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INTRODUCTIQN

The aim of these lectures is to give a rapid introduction to
several situations in geometry and topology where the theory of roots and
weights is of practical value. The first concerns characteristic classes of
homogeneous vector bundles, which dates from work of A. Borel and
F. Hirzebruch in the 1950's, and leads to a connection between the Weyl
Character Formula and the Atiyah-Singer Index Theorem first described by R,
Bott. The second concerns minima) immersions of homogeneous spaces, a
subject that has becomé topical again in the last few years in the form of
harmonic map theory. The third is the study of the Yang-Mills equations,

which are currently of interest to mathematical physicists,

The first two lectures sketch the relevant theory. This is
well documented in textbooks, so we shall emphasize only certain practical
aspects, glving short shrift to other results however fundamental they may
be. for exampie, as we shall always deal with compact Lie groups, we assume
without loss of generality that finite dimensional real {ar complex)
representations are orthogonal {or unitary), and we omit any mention of the
Haar measure and its properties. The Peter-Weyl Theorem will appear in
connection with induced representations and the Laptacian, but we omit any
discussion of important consequences such as the finite dimensionality of
irreducible representations and the existence of faithful representations,
Thus we do not claim to give a balanced summary of the theory of compact Lie

groups and their representations, but rather will concentrate on the

(if)

definition and properties of roots and weights (in I} and homogeneous spaces
{in II}. We assume the reader has some basic acquaintance with the idea of a
Lie group, fts Lie algebra, and the exponential wap, and with the (compact)
matrix groups On. Un and Spn {consisting of n x n real orthogonal,
unttary, and “quaternionic unitary* matrices respectiveiy). Certain obvious
conventions, such as al) menifolds and maps being smooth, and all subgroups

of Lie groups being closed, will be maintained throughout without comment.

The word “"homogeneous® figures prominently in the 1ist of section
headings for each lecture. This indicates what 1s really the central theme
of III, IV, and V¥, j.e. the consideration of a general theory in the special
case where objects are homogeneous with respect to the action of some compact
Lie group. There are two benefits of doing this, the most obvious one being
that the homogeneous examples are particularly susceptible to explicit
computation and thus contribute to one's understanding of the general theory.
The ather is that, in practice, homogeneous cbjects often turn out to be more
fundamental than a priori might seem likely. An example of this which we do
not discuss is the description of (essentially) all vector bundles over a
homogeneous space in terms of homogeneous bundtes; another example (in

differential geometry) is given in IV,
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1. Representations of Compact Lie Groups

(1.1) Real Representations. Let G be a compact connected Lie group, and

let g be its Lte algebra, which we identify with the tangent space Teﬁ at
the identity of G or with the algebra of left-invariant vector fields on G,
We take on § the inner product < , > given by minus the Kiiling form, The

adjoint representation of G , denoted Ad{G) or just Ad, is the homomorphism
Ad : G ——> 50{y)

-1
defined by Ad(g)Y = (d/dt}{exp tX)Y{exp tX) |',__0 , for g=exp X e G,
X,Y €g4. The adjoint representation of Y , denoted ad(q) or just ad,

is the homomorphism

ad : g — Sk(g)

defined by ad = d(Ad)e. {Sk(4)) denotes the skew symmetric endomerphisms
of 94 ; Sk(g) is tha Lie algebra of SO(V]).)

More generally, a (real, finite dimensional) representation of G on ¥

is by definition a hamomerphism
8 : § ——> S0(V)
where V¥ is a (real, finite dimensional) inner product space. Thus, V may

be regarded as a G-module, by defining geX = g{g)X for gef , X e V. Wy

refer to V as the representation space of o. There is an associated

representation of 9 defined by @ = dee » and the diagram below commutes,

where the vertical right hand map is Xs+—— 3 X"/nl.
n={

g ——0 5 s(v)

exp exp

6 —3 5 s(v)

The representation 8 (or 8) 1is said to be reducible if it factors through
some SO(W) for a subspace W of V , in which case it factors through
S{O(W) x D(HJ‘)) and the G-module V 1is the direct sum of the G-modules W
and Wi, Otherwise, the representation is said to be irreducible. For

example, Ad is irreducible if and only if & is stmple.

(1.2) Complex Representations. One may consider complex or quaternionic

representations by replacing SO(V) by U(V) {when V is complex with a
Hermitian inner product) or by Sp(V) (similarly). If ¥ is an F-vector
space for some field F , and if F' , F* are fields with F' «F <F", one

[}
F (by regarding ¥ as an F'-vector space) and

may form the F'-vector space V
the F*-vector space V ® F*. Using the fields Rcq¢ € i gives various
possibilities (see Chapter I1I of [Ad]). However, the significant fact is

that the maps

V——Voqc (V real)

¥ —— yC (¥ quateraionic)

are injective (3.28 of [Ad]), so that one only need consider complex
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representations. (We shall use the notation e e, of for representations

in what follows.} Moreover, it is often useful to convert to complex vector
spaces in order to use the special properties of €. For wxample, if V and
W are real, T ¢ Hom(V W} defines a complex Vinear transformation

T ¢Hom(V ® €, W ® C} , by “extending T by complex linearity, Mare
generally, any real tensor mdy be extended to a carresponding complex tensor;
we shall do this without comment and without iatroducing new motation for the
extended tensor, A familiar example in differential geometry is the embedding
of the space of real k-forms A“v in the space of complex forms ak(v ®C)
an example of particular importance in these lectures is the extension of a
Lie algebra representation 8 of o to one (also called 8) of Yoo .
As further evidence of the value of complexifying, we mention the adjoint
represantations of the groups SOn . Un . Sp“. These have natyral
representations on 7 , ' ,I1" respectively, which we shall denote by .
Then Ad(SUn) z AZ.\ , but M(Un) and Ad(Spn) are best described in terms
of the corresponding complex modules. Indeed, Ad(Un) eCz=A®A and

Ad(Sp,) ® € = 52,C

+ These descriptions follow from the usual {dentifications
of the Lie algebras of SOn s Uy and Spo with (respectively} the skew

symmetric, skew Hermitian and skew quaternionic-Hermitian matrices.

The character of a representation 8 : G —> U{V) is the function
Xg G —> ¢ defined by xe{g) = tr a{g). It is a well known fact (see

[Ad], Chapter 1Il} which we quote without proof that Xg = X if and only f

L
8 =4

(1.3) Tori. A torus in G is a subgroup T which is isomorphic to a
product S1 X L. % 51 of circle groups (Sl ={zecC|jz|=1)): T isa

maxima) torus if it ts not properly contained in any other torus in G. Jt is

elementary that any torus is contained in a maxima) torus, that a maximal
torus is precisely a maximal connected abelian subgroup of G , and that any
element of G s contained in some maximal torus, However, the following
result s the fundamental reason for the importance of maximal tori (see [Ad],

Chapter IV, for a topological proaf, or [Bol] for a Morse theoretic proof),

Theorem: Let T be a fixed maximal torus of G, Then G = () ng'l , and
geG
if T' is any maximal torus of G , there exists some g ¢ G with

T A ng'l. 8]

As a corollary, one sees that the dimension of a maximal torus is independent
of the chaoice of torus; this number is called the rank of G. A more

significant fact is that any character being a class function

xe ’
{ x.f hg-l) = x ({h) for all g,h ¢ G) , is determined by its restriction to
0¥ ) Y

a figed maximal tarus. Since determines @& , this means that the

Xg
representation theory of a Lie group may be analysed completely in terms of a
maximal torus. This is the basis for the theory of roots and weights, which
we shall come to in section 1.4, First, we need some simple results on the

real and complex representations of a torus T. The circle group sboas

defined above is naturally isomorphic with U
eIt

1 We shall also identify it

the matrix

cos t  sint
M{t) = .
-sint cos t

We identify the Lie algebra of Sl with T sc that the exponential map is
Tt

with 502. by assigning to z

t—> e



Proposition: Any representation @ : T — Un is equivalent to a sum
0& B ... e(}“ of one dimensional representations. I[f T = Sl X .. x 51

.!:'I‘v;l /-_ftk v’:fui{tl....,tk)
{k factors), we may write Dg(e R - ) =e

where a; €t* is the Lie algebra representation associated to (Xi. n}

This is elementary since the unitary matrices o(z) may be stmultaneously

diagonalized for all z ¢ T, as is the following consequence,

Corollary: Any representation g : T —> Son is equivalent to a sum
CXI B .., e(xm @ (n - 2m) where m < 2n, {(n - 2m) denotes a trivial
representation of dimension n - 2m , and Cli T — SO2 is a two
dimensional representation. We may write

V=1 t -1 t,
C!i(e s sass B ) = M(“i(tl""'tk))

where oy is the Lie algebra representation associated to Cxi. ]

Finally we remark that as maximal tori for the groups un and Spn one
may take the subgroups consisting of complex diagonal matrices, so these
groups have rank n. For the group SOZn one may take the suybgroup

consisting of matrices of the form

M(xl)

while for 502n+1 one may take matrices of the form

H(xl)

Hence SOZH and 502n+1 both have rank n. For further details we refer to

(Adl.

(1.4.) Roots and Weights for Lie Groups. Let T be a fixed maximal torus of

G, If 8:6— Un is a representation of G on " » 85T 5 ... 8T
{by the proposition), where I is one dimensional with associated Lie

algebra representation Y o€ .

Definition: The weights of & (with respect to T) are the linear forms

71/21. cres YHIZ: {repetitions are possible; the number of times 2w s

repeated is called the multiplicity of a/2x).

(The factor 2x is introduced so as to force the weights to take integer

values on the integer lattice exp'l(e).) Without loss of generality, we may
therefore assume
ri{z)
e{z) = .

. zel.

r.{z)



The weights obviously determine the character of ¢ , and hence 9 itself

{up to equivalence).

Definftion: The roots of G (with respect to T) are the non-zero weights of

Ad @ €.

Let the roots be a = (1u1, eves t“z}' As T is a maximal connected abeljan
subgroup, t s a maximal trivial submodule of 9 for the representation

Ad , SO0 we may write

where the matrix of Ad(exp{x)) on the subspace Vi is M(2'ai(x)) for any

x gt. It turns out that a; # % for i+ j (see {Ad]).

We now state the fundamental classification thecrems for compact Lie
groups and their complex representations, which form the matn goal of this

lecture,

Theorem: The "root system" A of a compact connected simple Lie group

determines the group up to local isomorphism, [

Moreover, "root systems" may be characterized in a purely combinatorial

fashion, from which may be obtained the well known list of groups of this
type: SUn {n a1, SOZn {n» 3}, Spn (n»2), 502n+1 (n>3), G2 .
F4 , E E

g * 7 » Eg. This is proved in [Hel.

