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KIRTLLOV THEORY. CHAIN ALGEBRAS

We present a short summary of the Kirillav theory of
irreducible unitary representations of nilpotent Lie groups and

we discuss the generalized chain algebras which Joe Jenkins and
the author used in U¥]. Our presentation makes utfost use of [4].

Let g be a Lie algebra such that for a positive integer ¢
D(O,[x‘.,...[xc_t.xc‘].lf_] * 0 for all X ,...,X €g. Then g is
called nilpotent of class €c.A nilpotent Lie algebra has a
non-zere center Z(g) = {X: tx.f]- 0 for all YG:E}.

The following facts are easy to prove:!

Let G be 2 simply connected Lie Broup such that the Lie
dlgebra g of G is nilpotent. Then the exponential map
exXpt g —-==a > G is a diffeogorphism. We write G- expg and we
identify G and £ as manifoldsg, i.e, € = En and the group mul-
tiplicaéion in 5“ is given by xy =c{x,y), where c{x,y) is gi~-
ven by the Hausdorff-Campbel formula and in the case of a nil-
potent Lie algebra it is a polynomial,

We write §KG) = §j3) for the spce of the Schwrez functions
on G and we note that the group translation x =---» xy induces
a linear homeomorphism on S¢6y.

Let G be a simply connected nilpotent Lie group i.e, a group
whose ﬂie algebraﬁis nilpotent. In 1961 A.A.Kirillov gave the

following description of all unitary representations of ¢.
Let g' be the dual space to the linear space g. We define
L3

the co-adjoint action of € on g' by

<X, adloy- ad x , o7 | xec, X€g,vay’,
and we write

0, ={Ad'T: xec} .
For a 0 in g'we take a subalgebra h of.g which has the following

Properties:



(a} b is subordinate to O , i.e-(\.X,ﬂ.""'7 =0 It seems to me that the beat referemce for the Kirillow theory
(b) h is of maximal dimension with respect to (a). is E4ilor{;g] but for the beginers Kirillovyoriginal paper U3}
LK, T7

Let 1 = exph . By (a) the mapping % : x ---=7 is perhaps the best.

is a multiplicative character of H . Let ST be the induced We are not going to enter the theory in any greater detail,
representation Fy TR Lndg')( instead we are going to invastigate a very epecific , simple but
A.A.Kirillov proved that: important example. For it we are going to describe all irreducible
(i) Every irreducible umitary representation of G is unitary representations in the genmeral positien in terms of the

of the form sTCO-' Kiriltov theory and in a particularsimplest case we are are going
(ii) 3 i equivalent to "_—L‘v iff Uy € O to write down the Plancherel measure.We hope to use this at the
Statement (ii} implicitely says that if h  is another algebra end of these talks to invastigate certain Schrbdinger operators
which satisfies (a) and (b) for a given ¢ , then the represen- with polynemial potentials.

G .
tations Lndg’)t and IndH')c are equivalent.

! Chain algebra. By this we mean & Lie algebra g with a basis
(iii) Let f & 5(C). Then the operator

X, Yo,...,Yd and the following commutation relations:
o o
¥ . S:tf(x)dx Y, , if j+1 £ 4
f c X [x"{:]z irl
is compact and has finite trace. ] 0 Cif §+l > d

o .
"We say that 9 or the representation 5,is in general posi Clearly g is a nilpotent Lie algebra.

i i v " r - - » s -

tion if {2(g) 740 This algebra is isomorphic to the following Lie algebra of ope-
(iv) There is a subset Aof g' such that A intersects rators on §(R}. Let ?= ':El_x » M f = iPf , where P is a polynomial
. Lie

every orbit in general position in exactly one point and there of degree d. The chain algebra is isomorphic to the\halgebra gene-

m
exists a measurey called the Plancherel measure, on /A such rated by @ and M, because [9,M;} = Myp and so the mapping

that X === 9 and LPREEEE > M, extends to an isomorphism.
o
= Tr JU_, dm{o . . . .
E(0) SA. £ @ A generalization of the chain algebra is of importance.
o : : n
This implies that f& L2(¢) iff for m almost all o Trilx, is Consider operators @,,...,a, and le.---,NPk on S{R"), where
finite and the function O =----- Tra'tuf:;*f is integrable. D.,'s are partial derivatives and M is the multiplication by
. : \ . b
Then n i a polynomial 1Pj. The operators 33. and “P. generate a Lie algebra g
W ofn = Trav dm{z). n . .
vy et of operators on S(R) which is of the form



where D = 1infd,...,2%, V = linfgap t j=1,... ki ot a multiindex
P4

~ i R
V is an ideal in g and for d in D ad, acts on V as a nilpotent

d
operator; also, of course,bcth D and V are commutative.
The following conditions are easily seen to be equivalent.
(i) There is no non-singulatr linear transformation T of En
such that the polynomials PloT R PkoT depend on less than n
variables.
(ii) g has one-dimensional center.
(iii) For d in B {d,v]=0 Eor all v in'V implies d=0 and

{vev: [d,v]= 0 for all d in D}y= Rz , =z$0.

