulic conductivity are perticularly
important in saline and sodic soils.

In practice, it is extremsly difficult to saturate
a s0il with water without trappina some air. Entrapped air
bubbles may block pore passages. Temperature chanaes may
cause the flowing water to dissolve or to release gas, and
will also cause a change in the volume of tha gas phase, thus
affecting conductivity.

The hydraiolic conductivity K is not an exclusive
property of the soil alone, since it depends upon the attributes
of the soil and of the fluid tonether. The soil characteristics
which affect K are the total porosity, the distribution of pore
aize, and tortuosity - in short, the pore geometry of the soll.
The fluid attributes which affect conductivity are fluid density
and viscoslty.

2.3, Measurement of hydraulic conductivity of saturated solls.

The hydraulic conductivity of saturated soils varies
greatly. In irrigation and drainage studies, permeability is the
dominant variable, some scll be ing as much as 100,00 times as
permeable as others. '

Knowledge of soil permeabilities is essential te progress
in studies of water conveyance and water application efficiencies,
and in the design of drainage systems for the reclamation of
saline and alkali soils.

Parmeabilities are influenced by the slze and shape of
pore spaces through which water flows and the specific weight
and viscosity of the soil water. For ordinary irrigation appli-
cations, it is impractical to measure all of the factors that
influence permeability, but it is practical and very essential
to measure permeability of soils in Lhe laboratery and in the
field.

Two of the many Lypes of cquepment for measul o per-

meability are Lhe cunstant-head and variable bead pevieane e,

2.3.1, Constant _head permsameter

- e e o e e

With a constant head maintained by either continuous
inflow or frequent additions of water, steady flow through the
soll is obtained. Figurs 3 illustrates two constant-hesd par-
meamsters, one for laboratory tests and the other for field
acudien.

Darcy's law for flow of water in soils is applied for
computing permeability after measuring volume of flow in unit
time t, soil cross-sactional area A at right angles to flow,
loss of hydraulic head hL and flow length L.

Graguale

{a) - Lobergtory (W -Fioa

Figure 3 : Constant-head permeameters.

In field studies on undisturbed soil, loss of head
and flow length sometimes cannot be measured accurately at rea-
sonable cost. If the surface soil consists of a thin layer of
low permeability soil overlyling a layer of highly permeable
suil, then the loss of hydraullc head may be conatidered as the
distance from water surface to the highl; permeable s0il and the
flow length, as equal to the thickneas of the top layer of soil,
as indicated in figure 3,
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Laboratory measurements of hydraulic conductivity are
conducted on soil samples, contained in cylinders of known di-
mensions. A constant water level can be maintained in the con-
tainer through an overflow system, and measurements can be made
under a constant or falling head. A constant head can be created
by means of an overflow system. The induced steady flow can be
measured in a burette.

According to Darcy's law, K can be expressed as :

K= 2 sh (3)
where @
K = hydraulic conductivity w.r"h,
Q = steady flow (LJ.T-I),
Ah = constant head loss (L),
L = length of the sample (L),
A = cross sectional area of the sarple T

Example : The sample ig 5.1 cm long and has a cross-sectional
arsa of 19.6 cmz. The constant head loss maintained is 1.0 cm
and the constant discharge rate is 190 cm]/day.

According to Eq. | }) we have :

.1
L« 49 cn/aay

The variable head permeameter or falling-head permea-
meter is adapted to the measurement of permeability of fine-
textured compact solls of low permeability.

The principle 1is 11lustrated in figure 4.
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Figure 4 : Measuring hydraulic conductivity
under a falling head.

A soll sample is taken in 3 tube 6.2 cm in diameter
and 30 cm long. After the water level above the sample reaches
~rquilibrium and the soil is saturated, the water on top of the
sample is removed and the consequent difference in head causes
10 ypward flow through the sample. As a result the initial head
loss and the flow are reduced. Measurements of the rate at
4hich the head loss is reduced are used to catculate the hydrau-
1ic conductivity. J

AL hltll (4
K~ 1n
KU E) hTEy)
where @
K = hydraulic conductivity {cm/day},
L = length of the sample {cm),

hit,), hity) = head at time t, and t, respectievely (cml,

bty = time interval (days),

\l,nz = cross—sectional area of observation tube and soll sample
respectively chzl.

txample t A soil sample is taken below the groundwater table in
sinc tube 6.2 cm in dismeter and 30 cm long. After some soll

in rem.ved frcm the top and the bottom, a soil sample of 25 cm

yemaina. The hyrdraulie conductivity is determined by the falling-

pead fmethod as illustrated in figure 4 (A = A, = A).



O hours

L]

A time t

\ h(tll measures 1.5 cm

A time t, = 7 hours h(tzl measures 0.9 cm

K is calculated by equation (4 ) as 3
K = -25_ 2.1 log (1:3)= 43 cm/day = 0.43 n/day
/24 7 0.9

2.4, Steady_flow of water in saturated_soil.

b—p b N334 -4 PR A

Liquid water flow occurs in response to a hydraulic
potential gradient and not necessarily in response to a water

content gradient. Thus, vhen potential is plotted as a function

1.

of depth, it results in a smooth curve even across the boundary

batween layers (see figure 5A). When water content is plotted

as a function of depth, there is normallv a sharp discontinuity

in the curve at the boundary between layers {see fig SB).

Spil debih I ~——m=

Figure 5. 1If water is flowinc through two difterent soils that

however, has a discontinuity at the boundary (B).

In this chapter two different tvpes of steady state
flow will be considered:

1. steady downward flow
2. steady upward flow

Non-steady, saturated flow, in which 6 is constant but
q varies in time, occurs in drainace processes. This type of flow
is usually treated separately and it will not be considered here.

are in contact, the matrix potential curve is conti-
nuous across the boundary (A). The water content curve,

12.

The flux density eguation for the flow of water in
savurated soil, with the hvdraulic potential exwressed on
wir ht basis, was aiven in 2.1.

&n
a=-xM -k gl (5)

Ir a homoaeneous,water-saturated soil K is constant
with position and in tiwe. For steady flow o is constant in
timc and for a constant available crosa-sectlofh, such as in the
soil column in figure 6, the flux is also constant with heicht.
From equation (5) it follows then that 3H/os is also constant
w Ln height, or that H varies linearly with height.

I ]
W

""w:;J—TJn

e
'
'

Finure 6. Sceady saturated flow by inundation.

The lower end of the soll column in filgure & is
suaported by a screen such that water can flow out freely under
atmozpheric pressure. This means that at that heicht h = O.

[t Ll¢ reference level for the gravitational potential is chosen
4 ihe bottom of the soil column, then there also z = O. And
t.:s 1 x=h + 2= 0 at Lhe bottom of the coluan.
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At the free water surface above the soil columm,
£ =0.9mand h = 0, thus K = h+z=0.9m The water in
the laver from z = 0.8 r to z = 0.9 m can be assumed hydro—
static. This means that in this layer H is constant. Thus
at the soll surface H = 0.9 m, Z = 0.8 m and thus h = 0.1 m,
Since within the soll H, and also h, vary linearly with height,
their values are now determined as indicated in figure 6.

The system described above and depicted in figure 6
is used to measure the saturated hydraulic conductivity of
packed soil columms, as well as of undisturbed soll cores taken
from the field to the laboratorv. '

PROBLEWM ]

Calculate the saturated hydraulic conductivity K
of the soil in figure 6 if the discharge of water at the bottom
of the column is 1.62 cm3 per rinute and the internal cross-
mection of the cylinder is 20 cmz.

The flux density is downwards, so it is negative.
The diascharqge is:

1.62 om® _ 1.62 x 10~ »’
"1 min o0 s
The cross section area is 20 ent = 20 x 1074 m2,
Hence: 6 3
dischar 1.62 3 — -
q=- areagg=* 62 x 10 ® 2=—1.3'5x105ms1

60 x 20 x w0 'sm

aH dn 0. -
P -gt-anan?

Then according to Darcy's law:

-5 -1
_ - a _ 1,15 x 10 ms -5 -
K= amzdz T i3s - C b2 x10 " ns

14.

For saturated flow of water in a soll profile or soil
columrn with layers of different hydraulic conductivity, the flux
density is the same in all the layers.

The whole column is andremains saturated. Thus,
29/5t = 0. Then, according to the continuity equation vithout
production term:

a0 3
ns-—agno

This means that the flux density is constant with
height. The hydraulic conductivity and its variation with
depth do not enter into the continuity equation and thus have
no effect on this result.

Because the flux denaity is everywhere the same,
the gradient of H is inversely proportional to the values of K
in the different layers. From this H and h can be calculated.

l;| L "
-y
o
TN
M
"
B
}'.‘- o "t
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' . nr oe oe o
e 8 aradr =

Figure 7. Steady saturated flow through two soll layers with
m===z=== different K values.

This will be illustrated for the soil column in fioure & after
thee hottom 0.2 m is reolaced by a laver of which K is one sixth
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of that in the overlying soil (figure 7). With the subscripts
mferring to soil 1 and soil 2:

q, = K (dH/dz}, = K, (dH/ds)y = q, 16)
or:
s T
1 0.6 » 207w

AH is the difference of H between the upper and lower boundaries
of a layer. With Kl = 6 *2' one finds AHI = 1/2 AH,. Bacause
H = 0.9 m at the upper surface of the soil colymn and H = © at
the lower surface, AH, + AH, = 0.9 m. It easily follows that
AH, = 0.3 = and AH, = 0.6 m. The cradients of H in the two
layers can now be calculated and the values of h can be found
from the equation h = H - z.

At 2 =0, H=0. S5ince Ml2 = 0.6 ", H=0.6mat z =0.2m,
With this the diagram can be drawn.

PROBLEM 2

Calculate the flux density, when the hydraulic conduc-
tivity of soil 1 18 chat as in problem 1.

ANSWER

The flux density in soil 1 is:

q=- nt%) .- 1.2 x107° ng%%m sl -_6.0x10%ms!

A situation similar to that in figure 7 may occur in the field.
Excessive implement traffic may compact the soil, while the top
layer is kept loose by plowing. 1In this way less permeable

layers may develop, which hindcr, either temporarily or permanently,

the downward flow of soil water, When the water stagnates at
the interface between the layers and develops a positive hydro-
static pressure, as in figure 7 this causes a so-called perched

16,

water table. Since this is detrimental to normsl root growth,
deep tillage and subsoiling are often applied to break up tha
compacted layers.

PROBLEMN 3

Assume that the situation in figure 7 represents a
flocdsd rice field. Calculste in mm and -3 per hactare the
daily supply required to saintain a constant water depth at
the surface.

The flux density is - 6.0 x 10 est=

- 6.0 x 10°% x 3600 x 24 md™! = 0.518 m a7}, Therefore
the daily support should be 516 mm or 5180 13 per hectare.

PROBLEMN 4

Suppose an effort 1s made to intercept the water

lost to the subscil by installing closely spacad tile drains
at the boundary between layers 1 and 2. (The water discharged
by the drainags system could be pumped to a neighbouring field
for re-use).
a. Draw a new potential diagram
b. Calculate the discharge through layers 1 and 2
c. Is the drainage system effective in raducing the percolation

losses through layer 27

a. The drainage system provides atmaspheric pressure, hence
h=0atz=0.2mn. The potential diagram will now be as

follows:
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b. From the diagram and the hydraulic conductivities, it follows:

5 _ 0.7

9, = - 1.2 x 1077 x 5z " sl =-1.4x103ms?

9, = - 0.2 x 1077 x gf% ms ! :- 202 106 ms!

©. The absolute value of the flux density throuch the second

layer has been reduced from 6.0 x 1078 ma ! to

2.0x10°m s-l. Consequently, the percolation losses
have been reduced from 518 mm a”! to 173 mm a”}. Though
the latter figure is still very high, the drainage system

is effective for recyclino purposes.

Quite a different situation arises when the less
psrmeable layer is on top. This may be caused by loss of soll
structure due to puddling or crust formation due to the impact
of raindrops. It may also be due to the treading by animalsa
or compaction by heavy machinery.

PROBLEMN 4

The sot! profile of a rice tield consists of an upper
layer of 0,10 m and a lower layer of 0.70 m. Below these layers
is ¢oarse aravel. The saturated hydraulic conductivity of the
lower layer is 3.5 times that of the puddled layer. The water
tevel in the field 1s maintained at 0.1 m above the soil surface.
4. Make a schematic drawing of the system and a potential

diaqram
L. Calculate the flux density to the gravel layer 1s the lower

layer is the same so0il as used in fioure 6 .
a. Application of egqutaion 6 to this problem glves:

AH k., A2
2 °%) 0.1 .
i = -E-; B—;; e 3.5 x b--!, 0.5

-

x

2

At z = 0.8 m, H="h+ 2z = {0.1 + 0.8) m=0.9m
Atz=0,H=0 ' :

Thus AHI + AHz = AH1+ 2 AHl =0.9m

Then AH, = 0.3 m and AH, = 0.6 m

With this the potential diagram is determined.
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b. The tlux density in layer 2 is:
sky : 5 _ 0.6 1
_ . - . - -5 -1
qQ =~k == 1.2 x 10 " x m s = =-1,0 x 10 " m s
2 ¥z, o7

Figure 7 and ansWwer 5 indicate that in stratified soils
the flow is mostly influenced by the layer with the lowest
hydraulic conductivity.