8

To explain the classification of representations, some further notation
is needed; for results quoted without proof we refer to [Ad]. The Weyl group
of G {with respect to T} is W = {Ad(g) « S0(n) | Ad{g)T £ T}/T. This is a
finite group which acts naturally on & and hence on t*. This action will
be denoted Ar—> wsd. [t follows easily from the definition of weights that
W permutes the weights of any representation, and in particular it permytes
the roots of G. The hyperplanes Ker a; £ t divide up t into convex
subsets called the Weyl chambers, which are themselves permuted under the
action of W , each of which is determined by a set of inequalities of the
form € > 0 yeeey € ? 0 (ei is 1 or -1}. (Not every such set of
inequalities defines a Weyl chamber, in general, as the forms B yeees
need not be independent.) Let us choose (arbitrarily) €18) yeeer E O of

the above form, and call the corresponding chamber 0 the fundamental Weyl

chamber., We refer to A+ = {elu1 yeees ekak} as the positive roots for D,

Using the identification t = ¢* provided by the metric <, » on 9

restricted to & , we associate to D the so called fundamental dual Heyl

chamber D* ¢ 4*,

Now let G be simply connected. {There is no loss of generality here
a3 the universal covering space of a compact Lie group is also a compact Lie
group, angd the representations of the group may be considared as a subring

of the representations of the universal cover.)

Theorem (Weyl Character Formula): There is a one to one correspondence

between the (equivalence classes of) irreducible complex representations of
a simply connected compact connected Lie group & , and those linear forms

A el* {gt*) which satisfy l(exp-l(e)) < Z. Explicitly, the character y



of the representation associated to such a A fis given by the formula

2u/=1 w4

X exp|t =z a(w)ez'}:r "(A+5)I I a{w)e

weld well

where § = (1/2) £A+a and of{w) {= 11} denotes the determinant of w ont , QO
13

A basic fact about irreducible representations is that such a representation

@ has a distinguished weight, the so called maximal weight relative to a

given cholce of positive roots of 6. The linear form 1 associated to e

in the theorem is precisely this maxima) weight, (The appearance of the factor

2Zx in the definition of welights is designed to ensure'that A satisfies the

condition A(exp'l(e)) £Z.} Hence, the theorem shows that an irreducible

representation 1s determined not just by its weights, but in fact by its

maximal weight alone,

As an example, consider the group G = Su2 » which consists of al}
complex matrices of the form (_%-%J with |a|2 + |B{2 = 1. The Lie algebra

may be tdentified with the set of skew-Hermitian matrices of the form

ATt z 2 3
_ with t ek, zeC, t°+ |z}® = 1. As a maximal torus T
-z /Tt

one may take the circle subgroup consisting of matrices with g =0 ; its Lie
algebra t  then consists of matrices with z = 0. The exponential map

t+T is given by exp(x) = £ x"/nl , i.e.
n=0Q

/Tt o It g
t— -
0 /Tt 0 It

10

Tt 0
We identify t with R by assigning to the number 2at.
8 -/~1 t

Using the fact that Ad(X)Y = XY)('1 » one sees that there are just two roots
ta , with aft) = 2t, Those X e +* which satisfy A(exp-l(e)) < Z are of
the form A = Ay s An(t) =nt , for n e Z. If we choose a+ = {a} , D* is
{t e®| t » 0}, and 50 the forms ‘n which parametrize irreducible
representations of SU2 are those with n » 0. Let the representation

corresponding to A be @ . The Weyl group has just two elements, which act
n n ’

on R by t+—> tt, so the Weyl character formula gives

0
xn(; ‘) < (@™ Py ah
a

for the restriction to T of the character of 9. Since this expression is

just un + un-Z L a-n . we deduce that dim en =n + 1 and that the

weights of 8, are i, Mz =ves k-n' In fact, a concrete realization of
R is provided by the action of SU2 on the space of homogeneous polynomials
in two variables €y » € which is specified by

(_% %) - e = aey - Be
(8 & e - e + e .

This is equivalent to the n-th symmetric power $"s  of the standard

representation A of SUZ' For an example where rank G = 2 , see [Bol].
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(1.5) Roots and Weights for Lie Algebras. Because of the basic correspondence
betwean compact {semisimple) Lie groups G and complex (semisimple} Lie
algebras & ¢ {see Chapters Il and 111 of [He]), the discussion of 1.4 may
be carried out for a representation o of q@cC on " entirely in the
framework of such Lie algebras, We sketch the details as this provides some
useful notation (and illustrates the philosophy of 1.2 concerning the value of
complexifying}. First, maximal tori in G are replaced by Cartan subalgebras
in Qe C, and we shall fixone, h= ke (where t is the Lie

algebra of a fixed maximal torus T of G). Equivalence of maximal tori
under conjugation (the theorem of 1.3} is replaced by equivalence of Cartan

subalgebras under Ad ® C.

Definition: If A e #* , let “= e | 8{H)X = A(H)X for all H eh}.
A . . .

If W _¢{o), » is called a weight of & (with respect to k) , with

X
weight space W .

)

A

If x fis aweight of o , o(H} 1is equal to the scalar transformation :(H)

A
on W_; hence glexp H} = e"(H) for a1l H e £ (< h). This means that
A

A
AM2x/-1 is a weight 2 of 8 1in the sense of 1.4, (Recall that we use the
same notation for & linear form 1 ¢ ¢* and its C-linear extension i ¢ n*,)

if the decomposition of & corresponding to @ = rpe...er,  1iswWritten

A
O = hl)‘1 ®...®W , then the weights of & are i, = 2971 A
n

(i =1,...,n) and W, =Wy, The miltiplicity of i, is just dim W, .
A ?1. i X

Definition: The roots of yec {with respect to h=tg €) are the

non-zero weights of ad (considered as a representation of ﬂ@ € on 30 €.

12

The weights of ad are 0 (with mltiplicity the rank of G) , and
{ﬂwﬁfu‘. 11 <1<t} where 8= (%a, | 1 <1 <2} are the roots of G ,
(each with multiplicity one}, The Jacobi identity shows that if X ¢ \.'u '
Y e \In {a,B ¢ a) , then ad(X)}Y = [X,¥] ¢ v‘m (= {03 if a + B¢ a).
From this it is easily shown {(a) that Vul L \rB if a+g+0, and (b)
that < , > 1is nondegenerate on h. By (b) we may choose Hu ¢ h such that

A *
<HMH > = -a(H) for all H eh. For any E,eVoo E eV (aca),
invariance of < , > under ad gives <[Eu.E_u], H> = <E_, [E_u. H1>

A

= <E_, u(H)E_u> = -<H, H ><E . E_> for all H eh. Hence [Ea, E_u] =
<E, E_ H.. If E,E #0,then <€ ,E >+0 (otherwise, using (a)
above, this would contradict the non-degeneracy of <, > on ge C , i.e.
the semisimplicity of 9fe ¢€). Hence, on choosing any non-zero Ea , wWe may
choosg E so that <E , £ > =-1. To summarize, we have chosen E , E

- a -3 [1 3 -
so that the “root space decomposition”

ﬁ&ﬂ:’t@(&t V& [ V_

ael’ aear 2
is
qec= teCe L E @ I ¢ _|
aekt aedt
and sa that

(1) <E“’ £ »>= -1 » [Eul E-G] = Hu

-

(2) [a:E“,G:EB]=cE if 0O#a+8 «a.

atB

The real decomposition 4 = te I Vi is included in the root space
ta, €A
3

decomposition as follows:
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Tt = ﬁTmHul
ach

= - - E .
vi BdEai E-ui) ® /TR (Eui * -ai)

+
It should be noted that our cholce of positive roots a4 <4 gives rise toa
complex structure J on each V¥, , by setting JE_ = =1 E, +
JE__ = -/~ E_, (o= €10y € at). With respect to this, V_u - Vu , 50

= = . 1s of the discussion in this
v,ec v"i ® v"‘i v,@V . Further details

paragraph may be found in Chapter III of [He],

We shall point out some simple properties of the “weight space

decompasition” = HA which will be usefyl in IV. First, it follows from
X

the definition that if & » y , then Hx and Hn are orthogonal with respect
to the given Hermittan inner product on [ml. (For the case & = ad , this
is defined on @ ¢ by <<X,¥>> = «X,> , complex conjugation being
specified by fa =<E_, forall a e a.) Second, If X ¢ W, , then

e(Eq)X € HM‘Q if L+ a is aweight of o (and zero otherwise). To prove
this, just observe that e(H)e(Eu)x = a{H,E“]x + a(Eu)e(H)x =

a(H)B(E )X + A(H)O(E )X = (a + M) X for all H e h.

(1.6) MNotes. The basic texts referred to above are [Ad] and [He], The
latter contains historical notes which demonstrate the importance of the work
of E. Cartan, F, Killing, S. Lie, and H. Weyl. Parttcularly lucid expositions
are the survey article [8ol], and the articles of E. Stiefel referred to
therein, in which the “Stiefel diagram* is developed. An informal and

practical treatment of representation theory appears in [Ch],

14
1I. Homogeneous Spaces

(2.1) Homogeneous Spaces. Throughout this lecture G will be a compact
connected Lie group and H a subgroup of G. The space of cosets
G/H = {gH | g G} 1s called a homogeneous space, The orthogonal compl ement

> (minus

of the subalgebra M of the Lie algebra q with respect to <
the Ki11ing form} will be denoted m. If X 3, we define the vector field
X* on G/H by x;H = (d/dt){exp tX - gH)|, . This should be contrasted
with the identification between elements of 9 and left-invariant vector
fields on G : the mp X+—> X* is not a Lie algebra homomarphism (indeed,
{X*,¥*]) = -[X,Y]*), There is no suggestion that G/H may be parallelized by
vector fields of the form X* (such vector fields have 2ergs, in general),
Since <, > 1{s invariant under the 2djoint representation, the decomposition
0= hem is an H-module decomposition for this representation. We write

Ad = Ad(G) = Ad{H) & Ad{G/H).

Two special cases are particularly important, First, G/H is said to be
symmetric if there is an automorphism o of G such that 02 =1 and
G = {9 ¢6 | alg) = g} _satisfies (GU)O cH <G, , where (Ga)0 denotes the
identity component of Ga' The induced automorphism of! » also denoted o ,

has the property 62

* 1 ; the decomposition g=hem 1s the eigenspace
decomposition for o. From this it is clear that [m,m] < h, This is the
basic algebraic property of a symmetric space, for §f h is any subalgebra of
9Qad m= W satisfies fn,m] em , then one may define a suitable
automorphism o of § by |::=|h =1, "Im' =l. If G +ts simply connected,
o gives an automorphism o of G which makes G/H 1into a symmetric space,

The theery of maximal tori and roots for a Lie group carries over to a
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symmetric space, from which it 1s possible to obtain a classification of
compact symmetric spaces. MNote that the group G itself can be considered as
the symmetric space G x G/a , a = {{9,9) | g € G} , where o 1is {nduced by

the map (x,y} —> (y,x) of G x G. For this material, see [He].

The second class of homogeneous spaces we shall considar is that of

generalized flaq manifolds, i.e., where H = C(S) is the centralizer of some

(not necessarily maximal) torus of G. The name is taken from the exampte

G=U , HaU xU x,,.xU, where G/H may be identified with the
n " ny Ny
manifold F(ml,mz,....mk) where L TR by definition, .
F(ml’m2""'“k) consists of the “flags® (0} ¢ Eml e Emz € e ¢k ) =
where Ei is a subspace of @ of dimension 1. If $=T 1is a maxima}l

torus, C(S} =T, and G/T is called simply a flag manifold, These two
classes of homogeneous spaces are not mutually exclusive, for example the
Grassmannian Grk(cn) = F(k,n} 1s both a symmetric space.and a generalized
flag manifold. For a detalled discussion of generalized flag manifolds, see
[BH].