By a generalized chain algebra we mean a Lie algebra g

g =D+ ¥V
where both D and V are commutative, V is an ideal in g , D acts
on V by ad as nilpotrent linear transformations and the equivalant

conditions (i) = (iii) are satisfied.

Now let g be a fixed generalized chain algebra and let G = expg
We note few simple facts.
ad d = - fd,v}eVv for d in D, v in V.

Let Ad, = Ad = gxp ad, , X&g , We have

X expX X
(1) Advx=x+[v,)€} veV, Xeg
For every v in V D3»d ------ rd Addvev is a polynomial map.

Consider g'= D'+ V' and let z be the unique, up to a scalar, vector

in V such that z # 0 and addz = 0 for all d in D. Let

g") =£G’eg_': £z LOT7 ¢ 01’.

Lemma. HG&E; ,_El\_e'_fz Oo.. - 00,* d' for every d' in D’
Proof. It ie sufficient to show that given a d' in D' there
is & v in V such that{X , @ +d'> = <£x , Ad\;G’? for all X in g,
ar, by (1) , that X , d"Y Ve <L‘v,x] » &7 for all X in g, i.e.

{d,d')--(add\t s @ for all d in D.
We define T: V -——> D' by £ d, Tv 7= -(addv , T and we want
to prove that T is"ontoe! Suppose it is not, then for a doin D,
d0 ¥ 0; we hawve
(2) 0=Ld, Tv) = -Lady v ,o> for all v in ¥
But {add: d&D}is a commuting family of gilpotent linear trans-—

formations of V which leave add YV invariant, so if add v ¥ 0,
o o

it contains a non-zero element VO such that addvo = 0 for all
d in D, hence v, = az , for a non-zero scalar a, which is a con-

tradiction, since {z , %% 0

“Fhe lemma implies that in order to find all the irreducible
unitary representations of G in 'ne general position it is suffi-
cient to restrict to functionals @ in V'. Since V is commutative
it is subordinate to O . To show that it is of maximal dimension
we argue as in the proof of the lemma. Suppose it is not maximal,
thean for some d0 (2) holds and this leads to a contradiction, as
we have just seen,

Consequently, every representation given, in the Kirillov mo-
del, by a functional & in p‘(’ is as follows.

The space of the representation is LZ(D) = LZ(G/V) and for
a function QP in LZ(D) we have

o iAd,_yv, o7
Kexp(dﬂ:){'?(’() = e @{x-d)



1f d3=% {s the representation of the Lie algebra, i.e.

o _d o
asty 4 - E":’T‘exptxoltﬁ] » pes),
then for d in D St:# is the derivative of(Q in the direction 4

(independent of U in general position) and for v in V

TR0 = i ad v, TP(x)
We racall that ( Ad v T2 is a polynomial in x. We also note
that if we identify v with the polynomial <Adxv o7 = Pv(x).
then the linear space in: veV} is stable under derivatives.and
PAddv(x) = P_{x+d) =:P3(x) . Tt follows that two functiomals on V
T and O’l belong to the same orbit iff <Pv ,U"]) =<P3 ,O’? for
sonme d in D.

Now, comming back to the beginiJg of the story, if we ate

given polynomials PI,...,Pk on En which satisfy (i) and the par-

tial derivativesBl,...,an, then the natural representation JT of
]

the Lie algebra generated by & ,...,3 and M, ,...,M on S(R)
1 n Pl Pk =t=

o .
is of the form 3¢ =3, where the functional O on
v = lin&?de: j=l,...,k:cha multiindexk

is{p ,oy =p(0).

Now we turn to the chain algebra. We see that them D = RX,
Vo= 1in{YO....,de and EYd is the center. A functioual on V is
then O =(Q07,..., ¥ )} , where O"j = (Yj ,07. Sa Uis in general

position iff &, # 0. We have Adej =

d
4-3 K
x
AdKYJ = ) kT Yj+k
and so
d xk d-j xk
' = - —_—
(39 A T= (i Ty 2o T T Tgr Ty Ty

Thus putting x = "01-1/5rd we see that the orbit Oy contains

a unique functional U with Ug_l » 0. Consequently, we may select

j\—as

A=f{oe(o, ..., 0, .0,

4200, Ty T TaFO e RY

f
To find the Plancherel measure we take a functio&\on G of the

form d(x)(a(v) , OLE§(D), @E_S_(V) and we see that

gei éAdy_xv. s>

=g
e 9ty) (>(v)dv ol (x) (@ (y-x)dx

Fa
(R orel (0 @ly=x)dx

g K{y,x)(p(x)dx ,

where K(y,x)

FaS
(B adl ook (y-x).
Hence

Tra’t? - SK(x,x)dx - (*(O)S'(s\(Ad;(U)dx

and

STrchfr dm{g) = OL(O)S(S(Ad;cU)dxdm(c').