Upward flow of water may occur in a soil profile
due to transpiration by vegetation amd/or evaporation from
the soll surface. If the water is supplied by groundwater,
this upward flow will lower the groundwater table, unless the
groundwater is replenished by water from elsewhere. A typical
example 1ls seepage from irrigation canals or irricated fields
to the groundwater in neighbouring fields. If the seepage
balances the evapotransplration,'the groundwater level remains
stable. In the laboratory such a éltuatlon can be simulated
by a system as depicted ip flaure 8.

Y
o

- ) .
L 5, “p

Pigure 8. Simulation of steady saturated upward flow of water.
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st the boLtum of vessel V, h =.0.8 m. If the
C+i.rence level for 2z is chosen at the sané place, H = 0.8 m .
4. 2z - . The resistance of the connection pipe between the
vigsel and the lottom of the soil column can be assumed so small,
thal the hydraulic head loss there is negligible and thus
i 0.8 wat z = 0.1 m at the bottom of the soll colusn., At
<~ 0.¢ m, h =0 and thus H = 0.6 m, As before, H is constant
in the water layer above the soil column. Thus, at z = 0.5 m,
il = 0.6 mand h = 0.1 m. With this the potential diagram is

determined.

PROBLEM &

—

The cross-sectlon of the soil column Ln fiqure 8 is
100 cn2 and the discharce measured at A is 180 c-3 per hour.
Calculate the saturated hydraulic conductivity of the soil coluan.

ANSWER

The flux density is:

180 x 10°% w’

3600 3 x 100 x 1wt

~5x10%ms!

Across the soil column:

%l_: - - 0-2- = - 0.5 .-l

-6 _ -1
-5 -1
Thus, k = - g/ < 221G BE_ o) 4107 ns
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3. Flow of water in unsaturated soll.

Most of the processes involving sclil water interactions
in the field, and particularly the fiow of water in the rooting
zone of most crop plants, occur while the soil is in an unsaturated
condition. Unsaturated flow processes are in general complicated
and difficult to describe quantitatively, since they often entail
changes in the atate and content of soil water during flow. Such
changes involve complex relations among the variable soll wetness,
suction and conductlivity, whose interrelations may be further
complicated by hysteresis. The formulation and solution of
unsaturated flow problems very often require the use of indirect
methods of analysis, based on approximations or numerical techni-
ques. For this reason the development of ricorous theoretical
and experimental methods for treating these problems was rather
late in coming. In recent decades, however, unsaturated flow
has become one of the most important and active topics of research
in soil physics, and this research has resulted in significant
theoretical and practical advances.

In =moil physics, soils of which the pore volume is
only partially filled with water are called unsaturated.

3,2. comparison of unsaturated versus saturated flow

We will see, that soil-water Elow is caused by a
driving force resulting from an effective potential gradient,
that flow takes place In the direction of decreasing potenttial,
and that the rate of flow (flux) is proportional tn the poten-
thll gradient and is affected by the geometric properties of
the pore channels through which flow takes place. These prin-
ciples apply in unsaturated as well as in saturated solils.

The moving force In a saturated s0il i1s the gradient
of a positive pressure poicntial., On the other hand, water in
an unsaturated soll is subject to a gubatmospheric pressure,
or suction, and the gradient of this suction likewise const i-
tutes a moving force. The matric suction is Aue: as o we 'vave

pointed out, to the physical affinity of Lhe water
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to the soll-particile surfaces and

capillary pores. Water tends to be drawn from a zone where the
hydration envelopes surrounding the particles are thicker, to
where they are thinner, and from a zone where the capillary
menisci are less curved to where they are more highly curved.
In other words, water tends to flow from where suction is low
to where it is high. When suction is uniform all along & hori-
zontal column, that column is at equilibrium and there is no
moving force. Not so when a suction gradient exists. In that
case, water will flow in the pores which remain water-filled
at the existing suction, and will creep along the hydration
films over the particle surfaces, in a tendency to equilibrate
the potential.

The moving force is greatest at the "wetting fromt”
zone of water entry into an originally dry soil. In this zone,
the suction gradient can be many bars per centimeter of soil.
Such a gradient constitutes a moving force thousands of times
greater than the gravitational force. Such strong forces are
sometimes reguired (for a gliven flux) in view of the extremely
low hydraulic conductivity which a relatively dry soll may
exhibit.

The most important difference between unsaturated and
saturated flow 18 in the hydraulic conductivity. When the soil
i3 saturated, all of the pores are filled and conducting, ®O
that conductivity is maximal. ¥hen the soil becomes unsaturated,
some of the pores become airfilled and the conductive portion
of the soll's cross-sectional area decreases correspondingly.
Furthermore, as suction develops, the first pores to empty are
the largest ones, which are the most conductive, thus leaving
water to flow only in the smaller pores. The empty pores must
be circumvented, so that, with desaturation, the tortuosity
increases. In coarse-textured soils, water sometimes remains
almost entirely in caplllary wedges at the contact points of
the particles, thus forming separate and discontinuous pockets
of water. In aggregated soils,too, the large interaggeqate spaces
which confer high conductivity at saturation become {(when
emptied} barriers to ltiquid flow from one agaregate to its

nriqhbors,
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For these reasons, the tranasition from saturation to
unsaturation generally entails a steep drop in hydraulic con-
ductivity, which may decrease by saveral orders of magnitude
(sometimes down to 1/100,000 of tis valus at saturation) as
suction increases from zeto to one bar. At still higher suctions,
or lowsr water contents, the conductivity way be so low that very
steep suction gradients, or very long times, are required from
any appreciable flow to occur.

At saturation, the most conductive solls are those in
which large and continucus pores constitute more of the overall
pore volums, while the least conductive are tha soils in which
the pore volume consists of numerocus micropores. Thus, as is
well known, a sandy soil conducts water more rapidly than a
clayey soil. However, the very opposite may be trues when the
soils are unsaturated. In a soil with large pores, thase pores
guickly empty and become nonconductive as suction develops,
thus steeply decreasing the initially high conductivity.

In a soil with small pores, on the other hand, many of the pores
remain full and conductive even at appreciable suction, so that
the hydraulic conductivity does not decrease as steeply and may
actually be greater than that of a s0il with large pores subjected
to the same suction.

Since in the field the soll is unsaturated most of the
tiia, it often happensa that flow is more appreciable and per-
sists lorger in clayey than in sandy soils. For this reason,
the occurrence of a layer of sand in a fine-textured profile,
far from enhancing flow, may actually impede unsaturated water
movement until water accumulates above the sand and suction de-
creases sufficiently for water to enter the large pores of the
sand. This simple principle is all too often misunderstood.

3.3. Relation of conductivity to suction and wetness u.

Let us consider an unsaturated soil in which wvater 1s
flowing under suction. Such flow ia illustrated schematically
in the model of figure 9. In this modal, the potential difference
between the inflow and cutflow ends is maintained not by diffe-
rent heads of positive hydrostatic pressurs, but by differeat
imposed suctions.

Figure 9 : A model illustrating unsaturated flow
(under a suction gradient) {n a hori-
zontal column.

In general, as the suction varies along the sample,
20 will the wetness and the conductivity. If the suction heads
at both ends of the sample are maintained constant, the flow
proceases will be steady and the suction gradieant will increase
as the conductivity decreases with the increase in suction along
the axis of the sample. This phenomenon is 1llustrated in figurelo.

Figurel : The variation of wetness O, matric
putential b ., and conductivity K
along a hypﬂlhallra] column of unsa-
turated sorl conducting 3 steady flow

of water.



Since the gradient alony the column is not constant,
as it is in uniform saturated systems, it is not possible,
strictly speaking, to divide the flux by the overall ratio of
the head drop to the distance {aH/AX) to obtaln the conductivity.
Rather, it is necessary to divide the flux of the exact gradient
at each point to evaluate the exact conductivity and its varia-
tion with suction, In the following treatment, howevey, we shall
assume that the column of figure 9 lis sufficlently short to allow
us to evaluate at least an average conductivity for the sample
as a whole {l.e. K = d¢. Ax/AH) .

The average negative head, or suction, acting in the

column is :
Hl + “2

2 '

We assume that the suction everywhere exceeds the air-
entry value so that the soil 1s unsaturated throughout.

Let us now make successive and sytematic measurements
of flux versus suction gradient for different values of averaqge
suction. The results of such a series of measurements are shown
schematically in figure 11 As in the case of saturated flow,
we find that the flux is proportional to the gradient. However,
the slope of the flux versus gradient line, being the hydraulic
conductivity, varies with the average suction. In a saturated
soil, by way of contrast, the hydraulic conductivity is generally
independant of the magnitude of the water potential, or pressure.

He O

Fiux la)

Swction gradient  BH/BX

Figurell : The hydraulic conductivity, being the
slope of the flux vs. gradient rela-

tion depends upon the average suction
in an unsaturated soil.

LA

L
~

ydrauhi€ CORGUETIdily

Suction

flgurglg : Dependance of conductivity on suction
in soils of different texture.

Figure W2 shows the general trend of the dependence
of conductivity on suction in soils of gitferent texture. It
is seen that, although the saturated conductivity of the sandy
soll Ks, is typlcally greater than that of the clayey soll Ks,,
the unsaturated conductivity of the former decreases more Bteeply
with increasing suction and eventually becomes lower.

No fundamentally based equation of general valldity
is available for the relation of conductivity to suctjon or to
wetness, and exlsting knowledge does not allow the reliable pre-
diction of unsaturated conductivity from basic soil properties.
Vvarious empirical equations have been proposed, however, in-
cluding the followling

a
K = ;l-n-l ll,
a
K= ™ {2}
b+h
Kl
K= ——-—-————'m (k1)
1+ (h/h)
K=a.o" (4
m
K = x'.ws {5)
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where

K = the hydraulic conductivity at any deyrce of saturation
(ur unsaturation),

L = the saturated conductivity of the same soil,

a, b and m = empirical constants (different in each equation},

h = the matric suction head,

2} = the volumetric water content,

"s = the degree of saturation,

hc = the suction head at which K = 1/2 Kg.

Of these various equations, the most commonly employed
are the first two (of which the first ia the simplest, but cannot
be used in the suction range approaching zaro). In all of the
equations, the most important parameter is the exponential con-
stant, since it controls the steepness with which conductivity
decreases with increasing suction or with decreasing water con-
tent. The m—value of the first two equations is about two or
less for clayey soils, and may be four or more for sandy soils.
for sach soil, the equation of best fit, and the values of the
parameters, must be determined expérimentally.

The relation of conductivity to suction depends upon
hysteresis, and 1s thus different in a wetting than in a drying
soll. The reason ls that, at a given suction, a drying soil
contains more watef than a wetting one. The relation of conduc-
tivity to water contént, however, appears to be affected by
hysteresis to a much lesser degree. The value of the exponent
for the relation of K to 6 {eguation 4) can be as high as 10 or
more.

3.4. Hydraulic_conductivity.

e - ——

The hydraulic conductivity of unsaturated soils is
smaller than that of saturated soils, because only the pores
which still contain water can contribute to the flow of water.
Since the hydraulic conductivity of a pore is proportional to
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. sqaure of its radius, the largest water-filled pores
. cribute most to that flow. When a saturated s0il starts
Lecoming unsaturated, the largest pores are emptied first.
~ result, the unsaturatéd hydraulic conductivity decreases
.:ry fast with water content.

It has been found experimentally that Darcy's law
i: 3180 valid for unsaturated soils. Thus, the flux density
for the flow of water in unsaturated solil is;

- - L]
q = - K(8) =2 (8}
wir - now the hydraulic conductivity K(68) vary over many orders of

reguitude with 8.

Fiqure 13 shows the hydraulic conductivity K of a
pdiam fine sand and a loam as functliop of the volume fraction
51 water, 0. For instance, when in the sand & decreases from

8 = 0.4 to © = 0.07, K changes from about K = 1 m a! o
K

=103 mat,
The relationship between K and 8 is not linear,
t.t in many soils log K 1is approximately proportional to 6,
4 indicated in figure 13 by the semni-logarithmic scale.
Cenetally, the K-8 relationship is not influenced by hysterasis,
iw contrast with the K—h. relationship. Therefore, ths X-0
relationship is used most of the time,

The hydraulic conductiwity of loam {figure 13B}
is lower than that of sand (figure 13A) for the same 6.

