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1. Complex manifolds.

Let @ be an open set in ", A map ¢ :Q—>C" is said to be
holomorphic if for i = 1,...,m, the function p;e® : @ —=0 is a hola-
morphic (complex valued) functicon, where Pj ¢ " —C denotes the ith

prajection (i.e., if ¢ = (f’l,...,Fm) then the functions f‘i ohe holo-

morphic).

Let i and .(22 be two open sets in €". A map & : ﬂl —>ﬂz
is said to be a holomerphic diffeomorphism if ¢ is bijective and both

% and o1 are holomerphic,

Let M be a Hausdorff topological space which we assume to be
paracompact. Suppose that we are given an open cover {Ua }ms  of M and

for each o a homeamorphism

9, + U, —e.%(uq)

n

onto an open set ¢a(ua) of & such that whenever Ua{'} UB £ ¢ the map

-1

$,00p th(Ua n UB) _"%(Uan UB)
is a holomorphic diffeomorphism. Then we say that M has a structure of a
complex manifold or simply that M iz a complex manifold (of complex
dimension n). The family of "charts" (Uu’ ¢} is ecalled an astlas. We
o

shall assume that the atlas we have is & maximal atlas in the sense that

we can not add more charts to the atlas still preserving the compatibility

on the overlaps. Any atlas is contained in & unique maximal atlas.

tet M be a complex manifold. A function f : M — € is said
to be holomorphic if For each o the Function f‘o¢;1 : cpa(Ua) — L is
holomorphic,

Let ¥ and N be complex manifolds and ¢ : M —=N bhe a map.
We say that 9 is holemorphic if ¢ is continuous and the following condition
is satisfied : let {(Ua,%)} be an atleas for M and {(VE,¢B)} an atlas
for N; then for each (o,B) with W = Uaﬂ ¢’1(VB) £ ¢ the map

-1,
vgedod, g (U) —>¢B(VB)

is holamorphic,

If M and N are complex manif'nlds)a holomorphic diffeomorphism

¢ : M~>N is bijective mapping that ¢ and ¢~ % are holomorphic.

If M (resp. N} is a complex manifold of dimension m (resp. n)

then M x N is in a natural way a complex manifold of dimension m + n.

2. Holomorphic vector bundles.

Let M be a complex manifold of dimension n. A holomorphic vector
bundle of rank on over M is a complex manifold E of dimension m + n
together with a holomorphic map # : E ~—» M such that the following two

conditions are satisfied :

(i) For each x ¢ M, n&l(X) has the structure of an m-dimenaional

vector space over [.

(ii) For each x g M there exists an (open) neighbourhoed U of x

and a holomarphic diffeomorphism

U — U x e



such that the diagram

i) —I—suxt

\/

commutes and such that the induced map Ty : n" (¥) =y x " =" is
a bijective linear map for each y e U. {pu : Ux " —U is the natyral

projection onto U).
The pair (U,t) will be called a local triviliasation of E.

If x g X, we will denote n_l(x) by Ex and call it the fibre
over x. Let E 1L E * where E is the dual of the vector space Ex.
Then £ has a natﬁ;ZT structure of & vector bundle and E will be called
the dual bundle of E. One can also define the tensor product E&F of two

holomerphic vector bundles in an obvious way and this is a holomorphic

vector bundle whose rank is the product of ranks of E and F.
A holomorphic vector bundle of rank 1 will be called a line bundle.

If M is a complex manifold, then M x t™ as the structure of a
holomorphic vector bundle of rank m. This bundle is called the trivial

bundle of rank m over ¥,

Remark 2.1. Let M be a cumple_x manifold and x g M, Let Gx be the ring
of (germs of) helemorphic functions st x (i.e. defined in a neighbourhood
of x.}A C-linear map L :C9*-¢ € satisfying L(f-g) = L{f)g(x}+F(x)L(qg)
is called @ (holomorphic) tangent vector x. If we denote by Tx the holo-

morphic tangent space at x, then || T forms an n-dimensional holomorphic
xeM

bundie, the tangent bundle T(M). A section of T(M) is called a holo-

morphic vector field.