Now if we put

-(d+1)/2
4 d - (
(4} m( J) (25) do, ,do—d_zlo:i\dc'd,
in virtue of (3) in which U}_] = 0 an easy change of the variable
shows

(§esoraxaner) = aty™ @ D/20Royan - oo,

and so (4) defines the Planchrel measure.
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CONVOLUTION SEMI-GROUPS

OF PROBABILITY MEASURES ON LIE GROUPS

G.Hune theory

We present now the basic facts concerning convolution semi-
groups of probability measures on Lie groups. The proofs if any

will be very sketchy only.

We start with a very brief survey of the main definitions con-

cerning semi-groups of bounded operators om Banach spaces.

A strongly continuous semi-group of operators on a4 Banach space

B is a family of bounded operators {Tﬁkt70 such that
(i) T =TT, (i) 1im VT E - £0_ = 0 for all f im B.
5+ st t=30 t B
We note that (ii) implies HTJIQ c fer t4 1 and we call the
semigroup egquicontinuos if ‘ITt“ & C for all t.
Proposition 1. The function (9,0553 t ~--- th & B is conti-

nucus for all £ in B.

We define the infinitesimal generatar of the semi—group&f

tgt>0

to be a , in general uanbounded, operator A such that

(1) Af = lim tT(T £ - B),
£ =0
and the domain of A is D(A) = all the f's for which the limit

in the norm exits.

Proposition 2. For every f in D(A) the function
F: (0,0 ¢ ~ouune LR
has continuous derivative and
9 F(t) = AT £ = T Af
dr t | 2
Propasition 3. For every f in B
5
£, = % T.f dt & D(A) sand Afg = T E - f
If £ D(A) , them T._f - f = % T Af dt

Proposition 4. D(A) is dense in B and A is a closed operator

on D(A).

Let A be a closed operator on a Banach space B with a dense
domain D(A}, The resclvent set g(A) is the set of complex num-
bers > such that (R - A)B(A) =B, “=-Ais | - | on D(A) and
(N - A)_‘I is bounded. We write R(>™ ,A) = (>~ A)‘-1 and we call

R{™,A) the resolvent of A.

Propesition 5. The set Q(A) is open , the function
gla)a» »  -=-=2 DR{> ,A) & B(R)

is holomorphic, R{>™ ,A) and R(y »A) commute for all > s Moin g(A).

Proposition 6. If{Ttk £3 0 15 an equicontinucs semi~group azng
A is the infinitesimal generator, then g(A) contains the
pesitive half-line and

R(P,A)Nf = ge""t T £ dt
[+ ]

Moreover, if thl!éC. then JOXNR(A,aN™Y £ € for all n,» % 0.

Proposition 7. If A is an arbitrary closed operator on A with
dense domain such thav g(A) contains the positive half-line and

Bar{», W4 c for alt X 0, then lim NR(*,A}f = f for all f in B.
Eale -1

Theorem (Hille-Yosida}. Suppose A& is a densely defined closed

operator A such that g(A) containe the positive half-line and

Wexrca,an™ ¢ ¢ for all n,™> 0. Then there exists a unique
semi—grnupiIt& 20 such that “ Tt“gc and A is the infinitesi-

mal generator of{Tt%

t>0
Moreover, oo
- S n
T f v lim e ¢ L-(—’}E—)- (NR{A,A))"E.
t ADoo n=g D

Let A be a self-adjoint operator on a Hilbért space B and let
Af =S>\dE(‘A)f » EED(A), be its spectral presentation. We say

o=y
that A is positive if (Af,£)2,0 for all £ in D(A), then Af-g?ﬁdE(x)f
(-3



Since for £ in € (W)

Proposition 8. If A is a4 self-adjoint pesitrive operator on D.F(x) = Ela‘k(x)xzf(x)'
] ]
a Hilbert space H, them =-A is the infinitesimal generator of the ®
where a,, (e) = G. s we have
. jk jk
4 semi-group

+.+ 2
P (3 E(x) = %~ jzl Xixjf(e)xixj + ol Wz , X E UL
M - 1_]
(2) T8 = N e M faE(adE  , E€ B,

o . A .
where Tt are hermitian and of norm & !. Conversely, if{Ttk >0 By a semi-group of probability measures on G we mean a family
is a semi-group of hermitian operators of morm & | on a Hilbert {Ptk 50 of probability measures such that
space H , then the infinitesimal generatorof it is a self-adjoint Pe¥py = v,