At the same water content the water-filled pores of
{nam are smaller than those of sand. Thus the contact area
per volume between the solid phase and the water is the largest
for scam. This results in a higher resistance to flow, or a
iewer hydraulic conductivity.
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Figure 1JA. B8oil water charac-
A teristic hy-8 (—},
hydraulic conductivity k-6 (----)
and hydraulic- diffustivity D-8

{- -~-—-) for medium fine sand.

Figure 13B. Soil water charac-
teristic hyp-0 |
hydravlic conductivity k-8 (----)
and hydraulic diffuslivity r-9

(- ~—== ) for loam.

EE e Tt
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1.5.1, Steady_upward flow.

To study steady, upward flow of water in unsaturated
soll, we will first conaider a situation as in figure 14. The
water in the soil column 1s in static equilibrium with the sima-
jlated groundwater table, because a plastic cover prevents evapo-
ration from the soil surface. Thus the water content profile
shown is the same as the solil water characteristic of the soll
for the particular range of ho- Such an equilibrium situation
may occur in a fleld with a constant, shallow water table during
periods of fog, when the air 1is aaturated with water vapour.

PR 'R
PUTT

...... — =y Q-L— e A — o ’
L] 8 4

N H " - L LD L L] L]
’ mpady t ol

Figure 14, Static equilibrium with a groundwater table.

=o=amETER

The soil is saturated below z = 0.3 m, Since at
z=0.3m, hm = - 0.1 m, the air-entry value is - 0.3 m.

If the plastic cover on top of the soil column in
figure 14 is removed, evaporation will start {(figure 13). 1t
the evaporation rate 1s constant and the groundwafer table is
maintained at its original level, steady upward flow will be
established. This means that 8 does not vary in time and thus,
according to the continulty equatlon:
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q=-K %% = constant and uniform

For the flow to be directed upwards, it must decrease
with height, making dH/dz negative and g positive. Thus h, and
with it 8, sust decrease, Since K decreases fast with 6 (figure 13}
it decreases fast with height, To maintain the same flux at all
heights, a certain rate of decrease of K with height must be
compensated by the same rate of increase with height of the
absclute value of dii/dz. Thus tha H curve in the potential
diagram must be increasingly flatter towards the soil surface,
as indicated in figure 15.

‘ l ' ! aim )

M [N

Figure 15, Steady upward flow of water, constant evaporation
aSEEEIEES from a stable groundwater table.

The above situation is often found in the field during periods
of drought, when a rather sharp transition from a dry upper
layer to a moist lower zone is developed due to the sharp
decrease of X with decreasing water content. The formation

of such a sharp transition is the result of a gelf-accelerating
‘mechanism, which can be explained as follows. When evaporation
starts, 9 as well as h and H decrease near the surface. But,
because X decreases too, the new h qradient is too small to
maintain the upward flow needed to satisfy the evaporative
demand. Hence, 0 decreasea still further, causing a further
decrease in H, but again not sufficient to off-set the accompanying

decrease in K etc... This process continues unti) the surface

a2,

layer has become so dry that practically all flow of water ceases.
The formation of this dry surface layer is of practical importance
because it protects the soil against large evaporation losses.
This so-called soil mulch 1a the principle upon which dry-land
farming is practised.

The exact values of h and H in the steady situation
represented in figure 15 are difficult to calculats, and then
only wvhen the k-8 and h-e relationships are known accurately.
The gradients in the lower, water-saturated part of the profile
can be calculated easily, provided the saturated K, the svaporation
rate and the air-entry value are known. '

PROBLEN ?

Is the relationship of H and h with z curvilinear
in the water-saturated part of the profile in figure 157

In the water-saturated part of the profile, K 1is
constant with height. In steady saturated water transport,
the flux density is also constant with height. Thia implies
that dH/dz is constant with height or that H changes linearly
with haight, and not curvilinear. The same is true for h.

PROBLEMN ¢

Estimate the evaporation rate in figure 15, assuming
a steady state situatjon, a saturated X value of 0.05 m d-'
and h = « 0.22 mat z = 0.2 m,

ANS WER

Since q is constant with height, the evaporation
rate at the surface is the same as the flux density in the
saturated zone, If h = -~ 0.22 m at 2z = 0.2 m, then H=- 0,02 m
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that heiaght, and thus:

-1 - 0. -1
n- -k oosmal %02 -5 g

PROBLEM 9

Determine the height of the saturated zone for the sltuation
in problem 8

Does this height remain constant if the evaporation rate
changes?

ANSWER

In the saturated zone is

-1
di L 0.005 md _
az :% -0.05 ma~!

-0 mm!

Then O . GH _ dz 1

= 3;-3;=-o.1-1.o=-1.1mm'

or h==1,1z2+C
Since h -'O at z =0, C =0

At the top of the saturated zone, h is egqual to the air-entry
value, or h = - 30 m (see text). Thus the helght of the
saturated zone is

h _'0-3 =
T T T 0.27Tm

No. The larger the evaporation rate, the larger the absolute
value of the hydraulic potential gradient, and thus also the
h-gradient, the smaller the height over which the air-entry
value will be reached, and thus the smaller the saturated
tone

v.5.2. steady_downward flow.

Fiaure 16 shows the potential diagram for a field
situation similar to figure 6. The water at the surface is
applicd by sprinklers and the croundwater table is stabllized
by tile drains. The sprinklina rate is such that, without

run-t f1, the layer of water on the g0il surface remains constant.
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Flqure 16, Steady downward flow of water at a high sprinkling
s=c—s==== rate (flooded soil).

PROBLEM ¢

-1
Calculate the flux density in figure 16 if K = 10 cm d

and the water layer is 10 cm deep.

-1 1.1 1

q=-ka-ii-0.ll'l\d X—I-Tas"o.ll'l'lld-



PROBLEM 11

Calculate the sprinklina rate in the steady state
situation of figure 16 if the depth of the water layer at the
surface is negligible.

ANSWER

In this situation h = O at the soil surface and in
the whole profile, because h = O also at 2 = 0. This means
that H = z and dH/dz = | m » ). The sprinkling rate then equals
the value of the hydraulic conductivity, 10 cm d_l.

If the sprinkling rate is decreased to another constant
values, a new steady state situation arises, when the downward
flux density still equals the sprinkling rate. This new situation
is accompanied by a decrease in the H gradient, i.e¢. both B and h
at the soil surface decrease. If the sprinkling rate falls below
a certain critical value, the air-entry value of the soll will be
axceeded and an unsaturated zone will develop in the top of the
soil profile. Since K decreases with 8 in the unsaturated zone
and q is constant, the H gradient must increase with helght, as
shown in figure 17. Consequently, the h gradient must also increase
with height, which means that the h curve becomes steeper towards
the soil surface.

Figure 17. Steady downward flow of water at a low sprinkling

sasmsszx= rate,
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PROBLEM 12

tnder what conditions are H and h linear functions of z
tirosyhout the profile?

ANSWER

H and h are linear Functions of z only whan dH/dz =
culstant, i.e. when k is constant throughout the profile.
Bacause the soil is saturated at the groundwater table, it should
be saturated throughout the profile.

PROBLEMNMN 13

Assuming that the aié-antry value is not exceeded,
é.aw the diagram for the steady state situation with a
sprinkling rate of 8 cm at.

A flux density of 8 cm a~! corresponds to
dH/dz = - q/k = 0.0 = n!
Hence, at the soil surface, H = 0.8 mand h = - 0.2 m.
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PROBLEWN 14

what is the highest possible H gradient that can be
attained in a steady state downward flow as shown in figure 17.

ANSWER

In the unsaturated zone, where h ia decreasing with
height, k 1a alsc decreasing with height. Therefore, dH/ds
must increase with height to satisfy the condition for steady
state: g = - K %% = constant '

Consequently, dh/dz must also increase with height,
i.e, become less negative. HNow suppose dh/dz would become
poaltlvé at a certain height. Then both h and k would increase
with height. To keep the flux constant, dH/dz would have to
decrease with height, and thus also dh/dz. This iz in conflict
with the supposition made above. Thus, we can conclude that
the highest possible value of dh/dz is zero. In this situation
h has reached the constant value at which K has the same value
as the imposed flux density, which then flows through the soll

under the gravitational potential oradient of 1 m m_l.

PROBLEM s

a. Draw as logical as possible the potential diagram for
steady downward flow with a sprinkling rate of 1 cm a’!
b. Why is the phrase "as logical as possible” needed in a?

AN SWER
a. Fromg=-1.0cnm a ! and K = 10 cm a7 ! 1t follows:
dH -
== E =0,lmm 1 and
dh du d -
R R - pc0l-1=-09mm!

3.

The air-entry value is h =-0.4 m. This value is reached
at z = 0.44 m. Thus the soil is saturated below z = 0.44 m.
Above z = O.44 m the gradlent dH/dz increases with height,
but cannot exceed the value for which dh/dz = O, With these
considerations the potentlal diagram can be drawn,

b

NN
k..gj —
Ny -n

b. Above z = O.44 m the soil is unsaturated and 0 as well as K
vary. Since K is not given in the unsaturated zone, we only
can guess the most probable shapes of the H-and h-profiles.

Even if K were known, calculation of these profiles is complex

because of the non-linear nature of the problem.

Figure 18 presents a summary of the h-profiles for
the various cases of steady vertical flow of water discuased
in this section. The nuwbers next to the curves are the values
of the flux density. Upward flux densities (g > O} represents

evaporation and downward flux densitlies (q < 0} represents drainage.

Zero flux density (q = 0} is the special case of hydrostatic
equilibrium.
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Figure 19. A tube of cross-sectional area A and length is is
memesm==== yniformly packed with a uniform soil. Water enters
at a flux density J_,. and leaves at a flux demaity

Juout

3.6.2, Analysis of H-profiles.

Rv'/ — e A
+ " RLL ] . L3 [T} L1 L] nl
T

In the field, wvatar transport ssldom is steady,
because precipitation, evaporation, irrigation, drainage etc...
! change cogtinually. Transport processeswhich changs with time,

3. 6. HNon-steady unsaturated flow of water. are called non-steady. One can obtain insight into non-steady
water flow processes in the field, qualitatively, by obtaining

3. 6.1. Introduction, tensiomster data at different times and depths in the soil
profile. With tensiomesters one obtains information on the matric

head h, as well as the hydraulic head H = h + 2. From ths matric

head at different times one can derive whether the volume fraction

Figure 18. Summary of h-profiles for steady vertical flow of
muss=zs=s= water with a stable groundwater table.
1

For steady state flow through a tube of uniform size

(figure 1%}, the flux density is the same through every cross
of water is increasing or decraaseing. From the gradient of R

one can deduce in which direction the water is moving, and

section of the tube. Consequently, water is not stored.

With non-steady or transient state flow, water 1s
stored (or in some situations it is coming from storage) in
the soll. Thus in transient state flow, the flux density
entering the tubs in figure 19 would not equal the flux density

leaving the tube. The difference between that entering and that

exiting is the storage. That is, the storage (which can be
expressed as a change in volume water content with tine,aavjatl

can be determined from the difference between inflow and outflow

{(which can be expressed as the change in flux density along the
length of the tube 3Jw/ix).

possibly predict values of & and directions of flow at future
dates.

which is the direction of flow if aH/3z is positive,
negative of zero?

Since z is defined positive upward, a poaitive flux
density is directed upward and a negative flux density downward.
Also q = - k aH/3z. Thus, when 3H/3z 1s positive, then q is
negative, and thus directed downward. Similarly, when 3H/3z
is negative, the flux density is directed upward. There 18 no
flow when an/3z = O.
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Figure 20. H- and h-profiles in a soil during steady evaporation
=w=======  (t,) and some times after it started raining (t ).

Figure 20 shows H-oroflles at two differsnt times.
Initially at to' there is steady evaporation for which §H/$8z
increases with height, since § and X decrease with height. If
then it starts to rain and water infiltrates into the soil
profile, the H-profile may after some time have changed to
that indicated by t,. From this profile one can tell in which
direction the water is moving, and whether 386/3t > O or
20/t < O. Below height A there is still upward movement,
because 3H/2z < 0. Above heicht A, the transport is now
downward. At height A, there is no movement because 3H/3z = O,

PROBLEM 16

Is there a water layer on top of the so0il at time tl?

At the soil surface, h < 0. Thus, there can be
no free water at the soll surface.

PROBLEM 17

e ————— T

Explain, by using the continuity equation, whether
at heiqht A in figure 20 8 decreases, increases or remains

after L].