(2.2) Homogeneous Bundles., We shall be interested in bundles on a

homogeneous space which are themselves *homogeneous”. Recall that if
*:P—>M is a principal H-bundle, and H acts on a space F , one may

form the associated bupdle E + M with fibre F as follows, First, one sets

E=Px F where H actson P xF by h{p,f} = (ph, h™}f) , then one
defines a projection E + M as the map induced by {p,f) —> x(p). 1f F

1s a vector space, and if H acts linearly, the associated byndle 1s a vector

bundle,

i6
Definition: A homogeneous vector bundie over G/H is a bundle associated to
the principal bundle 6 + G/H by a representation e of H. Such a bundle
will be denoted a(a).

For example, the tangent bundle of G/H 1is a homogeneous vector bundle:
Proposition: T(G/H) = a{Ad{G/H)).

Proof., 1If = : P + M 1is any principal bundle with group G ,

TP =z *TH ® TF where TF is the “bundle of tangents to the fibres*, Note
that «*TM is naturally trivial, and that a trivialization TF = P x g may
be defined by associating to a vector Y ¢ TF over p ¢ P the element

¥ (0} « q» where y 1s a one-parameter subgroup of G such that

t —> py{t) has tangent vector ¥V at 0. The actionof G on TP,
induced by right translation Rg tP+P (g eG), acts via the trivialization
on P x 9 by the formula g - (p,V) = (pg, Ad(g)'1V). This 1s because the
one-parameter subgroup corresponding to ng(V) is g'lyg. Thus Tg/G s
the bundie associated to P + M by the representation Ad(G). Applying this
to x: G—> G/H , we have TF/H x aflAd{H)). But (TG)/H = a(Ad(G)lH) . 50
»TM/H (= TM) =z a{Ad(G/H)) , as required. ]

The "a-construction” is functorial, so one has, for example, Ai T{G/H) =
u(ﬁi Ad{G/H))}. We shall use the notation ay for the construction as applied

to a general principal bundle » : P + M.

(2.3) Hompgeneous Geometrical Structures. In this section we shall write T

for T(G/M} , to simplify notation. By a geometrical structure on G/H (or
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rather, on T}, we mean a distinguished tensor or differential operator such
as an almost complex structure, a metric, or a caonnection. Since T s

homogeneous, it is natural to concentrate on homogeneous, or invariant

structures, namely those which are determined by their behaviour at o ¢ G/H

(and then transported around by the action of G).

An almost complex structure on G/H is an {endomorphism)
J en(T*@T) such that J% = -1; 4 is homogeneous if 1t is specified by

2 . =1. We have noted in

an H-invariant {endomorphism) J e¢m* @m with J
1.5 of | that a chaice of positive roots a* for G with respect to a
maximal torus S determines a complex structure on the vector space

TO(G/S) g L V. This is clearly S-invariant, hence it defines a
ta, €A
i

homogeneous almost complex structure on G/S. It turns out {see [BH]) that
the almost complex structure is integrable, and that any such homogeneous
complex structure is obtained by some choice of positive roots. The most
general homogeneous almost complex structure is obtained by changing ¢ to
=J on an arbitrary selection of subspaces \li.
A Riemapnian metric an G/H 45 a (symmetric) form 9« r(SzT*) which
gives an inner product on each fibre of T ; @ homogeneous Riemannian metric
is given by an H-1nvariant form g ¢ Szm*. For example, minus the Killing
form restricts to such a form on ™ » Which wa shall continue to call <, >,
Note that {f m is an {rreducible H-module, any two such forms must differ by
2 constant multipte. (This is an application of Schur's Lemma.) For example,
this is the case for the Grassmannian Grk(c"). For the gengralized flag

manifold G/S , ™ decomposes as £ \I1 as an S-module, S0 there are many
ta; €A
1
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homogeneous metrics. However, each module v1 i5 certainly irreducible

(being two dimensional and non-trivtal), so any homogeneous metric differs
from a fixed metric (such as < , >) only by a constant multiple on each Vi.
An afftne connection on G/H is a *covariant derivative® operator

V:{T) —> r{T* @ T) which is characterized by the properties:

a) WY (= w(X)) #s C™(G/H)-linear in X,
B) 0, (fY) = (XF}Y + fog¥ for all f ¢ CT(G/M).

We say that v is homogeneous (or fnvariant) if it is preserved by the ieft
L*TG
translation maps Lg t6—> G, g9 e6G, This means dLg(va) s vxg dLg(Y)
L*T6
(see 4.1 of IV for a formuta for ¢ 9 }» Such a connection is determined by

a linear transformation of H-modules
AtMe—e—om* gm

by means of (v,(,,,Y")‘J = AX){Y) + [)(*‘.'f"f]o {X,Y em). This is praved in
{KN] , volume 11, Chapter X. Two examples are of particular interest, 1If
A=0, v is called the canonical connection {geometrically, it has the
property that one-parameter subgroups in G give geodesics in G/H , and
parallel translation along geodesics is given by left multiplication), If
AMX){Y) s%-[x,v]ﬂ_| (the component tn m of 3[X,¥] €q) . 7 s the Levi-
Civitd connection for the homageneous Riemannian metric given by <, It
should be noted that these coincide if G/H is symmetric,
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(L.4) The Hodge-Laplacian. The vector space €®(G) consisting of (smooth}

real-valued functions on G may be made into an {infinite dimensional) G-
module by defining (g-f)(h) = f(hg) for g,h e 6, f ¢ CT(6}). Any (finite

dimensional) irreducible real representation ¢ : G — 50n is contained in

C™(G) 1in the sense that if Vl. eses ¥_ 15 an orthonormal hasis for mﬂ

n L]

the functions eij 19— <<e(g)vj,\‘1>> s 1< Jj<n, span a subspace Ai
of C°(G} which is a G-module tsomorphic to W'. (The inner product on ®'
js denoted << , »»>.)} The isomorphism is that which assigns to VJ the
function 8y ¢ Ay 5 this holds for each fixed 1. Similar remarks

apply to complex representations.

Theorem (Peter-Weyl): As o varies through the equivalence classes of

irreducible complex representations of G , the functions Bij form a

complete orthogonal subset in the L2 sense of C”(6) ® C. 0

We refer to (Ze] for a proof and for a discussion of various {mportant

consequences., This theorem is the basis for harmonic analysis on Lie groups.

A real class ) representation of (G,H) 1s an irreducible

representation 9 : G —> SUn for which there exists some non-zero vector in
@' whose isotropy subgroup contains H, If Vl. sy Vk i% an orthenormal
basis for the subspace of such vectors, which is extended ta an orthonormal
basis Vi, «oo, ¥, of E', we obtain functions 8;5 « CT(G/M) for
l1<ien, 1<jsk, by the same formula ysed earlier. We obtain a copy
of the G-module W' 1n the infinite dimensiona) G-module C™(G/H) for each

j » providing we make C“(G/H) Into a G-module by defining ({g-f)(xH) =

f(g'le). Similar remarks apply to complex class 1 representations, and the
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Peter-Weyl theorem generalizes to this situation (see [Ze]), which permits

harmonic analysis on homogeneous spaces.

The Hodge-Laplacian on a Riemannian manifold M is defined to be the
differential operator 4 = dd* + d*d where d is the usual exterior
derivative on forms and d* s its adjoint with respect to the metric. [t is
an operator on forms (which preserves degree); we shall simply be interested
in the case of 0-forms, i.e. functions, in which case we have af = d*df. If

xl’ «ees X form an orthonormal basis for TKM , % € M, then one obtains

m
the formuila (Af)x = e I (XE f)x {where xi is regarded as a differential
i=l

operator on functions), MNow let M =G with the Riemannian metric given by

<, >, If Xl, vean K

- is an orthonormal basis for g , the corresponding

left-invariant vector fields on G form an orthonormal basis of TgG at each
m

g ¢« G, hence we may write 4 = - ¢ X%.
j=1
Proposition: {a)} If A 1s a finite dimensional G-submodule of ceye g,
then aA cA.
(b) If A fis irreducible, A]A is 2 real scalar operator.
(¢} if @ :G—> U is an irreducible representation of G ,

consider the identification ¢" = Ay (E.C'(G) ® €) defined above, Then the

m
operatar A on A1 corresponds to the operator =~ e(xj)2 on ¢".
=1
Proof, (a) If suffices to show XJ.A < A, This is clear, as by definition,
(X5F), = {d/dt)f(x exp txj”tsﬂ‘
(b} This follows from Schur's Lemma, since A fis a symmetric

G-module transformation.
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{c} It suffices to show that the operator XJ. corresponds to the
opaeratar e(xj). The function f corresponding to ¥ ¢ c" is defined by
flg) = <<a(g)V, V;>> (see earlier). So (xjf)(g) =
{d/dt)<<nlg exp(txj))\f, \f1>>|':.0 - <<e(g)a(xj)v. vi>». 0

In general, the Casimir gperator (of @) with respect to the basis Kl sreey

m .
xm is defined to be the operator - ¢ a{x‘)z. This holds for all complex
i

-
1
representations, irreducible or not. The key fact is that it 1s G-module

transformation, (This is usually expressed more abstractly, by saying that

2

m
L Xi is in the centra of the universal enveloping algebra of q .} for use

i=1

in IV we note that if the basis xl, «+es X 15 chosen as the elements

m
(1/v/2)(E - E_ ), J-L/2)(E _+E_ ) for ace s, together with any
orthonormal basis Hl’ vaey Hk of £ , then the Casimir operator is

k

- 1 oem)? ¢ & elE )6(E_). Finally, when o is irreducible, it is
i=1 aepa ¢

m
easy to calculate the “Casimir constant® ¢ for which e(xi)zv =c¥ for

i=l

all vectors V. To do this, take ¥V to be a weight vector for the maximal
weight Y , Toee B(H)V = 'A\(H)V for all H ¢ h. Using the basis for 9 just
described, we have (a) 1if -a ¢ A+ . e(Eu)e(E_a)V =0 , since
o(E_ )V e W,__ = (0) (It follows from the maximality of % that X - a fis
not a weight), (b) 1f a s’ , e(Ee(E_ IV = o([E_E_TV + o(E_)o(E_)V
“ o(H) V =AMV, and (c) a(H)BV = A(H,HPv. Thus

k

A 2 A
€= £ MH)T -z A(H). If <, > on h is extended to h* in the
a

i=1 ael®

A A A A A A A 4
usudl way, we get C = <A, A> + <4,268> = <A, A¥2§> = ~dx"<a, A+26> (recall
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that & = {1/2) + e) , which is a real number. In particular, if the
ael

representation is non-trivial, ¢ s strictly negative. Finally, if & 15 an
m

irreducible real representation, we claim that e()(i)z is still a scalar
i=1

operator. For @ @ € either is irreducible, in which case the assertion

follows, or fs a sum vy & ¥ where y f§s irreducible. In the latter case, the
m m A

formula ¢ = <§, f+23> shows that I 1.()(1)2 = I ¢(Xi)2 , Since if 1 s
i=} . isl

A
the maximal waight of ¢ with respect to the choice of positive roots N y =X
is the maximal weight of ¥ with respect to the choice of positive roots

-a". Hence the assertion is true in this case.