P d
vperator =A such that A is positive and (2) holds. an
tinf fe - £l =0  for f in Cy, (6).
t-0 Copo (G)
Let G be a Lie group and let be the Lie algebra of it. We i i i-
|4 p g B We see that\vtk ty 0 defines a strongly continuous semi-group {Tt}t>0

k

identify g with the left~invariant differential operators of or- of operators on all C (G) by the formuta T f = fﬁ-Pt_ T, pre-

der one on G. We introduce a norm |} Xijon g such that if seves CO(G) and it is uniquely determind by its action on c,(G).

v o= ix: I %0l « ak, then exp is a dirfeomorphism of V onto an open

. A s + R We shall use the same letter A to denote the infinitesimal gene-
neighbourhocod U in G. For X in g, let X be the correspondig

acts by convelution reserving

k

rator on all spaces on which {rt}

right-invariant differential operator t>0

the notation Qk(A)Eor the domain of 4 in C

(GY. We write DO(A)-D(A).
X'Ex) = S flexprxon| o, £ € e, e = =
+ + , L. Let C be the cone of non-negative functions omn G.
For x = pr(x]X]+...+ann , where X],....Xn is a basis in G, - |5 « .
. Since,by ptoposition 3, s S f*-’: dt €D (A), if fe c(c),
we write x o= (x],...,xn) and let r t
* k \ ) k
D.f{x) = [ f(xl,...,x ) x €U '(? small enougﬂ. we see that CAD"(A) is dense in CNC,,(G).
i Ry n

]

L ¢ (GY b a f i functions G ishing at . A . .
et u( ) be the space of continuos functions on vani E We define a characteristic functional F for a semi-group of

. - . - 1 C H i . -
infinity and let C4,(G) be the spece of continuous function on ¢ probability measvres {Pt} 0 by

: i . PN .
which have limits at infinity. We write Fi: D(A)D £ —---—> Af(e)
k + *

; = HED GRS /O N s .

Coo (6) {E i Klkfe CoofG) for all L ’iké(l’ ' Proposition 9, F is bounded on Cia(G).
Let

« . The proof of proposition 9 is based on the followin classical
M=ffeci(oy: f(e)=KJ.f(e)=O for j=1,...,n}.

k lemma by Helley.
Clearly M is a closed subspace of CohclBY , k3 2, of finite co-

dimension,




Lemma(Helley). Let B be a Banach space, C a cone in B and
c, 2 dense convex subset of C, Then for every f in C and € » 0
and functionals FI,A..,Fn in B' there exists a g in C0 such that
<g,Fj7=(f,Fj> , j®i,...,n and “f—-g\\s‘-ﬁ

Proof of proposition %. First we note that by Helley's lemma

CNAD(AYNM ig dense in MNC (we take D(A) = C0 and M = C}.

Now we are going to comstruct so called Hunt's function. This

is a function L? in DP(A)NMNC such that
. + ..
(i xix;qa(e) - Zgij y 1,] = 1,...,n,

(ii) lim@(x) > 0

K==

(iii) Ww(x) » 0 for x # e .

Using Helley's lemma we take a function in D(AYNAMANC
which satisfies (i) and lim W(x} = 1. There is a compact subset
X = 2
K of G such that Y (x)>» /2 for x é K and also, by (3) , there

is a neighbourhood V of e such that q)(x)7 0 for x # e and xX€ V.,

Now for each x in K~V take k?xi-:g(A)f\M"\p_ whieh satisfies (i), (ii)}

and\gxlf54(Helley‘slemma again!).Thus Ux = {y: qi(y)> 1/2}

is open and a finite number of them Ux ""'Ux cover Kx V and
1 k

so (kD) (W@ 4.4 ) =@ satisfies (i) - (iii).0f course
1
we can also have (p(x) -(9(x_l).
By (i) and (3) we see that for a ¢ 0 we have ¢ q(x)>“x“2

for x in U,

Now we are ready to prove that the functional F is continuous.

Suppose that fé&E(A)nM and“fn\l 9 w—=w¥ 0. Then, by (3),

C
os
for every £70

\fn(x)lé guxuz for x€U and ny o .

Consequently, for n still larger perhaps,

\fn(x_l)‘é EQx) x & G.

Thus

-1 - at -
e p @lg TR, p YT e, p >
£ t'lew*yt(E).

. -1 .
tf;fo i fp () & <Y, F 7,

which shows that

1im(fn , FD =0,
n-pd

and so

Therefore ¥ extends uniquely and continuously from D(A)NM to
M. But M is of finite co-dimension in Cin(G) and is defined on
a dense subset QZ(A) by
4) £t , FY = 1imt"(f*P{,¢)— £(e))
t -0 .

consequently, F is bounded on Cio(G) and is given by (4).