ANSUWER

At some height hl above A the flux density q, is
neqative, because there 9H/3z is positive. At some height h2
below A the flux density is positive, because R/3z 1is negative.
Therefore, at height A,

30*11 (]q;.l_:—:-g)to'
3h = HMh o+ A and by + ARy T T

because (o, - g,) < C and (hl - hzl >0

a0 _ 2
Thus, at helaht A, =3 = - ﬁg >0
This means that B increases with time. Even without the above
proof, it is easy to see that the water content at A sust increase

pecause water Ls moving tbwards A both from below and from above,

For height A it is easy to tell whether @ will increase
or not, just by looking at the #H-profile., For other heighte it
is not so easy to predict the chances in 9. Take for instance
hejohts B and C in fiqure 20. At both heights the flux density

is downward.

gince C is the inflection point of the H-profile
above helcht A, the H-gradient at B is smaller than at C.
Wowever, 6 is oreater at B than at C, as can be interpreted
from the h-profile. This weans that X is qgreater at B than
at C. Therefore, without knowing the exact numerical valuves
of ¥ and M/3z, it cannot be concluded which height has the
greater flux density. This reasoning 1s true for every helght
above C. Thus, it is not possible to conclude whather above C
A will increase or decrease, oy eveh remaln conatant.
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The same problem arises in the interval between
heights D and E, where D is the inflection point of the
H-profile below A, and E is the haight where the kK-profile.
becomes linear.

‘In contrast, hetween A and D, the absolute value
of 3H/32 as well as K decrease with height, i.e. 3q/3z < O.
Hence, 36/3t at every heiaht in this interval is positive.
A similar reasoning can be given for the ilnterval between
C and A. Also in this region 3q/3z is neqative. Therefore,
36/3t will be positive for everv height between A and C.

PROEBLEM 1 s

Suppose the weather becomes fogay for an extended
period of time directly after the rain has stopped:
a. What will be the ultimate shape of the H-profile
b. Compare B at different heiochts in this final stage with

those at time tl

a. When there 13 fog, there is no evaporation. But, downward
and upward water within the soil profile will continue until
finally static equilibrium is attained. Since at static
equilibrium 3H/3z = O, H is constant and zero throughout
tha soil profile, because h = 0 at z = O,

b. At equilibrium, h is linear with heiqht and eaual to - z,.

A little above C, H = O at time tl. and thus at that height h

as this final atage will be the same as h at time tl. Therefore

the water content also will remain the same at that height.
Above this point, h and 8 will decrease compared to their
values at t,. Below this point, both h and & will increase.
At point E and below, the soil is saturated at time t,.
Although there h will increase with time, because the flux
will vanish, the water content cannot increase any further.

4.

By the preceding reasonina one can acquire only a
qte. tative understandino of the water flow processes in soil.
Since in unsaturated soil K varies with 8, it is not possible
to calculate ¢ as a function of height directly from H-profiles
as shown in fiqure 20. for this it is necessary to know, in
auuition, K- and €-h relationships. The procedure that then should
be followed to estimate J8/3t is outlined in figure 21, In
this figure, the subscript z indicates height, s stands for a
siall increment in heiqht and & is the average volume fraction

of water.

i LT
4 F
- — —=]| -,
! l- -
1 LELE )
L‘h- "
L
L '....j
.,
aall PR Pt B Ve N,
l_'a .

Fiqure 21, Calculation scheme for analysing a 6-profile.

In order to estimate 38/3t at a height z in a soil
profile, we will describe in words the steps followed in
figqure 21. By means of tensiometers, measure h at

dy means of tensiometers, measure h at three
tifferent helghts, i.e. at 2z, ¢ + s and z ~ ». Add z to each
. ‘o obtain H. Estimate 3H/3z at the heights z ¢+ 1/2 s and
2 - 1/2 s, assuming that R changes linearly with haight in the
int~rvals from z to z + 5 and from z - 5 to . By mesans of a
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predetermined soil water characteristic curve, determine 8
that corresponds to h at z, z + 8 and z - 8. Assuming that @
changes linearly with heldht, £ind 8 at the heights 2z + 1/2 s
and z - 1/2 s. By means of a predetermined K-8 relationship,
£ind the K-values at heights z + 1/2 & and z - 1/2 a. Now,

aH
%Y s128 " Frr1/28'9z241728 , and

M
9 - 128" " K - 172 8520z - 1/2 8

Finally, a good estimate of (28/3t) 1s:

1
29 . Jz 152 s~ 9 - 1;2 s
at'x {z + 1 ) - (z - [3
The procedure outlined in figure 21 makes use of
average valiea of 8, and not of hydraulic conductivity or
pressure head. This amounts to assuming that 8 changes linearly
with height. This assumption 1s usually not far from reality
and introduces small errors in 20/3t. An alternative approach
would be to average the K-values for each of the pertinent ®
values. This amounts to assuming that K changes linearly with 8,
which cbviocusly introduces much more serious errors in 38/at

because of the strong non-linear K-0 relationships. An inter-
mediate approach will be to use average h-values,.

PROBLEM 19

In a medium fine sandy soil, for which the 8-h and
K-8 relationships are given in figure 5 and 6, three tensiometers
are installed at depths of 0.3, 0.4 and 0.5 m below the surface.
At a certain moment the tensiometers indicate h-values of - 2.0,
- 0.8 and - 0.4 m respectively. Estimate 38/3t at a depth of

0.4 m using the scheme given in figure 21, Hysteresis may be
neglected,

By reading the appropriate values from figure 13,

the following scheme can be set up:
- JH (1
depth z h H o a K Tz q It
m m m . - - - -1
" mm d o 1 oma 1 a
0.3 0.2 ~2.0 -1.8 0.09
0.14 0.19 -11 2.1
0.4 0.1 -0.8 -0.7 0.19 0,.10%
0.24 4.20 -3 12.6
0.5 ©.0 -0.4 -0.4 0,295
PROBLEM 20
a. Also estimate 36/3t at a depth of 0.4 m using average h values.
Do the same using average K values.
b. Compare the values for X and 28/2t obtained by the three
calculation achemesr
ANS WER
a. Using average h values the calculation scheme isa:
3H 20
depth =z h H h [} K Tz q T
m m m n m -1 -1 -1 o1
mm d mm wm d d
0.3 0.2 -2.0 ~-1.8%
-1.4 0.11 0.08 -11 o.88
0.4 0.1 -0.8 -0.7 0.117
-0.6 0.24 4.2 -3 12.6
0.5 0.0 -0.4 -0.4
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Using average K values:

aH 38
depth =z h H 8 K | | T q %
B = " n -1 -1 -1 -1 -1
mmd " mmd mm mmd d
0.3 0.2 -2.0 -1.8 0.09 0.0)
0.39 -1 4.29
0.4 0.1 -0.8 . -0.7 0.19 0.75 0.57
20.4 -3 61.2
0.5 0.0 -0.4 -0.4 0.295 40.0
b. The results in the previous problem show that the & values

derived from the measured h values vary nearly linearly with
depth. We will, therefore, consider these results as standard
against which the other two calculation schemas can be
evaluated.

A comparison of the results of the first two schemes shows
that using average values of h leads to an underestimation
of K for the drier soil. The error in the final value of
20/3t is about 10 8. The third scheme schows that using
average K values leads to a value of 30/3t which is almost
six times too large. This Lllustrates the extreme non-
linear character ¢&f unsaturated water transport.

PROBLEM 11

In a loamy soll profile nine tensiometers are installed

at depths of 0, 0.1, 0.2 ... and 0.8 m below the soll surface.

Eatimate 30/3t at depths 0.1

the

- 1.

and

... and 0.7 m for the moment that
tensiometers indicate h values of 0, - 0.3, - 0.8, - 1.1,
6, - 1.0, - 0.5, 0.2 and O m, respectively,. Use the Y-h

K-8 relationships in figure 13, Hysteresis may be neglected.
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ANSWER
The calculation scheme 18 as follows:
aH (1]
dezth : : 2 ] [ 4 " ET 1 q N ‘gl
wad mEm m d ]

0.0 0.8 0.0 0.8 0.50
0.49 S0 4.0 =200

0.1 0.7 -0.3 0.4 0,48 1,10
0.486 15 6.0 -%0

0.2 0.6 -0.8 -0.2 C.44 0,68
0,42 5.5 4.0 -22

0.3 0.5 -1.1 -0.6 0.4 0.10
0.36 2.0 6.0 -12

0.4 0.4 -1.,6 =-1.2 0.32 0.4
. 0,37 2.4 -5,0 12

0.5 0.3 -1,0 -0.7 0.42 0.24
0.445 9.0 -4.0 36

0.6 0.2 -0.5 -0.3 o.47 0.04
0.47% 20 -2.0 40

0.7 Q.1 =-0.2 -0.1 0.48 a.10

0.49 5 -1.0 50
0.8 0.0 0.0 0.0 0.50

3.6.3,

A typical example of non-steady unsaturated flow
of water is the infiltration of water into soils. When water
is applied at the soil surface (e.g. under flood irrigation or
inundation}), it enters the soil profile and changes the water
content distribution with depth, also caliled water content
profile. After irrigation has continued for some time, the
following zones can usually be distinguished in the water content
profile (figure 22):



- saturated zone

- transition zone

- transmission zone
- wetting zone

- wetting front
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Figure 22. Zones of water content profiles some time after
amaEEDe=E start of irrigation.

The saturated zone is a thin zone at the soil
surface. The transition zone is a zone of decreasing water
content between the saturated zone and the nearly saturated
transmission zone. Its lower end may reach from a few milli-
meters to a few centimeters below the surface. These two
upper tones are not always clearly distinguishable, especially
in the laboratory. They are caused by structural changes at
the soll surface and the entrapped alir.

The transmission zone is the conveyance zcone for the
infiltrating water. Wwhile all the other zones remaln clearly
constant in thickness, this zone continues to elongate as long
as water 1s supplied at the soil surface, 1Its water content,
though slightly changing with depth, is rather constant and
close to saturation.

The wetting zone is the normally thin zone where the
water content changes from its {nitial value to the value of
the transmission zone,

The wotting front is the visible limit of water

nenetration, where the gradient of the pressure head is very

large.

The cumulative infiltration, 1, which is the volume
of water that has infiltrated into the soil divided by the surface

- 9
1 = j.(ﬂ ﬂi) ds )

arca, Is

where s is the distance in the direction of flow (here depth
in the soil profile}, 8 is the volume fraction of water at
distance s and @, 1s the initial uniform value of 6. The
cumulative infiltration is, of course, an increasing function

of time.

A column of soll with surface area A can be divided
into n slices, each with thickness As. The volume of water
absorbed by each slice is then A{B - 81) As, where ¢ 15 the
average volume fraction of water of the slice.

The volume of water absorbed by the whole column
then equals:

O=AL {0 - Bi) As
n

From As + O this can be written as the ihteqralz

Q=A !. {8 - 8,) ds
s=0
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The volume divided by the surface area is then:

=9 -
L=3x ({:] 8‘) ds
5=0

{whereas 81 has been assumed constant, it could also vary with s,
without changing equation (9). The integral would only get ancther
value) .

The driving forces for the water entering the soil
are the gradient of the pressure head between tha wetting front
and the soil surface, and gravity. While the latter is constant,
the gradient of the pressure head decreases with time, because
of the advancing wetting front. As a result, the flux density
through the soil surface, also called the infiltration rate i,
decreases wonotonically with time and approaches asymptotically
a constant value, as gravity becomes the main driving force
(figure 21). I

g

Pigure 23. Cumulative infiltration I and infiltration rate 1
smmsnmwa as function of time.

The infiltration rate may be expressed as:

1= &
dt

Suppose at time t, the cumulative infiltration is I
and at time t + At, I + AI. The mean flux density during the
time interval At is then the increase of the cumulative infil-
tration AI, divided by 5t, i.e, %%.

T“he 1lux density (= infiltration rate) at time t can

tv t.a ) by lettina t approach zera:

Pt i cﬁ—i;.-.g
M -0

Lad b

integration of equation (10) oives the cumulative

W\ titration as a function of time:
t
I =j idt {1y
[+]

Equation 11 can be derived from equation (10) as
f...ows: - equation (10) may be written as: dI = it
- integration with boundary condition I = O for t = O

The cumulative infiltration as a function of time
may be measured in the field, but such an experiment does not
aive any information about the water content distribution or
the depth of the wetting front. To obtain the volume fraction

" water as a function of depth and time, 8(s,t), a general
fiow equation must be solved, using appropriate intial and
Lo undary conditions.

J.o.4, General flow equation.

3.6.4.1, Horizontal infiltration,
TLu.é01.1. rlow equations

parcy's law, through originaily conceived for saturated
t iow only was extended to unsaturated flow, with the provision
.4l the conductivity is now a function of the matric suction
head (L., K = l(h)la

9=~ K



where VH is the hydraulic head gradient, which may include both
suction and gravitational components.
As pointed out in literature, this formulation fails

to take into account the hysteresis of soil-water characteristics.
In practice, the hysteresis orocblem can sometimes be avaded by

limiting the use of Eq. 1-5 in 3.) to cases in which the suctionf{or

wetness) change is monotonic - that is, either increasing or
decreasing contlnuously. In processes involving both wetting and

drying phases, Eg. Lin 3.34is difficult to apply,as the K(h) functio:

may be highly hysteretic.

The relation of conductivity to volumetric wetness K{9)
or the degree of saturation K(Hs) is affected by hysteresis to
a much lesser degree than is the K(h} function, at least in the
media thus far examlned.

