¥oifgang von Riuden October 19, 1965

UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION

; {lgr P)
g%\}‘\a INTERNATIONAL ATOMIC ENERKOGY Af6GENOCY "“
p

INTHRNATIONAIL CENTRN FOR THHORKTICAI: PHYSICS
BH100 THRIESTE (TATY) - 1.0.14.BBG - MIKAMAHKRE - STRADA COSATIERA 11 - TELEPHONRS: 224281/2/4/4/68

CARLE: CENTRATOM - TRRLEX $00802-1 I nter‘ r‘upts

H4.5MR/15%25
The three classical methods of input/output are
® programmed

® interrupt driven

THIRD COLLEGE ON MICROPROCESSORS: '
TECHNOLOGY AND APPLICATIONS IN PHYSLCS ® direct memory access

7 October - 1 November 1985

They can be classified as follows:

programmed interrupt DMA

INTERRUPTS hardware low low high
software simple limited medium complex

V. VON RUDEN speed low medium high

EF DIVISION, CERN
Geneva 23, Switzerland

The actual transfer speed in both programmed and interrupt
mode s not different, but the programmed mode will be much
slower and cumbersome to program, if many 1/0 devices have to

be serviced. Both interrupts and DMA allow for ‘multi-tasking’,

These ace preliminary Tecture notes, intended only Fer programmed |/0 needs complex 'polling'.
distribution to

participants. Missing or extra

t copies are
available from the Secretariat.

¥oifgang von Riuden October 19, 1985

Basic principle of interrupts

when an interrupt occurs, the context of the running program
must be preserved, the control is passed to the ‘interrupt
service’, which does the necessary work to handle the interrupt.
At the end of this 'service', the previous status must be

restored and control is returned to the interrupted program.

This means, that an interrupted program does not realize that it

was interrupted, except that its execution is slowed down,

Wolfgang von Riden October 19, 1985

Interrupts with the M6809

The M6809 has the hardware interrupts Reset, NMI, IRQ and
FIRQ and the software interrupts SW!, SWI2 and SW13.

The CPU handles all hardware interrupts in a very similar
way, the differences will be explained as we go along. When an
interrupt occurs, the M6809 finishes the execution of the
present instruction, saves all the registers on the $ stack (only
the PC and the CC for FIRQ), updates the interrupt mask bits |
and F and the E bit. It then fetches the interrupt vector from the
table located at the top of the memory map and puts it in the PC,
which means that instruction execution is passed to the
‘interrupt service' routine. This routine should clear the
interrupt source and finally execute the RTI instruction,
whereby the CPU will recover its status from the stack and

resume instruction execution in the interrupted program.

The Reset is not really an interrupt, because it does not
save the CPU status, but it is usually included in the discussion

of the interrupts due to the way it is done in the CPU.

¥olfgang von Riden October 19, 1985

The NMI or Non-Maskable-Interrupt is an edge triggered
input to the CPU. As the name says, it cannot be masked and
whenever a high to low transition is detected on the NM! input,
the CPU will execute the NMI sequence. The only exeption is
after Reset, where the NMI is blocked until the S stack pointer is
loaded for the first time Caution: If more than one device is
connected to the NMI line, special care has to be taken to avoid
dead-locks, which may arrise when the second device pulls the
NMi line down while the first one is being treated and the line
was low anyway; no further transition can occur and the system
may hang.

The IRQ or Interrupt ReQuest is a level sensitive interrupt
input of the M6809 and is the most commonly used interrupt,
because it is the easiest to use

The FIRQ or Fast Interrupt ReQuest is foreseen for devices
which need a fast service and where only a small number of CPU
registers are needed to service it It is the programmers
responsability to save such registers and to restore them

before the RT| is executed.

The SWls or SoftWare Interrupts are under program control
and they are very useful to implement operating system
features such as breakpoints and monitor calls. Monitor calls are

independent of changes in the system software, as long as the

wolfgang von Riden October 19, 1985

numbers are fixed, and they also allow the system to use all
registers, because the CPU saves them automatically. The
interrupt sequence for SWls is identical to the hardware
interrupt sequence, with the only the difference that they are

synchronized to the flow of the program.

Interrupt vector table

Reset FFFE/F highest priority

NMI FFFC/D

Swi FFFA/B

IRQ FFF8/9

FIRQ FFF&/7 has priority over IRQ
SWI2 FFF4/5

SWI3 FFF2/3 lowest priority
reserved FFFO/1

The priorities are determined through the way the interrupt
mask bits are set in the condition code register (CC) by the
interrupts. The next figure shows the position of the bits
related to interrupts. The 'Entire’ bit is needed, because there is
only one RTI instruction to be used both with normal interrupts
and the FIRQ. E=1 means that all CPU registers have been saved

on the stack, for E=0 only the PC and the CC registers are saved.