The Hodge-Laplacian on G/H (with its Riemannian metric defined by

<, ») may be treated in a similar fashion. If Xl. vans ):m is an

m
orthonormal basis for ™ , then we have (Af)o = -(izl (x;)zf}o.

Corollary: The proposition goes through for C*(6/H) ® T 1in place of

C*(6) @ ¢ (with i and j {interchanged). 0

{2.5) Induced Representations. If @ is a representation of G and

1 : 4 +G 1is the inclusion of the subgroup H , the restriction of the
representation to H will sometimes be denoted i*a. Conversely, given a

representation & of H , one may define the induced representation ite of

& to be the infinite dimensional space Tr{a{e)) of (smooth) sections of the
homogeneous bundie of{6) ({see 2.2), together with the action of G defined
by means of the formula (g.s){xH) = s(g'le). If ¥ 4% the representation
space of 9 , we write 1‘\' = r{a(0)). For example, if 8 : H—> SOl

is the trivial representatfon of H on T, 1'111 is the G-module C"(G/H).
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In the following basic observation, which describes the structure of i'e R
H°mG(.1"2) dengtes the vector space of G-module transformations from the

representation space of LY to that of 4.

Theorem (Frobenius Reciprocity): Let ¢ be a representatton of G. Then

Humh(o. i,0) 1is naturally isomorphic (as a vector space) ta HomH(i*o. a).

Proof. Let V be the representation space for o , and W- that for 9. From
the definition of af@) , sections s of afa) correspond to elements

f eC™(6) ®V such that f(gh) = a(h)"f(g) for all het , geG. (Define
f(g) = X , where s{gH) « G *H ¥ is the equivalence class of (g,X) ¢ G =x V.}
The action of & on Tr{a{e)) corresponds to the action of G on

C™(6) @ v given by {g-f}(x) = f(g'lx). {Note that this *left action" is not
the natural "right action" considered at the beginning of this section.) Thus
we haye identified T(a(o)}) with a G-submodule of C (G} @ V. If now

¢ : W—> rlale}} is a G-module transformation, we obtain ¢ : W —> V by
regarding g¢{w)} as an element of C™(G) ® V and defining ¢(w) = ¢(w){e) for
all weW. If heH, wle(h)w) = ple(h)wi{e) = (heg{w))(e) =

o) (h"1) = a(h)e(w)(e) = a(h)elw) , so ¢ 1is an H-module transformation.
Conversely, if ¢ : W—— ¥V s an H-module transformation, define
piH—>CT(6) @V by 4((e) = Wel@) W, If x G, slalx)n)(g) =
w(‘(g'lx)w) = ¢(H)(x'lg) = {x+4iw)){g) , so ¢ is a G-module transformation,

The maps ¢»—> ¢ and ¢ > ¢ are clearly linear inversas of each. I

If the representation space of ¢ is W (as in the proof), denote by A'
the image of the evaluation map W ® HomG(o, 1,8) — r(afa)). Tha Peter-Weyl

thearem may now be extended to show that the spaces A’ » a8 ¢ varies over
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equivalence classes of irreducible complex representations, form a complete
orthogonal system of subspaces for the space of Lz-sections of afe). (By
taking o : H —> Ul to be the trivial representation on € , we obtain the
version of the Peter-Weyl theorem for C“(G/H) ® € mentioned earlier.) See
[Bo2] for comments on this. The proposition of 2.4 may also be extended,
provided a is replaced by the appropriate operator on r(af{g) } (c.f. V).
Finally, we note that if ¢ and ¢ are complex irreducible, then it makes
sense because of the extended Peter-Weyl theorem to say that the number of
subrepresentations of i*e which are equivalent to & is precisely
dim Honbto. i,0) = dim Homh(i'o, 8}. By elementary representation theory, the
latter number is the number of subrepresentations of i*p equivalent to o
{(in any decomposition of i*4 into irreducible summands). For example, the

number of times ¢ appears in C™(G/H) ® € is dim{X | e(H}X = X},

(2.6) MNotes. The conventions regarding vector fields on G and G/H are
unavotdably rather troublesome, If one wishes to consider 9 as the algebra
of left-invariant vector fields, and to deal with the space G/H of Jeft
cosets, one has to accept that results for G/H do not agree exactly with
those far G when H = {e} , e.g. in the Peter-Weyl theorem for G the group
acts by right multiplication, whereas for G/H it acts by left multiplication,
For the theory of symmetric spaces, see [He]l, [Lo] or [KN]; for results on
generalized flag manifolds see [BH]., An elementary discussion of the Laplacian
{Laplace-Beltrami operator) is given in [Wr]. The Peter-Weyl theorem is proved
in [Ze] using the Stone-Weierstrass theorem; an approach using the fact that
the Laplacian is an elliptic operator is given in [Wr]). Our discussion of

induced representations is taken from [Bo2].
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[II. gharacteristic Classes of Homogeneous Bundles

{3.1) Cohomology of Homogeneous Spaces. There are various ways of defining

characteristic classes, but since our aim is to discuss the connection with
representations we shall just give one convenient definftion in this section.
Moreover, we shall only use cohomology groups with real coefficients, and
consider anly Chern and Pontrjagin classes. References for unproved

assertions will be given in the tast section.

If G is a compact Lie group, one may construct a principal
G-bundle EG + BE which fs “universal® in the sense that any other principal
G-bundle P + M 1s the pull-back f*EG for some map f : M + BG. For

. - N+n) .
example, if G Un' nne may take BUn = AlT Grn({ ). Eun = ;lm "N+n,n

{the Stiefel manifold W is the space of ordered n-tuples of vectors in

N+n,n
+ :
C” " Wwhich are orthonormal with respect to the standard Hermitian inner
product). The projection EUn + BUn comes from the natural maps
+n Mtn
HN+n’n > Grn(d.N )- If G = SOH one may take Bsﬂn = lim Grn(m )'

Ntm
ESOﬂ « Yim ¥ vwhere the Stiefel manifold V¥ is the real version

Noo Nenon N+a,n

of “N+n n An important consequence 1s that the tautologically defined vector
»

bundles Hn + BUn. Vn »> BSOn are then universal for vector bundles of rank n

with structural groups U, SO respectively.

n

It 15 a well known fact (see later) that the rea) cohomology rings

of Bun, BSUn are as follows:
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(a) H*BU = n{cl,....cn] i.e. the polynomial ring on Cpaeeeslp,

21
where cy € H Bun.

41
(b) H*BS‘I)Z“+1 z u{pl.....pn] where Py € H BSDZn+1' and
LR] 2 2

H*BSDZn 3 u{pl.....pn.q] where Py € H BSOZn. qeH nBSOn, and q° = Po-

Definition: (i) If P + M is a principal Un-bundla, and P = f*EUn. then

the &k Chern class of P is ¢, (P) = frc .

{(ii) P + M is a principal SOn-hundie, and P = f*ESOn. the #th
Pontrjagin class of P is pi(P) = f'pi. The Eyler class of P is e(P) =
f*q.

(i11) The Chern, Pontrjagin and Euler classes of a vector bundle

with structural group Un or 50n are defined similarly.

Note that although f 1is not unique, it is unique up to homotopy, so the
definition makes sense, Note also that the characteristic classes of a vector

bundlie are the same as those of the associated principal bundle.

To go further, we need some results on the real cohomology rings of
homogeneous spaces (of which (a) and (b) above are special cases). First
consider the case of a torus T = S! x ... x S! (n factors). Then H*T =
GP H*$1 = A(xl....,xn), i.e. the exterior algebra on generators
XpaeresX, € HIT. On the other hand, BT = B5! x ,., x BS! and BS! = By, =
lim o = ™. since HrepM = u[y]/(y"+l) for some y ¢ w2eP", e have
::;;" z Hy]. Hence H*BT 1 u{yl....,yn]. i.e. the polynomial algebra on

9eNerators Yy,eee.¥, € H2BT. There is a natural relation between H*T and

H*BT which is best seen by considering the spectral sequence of the fibre
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bundie ET » BT : the transgression 1+ gives an isomorphism H!T + H2BT in
this situation. Now, HIT is naturally isomorphic to the vector space ¥,
hence so is H2BT. The point of all this is that we may identify H*BT in a
natural way with the symmetric algebra S*r* (or the algebra of all homogene-

ous polynomials ont ).

More generally, consideration of the spectral sequence of EG » BG
leads to a relation between H*G and H*BG. It was proved by H. Hopf {Ho}
that H*G must be an exterior algebra A(xl....,xk) on odd dimensional
generators, from which it follows using the spectral sequence that H*BG s a
polynomial algebra on generators Yyseena¥ys where r(xi) * ¥y {and so
deg ¥ = deg X+ 1}, Now let H be a subgroup of G. The space BH may be
identified with EG/H, so one has a map BH + BG which is a bundle with
fibre G/H. The spectral sequence of this gives a relation between H*8H,
H*BG and H*G/H, The case when H 1s a maximal torus T {s particularly

interesting:

Theorem 1: The image of the map H*BG » H*BT 45 the subring (H*BT)H
consisting of invariants under the action of the Weyl group W of G; W
acts on H*BT via the identification H*BT = S*p*. The map {s injective, so

HeBG = (H=BT)".

This gives the result quoted above for G = U“. for W is the
symmetric group S, acting in the standard way on H*BT = B{:l,...,xn]. ]

H*BU ¥ D{cl,....cn] where c. is the th elementary symmetric function of
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X paaesXp. The case & = SOn is similar,

If H is a subgroup of maximal rank, 1.e. H 3T for some maximal torus T,
then the theorem can be used to express H*G/H in terms of the Weyl groups

HH and W. of H and G.

G

Theorem 2: The kernel of the map (S"q-_"")ll""I =z H*BH +~ H*G/H {induced by the
inclusion of the fibre G/H for the bundle BH BG) 1is the jdeal I
generated by those elements of (S*L")HG (Q(S*L*)H“) which are of positive

degree. The map is surjective, so H*G/H = (S*=)"W/[, [

For example, let 6= U, H = Uy x Ugy ptq = n. so that G/H = Grp(a:") z
Grq(m?). Then Ng = 5., Wy =S, xS, and HYBH 3 ®opserestys Tpaeeesty]
where 9 is the #th symmetric polynomial in xl,...,:p and T is that in
"p+1'"""n' The ideal I is generated by the symmetric palynomials in

X seeesX, of positive degree. Dividing (s*e* )" 2 R o

n 1""'09' tl,...,tq]

by 1 is equivalent to imposing all relations of the form I LA 0,
k > 0, For more information on theorems 1 and 2 see [BH] and {Br].

(3.2) Characteristic Classes of Homogeneous Bundles. We can now give the

basic relation between the characteristic classes of a homogeneocus bundle and
the weights of the corresponding representation. We begin with the universal

situation. Recall that if 9 is a representation of G, uEG(e) denotes

the vector bundle associated to EG + BG by a.
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Proposition 3: Let o : G + Un be a complex representation with weights
xl,....an {with respect to a fixed maxtmal torus T}. Then cquG(e) =
ai(ll.....ln), i.e. the ith elementary symmetric function of Appeeardy

{considered as an element of H*BG via the fdentification H¥BG = S*L*)").