Llet E be s {holomorphic} vector bundle over M, A section
of E over U is & holomorphic map o : U —E such that
(reag)(x) = x for each % ¢ U. The sections of E over U form a
vector space over £, if we define (1101+A202)(x) = Alcl(x)+k202(x),
where AI’AZ e L eand €1)0, are sections over U. A section of the trivial
bundle over U can be identified with a holomorphic function U - e

(In fact if o(x) = (x,F(x)),f(x) e, o is identified with Ff).

We shall denote by ['(E) the vector space of sections of E

over M.

Theorem 2.1. Let E be a holomorphic vector bundle on a compact complex
manifold, Then the sections of £ over M form a finite dimensional

vector over (.

Sketch of proof : Let (Ua’Ta) be loecsl trivilisations of E such that
{Ua} form a finite open covering of M. Let Vu be a shrinking of Uu,
that is VG is an open cover such that VGC U&. Let T' be the space of
sections of E over M, Let s g I'. Over each Ua the section s is

given by m holomorphic functions (f;,...,Fﬂ). let b . = sup|Fq| and
m a,l v 1

o

put |8 = max b, ;- This defines the structure of a normed linear space
iy 7

on [. By using Montel's theorem one sees that the unit ball in this normed

linear space is relatively compact. By a well-known result in functional

analysis this implies that I' is fipite dimensional.



Exercise. Prove that a holomerphic function on a compact connected complex

manifold is constant.

3. The Complex projective space and the tautological line bundle,

Consider the set IP" of l-dimensional vector subspaces of Em'l.
We shall put a structure of an n-dimensicnal complex manifold on P". Note
that P" can be identified with the quotient space of A (0) by the

; * . * n+1 N
action of € given by (A,w)rsiv, A el , v e I -0, (Two points

En+l

(Zl""'zml) and (Zi,...,ZI_'H_l) in -0 are equivalent if there

*
exists X e € with AZ, = Z; for i=1,...,n41). We endow P with
the quotient topology. For fixed i consider the open set Ui of points

ae P whose representatives one of the form (Zl,...,Zi,...,Z ) with

n+1
n
Z; £ 0. Then the map oy 2 U =0,

F § z

1 i 1

e g T e
1 1 1 1

gives a chart. These charts cover IP" and are related by holomarphic
functions on overlaps. In fact
-1 W, Nu)=1{ged" with ¢, # 0} —1"
Pio¥; ¢ oo\ i i

is given by

4

L.,
4

|
(Elv--'rf,'n) > (a,...,c*i,..., .

In particular Pl is the Riemann sphere € |J <.

If Vv is a finite dimensional vector space over € of dimension

{(n+1) then the space P(V) of l-dimensional subspaces of V has a

natural structure of a complex manifold of dimension n.

If to every l-dimensional subspace £ of V we associate the
vector space ! itself as the fibre gver £ we get a line bundle on
P(V}, called the tautological iine bundle on P(V). More formally,
consider the subset (3(-1) of P” x V consisting of pair (£,v)
with v ¢ £ (recall that { is a subspace of V and v is an element
of V); then ((-1),7), where 7 is the restrictison to 0(-1), of the
projection of P" «x V to Pn, forms a line bundle. The dual line
bundle of (9{(-1} will be denoted #(1) and called the hyperplane
n

bundle on P(¥), We will denote by ¢? the trivial line bundle on P

and far an integer k > 0 by ($(k) the k-fold tensor product of (F(1).
Proposition 3.1. We have

1) ri@ =t

2) rek) = sV,

where Sk(V*) denctes the space of homogenecus polynomials of degree k

en V,
Sketch of proof. We may assume V = IIrH'l, n > 1. We verify that a section
of &n) is given by a holomorphic function f : En+l - 0—1T satisfying

FOAZY) = (2D, A e ¢ By & well known result in several complex variables,

n+l

a holomorphic function of -0 has a unique holomorphic extension to

Em'l and we denote this extension still by F. If g = (&l""’an+l)’
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. o o a %1 3 Pl
o, >0, a. ¢ Z is a multi-index and D" = (== R ¢ ) then
1 1 aZl azn+l 4

(0%} (ap) = Ak-laiDaf(z), where |a| = Gpteeato s A € t*, 2 £0. 1f

If jo| » k, it follows, letting X — 0 that D®f(Z) = 0. On the ather
hand if |a| <k, D*F(0) = 0. It follows by the Taylor series expansion
st 0, that f is homogeneous polynomial of degree k.