Thus, Darcy's law for unsaturated soil can also be
written as @

q=-K .YH (13)

te)

which, however, still leaves us with the problem of dealing with
the hysteresis between h and 9.

To obtain the general flow equation and account for transient as
well as steady flow processes, we must introduce the continuity

equation @

8 _ | 3V
at - AN {14'
where @
v = flux {cwm/sec),
] = yolumetric moisture content (cm3/cm3),
t = time {sec),
L 3 = distance (cm).
Thus :
30 _ 3 aH
7t ° Ix (K(Ol' 3;) {15)

Remembering that the hydraulic head H is, in general,
the sum of the pressure head or its negative, the suction hea-l,
h, and the gravitational head {or elevation} z,

Ho+h + 2 t1n

we can write :

(an
h Ly az,

8.3 2 2
2t T 9 h(e) X (8) ox

The two dependent variables of this equation, @ and
h are connected by a "formal® relattonship :

- ds -1
C(s) = Th (em ) (18}
in which C(e) is termed the differential capacity of the medium,
Introducing (18} into (17) glives :

20

. .
i{!%(ﬁ '30+k 32 (19}

This equation can further be simplified by the intro-
duction of the soll water diffusivity D, (also a function of
the water content 06, defined aa :

;m e I ol s
1) 8) (e) 9B - (20

Equation (19) then becomes :

290 2 aF a2
7w O 3 M) W (21

¥for horizontal Fiow, vertical flow upward, and vertical
flow downward, the value of 4z/4x is 0, 1 and -1 respectively.

For horizontal flow eq. {21} becomes ;.

? L
%% " 5 Oy W) {22)
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FPor vertical flow eq. (21) bscomes :

a0 - 3 L)
R "™ (0(3) T - .‘(e)) (23)

In these equations we see that the diffusivity D
is concentration-dependent (0}.

The major advantage of the diffusion equation is that
concentration gradients are more tractable than potential
gradients. This fact in part explains recent popularity of the
diffusion equation as a mathematical description of the flow
process in unsaturated solls. As a result, several soll physi-
cists have actively sought solutions for the diffusion equation.

In defining D it is assumed that K, h and dh/d0 are
unique functions of 0. This cannog be strictly true because K,
h and dh/do wi.
been wetted -its pust wetting history. Other ponuniqueness

+nd not only on 0 but on how the sample has

factors may be trapped air, variations with time of the air-
water-solid contact angle, heat released during wetting, and (on
vertical infiltration) pressure changes due to depth of over-

burden.

Thus we see the value of D at a given moisture content
for a drying soil may be different than that for a wetting soil
and that D may even be different for different initial moisture
contents of the same drying s0il. This hysteresis in D and K
seems to parallel the hysteresis of molsture-tension curves.

A glven tension on the soil water can result in two different
soll moisture contents, depending on whether it is wetting or

drying or even on its initial moisture content.

As we shall see in the next chapter , we cap assume
that D is a unique function of b and we can obtain soil molsture
curves which lie close to experincntal ones, With uniqueness
assumed, probably the easiest interpretation of D is scen in

the equation :

56.

F1:] 3 30
2t = 32 Py !
{1} (2)

which says that D is a measure of moisture flow (1) under a
moisture gradient (2).

The preceding paragraph indicates that D has physical
significance. Nevertheless, D must be usad with care. For example,
in defining D as a factor of proportionality for flow under a
moisture gradient, it 1s tacitly assumed that the porous medium
must be homogenecus. That such an assumption is necessary 1s
seen by considering quantities of moist sand ard clay in contact
in a horizontal tube. The sand and clay could be at the same
moisture tension everywhere in the tube, but whould have a4 f-
ferant moisture contents. Yet, at the clay-sand interface, where
there would be a non zero moisture gradient, there would be zero
flow. We must not forget that it is basically the gradient 3/dx
that drives {or pulls) the water in a horizontal soil tuba, not
30/3x, and that the reason we introduce 30/¥x and D‘a, into the
theory is to help solve problema.

1.6.4,.1,2, Measurement of diffusivity D {laboratory) .

(8)
In the derivation of equations (22)and {23) we assumed
that D is a unique function of the moisture content o of the soil.
Equations {(22) and (23) have been solved by many authors. Most
of the technliques used in solvling equations {(22) and (231) require
values of D for various moisture contents or at least the func-
tional relationship between the diffusivity D and the moisture
conteant 0 of the soil.

D(el is calculated from a moisture distribution curve

plotted from data obtained from the addition of water to hori-
zontal soil columns.



Equation (22} 1is applied te the hrizontal advance
of moisture into a horizontal horogeneous long tube of soil
to obtain the relation between D'”, and the moisture content
The test snils were initially either air-dry or partially meoi«t.

We rewrite the differential equation (22} as :

48 ] LL

7 -5 ey =
where 0 is the moisture content in cnj.cm_J, at a horizontal
distance x from an input end, where water at zero head with
respect to the level of the tube is appllied as fast as the
soil will absorb it. Neither the gravitational constant ¢
nor a vertical coordinate z enter in the problem because the
=01l tube is of small diameter and is horizontal. There are
certain other basic physical points that we should remember
about eguation (22} before solving it mathematically for the
diffusivity D.

Equation (22) stems from :

a. Darcy's law.
b. Equation of continuity.
c. the head expression.

d. the diffusivity definition.

The diffusivity in turn 1s depending on the moisture content D
being a unique function of the tension head h.

The equation of continuity involves differentiations
and hence implies that as we pass from volume element to volume
elemsnt in the soil tube, the moisture
movement conditions should vary smoothly. Thus the pore size
distribution of the scil particles from volume element to
volume element should accordingly also be the same, By volume

~lement we mean a segment of the snil Ax ¢w long and Cross
sect fon egual to the inside of the tube, where Ax is say

10 to 100 times the diaweter of an average size soil particle
or pore. If these conditions are not met, we should not expect
equation {Z2) to be valid. We assume that the conditions are

met and we proceed.

With i and 0s beino moisture contents, we recognize
the tnitial condition and boundary condition fer the moisture
flow in the horizontal tube to be :

{1} oi{x,t}) = ei for x >0, t =0 (24)
(2) o(x,t) = os for x =0, t >0 (25)

Condition {1) says that initially ocur Boll column has, for all
values of x > 0, a constant moisture content 01. Condition (2)
implies that we are to apply water at the input end x = C at
time t = 0, and at all times t > O; and that we are to apply
the water in such a way as to maintain the scil in a very

thin layer at the input end of the column, at the constant
molsture content § = 0s, for all t = 0. @s is taken as the

gsaturation moisture content.

Equation (22) is a nonlinear partial differential
equation and cannot be solved by usual methods.

The Boltzmann transformation is used to obtain
equation (22) in the form of an ordinary differenttal equation.

To make the transformation we let O be given by :

e = fir} (26)

where ) 1% a function of x and t, defined by :

1/2

A= x bt 27
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Equation (77) is calied the Boltzmann transformation.
In view of equation {27), we see that conditions (24) and (25)
may be written as @

(1) 0

Ui for A = = {A+m) (28)

{2} U = s for A = 0O (29)

We shall need a third condition. Since the derivation of equation
{22) has depended on the assumptions that O must vary smoothly
(be continuous and differentiable) with x and t, we see from
equations (2¢) and (27) that 0 must also vary smoothly with A
Therefore the conditions ({28) and (29} imply the further
condition :

(3) dosda = O for 0 = 01 (30}

To help cilarify conditions (26), :{29) and {30), we present a
figure (Figure2d). i
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Figqure 24 : The curve of 0 versus A for all Oi
versus x at t = 1,500 min. calculated
from eguation {21) using the data from
Table 1.
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variation of water content ¢ with distance x for a
horizontal soil column of a Hesperia Sandy Loam soil,
for a time t = 1500 minutes after water was applied
at the input end x = 0 {from Nielsen et al, 1962)

[ x ’ x [ ] x

tcm) cm) em)
002 16.00 0.1% 15.26 0 69.90
003 7590 0.6 1518 D29 &8.05
004 1586 a7 15.06 030 66.06
a.06 1516 0.18 14.90 on N
0.06 5.71 0.19% nm [ ] aLio
0.0? 587 0.20 .86 [ k<] .18
008 76.63 on 1448 [ F I 54,00
0.08 1558 0.22 M6 .26 51.20
010 7550 023 72 0.8 47.10
[ A ] 7545 Q.24 Y340 o3 41.80
0.2 1540 028 1.0 0.38 ns0
013 75.36 0.28 1200 0.m 0
014 765.30 0.27 naw

I'igure 24 shows an experimentally obtained graph
At ..f U versus » for water moving into a tube of initially
air-dry sull where the muisture content O for graphing the
¢ was measured at a number of positions along the soil
¢ wac at the ingtant t = 1,500 min. For the graph, we have 0
. the vertical axis and we show two horizontal axes, and x
< lated hy the Boltzmann transformation A = x. (1500) "}/?
which gives x = 38.73x, as shown,

The curve of ¢ versus : (or versud x) is shown in
two ways, as ABC and ABD. The end portion BD is theoretical and
aut observed expcrimentally. Theoretically, the curve should
. AHD with the point D being at ) = = or X = ®. He see from
the fiqure that for A + = we have 6 = 01 as in condition (28).
wa also see that condition {29), agrees with the figure.
iherefore, if we can integrate the differential equation
..t tLhe shown © versus A curve, our problem will be solved.
we proceed to obtain the differantial sguation of the curve

4 ko integrate 1t.
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In view of (27} we may write (28) as :
o = f[r (x,t)) (1)
If we place {31) in (22} we can find an expression

for D(Gl' If we use the chain rule for the differentiation of
composite functions we find 30/3t as ¥

56 , 90 A (12}
3% 5t 32
and 30/3x as :
39 _ 38 3k
WO W (33)

and %; 'Dte,g‘g' as :

s 2 0f .0, 34)
3% EY T

The total derivatives in (32), (33) and (34) arise
because © is a function of the single variable ). The varlable
A is composed of x and t, which explains the use of partials
of A with respect to x or t, that is %% and %%.

We can simplify (32), {(13) and (34) Lf we use (27},

nl. A = x.t 172, o find that 3A/3t and 92/3x can be written
as 3

an -3 -1

DoczxtVE vz (35
and : an t-]/g {16)

ok

on using (35) and (36) in (312} to {34} we have :

w20 1) (mn
EL ) YR 3
0 98 172 (18)
and i t
20 ®  ,-3/2
and a0 0V (39)
™ 3% .

and placing (37}, {38) and (39) in equation (22), we have :

dé -1/2
gg(-,;{,,”"'ﬂ" ’.t-uz (40)

Equation (40) 1s then simplified to :

de
Ade | d (D HX) {41)
- i dx

On multiplying (41} by d) and integrating both
pides from © = 81 to © = Ox (Ox being @ at the distance x
along the column) we have :

o, 0,
-3) 2o - 'RLE ) “42)
0y 8
Px (43)
or 1 ) de _[ de]
|

(&
where tg%}”x and ‘53'01 mean %T evaluated at 0 = Ox and Ui
respectively.



63.

The last term in {(43) is zero by (230}, nl. gg =0

for O = 0O4.

Therefore (43} becomes :

¥

1 de
- ?. M\ dd D(Ol) ln}e! (44)
8
Devision of (44) by (dO/dA)olt and rearranging
yields :

8y

AR RERE:

X dé

- 1 )
O )~ @g,— {2

A (;ﬁ)ex (45)

WATER COWTENT - cm® 7cm®

PARAMETER TINE - nOURS

P S St
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Water content distributions, measured for a Columbia

ailt loam, using the above method are given in figure 25.
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Since the lower limit in the inteygral is Ui, the
equation implies that, if we apply the «quation to experimental
data, we must integrate completely out to the end of Lhe
inFinitely long tail at point D in fivure2d, that is, cut to
=t Mo TV,

go to infinity for any finite value of t. Thus, the suvil tube

whieCre we put x = =, because A must

should theoretically be intinitely lona. The Bultzmann

transformation is not valid fog tulwes of length » = Lo finite.

Practically spuaking, contributiocn to the integral will be

water
negligible except at thu early part ol the tail BD, su a

given
finite length of tube can be used,

2 L] ] [ ]
DISTANGE FROM WATER SOURCE - Cm

0w 2 L] . w

Soil-water distribution curves lor
Columbia silt loam for boundary conditions
(24) and {25).

Figure 25;:

1/2

Figure 26 shows plots of x versus t for various
contents monitored using yammpa-ray attenuation. For a

soil-water content, thesec plots should be straiaht lines

with their slopes baing values of A{0).