Proof. It is easy to see that aEG(e) = f*H“ where f : 8G + Bun is the map
induced by & : G » U,- The result now follows from theorem 1 and the

succeeding remarks. []

If 8: H Un ts a representation of H, a similar argument applies to the

bundte a(e) associated to G » G/H, using theorem 2.

Proposition 4: Let H be a subgroup of G of maximal rank. Let 8 : H+ Un

be a complex representation with weights Aseessdos Then cia(e) =

n
[ai(xl....,xn)]. f.e. the equivalence class of ui(;\l,...,xn) in

(swemy1.

To dea) with Pontrjagin classes, we need to exami ne the description
of H"BSOn more closely. If T is the standard maxima) torus (see I) we
have H*BT = n{xl,....xm] ? 5*c*, where n=2m+l or n = 2n. For
n = 2mtl, the Weyl group (as a transformation group of *) 1s generated by
Sm together with the transformations which change the sign of any of
Xpsess )Xo Hence Py € H"‘iBSOZ“‘+1 may be tdentified with a‘h%.....x:‘).
For n = 2m, the Weyl group is generated by S'|I1 together with transformations

which change the sign of any even number of the S LLTEY S Hence
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Py sH“BSOzH is again identified with uﬂxi",...,xi). and q with Xjowex

m
Note that this shows the definition of Py is consistent with respect to the

inclusion 302“l + 502,“1. A —s (H—?—)-

Proposition 5: Let ¢ : G - SGn be a real representation such that ¢ o Ly
has non-zero weights = ¥pseesst . Then Piogg(e} = [ai(uf,...,uf)]. If n

is even, then quG(o) = ("1'“"‘1:] if k =n, and zero otherwise.

Proof. From the results on real and complex representations of tori given in
I, 1t is clear that the non-zero weights of ¢ ® € occur in pairs of the

form g, The method of proof of proposition 3 extends to this situation. ]

Proposition 6: Let H be a subgroup of G of maximal rank. Let

¢ :H + SDn be a real representation such that 4+ ® L has non-zero weights

tyseeesty . Then pia(e) = [ai(uf.....ui)]. If n is even, then ga(s) =

[”1""‘k] if k = n, and zero otherwise,

Proof. As for proposition 4, using the remarks in the proof of

proposition 5. 0

It 1s convenient to introduce the tota} Chern class

c(P} -i}; ci(P) and the total Pontrjagin class pP) = ¢ pi(P) (where
>0 >0
tg * 1, Py = ). Using propositions 4 and 6 we then have
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clale)) = [ r {1+ 3 )]
J'l

pae)) =L 1 (14 u§n .
ju1

Ife@cC=o0,

k
cla(e)) = L n (1 + wHl = u5)]
=1

from which one may deduce the well known relations between Chern and
Pontrjagin classes which exist when a real bundle is complexified or vice
versa, The formulae for the total Chern and Pontrjagin classes in terms of
weights exhibit the "splitting principle™, which says that as far as these
characteristic classes are concerned, any complex vector bundle behaves 1ike a

direct sum of line bundles.

As an application, consider the tangent bundle T{(G/H} = o {Ad(G/H))
of a generalized flag manifold. If H =T (a maximal torus), the represen-

tation space of Ad{G/T) 1is m = T v

ta, €A i

(see 1.4 of 1), so the weights of
Ad(G/T) are the roots of G and one h;s p(T{G/T)) = [ T (1 + aj )] Since
HH consists of the identity element here, theorem 2 of ; 1 shows that
p{T(G/T)) = 0. More generally {see [BH]), his always of the form t & ) V
for some subset 1 of (l,...,1}, S0 m = ) vi. and the weights of el
Ad{G/H) @ € are ([t oy ] 1 ¢ I} (this sut:»s.tj.-l:l of & is usually called the

set of complementary roots for G/H). Then p(T(G/H)) =[ n (I + uf)] {which
igl
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is in general non-zeroc). If a set st of positive roots is chosen, G&G/H
acquires an almost complex structure {as explained in 2.3 of II), hence
Ad{G/H) = o® for some complex representatfon @, The Chern classes of the
“complex" tangent bundle ’rl.0 G/H = o(e) are then given by

C(Tl,ﬂ G/H) = [al:A'.'“ + a}l.

{3.3) Homogeneous Differentia) Operators. In this section and the next we

shall follow the article [Bo2] of R. Bott, in which the relation between the
Weyl Character Formula {see 1.4 of I} and the Atiyah-Singer Index Theorem {s
sketched, let D : r(E} + r(F) be a differential operator, where E and F
are complex vector bundles over a compact manifold M. If D is elliptic,
which we shall always assume, both Ker B and Coker D are finite dimensional
vector spaces, and the index of 0 is defined to be the integer dim(Ker D} -

dim({Coker D). For example, if E =F = .\i

T*M and M is Riemannian, the Hodge-
Laplacian dd* + d*d is an elliptic operator. (However, becsuse it is alsg

self-adjoint, Coker D = Ker D* = Xer D, and 50 the index is zero, )

Let M = G/H and assume E = a(g), F = a(¢) for some complex
representations o, & of H on vector spaces ¥, W. An (elliptic) differential
operator 0 : r(E) + T{F) 1is said to be homogenagus 1f it is a G-module
transformation, where the G-module structures on T{E) and r{F) are defined
by the formula (g-s){xH) = s(g'le), as in 2.5 of 1I. For such an operator,
Ker D and Coker D are themselves (finite dimensional) G-modules. The
virtual G-module Ker D - Coker D will be denoted (D). The “dimension

function" extends to the ring R(G) of virtual Gemodules in an obvious way,



3

and we have index{D} = dim x(D).
Theorem: x(D} = i,(V = W).

Proof. Let (X be any (finite dimensional) irreducible complex representation
of G on a vector space U, Llet Tx(E) and I'D‘(F) denote the (finite
dimensional) subspaces of p(E) and r{F) respectively consisting of sums of
G-modules equivalent to U (c.f. 2.5 of [[)., Since D is homogeneous, it
restricts to a G-module transformation Dq : r&(E) - ro‘(F), and x{D) =

& X(Du)' where the sum is over the equivalence classes of irreducible
representations. Now, if ( : 8§ + T is any transformation of (finite

dimensional) G-modules, the exact sequence

0 > Ker € > § > T ——> Coker { ———> {1

shows that Ker C - Coker T is equivalent to 5 - T. Hence x(D) =

) {r,(E) - ToF)) (since 8 s elliptic, all but a finite number of terms
&

here are zero). By Frobenius Reciprocity (see 2.5 of Ii), ru(E) 1

dim Hom“(i*u,v)u and ﬁu(F) z dim HomH(i'U.H)u, 50

x{D) = g\dim Hom, (1*U,V-W}U = 1,(v-W). 0O

This is a considerable simplification of the problem of finding index(D}).
First, the result says that index(D) depends on the bundles E and F and
not on D itself, Second, we have shown implicitly that i (V-W), which

a priori is a formal infinite sum, is actually finite.
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{3.4) The Index Thearem. For an elliptic operator D : r{Ey + r(F), the

Atiyah-Singer Index Theorem expresses index(D) in terms of the characteristic
classes of TM and the symbol o(D), the latter being a bundle constructed
algebraically from E, F and the highest order part of D. The formula may
be written

aim Mich o(D)td(TH & €))(TH]

index(D} = (1)
although we do not propose to explain this, except to say that ch and td
represent combinations of Chern classes which azre then evaluated on the
homology class ([TM]. A detailed introduction together with several examples
is given in [Sh]. In the homogeneous situation described in 3.3, the role of
o(D) 1s played by V¥ - W; the Index Theorem should give a formula for
index(D) = dim 1*(\‘-1{) in terms of the characteristic classes of afa),

o{#) and TG/H = a(Ad(G/H)), and hence (because of 3.2) in terms of the
weights of @ and # and the roots of G. We shall now explain how the Wayl

Character Formula performs this function.

The basic point is the interpretation of the Weyl Character Formula
in terms of induced representations, due to Bott, Referring back to 1.4 of I,
we see that ff G is a simply connected group with a fixed inclusion
1 :T+6G of a mximal torus T, and if ¥ is an irreducible complex repre-
sentatjon whose maximal weight X ¢ * corresponds to the one dimensional

representation A of T, then the formula may be written
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(i*eia = T olw) we(n + a)
wel

where A 1s the representation of T corresponding to &, and

2= 7 oflw) wea. This pust be interpreted as a formula 1n the ring R{T} of
Wl

virtual representations of T. We need to quote the following additional

facts, all of which may be found in [Ad].

(1) i* : R(G) » R{T) 1is injective, the image being the sudbring
I(T) = R(T)“ consisting of invariants of W,

(2) - The subgroup A(T) = (¥ ¢ R{T) | we¥ = o(w)¥) of “alternating
elements* is a free module over I(T), generated by q.

(3) 1If al.(yz are representations of G on complex vector spaces
Ul’ Uz, the form < , s defined by <u1,u2>6 = dim HomG(UI.UZ) extends to
a non-degenerate symmetric bilinear form on R(G), relative to which a set of
representatives of the equivalence classes of irreducible representations 1s
an orthonormal basis.

{4} The “Weyl Integration Formula® holds: <0&,132>G =
(1/{W]}<iv Oy, A8 1% 00y>1s

Theorem: If T eR(T), a(i*i (ar)) = T a(w)w-r.
wel

Proof. For any T1' e R{T), <r', i*(ﬁf)>e = ot ¢ ET>T {by Frobenius

Reciprocity). Since i*r' and <, >p are W-invariant, one may write this
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as (1/|W]) § <*r', we(nr)>r. As 0 e A(T), weld =a(wld. So T we(aT) =
wed T wel
T olw)(wer) = q i*r* for some ™ £ R(G) (by (1) and (2)). Hence
Wl _
<, 1_(ﬁr)>G = (1/|W])<i*r’,nar®>, = <0',0*>¢ by (4)). So by (3),
itfﬁr) = r*, Applying i* gives 1*i*(§T) = i*r*, and multiplying by n

gives a(i*i_(ar)) = ai*r" = T olw){wer), as required, O
wel

Thus, if A 1is the maximal weight of ¥, this theorem says that
o=y,

i.e. the procedure of passing from the maximal weight to the irreducible

representation is precisely that of taking the induced representation.

The theorem extends to the situation where T is replaced by a
subgroup H 3 T. Let the tnclusions be denoted a : H+ G, b : T+ H, and
let a(H), a{G) be EH o{w) wes, ¥

NeHG

o(w} wea respectively. Define
Wé
Q= a{G/H) € R{H) by Q?H) b*q = g(G). If T ¢ R{H), one has

a(6)(i*a_(ar)) = ] olw) we{a(H)b*r)
W /W
GEGH
(see [Bo2] for the proof). In particular, if r 1{s an irreducible represen-
tation of H, a*(ﬁr) is an irreducible representation of G. The final step
in obtaining the index formula is to interpret this formula (or at least, the
result of taking dimensions) in terms of characteristic classes. We shall

simply quote the result,
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dim a_{ar) = T(e)ch{a(r))[G/H],

in which T(e) is a characteristic class defined in terms of a certain

homogeneous differential operator L which has the property (L) = g.