Remark 3.2. Consider the cese V = Ez. One knows that all irreducible

representations of the Lie algebra af{2) are given by the natural
representations of s¢(2} on Sk(V). By Proposition 3.1, sk(v*) is the
space of sections of a line bundle on 1’1. Thus all irreducible repre-
sentations are realised on the dual of the space of sections of line
bundles on P]} A generalization of this result to arbitrary complex

semi-simple algebras will be the Borel-Weil theorem.

4. Line bundles and mappings into a projective space.

Let L be a line bundle on a complex manifold M. We shall say
that L is generated by its sections if the evaluation map [(L) ——>Lx
is surjective for every x ¢ X, where Lx is the fibre of L at x {This
is equivalent to requiring that given x ¢ X there exists a (holomorphic}

section s of L with s(x) £ 0).

Proposition 4.1. Let M be a compact (connected) complex manifold and L
a line bundle on M generated by its sections. Then there exists a cano-

nical holomorphic map

g+ M — P(r(LYY)

where r(L)* is the dual space of the space I'(L) of sections of L.

(Note that by Theorem 2.1, T(L) is finite dimensional).

Proof : Let x g M. By hypothesis)the evaluation mapping at x,

r{L) — L, is surjective. Hence the dual mapping L: - r(L)* is
injective and we define ¢ (x} ¢ P( )™ to be the image. (The space
of sections vanishing at x is of codimension 1 im T{L} and ¢L(x)

ias the subspace of F(L)* arthogonal to this space}.

Let be a basis of HD(X,L) and let 8; be given,

Byeee a8y
with respect to & trivialisation of L in a neighbourhood of x, by the
function Fi. Then it is easily checked that 9 is given locally by

FA (fl(Z),...,fN+l(Z)) in terms of the homogeneous coordinates with
*

*
respect to the dual basis SpaeeneBy gt

This proves that P is holomor-

phic.

Proposition 4.2. With the hypothesis and notation of Proposition 4.1, let
p: P(L)* -0 — I’{T(L)*) be the canonical projection. Then p'1(¢L(M)}

generates the vector space F(L)*.

Proof. tet W be the vector space generated by p_l(¢L(M)). To prove that
W= F(L)* it is enmough to show that if s ¢ r{L) and «<s,w> = 0, for every
weW, then s = 0. (Hence < , > denotes the pairing between T(L) and
r(L)*). If «<s,w> =0 for all w e W, then in particular for every

W e ¢L(x) = LZ, <s,w> = 0. But for we C;, <s5,W> = <5(x),w> where the
pairing on the right is given by the duality between Lx and f;. Hence

8(x) = 0 for every x in M, that is s = 0.



5. Complex Lie groups.

Let G be a group which has a structure of a complex manifold.
We say that & is & complex Lie group if the mep € x G —»G, given by
(x,y) +—= xy'l is holomorphic. The left invariant holomorphic vector fislds
on G form a complex Lie algebra Lie (G). We shall assume that [ is

connected. [ is said to be semi-simple if its Lie algebre is semi-simple.

Examples. GL(n,L) is a complex Lie group. SL{n,E) is a complex semi-simple
Lie group. If ¥V 1is a finite dimensional vector space over I, then the

group GL(V) of linear automorphisms of V is a complex Lie group.

A holomorphic homomorphism p : G — GL(V) is said to be a
{holomarphic) representation en Y. A (holomerphic) homomorphism into "
will be called a character.