The right side of
experimental data by :

(45) can be evaiuated from

plotting U versus A (=x.t'|/2

the soil.

a) ) for the water as it ¢nters

b) Measuring (dO/ko“x from the 1 versus A curve.

x

c) Evaluating the intearal Adu by an approximate method.
0

i



{ini1'e number of strips and addina up the appruximate areas

s e e T T T ¢ these strima. The strips are not vartical as we take them
df; in vlementary calculus but axe horizontal as shawn in figure
i 26 where four strips of widths 40 and approximate lengths
L v e the integral.
: » ,/%f N )2, 13 and X, are used to approximate g
= i1l *
i ¥e
H o
- ol
; 7, o
"
f. %
H 1 &
s 9:
.l 1 w ‘l. ; " ;_ [1]
1ime- wimvrng ' v
Figure 26 : Distance to the position in the soil Figure 2¢ : Values of 0 and )\ at different values of
column from the water source {(x = 0) x for t = constant,
wheare the water content is the value
indicated on the curves as a function
of the square root of time. Whether the strips are vertical or horizontal nakes
no difference in obtaining the area if LIt is the whole area
The first step (a) ls to plot a curve of © versus A under the curve.

as we did in figure 24. Step (b} may be dona by drawing
tangents by eye from the curve (Figure 25) .

1
The wetting front is at A = i,. From the figure,
it is sesn that the area under the curve up to the line
0 = Gx may be approximated by :

wplir clrient

Bl
S Adﬂllobﬁfllﬁﬁ+lzﬁﬂ+ljbﬁ (46)
9

In figure 26 we do not need to take the 40's all equal.
In gencral the sum formula for the inteqral, instead of {4¢).
would he :

L]
]
or it can be done semianalytically from the raw data used in SI 3 de =
getting the curve. The approximate method for step (c) conalsts o
in dividing the area under the curve of 0 versus ) into a i

"
rEl "r m’r A7)
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1 ohtain a working formula to cumpute D;.) versus
we may now put (47) in {45) and cbtain :

1 1
S (~-%) L X A8
(8 ) —(—g%)u ? ral r r (48)

which implies that we miaht obtain graphically by a ruler and

the eye the slope (d0/d}) from the curve of O versus } correspondin

to the point x{ = tl/ 4). However, a semianalytical procedure
may be preferred. In figure26, at Ox = 8m = 04 we see from
the geometrie that we may write as an approximation :

g . T
Dlm=a T e, X TRy Ky Ty

where in the last equality, because t is constant { = 1,500 min.

in our example) we may use equation (27) () = x.t -1/2

find :

} to

1/2

( ) =408 :
9 Xyt Ry

If m Ls not equal to 4 but is any integer m, the last eguation
may be written as : .

112 ll

om 4£6m -
Gﬁ) = (ﬁ) _.____.; = AK. 20 metwm = 1, 2, 3, ... “@9)
In (49) Axn is negative because we measure Amt=xm.t“1/2) from

right to left in figure .
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Srom the tir- and last members of (49) we have
i rimate Ly
172 pe
(g8, .. L (s0)
ax’ox Axu

In (48) we replace (dO/dAlO“ by the right of (50}
and optain :

i
D, . = (- T 1 s}
(8,) {1/ sa, el ! r 51}
F_Ex.

wher D(Ux) 15 positive because axn is neagative, and where we
"1y vancel AU and oo if the AD's are all equal. In (31)

1L appears that Din, 183 function of x. Actually D(Gx) is

. funcrion of U. The subscript x om 0 denotes the location x
ere 0 was measured at a certain tlla €t say t = t,. 1f some

uvcher time t = t, had been chosen to determine values of O at
jpoints x aleng the tube, the same curve of DtO) versus \
stould be cbhtained. That is, the curves of O versus A for
rore t, and tg should superpose.

vhe values of O can be cbtained by sectioning the
suil colusn and weighing the solil in the sections (Finure 271).
. ly o (amma-ray apporatus is used, both to check on the
unitoemly of packing of the soils in the soil rolumns and to

. uoure tie moisture content at points along the tube.
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COw A

Figure 27 : Sketch of apparatus for cobtaining water
distribution curves. At time zero the soil
column is brought in contact with the
fritted olass plate and water enters the
s0il. The welght pressure potential of the
water as it enters the soil column is about
-2cm. The initial water ratio of the soil
in the column is uniform at ©i : the supply
tube keeps the water ratio of the soll at the
inflow boundary constant at saturation,

Os. At a particular time, the soil is cut
into sections at the dotted lines, and the
water ratlic of each section is determined.

The relation of diffusivity D to the molsture content
© is shown in figure 28 . This relation is sometimes expressed
in the empirical equation :

_ €0
Do) = @-€ 52)

This equation applies only to sections of the curve
showing a rise in diffuslvity with moisture content. In the
very dry range, the diffusivity often indicates an opposite
trend, namely, a rise with decreasing soil moisture content.
This is apparently due to the contribution of vapor movement.
In the very wet range, as thes soll approaches complete
gaturation, the diffusivity becomes indeterminate as it
tends to infinity (since C(U) tends to zero).

10,

Votume weinen 8

Figure 28 1 Relation of diffusivity to soil molsture
content.

Soil-water diffusivity is somewhat difficult to
visualize physically, but mathematically it 1s simply the
product of the hydraulic conductivity at a given water content
and the reciprocal ofthe slope of the soil-water characteristic
curve at that same water content.

dh
Hence, D, = _k(B)'Eﬁ (33)

When the soil water diffusivity function has been
determined, the unsaturated hydraulic conductivity can easily
be calculated from equation (53) :

o do
Xty = Pordn (34)

Resulting curves for k(Ul and D(O) as functions of
0 are qiven tn flgure 26.
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Figure 2%. Experimental values of k(g) and D(g) as functions
R Y T of 8 for a Columbia silt EOGI.

Equations 42, 28, 29 and 30 can be solved analytically
if D is assumed conatant. This solution is given in detail
in Appendix. The result is:

A
8 =08; + (8, - 01) erfc (575' (55)

where erfc stands for complementary error function. A plot
of this is given in figure 30.

Figure 30. The complementary w1ror function ecfe {(u) tor u 2z O.
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For a chosen set of values of at, ao and D, squation
{55) is plotted in figure 31. When this graph is compared with
figure 22, it is obvious that this solution, a gradually decreasing
volume fraction of water with distance, is far from reality.
The reason for this discrepancy is that D is not constant over the
range of 8, but varies with a factor of up to about 103,

Equations 28, 29, 30 en 45 cannot be solved analytically
for variable D, However, various techniques can be used for
solving these equations by numerical methods. The result of such
calculations, for the same values of al and 00 but a realistic D-6,
is also plotted in figure 3J}. This figure shows, as expected, a
unique relationship betieen 6 and A. This implles that s//t {= })
is constant for a given 8.

) \-“l . asasigal

." o ’ T

.

Figure 31. Solutions of equation 22 for D = constant and for
pPE— D of a soil (D increasing with increasing 8).

which relationship can be expected between s and t for
the visible wetting front and for any other value of 8 between

e1 and 00?

Since the ratio s//t is constant for a given value of
0, the distance from the wetting surface to the visible wetting
front (or any other value of @) increases proportional with the

square root of time.



Combination of equations:

1= j- (8 ~ 6,) ds and X = s ¢ 1/2 given:
s=0
o -
I (0 - 9,) ds = (6 - 6, aret’? =
3=0 A=0

¢ 172 S (6 - 8,)
=0

Introduction of the parameter:

& = fo - 8,) ax (56)
A=0
leads to:
I = Stl/2 (57
and consequently,
L a1 _ -1/2 1
B RRZE AR (58)

S is called the sorptivity and is a measure for the capacity of a
soll to absorb water. 1It is the cumulative inflltration during
the first unit of time. Since

o
s = (8 - 08,) ax,
2=0

8 can be found by evaluating the area between the f-axis, the
®, line and the 8-\ curve. 5 can alsc be glven by:

Usina the product rule d{39) = 3do + nd) and the
beundary condjtions:
b= ni for } + o
"= By for A = O

m - Bl
S(B—ﬁi)dk= d{ﬂ*ﬁi)l- e =

A=0 rSo

- 0y 1 %
(8 - 8,12 l - Adf =0 - 0 - Ade = A8

A=0
2] eo sl

Mlso, from figire 31 it is cbvious that

A -
(e} .
g rde and S (o - 01) dx

01 0

represents the same area.

Would you expect S to be constant for a given soil?
S 1s not constant for a glven soil. The 8-} curve is the
solution of equation 11 subject to conditions 23 and 24.
Therefore, 5 depends on 81, 80 and on the D-9 relationship of the
soil. While 6, (saturation} and the D-¢ relationship normally
do not vary for a given soll, S will still depend on 01.

For initially dry soll 191 = 0) the sorptivity
varies from about 5 x 10°° m s /2 (X 0.04 em min~ %) for
a heavy clay to about 2 x 103 me 2 (21.5¢m nin~1/2)

for a coarse sand.

PRACTICAL PROBLEWM

a. Calculate the cumalative horizontal infiltration in an

{nitially dry, heavy clay soil during 14 hours
b. Do the same for a coarse sand



a. Uusing 1 = 8/t, we find for heavy clay:

I =5x 1070 m sﬂj/? x /24 x 3600 s Z 1.47 x 1072 mor 1.47 cm

b. For coarse sand:

I=2x10"mn s 3/2 4 /234 x 3600 5 = 0.59 m of 59 cm

3.6.4.2. Vertical infiltration.

So far, the infiltration process was described only
for cases in which the gravitational potential can be neglected.
Buring vertical infiltration, the influence of gravity becomes
more important as time progresses. Then equation 23, together
with the initial and boundary conditions of equations 24 and 25,
sust be sclved. A number of different technigques for solving
equation 23 are available. A solutign obtained by one of these
technigues is: '

V2, L. (59)

s(6,t) = a t1/2 + a,t + a,t 4

1 2 3
where a,, ay, ay, LR are still functions of 8. By means of
equation 59 the depth of a given value of & at time t can be
evaluated when a,, a, etc... are known. These coefficients can
be evaluated by numerical methods using the relationships D-0
and K-98.

The cumulative infiltration obtained by the above
technique is given by:

1/2 /2

I = St + At + Bt +Ct.2+ (60}
The coefficlents of equation 60 are evaluated in the same way as

those of equation 59,

16.

‘*he inflltration rate can be derived frem equation &0
~ diiierentiating with respect to t (equatiom 10):

=128t 22 e L. {(61)

Equation 60 and 6} usually are trumcated after the
fir.1 two terms, because for not too large t these series converge
rapidly. 1In that case equations 59 and 60 becomes respactively:

1/2

1 =5t + At (62)

and

1 =172 st” /2

+ A {63)

£ again the sorptivity defined in equatiom 56, It is the domimant
parameter in the early stage of infiltration. As time progresses,
the first term becomes negliaible and the importance of A, which
represents the main part of the gravitational influence, increases.

PRACTICAL PROBLEMN

a. Make a graph of the cumulative infiltration I and the inf{]l-
tration rate i as a function of time for vertical infliltration
during 4 hours in a fine sandy loam for which:
s=70x10%ns?

- 1
A=1.0x l0
B=1.0x 10" 3/2
Use equations 60 and 61 (first three terms)

L. Give in the same figure the results when equations 62 and &3

are used
< Compare the results
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c. Truncatino equations 60 and 61 after the second
term introduces an error which increases with time. In this
case, the error is still small after 4 hours of inflitration.

4.Datermination of the So0il Hydraulic Characteristics in the Fleld.

Knowledge of the pattern of water movement within the
soll profile is essential to the solution of problems involvinag
irrigation, drainage, water conservation, groundwater recharqe
and pollution, as well as infiltration and runoff control. Ip
recent years, soil physicists have developped extensive
mathematical theories to describe soil water movement. under
different sets of initial and boundary conditions.

Much of the theory now available yet remains to be
verified experimentally and applied in practice. However, if
the thcoretically derived equations of soil physics are to he
applied for the description or prediction of .actual processes

in the field, we must have a way of measuring pertinent =oil

78.

parameters on a realistic scale. The pertinent parameters are
the hydraulic characteristice of the soil, including the
functional relations of hydraulic conductivity or diffusivity
and of matric suction to the water content, as well as the
spatial and temporal variation of these in the field.

It ia inherently unrealistic to try to measure such
parameters in the laboratory on discrete and small samples
removed from their natural continuum, particularly when such
samples are fragmented or otherwise disturbed. Hence it ls
necessary to devise and test practical methods for measuring
bulk soll hydraulic characteristics on a macroscale in situ.

Knowledge of the hydraulic conductivity and soil-
water diffusivity at dif ferent moisture contents or suctions
is generally required before any of the mathematical theories
of water flow can be applied in the practice.

Since there is no reliable way to predict these
values from more fundamental! solil properties, the hydraulic
conductivity R‘e, and soil-water diffusivity Dte) must be
measured experimentally.

Measurements of hydraulic conductivity during internal
drainage in the field are usually based on monitoring the tran-
sient flux and potential gradient value within the profile as
functions of depth and time.