{3.5) MNotes, Useful references for characteristic classes, from various
points of view, are [BT), [Hi], [MS], [Sw]. The results on the cohomology of
Lie groups are basically due to A. Borel - see [Br] for a survey and further
references. The connection with representation theory is developed in the
series of papers [BH] of A. Borel and F. Hirzebruch. For further results on

homogeneous bundles, and in particular the Borel-WeilBott theorem, see [Bo3].
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I¥. Mipimal I rsions and Harmonic Maps

{4.1) The Second Fundamental Form, Llet E be a real vector bundle over a

manifold M with connection \F :ME) —> r(T*™M @ E}. Me write
th(x) = vis for s ¢« M{E) , X ¢ M(rM). If F 1{s another bundle with
connection vF » 3 connection ¢ in E* ® F may be defined in a standard way

by the formula (vxq.)s ] v‘;o{s) - ¢(v§s).

Now suppose M is Riemannian, with associated {Levi-Civita) connection

vT". Replacing E*@F by T*M ®E in the last paragraph we obtain

V: (T @E) — r(ezT*n ® E). Repeating the process we obtain
v r(s‘T"M @ E) — r(s“lT*H ®E) forany 150 ; it is usual to cali all

these aperators vE {regarding them as natural extensions of the original

f). The contraction AE = t:r'(vE}2 i T{E) — r{E) 1is called the Laplacian

on sections on E (with respect to a local frame field xl, rens xm for N,
E mooE2 o
A(s) = 1!:l (v) (x1 .xi)(s)). For example, if E = M x R is the trivial

bundle, with connection defined by v;:f = Xf , AE is minus the Hodge-

Laplacian on functions introduced in 1I.

If F:MN—> N is amap of {oriented) Riemannian manifolds whose
connections are vm s vm » 3 related construction 1s possible using the fact
that df : TM + TN defines an element df « F{T*M @ f*TN). For f*TN we take

the conpection vf*TN ™
f*TN N
Y (Yof) = (vdf(x)v).f (see 1.7 of [EL2]). Using the formula of the first

induced by v " , which is characterized by the formula

paragraph, we obtain v(df) . r(azT*M ® f*TN).
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Definition: The second fundamental form of f : M + N is the tensor field

f*TN

™
v(df) ; by definition 9(df)(X.¥) = v, df(Y) - df(v¥) for X, Y ¢ r{M).

Note that tr v(df} 1s just the Laplacian if N = ®. In general, it is an
f*TH-valued {symmetric) two form on M , and is called the tension field (see
2.5 of [EL2] for an expression in terms of local coordinates).

Definition: Amap f t M+ N is said to be harmonic if tr ¥(df) = 0.

It turns out (2.4 of [ES2]) that f 1is harmonic precisely when it is an

extremum for the energy functional

E(F) = %— j’H ldfl2 .

In other words the equation tr w(df) = 0 1is the Euler-Lagrange equation for E.

An important special case is the classical concept of a minimal
immersion. Suppose f : M » N is an immersion which is also isometric, i.e.
f*h = g where g, h are the metrics on M , N respectively. Then it is
easy ta show that v{df) takes values in the normal bundle v e f*TN , and

the expression (1/m)tr v{df) 1is known as the mean curvature normal field.

Oefinition: An isometric immersion is said tq be minimal if its mean

curvature normal field vanishes,

It is well known (see §2 of [ES]) that an isometric immersign is minimal if and

only if it is an extremum for the volume functional
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VE) = [ (det n)/2
M

Of course, an isometric immersion is minimal if and only if it is harmonic.
However, it is important to realise that the concepts of harmonic and minimal
arise from different variational problems: in the former case, one fixes
metrics g and h and considers {the energy of) all maps, whereas in the
latter case one fixes only h and considers (the volume of) immersions,

taking the induced metric f*h on M.

(+.2) Homogeneous Maps. Now let M = G/H , N =G'/H' be homogeneous
spaces, with invariant Riemannian metrics whose associated Levi-Civita
connections are given by linear maps & : ®2m+ m, &' : @m' + m'  as
explained in II. Let & : G » G' be a homomorphism such that e(H) s H
and let fB : G/H » G'/H' be the induced map. We shall refer to such maps
as homogeneous maps. The second fundamental form ts determined by its

behaviour a2t the identity coset o ¢ G/H:

Lemma: For X,Y em, v({df )(X,¥) = [o{x}_., oY) ] ¢ A'(8(K) s 8(Y)p)
- e(A(x,Y)Jm, » where the suffices denute the appropriate components of the

vectors.

Proof. We shall write f instead of fe to simplify notation. By
definition, 9(dF}(X,Y) = v(dF)(X*,¥*) , and v(df)(x*,¥*) = of.™™ ar(ve)
T™ f*TN TN
- df(vx* Y*). Since df(Y*) = g(Y)*of , Tyn df{¥*) = (vdf(X) a{Y)*)af
. (oY . ™
(Fg(xyeop OY)*)efu Hence w(af)(x,Y) = (vgiyy, o(¥)*) - dF(w,2 Y*) .

The second term is evaluated by noting that df(X) = 8(X) . and
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(v{f 1*)0 = p(X,Y) = [X,Y] . To evaluate the first term we need an expression

for (v;:,‘ v, when U,V ¢ g'. Writing U = Uy + U, we may replace U*

oy (U,+)* since U; = (Um.): and v,B ts tensorial in A. Mriting
VeV, +V, weobtaln (WNVS) = (vN L (V%) -0, V.]

h‘ m' u* o (u'.l }* hi o M" ml |.,..I
+ AUy Voude Since vAB - [A,B] 4s tensorial in B , and (vh.); a0,
we have “'m...-)* (V%) = L% (4, O] = Uy, Y\ D0 Thus
(W% ¥*)_ = =[U 0, V) ¢ A'(dpy, Vo)e The required formula follows. [0
We shall only use this formula here when g and h are the metrics < , >

given by minus the Killing forms. 1In this case A(X,Y) = -} [x,¥]1,, and

similarly for A' , 50 we obtain:
WAf HOLY) = 5 ([8(x), 4s (Y] 0] = [o(X) 4y 6¥),.D)
This gives the following simple criterton for harmonicity.

Proposition: Let Ay aeny xm be a basis for m , orthonormal with respect

to <, ». The mp fla : G/ » B'/H'  is harmonic with respect to the metrics

<, > if and only if

"3
—

[a(xi)h” a(xi )ml] =0. 0
1

Example 1: Let o : G —> Upty be 3 representation of & on u:"*l , let

¥V e t"ﬂ (V+#0), let H be contained in the isotropy subgroup of
[v] ¢ " for the induced action of G on ¢P" ,and Te¢ H' = U x U be

the isotropy subgroup of [V] for the action of Upep OM ¢P". Thus one has

42

fy = fg i 6/H—> @@ = (U /(U] xU)) , whose image is the orbit Ge(v].
We shall express the condition that f\f be harmonic in terms of the vector

1

V. Let L =[v], sothat ¢ =t e L. Tha description of

Ad(unﬂ) ® ¢ at the end of 1.2 of [ gives identifications:

h' @ ¢ = Hom(L,L)} ® Hom(L*,L %}

I

m @ € = Hom(L,LY) ® Hom(LY,L) ,

with respect to which we write X = X tX% for XetlocC, V- L+,

for Y eml ® €. In terms of matrices:

X, 0 0 ¥
X-(z ) v=< ‘).
0 x 1, 0

From this we obtafn [X,Y] = ()(2»71 - Yloxl) + (xlovz - vz-xz). With
= 0(A)y ¥ = a(8), s the element Xyof; - ¥ o ¢ Hom(L,L') is the
operator ple(A)pe(a)p - pJ‘e(B)p"a(A)p » where p , pl are the orthogonal

projections on L , Lt respectively. Hence fv is harmonic if and only if
noy 1 L "oy 1

0= ttl pre(X )(p - pT)eo{X;)p e Hom(L,L") and O = 11:1 prelX;)(p - plalx;lp

€ Hm(Ll,L) s where xl. cres Kﬂ is an orthonorma) basis form ., (These two

conditions are the same - the duplication arises because we complexified the

real second fundamental form to facilitate computation.} In other words:

(*} fv : 6/H —> ¢P" is harmonic if and only if ¥ is an eigenvector of

m
the operator :1 a(xi)(pl - p)a(xi).

=
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If ¥ is a weight vecter for o, i.e. V ¢ ul for some weight  with
respect to a maximal torus T , we may take H =T, Choostng (X, fledcm
tobe ((1/v2)(E - E_), /(-1/2)(E +E_) |ace 4"y , the condition becomes

that ¥V should be an eigenvector of the operator ¢ e(Eu)(pl - p)s(E_u).
aEA

Since e(E_n)v is either zero or a weight vector with weight X = o , it is

orthogonal te V , so the operator reduces essentially to ¢ B(Eu)B[E-u) R
aeh

which has the same eigenvectors as the Casimir cperator. Thus, fv is
harmonic if and only if V¥ 1{s an eigenvector of the Casimir operator (for o).

For example, if o 1is irreducible, fv is harmonic for any weight vector V.

Many examples of harmonic maps from homogeneous spaces to Grassmannians
and generalized flag manifolds F(ml.....mk) may be produced using weight
vectors of representations as in the last paragraph (see [Gul).

Example 2: Let o be a representation of G either (a) on mﬂ+1 or {b) on
¢F+1. tet ¥V be a vector in the unit sphere s 2 50n+1/50n or

52"*1 = Um_l/Un , and H be the isotropy subgroup of V for the action of &
on the sphere. The condition for the embedding f, of the orbit GV to

be harmonic may be written down as in example 1. One obtains:

{*} fv is harmoni¢ if and only if ¥ is an eigenvector of the operator

n 1
R 8{X;)p a(X;).

13
If a 1is irreducible this represents a non-trivial condition in case (b}, but
no condition at all in case (2) since o(X;) is skew-symmetric and so

e(xi)v is always orthogonal tae V (the operator then has the same
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efgenvectors as the Casimir cperator, which we are assuming (see 2.4 of II} is
a scalar operator). Thus, all orbits in the unit sphere of an irreducible

real representation are harmonic.

This 1s not true for a complex representation (see below for an exampie),
Note that if & is a complex representation on ¢"+1 » its orbits in 52"+1

are precisely the same as those of the underlying real representation, and the

Casimir operators of ¢ and o are identical. Hence if @ is irreducible,

the orbits are all harmonic with respect to the metric < 52"+1

n+l

, > on

coming from the identification $Z™! x50, /50, .. . but are not in

2n+
genera) harmonic with respect to the metric coming from the identification
SZ"+1 ] Un+llun. For example, consider the representation

6= S"A : Su2 + U(Pn) of SU2 on the space Pn of homogeneous polynomials
tn eu ' 8 of degree n , where explicit computations are possibie. All
orbits are locally isomorphic to SU2 y except for that of the zero weight
vectors (when n is even), which is locally isomorphic to Sz. It turns out
that the orbits which are harmonic with respect to the metric defined by

séntl U,,1/U, are precisely the orbits of the weight vectors.