If ¢ : Gl ——>G2 is a holomorphic homomorphism then g induces
a homomorphism of Lie (Gl) into Lie (GZ)' Conversely if G, is simply
cennected, a homomorphism of Lie (Gl) into Lie (Gz) is induced by a homo-

morphism of Gl into Gz.

6. Homogeneous vector bundles and induced representations.

let G be a complex Lie group. If H is a closed holomerphic
subgroup then the left coset space G/H has a natural structure of a
complex manifold. tet p : H — Aut (V) be a finite dimensional holomor-
phic representation of H. We will associate to p a holomorphic vector

bundle on G/H and G will operate on Ep as vector bundle automorphisms

10

in such & way that the action of an element g ¢ G on ED projects
into the natural action of g on 6/H, The bundle Ep will be called

the homogeneous vector bundle associated with D
Consider on G x V the action on the right by H given by
(9,¥)+h = (g-hya(@)™ ), g e 6, v e v, h e K.
The quotient space of G x V by this action of H is in a hatural
way a holomorphic vector bundle Ep on G/H. The action of G (on the
left) on G x ¥V given by g'{(g,v) ={g'g,v), 9',9 ¢ &, v ¢ V¥ descends

to an action of 6 on Ep and G acts on Ep as vector bundle auto-

morphisms. As such, G also acts on the space of sections of Ep.

This action of G on T(Ep} can be made explicit as follows.
One first checks that a section of Ep can be identified with a holp-
morphic function f : G -—-»V satisfying
flgh) = €(h)"F(g), for g e, he H
With this identification the action Ind(p) = 2 of G on P(ED) is
is given by :
plgifi{x) = f(g_lx), for xebG .

If G/H is compact we thus obtain a finite dimensional repre-
sentation Ind(p)} of G aon r(Ep). The representation Ind(p) will be

talled the representation induced by p.

Remark 6.1. Note that if g denotes the coset (H), then the group H acts

on the fibre of Ep at e and we thus get a representation of H on (ED)E'
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We claim that this representation of H is equivalent to p. In fact Example, Let G=S.(n,L). By a flag in C" we mean sequence of subspaces

let g be the canonical map G x V —>E,. Consider the isomorphism Ll,...,Ln of &7 such that Llc L2 e © Ln = m”, with dim Li = i.

g V— (Ep)?_ = fibre of Ep at ¢ ) given by vi=sqle,v) for vV, tet B be the upper triangular subgroup of 5L(n) consisting of matrices in 5L{n)
where e is the identity element of 6. If h e H, then the image of olh)v whose elements below the diagonal are zero. Note that SL{n) sacts on the

under § is q(e,p(h)v) = q(h-hhl,p(h)v) = q(h,v). But the action of h flags in an obvious way. It is clear see that G/B = space F of Flags in

on Ep is induced by the mep (g,v) — (hg,v) and hence h-gle,v) zqlh,v) ", 1t is easy to see that S5U(n) acts transitively on F.

Thus commutes with th i i
v e actions of H on ¥ and Ep- This proves the Let ¢ be a representation af G on a finite dimensional vector

claim,
space V. If £ is a l-dimensional subspace left invariant by B, we will
We will be concerned in the sequel only with the case where p is call § a primitive subspace and the character of B given by the repre-
one dimensicnal, that is,where p is a character v . sentation on £ a dominant weight. It is known that every finite dimensional

7. Homogeneous line bundles and representations of semi-simple groups representation has a primitive subspace g and that on the G-subspace spanned

Borel-Weil Theorem,

by £ the representation of G is irreducible. Moreover if p is irreducible
Let G be a complex semi-simple Lie group and % ite lie algebra. there is a unigque primitive subspace and the corresponding dominant weight will be

Let © be a Cartan subalgebra of 0&. and ¢ the system of roots with respect called the highest weight of p.

te . We set
h Theorem 7.1. Let x be & character of B and let L denote the homogensous

-1

-~ *
o= EU% ez ] g% aeo . line bundle on G/B associated to the homomorphism y ™~ :+ B — T . Assume
o <0