The purpose of thcse methods is to determine directly
on the field the hydraulic conductivity K and the soll-water
pressure h as a function ul the scil-water content ¢ by tran-
sient analysis of the water conlront and water head profiles
during a drainage experiment.
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The main point is to determine simuitaneously, and
at the sams depth, the scil water flux and the gradient of
dH/dz.

On a given site the solil is firast wet to a given depth
{~ 150 cm). The drainage experiment begins when water disappears

from the soil surface, this inatant being chosen as the time t =0.

The scil 1s than covered (plastic + mulch) in order
to avoid any flow of water (rainfall/evaporation) through the
soll surface (z = 0). Changes of water contents and water pres-
sures are measured following a procedure which will be described
later using respectively a neutron probe and a series of tensio-
meters being installed at different deptha in the profile from
z =0 to z = 200 cm. I

!

If we consider a volume of soil of unit area of thick-

ness dz, the equation of continuity says that :

9q _ _ 30 '
s (64)

where dq is ihe difference between the flux enteriny {(q,) and
leaving (qz) the thin layer of soil dz during the small time
interval dc.

Equation (64) can also be written :

z

23
G - =gy O W {65)

This equation, as such, cannot be solved, since we

have two unknowns q, and NPT

I1f, however, we consider a slab of soil limited :

+ upwards by the soil surface v = O, where Ln this experiment q,
is imposed to be O,

» downwards by any depth z, 2z, (where the soil is coatinuously

draiping}, the flux passing through 2 at any time t 4y simply

glven by : Iy

4
UEEE TRE
:
azt) - pew

The integral 4: @ dr rapresents at any time the volume
of water (per unit surface of soil) stored between O and depth

We will deflne S(z,t) = :: @ dz as the STORAGE of
water at time t and depth z, and we will determine the flux :

(66)

i.e. the slope of the curve S(z,t) at time t.

Note : if the soil drains 3S8/it is negative, and g 1s positive.

1f simultanecusly we can determine the profile of
head H(z) at the same time from the tensiometer reading the
gradient of head di/dz will simply be given by the slope of
this profile at this depth.

dH
Considering Darcy's law q = - l(a). Iz the ratio

q/- g% between the flux q and the head gradient measured simul-
taneously at the same time t and the same depth z will give the
value of the hydraulic conductivity K corresponding to the water
content 6, measured at this time at depth z.



Remembet bng that the hydraulle head (H) 1s 1n gent !
Lhe sum of the soil water pressure head (h), or its negative

the suction head, and its gravitational head 2 :
H="h+2

Considering the head H {z,t) measured at time t and
depth z, the water pressure at this level is given by equation :

H="h-=-12 or

h=H=+ 12
p.e. h = - 50 cm
z = 50 cm
H =.- 50 - 50 = - 100 cm

The relatlion between the water content © and the scil wa-
ter pressure h,measured simultaneously at the same time t and the
same depth z,will give one point on the suction curve h(e) of the
soil.

Using the technique for the same depth at different times,

one will obtain the curves K‘B) and htB} as a function of time for
a given depth.

In as much as soll-water diffusivity is the product of
hydraulic conductivity, and the reciprocal slope of the soll-water

_ K(e) _ 3h
Dig) * USRS

the eguation of Darcy's law can be modofied to approximate the
diffusivity - 2
- Y - dH
LREAR L LN LI M

1f this equation is simplified by approximating the
integral with the product of the soil depth L and the rate of
change of the average soil-water content in the profile o {with
the value of the hydraulic gradient retained) it becomes :

characteristic, ¢le) ,g% (m-l)

0 _ dH
Lae = (K@l

Assuming that an average soll-water characteristics

curve’holds for the entire profile, %ﬁ . %% can be substituted

3]
for It and using the relation D = K .3h/30 , the equatlion
becomes :

Finaliy : D(s - L ah/at

Hence, the value of D can be calculated for each
derth L using only tensiometers. The value ?h/3t i8 merely the
time rate of change of the soll water pressure head h obtained
from tensiometer readings for depth L.

1. Equipment

- 1 neutron probe, one measurement each 10 cm,

- gri1ies of 10 tensiometers i{nstalled, Lf possible, at depths z =
g, 20, 30, 10, 50, 60, 70, g0, 90, 100, 110 and 120 cm from
the soil surface, or according to layering of the soil.

It is reminded jthat if a tensiometer 18 installed ver-
tically at a depth z, and is equipped with a mercury manometer,
the free surface of the mercury being at a level y above the

goil surface :
a) the soil water pressure head h (cm water)
h=(z+Yy) - 12.6 x ‘ {66)

p.v. is y = 23.5 cm above soil surface, then h at 50 cm depth
will be (data after 1 day (x = 8.4 cm} and 6 days {(x = 9.6)).

h {50 + 23.5) - 12,6, 8.4 = - 32,34 cm water,

14

h (50 + 23.5) - 12.6, 9.6 = - 47,46 cm water.

6l



83,

L) the hydraulic head Il (cm water}

H=h-=-2
Hld = - 32,34 - 50 = - 82,34 cm water,
“Sd 2 - 47,46 - 50 = - 97,46 cm water.

2. Measurements

It is recommended to follow with the maximum care the
initial stage of drainage. During the first day at least to
persong should be on the field, one taking care of neutron mea-
surements, the other taking care of tensiometer readings.

Concerning the nautron meagsurements, it is advisable
to monitor continously changes of water content in the profiles
during the first two hours of drainage. The recommended proce-
dure is the following :

With the smallest counting time for a good accuracy, measure

for each depth increment (i.e. each 10 cm)} the water content

at a given time starting from ¢t = O with the probe being posi-
tioned at z = 10 cm, at the next counting time the probe will be
positioned at 20 cm, and 80 on to Z,.

The series of measurements from z = 10 to z, being
defined as a cycle, immediately after the end of counting at z,,
the probe will be raised to the standard shield, a standard
count will be taken, and a new cycle will be initiated.

For each measurement being taken, the following infor-
mation should be recorded :

- measuring depth,
- time (from the initjiation of drainage),
- number of counts and counting time or count/rate.

84.

Alter appruximately two hours of continuous measurements,
. ‘v of measurem ut will be made every 30 minutes for the fol-

i.winyg hours.

The interval between cycles will be prograssively in-
. reased as indirated 1n the following table.

Time t {hours) from the initiation of Interval (hr) between

drainage cycles
0-2hr none (continuous monitoring)
Z2-4bhr 0.5 w
4-5ar 1 bhr
6 -12 hr 1
12 -48 hr 12 hr
2 days M Ir

For the tensiometer readingas : during the first period
following the initiation of drainage (0 «<t< 2 hrs) tensiometers
should be recorded each 5 minutes.

Each time one should note (Table 1) :

- tensiometer reference (from 1 to 10...},
- height of msercury,
- time of measurement.

For t > 2 hrs, the same procedure as the one defined
for neutron measurements will be used. It is recommended for
t > 2 days to take measurement each day, at the same hour.
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Table 1-2
EXPERIMENTAL SITE N*®
Date:
MNeutron moisture meter:
- Helght of access tube above soil surface: cm
- Standard radiation counting: - before measurement : cpm
- after measurement: cpm
- average (N ): cpm
- Calibration curves: 1) Y; = ax, + bl
2) y, = agxy *+ b,
L] L] L]
L] L] [ ]
Ny, = agx, t b,
Tensiometer:
y = height of the wmercury container above sofl surface: cm
z = depth of tensiometer cup
x = height of the mercury in the manometer
oll Tensiometer Neutron moisture meter
epth
(cm) x h " count rate] count ratiof moisture
{cm Ha) {cm) tcm) 2] N .00 content
{cpm) N, {vol %)
CR
x
h =
¥
H + b
2 2
L B

moisture contont

(vr] %)
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4.4, hnalysis of data

1.

The tables with the data will first be analyzed in order to
obtain the following informations :
for each measuring depth & table giving (Table 2) @

- the time of measurement t,

- the water content € in cm?.om 3,

- the soll-water pressure head h,

- the hydraulic head H.
The data will be plotted on a graph in order to cbtain at
given depths (each 10 cm for the neutron probe or sach ten-
siometer depth) the change of water content or hydraulic head
H with time.
Taking into account the exponential shape of the variation
for each variable (®© or/and h or H and depth) two time scales
should be used

- one for the initiation of the drainage s 1 day full
scale,

- one for the second part of the drainage 3 weeks full
scale (500 hrs).

Smooth curves will be drawn {by hand} in order to have a best
fit between the measurement points.
One curve should be drawn for each depth.

Uaing the smooth curves one will determine by interpolation
the values of 0 and of K at all the measuring depths at the
following reference times : t = 0, 0.25, 0.5, 1, 2, 5, 10,

25, 100, 200, 500 hrs.

Tables of interpolated data will be built in order to chtailn :

— the water content profiles (o-z),
- the hydraulic head profiles (H-z},
at the above mentioned refersnce times (Table']!.
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as.
Hui“m zs10cm | z20em| 2+30cm| 2=40cm | 2=50cm | 2-60cm | 2=70cm | 2+B0CH
pond Siq ® (1.5 8,5 * (0 1.0 + 0.5 0,5) x 100
i} o wule wl o ule uje ule ule uie + % 10 * (%20} %) * 100,
P . S60 " (1L.58,¢ (859 %039 YOy 00“) 1.0+ 0.5 o‘o) x 180,
BRI Sgp = (1.5 839 + 8y 039 ¥4y +85q *agg ¥y +ogg) 1.0 4 0.5 8gg) ¥ 100,
"]'5" ' S120" (15 €1 + (929 930 *o4 859 *850 *839 *9g0 *9g0 *300 *4100) 1-0
¥ + 0.5 .‘n) x 100.
&
10 ' .
,T 6. A table will be built given the value of the storage S, at
B the reference times, and at the dapths 30, 60, 90 and 120
160 {Table 4).
200
500 ;
Time after ponding Sm - Se0 Sen S120
(hrs) .
0
4. The water content profiles and hydraulic head at the refe-
rence times will be plotted : 0.2
] 0.50
Figure , 1 B - Z,
1
Figure : H - z.
2
5. The table of interpolated water content will be used to 5
compute S (z,t} using the trapeze rule : "the water content 0
measured™ at a given z, will be affected to a layer of 10 cm
surrounding the measuring depth, with an exception for the 25
first depth of measurement {z = 10 cm) where 0 {z = 10) will 50
be assumed to represent the mean water content from O to 15 100
cm.
The storage $ will be calculated for the depths of 30, 60, 200
90 and 120 cm. 500
In consequence at a given tine t the storage S between O, and

the respectively depths, will be given in mm of water hy the
formula :



7. The curves giving the change of the storage with time at
the glven depths will be plotted. .
At each reference time, and for each depth, the slope tak:n
by hand will give the value of the flux

8. At the same depths (30, 60, 90 and 120] the slope of the
hydraulic profiles will be measured at the same times.

9. Finally for each depth (30, 60, 30 and 120) a table will be
built, giving the following information (at the reference times)
(Table 5).

Soil depth 2 = cm

dH/de

™ t -] K
':rl ) ol .cm-] o n?hr w/hr

0.25

0.§

10
25

S0

§l8|8

1 2 3 4 5

—
sofl-water characterictic
curve or pF curve

-3
1. The K-valuer were plotted In function of 0 (cml.cn )

and the equation is calculated

The suction gradient must be taken into account and
the hydraulic conductivity is obtained from the ratio of flux
to the total hydraulic head gradient {gravitational plus matric).
This can be done successively at gradually diminishing water
content during drainage, to obtain a series of k versus 6 values
and thus establish the functional dependence of hydraullic con-
ductivity upon soil moisture content for each layer in the

profile.

To apply this method in the field, one must choose a
characteristic fallow plot that is large enough sc that processes
at its center are unaffected by its boundaries. Within this plot,
at least one neutron access tube i3 ingtalled. A series of ten-
siometers 1g installed near the access tybe, at intervals not
exceeding 30 cm. Water is then ponded on the surface and the
plot is irrigated long enough so that the entire profile becomes
as wet as it can be. In the case of uniform profile, this
will mean effectlve saturation. Tensiometer readings can indicate
when steady-state infiltratkon conditions have been achieved.
wWhen the irrigation ls*deened sufficient, the plot s covered by
a sheet of plastic so as to prevent any water flux across
the surface {evaporation or infiltration}. Ps the internal
drainage process proceeds, pericdic measurements are made of
water content and tension throughout'the profile. These readings
must be taken freguently at first (at least daily) but can be
taken at greater time intervals as the internal drainage procesas
shows down.
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5. DeLermination of the infiltration rate.

The best method of measuring intake is to obtain
direct measurements by recording the water applied less the
water flowing from the field. When direct mcasurements are not
feasible, intake cylinders can be used with reasonable success.

The cylinders should bea at least 25 cm in diameter,
made of smooth tough steel, strong enough to drive, but thin
enough to enter the soil with a minimum of disturbance. Cylinders
should be about 30 cm long.

Since approximately five tests should be made in a
given location to obtain a representativa sample it is well to
make five cylinders of somewhat different diameters so that all

five can be tested together and thereby be made less bulky for
handling.