We conclude this section with some remarks on the relation between
energy and volume for orbits of representations., If & : G + SOn+1 is an
irreducible representation, one may consider for each V ¢ s" the composition

f
6 T G/H 4> SN

where x is the natural projection. As 1in example 2, al) the maps fven

are harmonic, hence they must have the same enerqy as they form a connected
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set of critical paints of the energy functional. (In contrast, the orbits of
e in " do not in general have the same volume.) This may be seen directly
by calculating the energy E(fv) = (1/2) IG ldl",l2 = (1/2) IG tr fg ‘h whers h
is the metric <, > on s, Relative to the metric < , > on q , the pull-
back f;h is given by the mtrix (<<e(li)v. e{xj)v») where Xl. - xm is

an orthonormal basis for 9 and << , >> {3 the {nner product on m'"l.
- m m 2
Hence tr th = 1 <<e(xi)v.a(x1)v>> = I -<<e(x1) ¥V, Y>> = <«CV,V>> where
i=] i=1

C 1is the Casimir operator for 6. Thus the energy s given essentially by the
Casimir constant. (Note that the formula E(fv) = {172} IG <<CV, Vo>

= (1/2)<CV,V>Vol(G) holds for any real @ , irreducible or not. The critical
points of the function S" — R, ¥ P &LV V3> are just the eigenvectors of
C , as predicted by example 2.) As a spacific example, consider the
representation @ = Ad , which is irreducitle for a simple group G. The
orbits in the unit sphere S(ﬂ) £ are parametrized by the points of

As=Dn 5(3) , where D is thé fundamental Weyl chambar (see 1.4 of 1), lLet

M = G/H be the orbit of any point x ¢ A. Then h=tg El Vi where
fe

= {i] tui(!} = 0}, If we take the orthonormal basis {(1,!/2)“2“1 - Eni) s

./(-1/2)(5‘x + Ea Y| i¢1} for m , the tnduced metric on ™ s given by
i i

the diagonal matrix

ay(x)?

Gel).
“1(‘)2
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Hence E{f,) = Vol(B) : a (x)2 = ¥ol{G) ¢ u(:)z. This is easily seen to
\ gl | act’

be copstant, for ¢ c(l)z = (-1/4:2) L a(x)z . (-1/4az)tr(adx adx}
[.73.1 [117.3

= (1/82%)<x,x> = 1/4x%, On the other hand, V(fy) = [ (det xn)}/?
M
= YoI{G) =« ui(x)z. For general results on the volume functional restricted
i¢l

to orbits of representations see [HL].

(4.3) Minimal Immersions of Homogeneous Spaces in Spheres. In the 1960's,

M. do Carmo and N. R, Wallach (see [Wa]) studied minimal isometric immersions
of homogeneous spaces (in particular, spheres) into the sphere s" 5 SD'_M/SC!l1
with {ts metric <, >. They mede use of the following criterion for
minimality due to T. Takahashi (see [Tal).

Proposition: Let M be a Riemgnnian manifold of dimension m , and let rS"
be the sphere of radius r 1p lﬁ"l with metric induced from the Euclidean
metric <<, > of B . Let f:M—> rs" be an isometric immersion,
The mp f is minimal tt ang only §f iof 1is an eigenfunction of a . where
i rS" —> B! s the tncluston and a is the Laplacian on M (on

n!"l ~ valued functions). Moreover, the eigenvalue concerned is necessarily

‘ﬂl’rao

Proof. First, by the remdrks in4.1, a{ieof) = tr vd(isf). Next,

(1 of)(X,Y) = d1{vdf(X,¥}) + vdi{df(X),df(¥)) for X,Y e r(TM) (2.20 of
[EL2]). Finally, vdi(u,\t)* = = <<U,V>3x , by direct calculation, If f s
mintmal, iof 1is clearly an eigenfunction of 4. The converse is true

because x L lm(di)x. The eigenvalue 1s ~<<df,df>> = -mjrz. We are using the

fact that the metric on rS" s (I/rz)-: s 7. 0
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The next result is proposition 8.1 of [Wal.

Proposition:* Let & : G — Sf)nJrl be 2 class 1 representation of (G,H),

with @{H}V =V for some V ¢ llf‘Jrl » SuUch that the induced map
fv : G/H —> s" 4s an immersion. tet the isotropy action of H (i.e. the
representation Ad{G/H)) be irreducible. Then fy 15 a minimal isometric

immersion with respect to a multiple of the metric < , > on G/H.

Proof. The induced metric on G/H is homogeneous, hence 15 a mltiple of
<, > since Ad(G/H) is irreducible. By the corollary to the proposition of
2.4 of 11, iefv is an eigenfunction of A. Hence the result follows from the

previous proposition. ' 0

This and exampie 2 of 4.2 amount to the same statement, of course. The
significance of the second approach is that a converse result may be proved,
which leads to a classification of certain types of minimal immersions. We

shall give a brief indication of this, referring to [Wa] for more details.

Let G/H be symmetric. It is a theorem of E. Cartan (see theorem 9.1 of [Wal)
that each finite dimensional irreducible submodule Va of C7(G/H) occurs
exactly once. Let X be any point in the unit sphere S(Vq) of Vu. The map
fu defined by fu(gH) = g.X 1is then an immersion of G/H jnto S(vu) .

called the standard minimal immersion associated to Va.

Theorem (Theorem 9.1 of [Wal): Let f : G/H —> S" be a minimal isometric

immersion of the symmetric space G/H (with metric a multiple of <, >} into
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the sphere 5" s SOnﬂ/SOn (with its metric <, »). Assume that f{G/H) is
not contained in a great sphere of s", Then for some o there is a linear

isometric injection A : 1111+1 — Vu + and a linear map B ; \f‘x ——> Vu .

such that A.f = B.fu.

Proof, Let i : 5" — @™! be the inclusion. As f is minimal,

a1 of) = a{ief} for some A < 0. The linear mp W'+ —0b C*(G/H) defined
by def is injective {since f(G/H) 1is not contained in a great sphere), and
its '1mage is contained in the x-eigenspace of a, This is an irreducible
Gemodule whose Casimir constant is y which without loss of generality we may

take to be Vu. The result follows. O

'(4».4) Non-homogeneous maps. The theorem of the last section shows that the

standard minimal immersions 1"x : G/H— SO(Vu) » Which are examples of what
in 4.2 we have called homogeneous maps, play a fundamental role in the
description of arbitrary isometric mintmal immersions G/H —> 5", Indeed, do
Carmo and Wallach use the theorem to show that isometric minimal immersions
between certain spheres may be parametrized by compact convex subspaces of
Euclidean space. The homogensous maps tI:Pl —_— q:Pn , induced by the
irreducible representations (S™a | m» 0} of Su2 » ptay an analogous role in
the classification of arbitrary harmonic maps a:P1 —> ¢P". For details of

the classification we refer to [EW] and for the relation with homogeneous maps

to [Gu],

{4.5) MNotes. For connections and differential geometry in general we refer to

[KN]. The study of harmonic maps began with [ES); we recommend {EL1} and [EL2]
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for a modern introduction together with basic facts concerning connections.
Many references on the much older subject of minimal immersions can be found in
[¥N). A racent survey is [Lal. The results of do Carmo and Wallach on mintma)
immersions of spheres generalized work of E, Calabl (see [Cal) on minimal
immersions S2 — s". It was also [Ca) which, several years later, provided
motivation for the methods used in [EW] to study harmonic maps P — cP",
The subject of harmonic maps from trPl to homogeneous spaces was fnitially
revived and is currently being developed, partiy because it represents the
“g-model" of mathematical physics, wihtich exhibits some analogies with Yang-
Mills theory {see ¥). For information on this, see [Ha], especially the

articles of J. P, Bourguignon and 0. Burns,
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v. Thg Yang-Mills Equations for Homogeneous Bundles

{5.1) Ine Curvature Tensor. Let E be a real vector bundle with a connection

é, over a Riemannian manifold with 1ts Levi-Civita connection, In 4.1 of IV
we defined the extended operator vE : r(o‘T'M ® E) » r{e“lT'M @ E}. By

anti-symmetrizing, one obtains a new operator
E .
0"t M e ) o r(n’_ﬂT*n ® E).

This 1s in fact tndependent of the egnnection on M: 1t is given explicitly
by the forula 0%(w ®5) = u » ¥5 + du®s. The composition 05+ : r(E) »
T(A2T"M @ E) is C"(M)-11near, hence it determines an element F(vf) e
f(A2T"M @ E* » E), which {s called tne curvature tensor of the connection vE.
If E=TM and o iy the Levi-Civitd connection, we have E* = & and F(vF)
lies in MA2T'M @ AZTH); this is the classica) curvature tensor of the
Riemannian Manifold M, $imilar dafinitfons apply to a connection

¢ : r{E) » r((T"M @ €) ®£) in s complex vector bundle £. The curvatura
tensor s now an element of T(A2(T*M o ¢) @ E* ® E).

If V 45 any (real or ¢complex) vector bundle on M, we shall use
the notation

a'v = (,\ir*n e V) or r(hi(T*H @C) e V)

for the space of (real or complex) "V-valued i-forms en M*. Thus

F(VE) e piE* @ E, If V has a connection vv. then one has as usual the
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extended operator Dv DR . n'+1v. Taking V = e E, the Bianchi identity
]

says that DE GiF(vE) = 0. This is a forma) consequence of the definitions.

Kow suppose V¥ has a Riemannian structure, and that M 1is compact and

oriented. Then Ai(T'H(a €)) @ V acquires a Riemannian structure << , »»

'
and we may define an inner product ( , ) on aiv by (a,8)} = IM<<a,B>>.
Using this we obtain the adjoint of ', (0V)* : o'V » 2'~tv. The
{generalized) Hodge-Laplacian is defined to be (Dv}(Dv)* + (Dv)*(DV), and a
form in niv is said to be harmonic if it is annihilated by this operator,
When ¥ s the trivial bundle with its standard connection, we obtain the
Hodge-Laplacian on forms defined in I1. Finally, if = : a'y + gdi® M -1y
is the Hodge star operator (characterized'by the property that 6 A (» @) is
{8,8) times the volume farm of M), we have the usual formula

(DV)* - (_1)1 + (1 +i)dim M N DV «  on ﬁiv.

(5.2) Connections in Principal Bundles, We shall discuss the Yang-Miils

equations in the context of principal bundles. In this section we shall
merely introduce the relevant notation and point out the relation with 5.1,
referring to (KNI, volume I, Chapter II and [AB], §3, for further explanation.
A connection form in a principal G-bundle # : P + M is a g-valued 1-form

w e T(T* @ 9 } which satisfies two conditions. First, for all X e 9
w(X'} = X, where X' e r(T*P) in the vector field defined by xé =

(4/dt)(p exp tX)|, , g. Second, w(dR (X)) = Ad(g]' w(X) for all g e,

X e r(TP), id.e. w is "pseudo-tensorial*. Given such an w, One has the

“horizantal subbundle* Ker » € TP, and to any vector X ¢ TmH and

P € n'l(m) ane may associate the *horizontal 1ift* X € TPP. The curvature
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form of w is the 2-form 0 e T{A2T"P @ g ) defined by 0 = du + %{m.u].
This {is “tensorial®, 1.e. it descends to a section F of p2T'M @ Ad(P),
where Ad(P) 1s the bundle associated to P by the representation Ad(G) of &,
Note that w itself does not in general descend to a section of T*M @ Ad(P},

although it may be represented locally as a a-valued 1-form on M.