*
. - that L has a non-zera section. Then the representation on r{L), dual to
Then % = v“@®N @ WL, We denote by b the subalgebra A @ vt*. Let
the induced representation of G on [{L} is irreducible and has highest
H (resp. B) be the subgroup of G corresponding to (resp.by). Then H '
) weight .
and B are closed complex subgroups of G and H = (L ). {Any conjugate

of B is called s Borel subgroup of G). Moreaver the complex manifold G/B Corgllary 7.2. The induced representation on T(L) is irreducible.

is compact. In Fact}l’nr a suitable maximal compact subgroup K, we have Proof of Theorem 7.1. The action of an element gelG on ED as a line

G/B = K/T, where T is the maximal torus of K. bundle automorphism projects into the natural asction of g on G/H. Since
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G acte transitively on G/H and the line bundle has a non-zero section,

it follows that the sections of L generate L. let ¢ : G/B — P(r)’)
be the associated holomorphic map (Proposition 4.1). If e g G/B is the
point corresponding to the coset B, then ¢fg) = LE, where LE is the
fibre at e (see the proof of Proposition 4.1). By Remark 6.1, 8 acts on
the fibre Le by the character x'l; we see that under the dual representat-
ion B leav;3 the subspace L:; invariant and acts by the character .

Thus ¢(e) is a primitive subspace with dominant weight y. Since

o(G/B) = G{g(e)) we see, using Proposition 4.2 that )" s generated by
G(g(e)). Hence by the result on (G -modules generated by primitive elements

recalled above, the dual representation is irreducible and its highest weight

ts clearly .

Theorem 7.3. Let p be a finite dimensional (holomorphic) irreducible repre-
sentation of G. Then p is equivalent to the dual of the induced representation

of G on a homogeneous line bundle L on G/B.

Proof. Let § be a primitive subspace of the representatiocn space V and X be
the corresponding deminant weight. Consider the map G/B — P(V)} given by
gk>gf. For XA e V* consider the function f'h on G given by

F'\(g) = <),pf{glv>. For b £ B we have

fA(gb) = <hsplgb)v> = <x,o0(glplblvs = <), ¥(b)plg)v>

x(b) fx(g).

Let L be the line bundle associated to the character b l——»xhl(h). Then,

14

since fA(gb) = x(b)fl{q), we see that FA is a section of L (see § &)

Thus we have a linear map 1 : vt —T(L) given by Al—>Tf. . The map

A
is nop~zero, because the G-span of { is the whole of V, as p is an

irreducible representation. We shall show that ¢ commutes with the repre-
sentation p* on V* and the induced representation, Ind, on T(L); this
will prove the theorem by Schur's lemma, as the induced representation on

r{L} is irreducible (Corollary 7.2). Now for g',g € G
-1

Ind(g" ) (F, (a)) = ,(g'Yg) = huple' Tde>

aopla' Delgle

<t9(9"1)k,o(932?

which proves that (Ind g")ey(}) = v{p (g')A) where o* is the representat-
ion dusl to p. Q.E.D.

Let 0} be a semi-simple Lie algebra,ﬁ a Cartan subalgebra of
and ¢ @ system of positive roots. Let « be a dominant integral form
on ﬁ_ , that is) w(Ha) is a non-negative integer for each a ¢ 8%, Let ©
be a simply connected complex semi-simple group with o &s its Lie algebra.
Then it is known that w is the differential of a character Xy of the
subgroup H corresponding to fv. We extend g to a character y of B
by putting x(u) =1 for u e U where U is the subgroup corresponding to

'f(,+. With this notation we have

Theorem 7.4 Let G be a simply connected semi-simple Lie group with Lie

algebra 02 let w be a dominant integral linear form on o} and x the
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corresponding character on the Borel subgroup B. let L be the homo-
geneous line bundle on G/B associated to the character X-l. Then the
representation of G on F(L)" dual to the induced representation on
Ir(t} 1is irreducible and the associated representation of Oa’. on I‘(L)*

is irreducible with highest weight ¢ .