-5 —

wolfgang von Ruden

October 19, 1985

wolfgang von Ruden

October 19, 1985

Note that this bit is set/cleared by the CPU before CC is saved

on the stack.

| [N Z|V]|C

Stacking of registers

The CPU saves the registers automatically when an interrupt

‘normal’

—» | [T
T

L— IRQ mask

FIRQ mask

Interrupt bits set

Reset
NMI
SWi
IRG
FiIRQ
SWl2
SWi3

Entire flag

bits not set possible

NMi after 'LDS'
NMI

NMI

F NMI, FIRQ

E NMI

|, F NMI, FIRQ, IRQ

LF NMI, FIRQ, IRQ

valid data -

- _
PC high

PC low

U low
U high

Y low
Y high

X low

X high

DP

ACCB

ACCA

CC
A_\
E=1

] — SP

44— new SP

has been accepted. We distinguish two cases:

FiRQ

' valid dota

PClow
PC high

{4—SP

<f—— new SP

wWolfgang von Riden Gctober 19, 1985

When ‘RTI' is executed, CC is pulled first and therefore the
CPU will know, if all registers have to be recovered or only the
PCn the case of the FIRQ.

Timing example for IRQ

The following example shows a typical IRQ sequence. Note
that the IRQ line goes up as soon as the interrupt condition in
the peripheral chip has been cleared, but the interrupt service
routine is only finished when RTI is executed. Shouid another
interrupt arrive on the same line before the RTI, the IRQ line
goes low again or stays low, but the interrupt will only be
serviced after the RTI, because the |-bit will be up during the

complete service time.

main save interrupt main
progrem registers service program

CPU - H‘* ;. jum >

-

setlbil
(clear R.I']
flay

IRQ

Wolfgang von Riden October 19, 1985

Case study

In the following, we give an example of using the IRQ with a
PIA on the ROSY station. We assume, that a push-button has been
connected to CAl and that we like to see the high-to-low
transition. Whenever the button is pressed, we increment a
counter. If the counter reaches a predefined maximum value, the
main program is informed by setting a flag and a message is

printed.
The general strategy is as follows:

Main program:
1. define the interrupt vector
2.ymtialize the hardware
3. enable the IRQ
4 wait for flag and do other things

Interrupt service:
1. determine interrupt source
2 clear interrupt flag and increment counter
3.1f count=max, set flag and clear counter

4. return from interrupt

¥olfgang von Riden October 19, 1985

wWolfgang von Ruden October 19, 1985
U *
£ NAM - COUNT * now enable IRQs
E 3
* This program uses a push-button connected to CA1 ANDCC #$EF
* of the PIA at address $EF08 to count pulses via x
* interrupts. % .
* If a maximum count is reached, an event flag is set % Main loop starts here
* for the main program, which will print a message. MAINLP EQU X
*
7
LIB MONCALLS include ROSY definitions ;Eg E‘éﬁ? ﬁg”, event:
N I
LEAX MAXMSG,PCR send message
EOT EQU 4 | MON PRINT
PlA EQU $EF08 define base address CLR EVENT reset fla
ORA EQU PIA . 9
ERA EQU PiA+] NONE EQU *
*® reserve variables needed :
*
CNT RMB 1 counter hir‘e we can do other things
EVENT RMB | event flag -
MAXCNT EQU 100 define max count
* BRA MAINLP
* Main program i
*
Start QU * MAXMSG Egg gg?xtmum count reached/
CLR COUNT imt alt stuff
CLR EVENT
LEAX PUSHBPCR vector for push-button
LDB #3 vector code for IRG %
MON VECTOR set vector in ROSY x £ handli
TSTB any error? N rrorhanaling
BNE WRON i
. G yes, in deed WRONG EQU X
% init PIA MON ERROR
% MON RETURN dive up if error
LDA #5 set access ORA and int. enable
STA CRA

— 10— -1t~

¥olfgang von Ruden October 19, 1985

* Interrupt service routine

PUSHB EQU *

LDA CRA wasit PIA Y
BMI FOUND yes
LDE #*#14 send error message
MON ERROR "Undefined IRQ"
BRA P_OUT
ks N
FOUND EQU ¥
LDA ORA clear CRA-7 flag
LDA CNT increment count
INCA
CHMPA #MAXCNT maxirnum reached ?
BLO NEXT not yet
CLRA reset cnt, set flag
INC EVENT
NEXT EQU ¥
STA CNT save new count
P_out RTI That's all folks |

END

- 12-