If 6= SOn, the vector bundle € associated to P ({by the
standard representatton A : 50n + son) has a Riemannian metric; P is
recovered from E as the bundle of orthogonal frames. There is a bijective
correspondence between connection forms w in P and connections ¥ in E
which are compatible with the metric (i.e. X<<5,t»> = <<vxs,t>> + <<5,vxt>>),
which {s given explicitly in terms of a local orthonormal frame field SyrseeSy
of E by sy = jgl mij(X)sj where (uij) is a local representation of w
on M, The conditions of being compatible with the metric shows that the
curvature tensor F(9)} of 5.1 actually lies in 02A2E (note that
E* = £ here), and in fact this coincides with the form F ¢ Q2Ad(P) defined
above, using Ad{P) 2 A2E (see 1.1 of 1}, If G = Un’ similar remarks
apply to the Hermitian vector bundle E associated to P, Here, Ad{P)® C =
E @ E, and the compatibility of a connection ¥ in E with the Hermitian
metric says that the complex curvature form F(v) ¢ a2 E*2Eza2FeE is

the C-linear extension of the form F ¢ Q2Ad(P). Following our usual conven-

tion regarding C-linear extension of tensors, we shall just write F = F{9).

More generally, if o is a representation of G, one obtains from
a cannection form in P a connection in the associated vector bundle £ which

preserves a "G-structure®, and P 1is recoverable from E as a subbundle of
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the frame bundle of E ({at least, if e is injective). For example, if
o = Ad(G), a connection form w in P gives rise to a connection D in
Ad{G). The Bianchi identity nod says that DF =0 (it should be noted that
both D and F depend on w here), which reduces to the formula given

above when G = SOn or Un'

We shall be interested in the space of all connection forms A(P)
in a fixed principal bundle P, Although 2 connection form 15 not tensorfal,
the difference of two such is, and hence Induces an elecm_.-nt of al Ad(P).
Thus, if we fix a connection farm uy € s a 9 ¥, we obtain an identifi-
cation of &  with the vector space ' Ad{P). [In terms of connections
v, v' in a vector bundle, although v,Y fis not C*(M)=1inear in Y,

vx_Y - viY is.})

{5.3) Homogeneous Connections. Let M = G/H, with its Riemannian metric

(and Levi-Civita connection) coming from < . ». If o : H+ U is a homomor-
phism of H into another compact Lie group U,‘ H acts on U by the formula
heu = g{h)u, so one may form the bundle Pe associated to the principal
bundle G + G/H with fibre U. This is a principal!U-bundle; we refer to a
bundle of the form PB as a homogeneous principal bundle. This should be
compared with the definition of homogeneous vector bundle in 2,2 of Il. Note
that if U = SOn or Un, i.e. if e is a representation of H, then Pe
js just (orthonormal or unitary) frame bundle of a(8). A connection form w
in Pe is said to be homogeneocus (or invariant) 1f it satisfies R;m =w for
d ¢ H. Such connection forms are in one to one correspondence with H-module

transformations
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A W

> LA

(where H acts on o by heX = {Ad{u)e(h})X), since the horizontal subbundle
is in this case determined by the horizontal subspace A{m) in a single
fibre u . For the details of this, see [KN] volume I, Chapter Il and volume
11, Chapter X. For example, if o = Ad{G/H} (sc U = 50{m}), homogeneous
connections in T(G/H) which are compatible with < , > correspond to H-module

transformations A : m + AZm; this is in agreement with the definition of

homogeneous connections given in 2.3 of II,

The connection form “y corresponding to A =0 is called the
canonical connection form in Pe' Relative -to this choice, we identify the
spacé of all connkction forms -*(Pe) with n! Ad(Pa} as explained in 5.2.
Stnce M(Pe) = alAd(U) = 8) and TM 2 o{Ad(G/H)), we may further identify
al Ad(Pe) with the H-module i.( m* @ 1) (see 2.5 of II). The subspace
ﬂ(Pa) of homogeneous cennection forms may be fdentified according to the
Tast paragraph by the trivial submodule of m* @ u , which we denote by
{mrte 4y )H. There is a natural inclusion (rm*® o )H + i*( mr*e u ).
whereby a fixed point of H 1n p,* &  defines a "constant" section of
the bundle, and by Frobenius Reciprocity this ts in fact an isomorphism onto
the subspace of such sections, Ta summarize, then, we have the following

diagram:

&P (mee )"

ni ni

R (P,)

"

ilm*e ul.
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This was utilised by H. T. Laquer in [Lq], whose work we shall describe in

5.5,

(5.4) The Yang-Mills Equations. lLet M be a compact oriented Riemannian

manifold, and let P + M be a principal G-bundle. The Yang-Mills functional

is the map L : &{(P) + B defined by
Liw) = I" < LF >

where Fm is the curvature form of w. Since A(P} 1is an affine space

(which we identify with the vector space al Ad{P)} on choosing some

iy € *(P}), to study the critical points of L it suffices to consider
variations of w of the form w = wttn (t e ® n enl Ad{P)). It is

relatively straightforward to calculate L(mt), and one obtains {see [AB], §4):
L(w%) = L{w) + Zt(Dmn. Fm) + tz((Umn.Dwn) + (F,[n,nd)) + o(t2)

where Bm : nt Ad(P) + g2 Ad(P) 1s the operator defined using the connection

in Ad{P} given by w (as in 5.2). The next two results follow from this.

Propesition 1: The comnection form w is an extremum for L if and only if
*
DmFmsﬂ. n}

Since D _F =0 {the Bianchi identity), the critical points of
L are those forms o whose curvature Fm is harmonic. The Yang-Mills

equations are the equations
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D*F =0, D F =0,

w o W W

and such an @ is said to be a Yang-Mills connection form.

Proposition 2: 1f w 1i¢ an extremum of L, the Hessian Q of L at a« is
given by Q(n) = (0¥ D n+alsF ,nl.n) for nenlAd(P). O

The Hessian is a quadratic form defined on the tangent space to WA(P) at u,
which we identify with. R{P) 1tself and hence with gl Ad{P). If f : X + [
is a fupction on a compact manifeld X, the Hessian at a critical point x ¢ X
is the quadratic form aon Txx whose matrix in terms of local coordinates
Xpsesouk, 18 (azflaxiaxj). If the Hessign‘is non=degenerate at every
critical point, f s said to be a Morse function, and there is then a well
knowrt relation between the cohomology of X and the indices of (the Hessians
of) the critical points (see [AB], §1). This relatfon often persists in some
form even when the Hessian at a critical point is degenerate (i.e. has
positive nullity). To generalize this theory to mapifolds which are not
finite dimensional has proved to be a very difficult task, however, and
perhaps the only significant example where it has been done directly is that
of the energy functional on paths in a Riemannian manifaold, i.e, the original
vwork of M. Morse in the 1930's, In [AB], M. F. Atiyah and R. Bott show that
it may effectively be done for the Yang-Mills functional L1, in the case
where M is a Riemann surface, by transferring the problem to one concerning
holomorphic structures on vector bundles, It is therefore of some interest to
identify the critical points of L, and to compute the index and nuility of

their Hessians,
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The problem may be simpiified by making the following observations

{see [AB], §4)}. First, stnce L is invariant under the {infinite dimensional)
group qr of automorphisms of P (“"gauge transformations™), the critical
points come in q-orbits. hence i1f w is critical then the whole of the
tangent space to 90u will be annihilated by Q. If TWJQ(P) is
fdentified with 2!Ad(P) as usual, the tangent space to 4. at 4 becomes
- itdentified with the image of Du : a%d(P) + R'Ad(P). (The space A0Ad(P)
may be identified with the Lie algebra of ?_.) Hence it suffices to find the

index and nullity of Q on (Im Dm)l = Ker D;.

Proposition 3: The index and nullity of a Yang-Mills connection form w on
Ker Dz are finite, and equal to the index and nullity respectively of the

quadratic form § on ! Ad(P), where Qn) = ((DND; + D;Du)n t «[a F_,nlin).

Proof. The form 6 is positive definite on Im Dm. and agrees with  on
i * * *

{Im D@) = Ker Dm. Since the Hodge-Laplac1fn Duum + DwDu is elliptic with

non-negative eigenvalues, it follows that 6 has finite index and nullity, [

(5.5) Homogeneous Yang-Mills Connections, The results in this section are

due ta H. T. Laquer. First, it is a straightforward matter ta show that the
canonical connection fdrm iy in any homogeneous bundle Pe satisfies the Yang-
Mills equations, The problem then ig to use proposttion 3 of 5.4 to calculate
the index and nullity at 4y 10 vartous situations, We have jdentified

nlAd(P) with 1*( m*® 1), and this may be identified with the subspace of
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C™(6) ® (*n* ® W) consisting of functions which are H-invariant (c.f. the
proof of Frobenius Reciprocity in 2.5 of [I). Let A be the Laplacian on
"6} e (mre ). The following 1s a special case of proposition 3,2 of
fLql.

Propesition: Let m' and ' be irreducible submodules of m and 1y
respectively. If G/H' 1s symmetric, Q(n) = ((~a + c{u')D)n,n) for al)
net (m'*®wu'), where ¢(iu') is the Casimir constant [ <0)

associated to ' (as in 2.4 of 11). O

Thus, on 1* {m'*s ta')s the nyllity of 6 is the dimension of the c{ ')~
etgenspace of A, and the index tg3 the sum of the dimensions of the
A-eigenspaces for which X > ¢{4'}. The r-elgenspace of 4 is a sum of
irreducible G-modules whose Cagimir constants are A; the number of times

such a G-module appears in 1. { nf' @ u') may be determined by Frobenius

Reciprocity.

Extensive catculations show that when Pe is the bundle G » G/H,
and G/H is irreducible, the index | and nutlity N of wy are zero

except in the following cases:

(a) G/H a simple Lie group (I = 1)
(b) G/M =50 /S0 2", 055 (I=nw)
G/M = Sp /5Py x Sp, = HE" L n > 2 (N =n(2n+3))
{c) G/H = S0,/50, = S* (N = 10), Eg/F, (I = 68), Fy/Sping (I = 26).
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One may also restrict to variations of iy which are entirely within the
space of homogeneous connection forms. If G/W is a simple Lie group K,
then {(mMm* & LA)H 2 { k*® k )K is clearly one dimensional, and it turns
out that 6(n) = «{1/2){n,n} forall ne(m*e® Ll)H. Thus, the negative
direction in {(a) above is accounted for precisely by the homogeneous
connections forms. Lf G/H is an irreducible symmetric space which is not a
Lie group, then (mMm* @ x.q)H = {0}, f.e. uy is the only homogeneous

connection form.

For any homogeneous bundle Pa over a symmetric space G/H with G
semisimple it follows from the proposition that 6(n) = (-1/2){(n,n) for
ne(m*e LA,H, hence wy gives a local maximum for L restricted to

(Pe). For further results we refer to [Lql,

{5.6) Notes, It is not known whether there exists any Yang-Mills connection
in a complex vector bundle on S* which has positive index {a case of
importance to mathematical physicists). For other results on homogeneous

connections, see [1t].
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