A distribution F £ C:°(G)'is called dissipative if
for every real-valued function f in C:D(G) such that
max § £{x): x&GY= £(e) we have £t , FD> £O0.

By propositon 9 (4) defines a distribution {in fact of order
& 2) which is dissipative because , since Pt is a probability
measure fun-)u':(e);,~ max{f(x): x€ Gk.

Proposition 10, If F is a dissipative distribution, then for

every'neighbourhood V of e
F = FV + Yv ,
where supva ¢V and My is a positive bounded measure suppo-

[
rted on V.

Let Ap be the convolutien operator defined on C:u(G) with
values in CO(G) given by the formula

- ~ ~- ~
AFE— fi(—Fv+ £ g = f» W



that
AY

We note-'the definition does not depend on the choice of V and

that !\F admits the closure KF,'

Theorem (G,Hunt). Let F be a dissipative distribution. There

exists a unigue semi-group of probability measures{rtk t¥ 0
on G such that the infinitesimal generator ofl_}:t’s tyo °f CO(G)
is KF'

Precf. For the proof of this theorem we assume that all functions

are real valued
Since F is dissipative, for A2 0 we verify that
i & -
(i) ||>\fuC0(®\\l>.f AFf\ico(m
(i) (- AF)C?:"(G) is dense in Co(G’)’

In fact, to see (i) we note that both sides of (i) are invariant

under left translations, so we may assume that || £ = f(e).

CO(G)

Then |l g gy = fle) & £Ce) - agf(er & Wi - Aef g (oy-
) o

Te prove {(ii) we suppose that for a bounded measure }1

ANE = ALE P>= ] for all f in Cg’"(G)-

Hence

I'e fM.x.P , M- ¥ Y= 0

and so ~ ~
NEw ple) = LTy, ¥V,

whence, since F is dissipative,fﬂ-&y {e) = 0 |if max{_fﬂip(x):xéck
= f~'+}1(e). Hence, translating f7on the left and multiplying by -1,
if necessary, we see that f w P(e) = (0 for all £ in C:J(G),
whence p o= 0, and (ii) is proven.

(i) and (ii} show that the closure KF of AF has the property
that for A>»0 heg(ﬁ?) and R( %,KF) has the norm equal to >:l

Thus the assumptions of Hille-Yosida theorem are satisfied and

sc there exists a aemi-groupiTtk t> 0 of contractions on CO(G)
whose infinitesimal generator is KF' Since AF commutes with
left translations, so does KF and also R(?\.KF),A’DA Another
use of dissipativity of F showe that R(?\,KF) maps non-negative
functions in CO(G) onto non-negative functions and so, by the
formula at the end of Hille-Yosida theorem, so do\tggera:ors Tt
t7 0. From these we easily conclude that th = f 3 Pe s where
).lt is a probability measure.

Suppose now that bt ig another semi-group of probability

measures such that

lim t"(faz-()t(e) - f(e)) =Lf , FP», fec™(e).
t-30 ¢

Let H be the infinitesimal generator of&_Ot’g 90
By translating from the lefé_we see that for every f in Cc‘”(G)

5) lim t-l(f-u-at(x) -f(x)) =<xf » FPfor every x &g,
t-20

Let H' be the operator whose domain consists of all the functions f
in CO(G) for which the 1imit in (5) exists for every x in G.

0f course H' contains H, Now for a M >0 we veri-
fy that X~ H' is 1 - 1 on D(H').In fact, if (M- H')f = 0, £40,
multiplying by -1 if necessary we may assume that max{f(x):xe G}
= f(x°)>0, whence ( X - H')f(x0)= >\f(xo) - H'f(x°)> 0, since

by (5}, H'f(xu)s G, which is a contradiction. Hence A=~ {'

maps D(H') onto CO(G) and - H maps D(H) onto CO(G) both are

I - 1 and they agree on D(H), whence D(H) = D(H') i.e. H = H",

On the other hand we see by (5) that AFCH' and so IF & H' = H,
Thus , since for a A» 0 A~ KF maps I_J_(KF) onto CU(G) and is 1 - 1

we see that IF = H and hence by Hille-Yosida theorem Ve = at'