Care should be taken:to place the cylinders in an area
representative to the fleld to be evaluated, Cylinders should be
carefully driven into the soil to a depth of about 15 cm. The
soil profile should be examined, the moisture estimated or mea-
sured, and notes of s0il cover and surface condition.

After water penetrates to the bottom of the cylinder,
1t will begin to spread radially and the rate of intake will
change accordingly. When a principal restricting layer does not
1ie within the depth of penetration of the cylinder, this radial
flow will cause considerable change in the intake rate. Butfer
ponda can be constructed by forming an earth dike around the
cylinder or by driving into the soil a larger diameter cylinder
concentric with the intake cylinder. The water levels in both
cylinders should be equal and approximately the depth to be
expected during the irrigation. When comparative results from
different locations are needed, the depth should be essentlally
the same in all cylinders. Care should be taken not to puddle
the soll when water 1s added to the cylinder or the buffer pond.

92,

The resulls obtained with cylinders are indicative of
1. rales to be expected durlng irrigation provided the sur face
condition is the same. Closer correspondence is obtained when
L soil surface is covered by the irrigation water, Considerable
Jd parture usually occurs when the irrigation water is applied
i,y furrows or sprinklers. Hence the cylinders are genarally
used to obtain an index from which desgin values can be obtained
on the basis of local experience.

The cylinder infiltrometer, used in irrigation studies
to determine the infiltration rate and cumulative infiltration,
can be used at successive depths in a soll pit to study the
differences in the hydraulic conductivity of the various
layers. The principle of this method Ls the same as that of the
duuble tube method.

First one infiltrates water around- the infilerometer
till the soil is eaturated. The infiltrometer is then filled
with water, and the rate at which the water leval falla is mesa-
sured. After some time the infiltration rate stabilizes and
approximates the hydraulic conductivity K (Pigure 32).

Flgure]z : The infiltrometer.
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Calculations

The inflltrometer rate of water in an unsaturated soil measured
by a cylinder infiltrometer may be expressed in terms of Darcy's

law as :
v =K 4rzrh (68)
where :
v = fnflltration rate (cm/sec),
LY = hydraulic conductivity of the transmission zone (cm/sec},
¢ = guction at the bottom of the transmission zone {cm),
z = depth of the transmission zone below the infiltrometer
{cm},
h = height of water in the inflltrometer (cm).

The influence of 4 and h relative to z diminishes as
the depth of the transmission zone and the moisture content of
the soil increase. So the hydraulic gradient :

gt zt+th
e
tends towards 1 in the case of a deep uniform soil profile and
the infiltration rate becomes constant, attaining what is known

as the basic infiltration rate.
In that case we may write :

v = KT 69)

for wet, medium and heavy textures goils in which the
hydraulic conductivity of the transmission zone is approximately
the same as in the saturated zone, we get

Voo KT:K [70]

When using the infiltromete: for hydranlic conductivity studies
- more specificaly for st:'tes on the basic infiltration rate in
moist soils- the measurcments should extend fnr ap period tona

enouwgh to permit a constant infiltration rate to he chtained.

9,
This may take quite some time in dry clay solls, because a de-

crease in the infiltration rate may be caused by the decrease
in the hydraulic gradient as well as by a change in hydraulic
conductivity due to swelling. The value obtained in a layered
soil only applies to the depth of soll penetrated by the infil-
trometer, since lateral flow will occur below if the hydraulic
conductivity of the underlying layer 1is low, If it is possible
to determine the distance over which the lateral flow extends
in the underlying layers by eatimating the change in moisture
content, the infiltration rate in the underiying layer can be
calculated. This can be done by taking the ratio between the
gurface of the infiltrometer and the surface over which lateral
flow occurs ln the underlying layer and multiplying it by the
infiltration rate in the infiltrometer. Figure 33 shows an
example of lateral flow below an infiltrometer installed at the
aoil surface to a depth of 5 cm on a‘silty clay loam with a
ploughed layer of 20 to 40 cm. In the situation of the example,
the intake rate at a depth of 25 cm would be 131/7712 times the
intake rate near to the bottom of the inflltrometer. At a depth
of 65 cm the ratio is (377117172,

Figure }? : Lateral flow below infiltrometer.

Discussion

The cylinder infiltrometer is suitable for determining the intake
characteristics and hydraulic conductivities of irrlgated solls.
The results of this method are not very accurate, but can be
regarded as a falr approximatlon of the K-value. The method is

proctical and suitable for largo- ccale surveys.
6 . Appendix

Recul Ls of the K(q' determination in the field following

the internal drainage method,
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: Soi} water storage S (mm water) at the reference times and soil PLOT 1
" depths for plot 1, 1978, = ]
5 _
-] .
z
€
- €
Time after S S S, 5 S "
60 om 90 cm 120 cm 150 cm
ponding (hr) 30 om gt
« 150 tem)
s
0 115.5 212.6 303.9 389.4 47,5 s
0.75 111.3 211.2 296.7 ”1.9 459.7 §
0.50 107.4 203.0 288.2 7o 450.6 3
-l
1 99.9 189.2 273.6 158.1 435.3 3 120
300
2 91.3 174.0 2371 340.8 417.6
] 81.3 157.2 238.1 320.6 396.5
10 75.0 146.6 225.1 306.9 382.2
25 65.1 127.2 199.4 219.8 3%4.6
P TTT———n
50 57.2 113.2 178.8 756.2 329.0
100 _53.5 104.4 163.9 237.3 307.2 2001
200 51,3 99.9 134.8 223.2 290.1
500 45.4 87.9 136,3 198.5 260.2
0
0
oL — -
0 S ] TR (d

SOIL WATER STORAGE AS A FUNCTION OF TME AT
DIFFERENT DEPTHS , 1%
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Calculation of hydraulic conductivity for plot 1, 1978.

£ z .
i 8 < s 3 i s0i1 depth: 30 cm
§
Time (hr) ] (onslcn") h (cm) q (mm/hr}) di/dz K {mm/hr)

3

8¢ 0 0.508 33.5
% 0.25 0.477 28.0 18.0 - 0.3 51.4
5 0.50 0.437 23.0 150 -0 50.0
=:' 1 0.373 15.0 12.0 - 0.40 30.0
8

5. 2 0.118 2.5 6.0 - 0.50 12.0

i " 5 0.286 - 19.0 2.0 - 1.00 2.0

2 10 .266 - 325 1.0 “ 1.20 0.83
3 2 0.230 - 54.0 0.50 - 1.50 0.3

P § 50 0.208 - 66.0 0.20 - 1.20 0.1?
< 100 0.195 - 18.0 0.050 - 1.45 0.0315
S 200 0.187 - 90.5 0.050 -2.20 0.023
E 500 0.165 - 112.6 0.025 - 1.00 0.025

‘5
]
i

§ ] R § -

(omms W) & JOVNDLS 8IIWM WOS




calculation of hydraulic conductivity for plot 1, 1978.

Soi} depth: 60 cm

109

Sofl depth: 90 cm

calculatfon of hydraulic conductivity for plot 1, 1978,

fio

Time (hr) o (a¥cnd)  M(ow) o (mhr) Mz K (mm/hr)
0 0.268 6.0
0.2 0.266 a0 35.0 0.3  116.7
0.50 0.265 3.0 29.0 0.35 2.9
1 0.263 25.0 22.0 0.3  62.9
2 0.258 7.0 10.0 0.45 22.2
5 0.247 24.0 3.0 0.30 10.0
10 0.2% 8.5 1.5 0.25 5.0
% 0.206 53.5 0.90 0.3 2.6
50 0.184 6.0 0.30 0.25 1.2

100 0.166 7.0 0.10 0.0% 2.0

200 0.156 82.0 0.055

500 0.13 98.0 0.050

Time (br) o (m/cn’} b (cm)  q (mwhr)  dydz K (mw/hr)
0 0.295 67.0
0.725 0.294 62.0 7.0 - 0.50 74.0
0.50 0.293 57.¢ 3.0 - 0.50 66.0
1 0.291 47.0 23.0 - 0.80 57.%
2 0.289 28.0 13.0 - 0.40 2.s
5 0.285 0.5 4.0 - 0.3 13.3
10 0.28) 15.0 1.5 - 0.20 1.5
25 a.274 30.0 1.0 -0.3% 2.9
50 0.259 45.0 0.65 - 0.0 1.6
100 0.237 58.0 0.25 - 0.45 0.56
200 0.215 67.0 0.075 - 0.3 0.2t
500 0.193 86.0 0.050 - 0.6% 0.077
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Calculation of hydraulic conductivity for plot 1, 1978. Calculation of hydraulic conductivity for plot ), 1978,
Soll depth: 120 cm. Soil depth: 150 ca
Time (hr) 6 (m¥/cd)  h(cm) q(ehr)  dw/dz K (m/hr) Time (hr) o (ca'/cn’) B {cm) q(whr]  @i/dz K (sm/ie)
0 0.268  83.0 0 0.256 104.0
0.25 0.267 17.% 40.0 - 0.40 100.0 0.25% 0.255 98.0 3.0 - 0.30 113.3
0.50 0.266 72.5 2.0 - 0.40 80.0 0.50 0.254 92.5 30.0 - 0.3 100.0
1 0.265 62.5 21.0 - 0,45 51.1 1 0.253 80.5 4.0 - 0.3 80.0
4 0,261 45.5 13.0 - 0.50 26.0 2 0.250 61.5 16.0 - 0.4 40.0
5 0.258 19.5 4.0 - 0.40 10.0 5 0.247 3.0 1.5 -1.20 1.3
10 0.256 9.0 1.0 - 0.45 2.2 10 0.246 18.0 1.5 -0.70 2.1
25 0,254 - 10.0 1.2 - 0,95 1.3 25 0.245 -21.5 1.2 - 1.50 0.80
50 0.243 - 240 0.65 - 1.00 0.65 50 0.241 - 56.0 0.80 - 2.00 0.40
100 0.229 - 35.0 0.20 - 1.10 0.18 100 0.23% - 63.0 0.30 - 1.90 0.16
200 0.216 - 430 0.10 - 1.05 0.0%5 200 0.226 - 68.0 0.10 - 1.80 0.056
500 0.200 - 58.0 0.075 - 0.80 0.094 500 0.211 - 717.0 0.075 - 1.70 0.044
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Fquations describing Lhe functional relationship between hydraulic
conductivity K (mm hr-1) and soil water content (cmI cm-3) for dif- K cad versus B

ferent plots at different depths {1978). lg+2
P
Soil depth {cm)  Plot n° K- a.e® Correlationcoefficient r "
30 1 K- 390,00 Ll 0.95 < s/
3 K = 1.71.10 6 48.160 0.93 £
5 K - 5.07.10" 6 e42.239 0.98 E */
8 K - 1.34.10°19 116,208 0.97 ~
- 6 o43.536 o B o,
13 K = 1.95.10" 6.e20 00 0.99 @ A
Mean K = 3.69.10" 5.34.9 0.89 x 10 x ;
60 I K =8.43.10 :e;;gg 0.91 > B /
3 K = B.48.107 g.67¢ 40 0.94 -
5 K =9.15.10 7.5 0.89 2 !
-23-%192,770 o
8 K = 1.06.10_°g.ep3°ten 0.93 M} x
13 K = 2.07.100 ;.€45" 009 0.88 ¢
Mean K= 1.01.10 ~.e™"" 0.53 -E :c .
- Bb. 4] x
90 1 K= 1.16.10_ ;.8 0.96 a 2
3 k- 283100013000 0.97 18 - 4 A
5 K = 8.85.10_. ;0" 20 0.79 ° /
8 K = 6.98.107,7.es02"00 0.97 — /
13 K = 2.75.10_ % g0 0.94 P i,
Mean K=1.62.107 "7 0.72 £ . /.
120 1 X - s.gs.w;l’g.e}g’;‘;g" 0.90 > R
3 K = 1.92.307 c.eli pls 0.92 . S ®
5 X = 6.44.10_ 6-%48 49 0.97 -1 " o
8 K = 4.82.107,,.803 c70 0.94 19 x / o
13 K« 4.45.107°C 0 0 0.95 PR
mean K - a.88.10" et 0.65 /& %
. I »
150 1 K= 7.40.100 el00 0.87 +/ o
3 K= 2.48.107 10 eg20 00 0.99 Yo+
5 K = 1.59.10n.€0y co0 0.92 )
8 K= 4.31.10 c.ecy 000 0.94
13 K = 1.73.10_ J.eg 1 cb 0.97
Mean K = 445,107 " ° 0.7% 1872 . ) . .
Al . - 4 32.530 N —+ + +
] M k=33.10 % 0.58 2 2 o a <
o (5 s s
eoi1] water content B (em3. om™3)
plot depth yeor
s 1 30 1978
x 3 3. 1978
+ 5 39 1978
o 8 39 1978
o 13 39 1978

— T m & a ™