_ 9 _ DECAY OF PROBABILITY SEMI-GROUPS AT INFINTTY

REPRESENTATIONS ON BANACH SPACES

Examples of dissipative distributions. Let X be a vector

field on an open set U containing the identity e of G. Then

f ——==3 X[ (e) and f-~—=—=3 xzf(e) Let G be a locally compact group. We say that a function ¢
are dissipative distributions. In fact, for a system of coerdi- is submultiplicative, if (i} ¢ is locally bounded,
.. -1 PRPEN .,
nates around e we have Xf(x) = 2'a.(x)D.f{x) with aj(e) - 1, (Liy p(x ) = ¢(x),(iii) #(x)2h¢(xY)£ﬁ(X)¢(Y}- We say
\ ] J
Consequently ¢ that a4 submultiplicative function w is a polynomial weight if
L]
Cig = 2 a; ()83 (x)D; D E(x) + ‘Z:.ai(x)ﬂiaj(x)njf(x wlxy)s Clulx) + wly)
i,3 i) -
whenee, if f(e) = max{f(x)'xé-u} then D.f(e) = 0 and Let € be compactly generated and let U = U be a compact set
s : ) j
2 f gpenerators of G, then
Xofle) = 'E‘, DD f(e) £ O. of gene i
b TU(x) = min{ n: xe U}
Every convex combination of dissipative distributions is di-
is subadditive , i.e. instead of (iii) it satisfies (iii)'
ssipative. T a
~ T(x)z 0 and t(xy)<r(x)1(y) , and wix) = (1 + xT, a0
If X€&€g, then for F: f --~<% Xf(e) we have Xf(x) = f+F (x),

X is a polynomial weight.
and similarily for ¥: f === 7 9f(e) where @ is any element in

lt is casy to verify that every submultipiicative function
the envelloping algebra of %- Thus we arrive to the following

CIU(X)+C
2 2 en G is dominated by e
Proposition ll. Let A = xo + xl + ...+ xk , where Xo,...,xk
. . Let M{G) be the space of bounded{complex valued) measurcs gn ¢
are clements of the Lie algera g of a Lie group G. Then the clo-

[ . PR . For a submultiplicative function ¢ we define
sure of A {(as an operator on CC (G) ) is the infinitesimal gene=

) L Moo= {u eM(GY:/¢ dlul = Jlull < w},
rator of a semi~group of probability measures on 6. 3 M¢

. . . : . : s For WyveM  we have
Another important class of dissipative distributions is obtained

. s Sty UM vE o2 <p ur<g,un
by subordination. Let Q‘tht>0 be a semi-group of probability ! ' '

which shows that M¢ is a Banach algebra with involution

measures on G and let A be the infinitesimal generator of {Ptk 50" 1

{u*(x) = w(Xx )" ). Let m be the right invariant Haar measure
For 0<a<1 we define

on G. We define

NN et (m): fm e )
. . ' ¢
We see that f ---2 -|al? f(e) is a disgsipative distribution and 1 ¢

Ly is a Banach %~subalgehra of M

-lai?s = cEt-l-a(f* p, - £) dt  feD(a), c>o.

so the closure of -1AL? is the infinitesimal generator of a semi-
group of probability measures on G.

There are very many books on the theory of semi-groups in Banach®

spaces. T would recommend E.B.Davies, One-parameter semigroups,
Academic Press 1980.




Proposition 1. Let[Pt} be a semi-group of probability

t>0
measures on a4 locally compact group G. Let A be the infinitesimal
1 . .

i here m is the right
generator of {pt }t>0 corsidered on L (m), w
{nvariant Haar measure. Let ¢ be a submultiplicative function
on G. Supposc that for a (single) non-zere nomn-negative function
£ in DAY we have [ff¢ dm = a and ﬂAfp dm = b , then

the
f®dPt < abe ,

! 1

where ¢ =( fft dm)
Proof. We note first that if § is a submutiplicative function
and f > 0 1s such that £ , v = [Jfp dm ¢ = , we have

1) SO R0 g TR € LF L W2 W)

In fnvt‘(ii) and (ii1i) imply

veor T vy T 2 e eoo
whence, since fk¢(x) = ff(y)W(y_lx) dm{y), (1) follows.

Now for the Submultiplicative function ¢ and a positive in-
teger 0o owe define ¢n = min {n , #{x)} . Clearly, ¢ is submultipli-
cative and bounded. We define

ho(E) = o, 87 =l (TR T

Since I =D(A}, Af HL](m) and, by proposition 2, section II,

d f-&-ut = Af*f}t .

d_
t
Hence h[’](t) = (Af*ut R ¢n7 and so,

hrte) < daden ¢ D
R IS 1 A I )
g,_{ut, f”.s¢n7 b<f‘,¢;'7"

~ 1

(I Y A TR

R buhn(t)

Consequently,

< tbe ,
hn(t)_ hn(O)e
i.e.

¢ Lt , grethe,

-~

£ feu g .Y

Finally, for all n we have

S N 5L R I 2 & IS MR G Y PRl Sl BTN TY

which completes the proof of proposition 1,

Proposition 2. Let~{ut}t>0 be 4 semi-group of probability mea-

sures on a Lie group G, Let A be the infinitesimal generator of

(Ut]t>0 and let Q](A) be the doemain of A in Ll(m).Civen a sub-

mutiplicative function & suppose that for a subset M of D](A)

- . . . 1
contalning nen-zero nen-negative functions and dense in |, we

¢

have <« Af |, ¢> <m for f in M.Then[ut}t>0 defines a strongty

. . H .
continuous semi-group of operators on L¢ and the domain of A

in Ll contains 4.
Proof. By proposition I, we have <ut,¢> “C for te {(0,T), T >C.

Consequently the operators

are well-defined and uniformly bounded for every fixed T and t< T,

because

< f% ut s ¢ > < C<f,¢)
Thus it is sufficient to prove that

<lfaeut = f|l . 9> = 0(t) as t --> 0 fot f in M.

lLet ¢u(x) = minf{¢{x) , n} . For £ in M we have
t
% L ! (A[)ius ds
[o]
and so

t

<l f% v, - A, 005 Tlaivu ¢>ds <t sup< u5.¢n><\Af\,¢>
o] s<t
tC={Aaf | ,d>

which completes the proof.



The following proposition has hecn proved in [l].

Proposition 2. Suppose {Pt% ty0 ls a semi-group of probability
measures on a Lie group G. Let A be the infinitesimal generator

: . , -

. : : fia)

nfx{Ptk £50 and suppose that for a polynomial weight
Sccdvtg o0 for all t. Then for every ©<£a & | there is
a 270 such that for every non-negative function f in CC(G)

. o -
we havo(-[z\\af VD IR e

-

lLet G be a Lie group and let B be a Banach space. By a repte-

sentation of G on B we mean a homemorphism

of G into bounded operators un B such that for every £ in B

the function G Yyx ~———o ﬂxﬁ » B is continucus. We note that
il £ s yha
N M LN

whence, if
d(x) = max{lir 4 , yn e

® X
then ¢ is a submultiplicative function.
For a measure u  in M¢ we wWrite

1 f = fﬂxﬁdu(x) .

U
) : 5 < i . = i
0Of course t\wuu z,"U“M¢ Also nu#v ﬂuﬂv
[f lF]} is a hounded approximate identity in L; , we have
1;“‘"%.5""'3 = o,
1

We define the Garding space of 7 as the image of the map

CHO@BAT@E —~ommms AME

and we denote it by BO. In other words Bo = Lin{nfi: EEC?(G),EE Bk.

Let U be a distribution with compact support on G. We define

a {unbounded) operator Ty s follows.

Blzy) ={fcB: there is necB my . er nfor all gec (o)}

Putting an approximate identity fj in place of f we see that nis

defined uniquely by U and £ and so we put 1U£=n

By definition, we have ﬁf‘ui

easily verify that u is a closed operator: if Enag(lu),én—-> £

wm.m. & for £ in C?(G).WE also
f—U c

and my& ===> 0, then for all £ in C(6)

Tpapt * limve gy s Mmmenge, = e
whence ££ECJU) and 1UC = n .

Since for all E,gﬁCZ(C) and EL£cB we have =

gxU"E" T "o ywgt

nfg LE(%U) and so BGC E(EU). Let “U be the closure of the
restriction of Ty te BD. We have “U"fﬁ = "U*fg for £€B, fCCC(G).

Se in the case U%f = f%U we have Ty = My - In Face, if [fj} is

an approximate identity in C:(G), then for ng(lu) we have

P N A
i i i
anp(nu).

s 8O sinc931U is closed)

Example. Let B oune of the follwing spaces: Lp(m), Lg , where
¢ is a submultiplicative function , C:(G). Let 3 be the right
regular representation, i.e.

ﬂxf(y) = fiyx),

If Uis a distribution with compact support, then for every geB
g#duis a well~difeined distribution.

We have

Dlry) = {g B : gxu¥3] .

In fact, if EEB(EU)’ we have LT grf-, fFor f in C:(G) and so
g*ﬁ:fv= kng for some k in B and all f in CC(G). Hence, for h

in CI06), L aelef™, b = Coef” by, f.e. ¢ gel? haty = ¢k , hxt>



which shows that g«U = k in the sense of distributions. The con-
verse [nclusion is still simpler.
On the other hand tU is the closure of the operator

[ —==5>f:U for f in c:(c).

Now our aim is to uvse the remarks above to study the following

situation.

Let[ut}t>0 be a semi-group of ptobability measures on a Lie

Kroup G and let 7 be a representation of G on a Banach space B.

Let A be the infinitesimal gencrator of {ut]t>0

By Hunt's theory, C:(C) is contained in D(A) and Af = Fer™,

an C_(G).

where F is the dissipative distribution defined by «<f,F> = Af(e),
Also for a compact neighbourhood V of e we have

Fo= v, Iy » where F has support in V and by is a bounded mea-
sure, which ig non-negative and vanishes on V.

Since Fy has compact support, we define e oand T . If

v —Fy
Ty s 8> < e » where ¢ is the submultiplicative fumction
o= maxfn e w1}, we wrire L + 1 and - = m, 47 s
- : Py Thy F Ey Ty
where, of course, an =fﬂx duv(x).
Ouv the othee hand, suppose that SHertx < O o for te(0,1),

The we write
T, =J 1Txd”t(x)
Proposition 3. The following are equivalent:
(i) For a non-negative function f # 0 in C:(G) <[AE| , 4> <o,
{(ii) <« Wy » 37 < &,
(iii) “uoa gre C for

Also (iiil9 implies
(iv) [nu} € >0 is a strongly continuous semi-group on B.

te {0,1),

Moreover, the infinitesimal generator Uf{"Ut}m>0 ", is equal

Lo g = lF

Proof. The plarn of the proof is as follows. First we show that
(i) and (ii1) are equivalent and then that (iii) implies (iv).
Proposition | shows that (i) implies (iii). Then we show that (iiji)
implies (ii) and finally from (iii) and (ii) we derive (iv).

We have Af = f&FV + fwu;'. Since f and Fy have compact support
there is a compact neighbourhood U of e such that
whence |<[Af]| , g5 ( « féF;J vd> + (E ¥ uEﬂ )| = <f*(u;‘ug)‘f.¢>
Consequently, <|Af]|,¢> is finite iff <f%u6', > = (uaﬂ fx ¢ >
is finite. But, since ¢ is submuleiplicative c]f*¢(x);¢(x);pzfi¢(x),

whence Shpedr € o= LfE <]Af],4> < = v i.e. (i) and (ii} are

equivalent.
Now assume (iii) is satisfied. To show (ii) we take 2 non-zero

non~negative function f in U:(G) and we write

t t t
- = = wp ~
(2) f %ut f | Af%usds f f Fvéusds+ f f*uvsusds.
[s] o [+]
Hence
t - t -
£<£Kuvhus L8> ds < <|f+ut - £, 6>+ £<|§*Fv|xus,¢>ds

< o<f,g> + SLTPL LR N t<|f<F;‘,¢> < o

Thus for almost all s <t <f*u“2us 4>

v

follows, since ¢ is submultiplicative and so

is finite and thus (ii)

~ -1 -1
< f*uvrus s 9> 3_<uv,¢>< f.¢9 > <us.¢ ¥

Now we write (2) dgain for arbitrary f in C:TG) and by (ii)
and (iii) we see that

(3 <lfew - £, p> < ot

£ < 1.
N = or t

Since, by {(iii) UHH{\; € for tZ t and by {3) for & in B
t

lantnfg meElly & <[f¥u; £l,¢6> Wg “B }

suvpf*f;ﬁsuppf<ugﬂ



we seq thac{ﬂu }t>0 is a strongly continuous semi-group on B and
t

alse that the Garding space B i contained in the domain of the

infinitesimal generator ", of the semi~group fﬂu }t>0' Also
t
ﬂFCﬂA - We are going to show now that T, =Tpe First we prove

that for A> ¢ (. A- "p)B_is dense in B. Suppose that for E£' inB’
0 = <h - mpdmet, £'> = JAE(x) = F F(x))<n £,6'> dx

for all & in B and f in C:(G). Let wg(x) = <ﬂx£,t'> . We have

¢€(x) <C o{x). By proposition 2 Tt: f --=> u:&-f form a strongly

continuous semi-group on Li whose generator on C:(G) fdensee in

ri ) is F -=~ F4 f. Hence <{Af - FXf) sbp> = 0 for all fc(}:(c)

implies £' = 0,

Huence, since e is closed, (Af nF)p(nF) = B. But A - LN is
4

I = 1 on p(ﬂA) and (& - HA)E(HA) = B, whence Q(HF)r: E(HA) implies

DC mp) = B("AJ i.e; Tp o= 7

A
What remains to be shown is T = Fp - Since A= TpClp

it is sufficient ta prove that for A> 0 A - . is 1 - 1 on

DA M) . Buppose for EEE(EF) we have for all £'¢ 8'

(4) O = «(Amg = m 7)€, 0> = [(Af(x) =€ Fla))<m & 56 '> dx.

But f --~>F% F is the infinitesimal generator of the strongly con-

tinuous semi-group f ———>f¢u: on L; restricted to C:(G).

Consequently (4) implies that <WxE s £'> =0, for all &' in B',

i.e. £ = 0 and this completes the proof of proposition 3.







