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§1. INTRODUCTION

The Kostant-Souriau [9] [19] scheme for geometric
quantization of a symplectic manifold {X,w) requires both that
[%] € HZ(X;R) be integral and cl(mj € Hz(x:l) be even; this
rules out important cases such as the space TP (2n) of
orbits in the energy surface of a harmonic oscillator in
odd dimension 2n + 1. Hess (7] proposed the use of Mp©
structures in geometric quantization; this leads to the
quantization rule that [%} + % cl(m)R be integral and so
allows for the quantization of all harmonic oscillators (as
does the scheme due to Czyz (5)). Heas made use of a pair
of polarizations and constructed the quanti{zation directly
without passing through a Prequantization stage. 1In order
to be able to compare the Tesults of quantization with
respect to different polarizations it is desirable to have
2 single prequantization module on which all polarizations
act,

It is the purpose of this note to modify Hess's approach
S0 as to incorporate Kostant's symplectic splnors in such a
prequantization. Our scheme i3 based on the observation
that an Hpc structure is sufficient for the definition of
syoplectic spinors ~ thus it is not necessary to assume a
metaplectic structure. Moreover, all symplectic manifolds

admit Mpc structures.

This note is organized as follows: $2 is an account
of npc and its metaplectic representation.upc is the group
of all those unjitary self-equivalences of a nontrivial
irreducible unitary representation of the Heisenberg group
which project to the symplectic group Sp: as such it is a
symplectic analoque of Spinﬁ. Mpc is a non-split central
circle extension of Sp and contains the metaplactic group
Mp as the kermel of a distinguished character N. We discuss
symplectic spinors €' and the (one-dimensional) vacuum
states (E')r = E' annihilated by positive polarizations T.

In §3 we describe the general theory of Hpc structures
as objects of study in their own right: an Mpc structure for
a8 symplectic vector bundle (E,w) over X is a lift P of
the symplectic frame bundle Sp(E,u} to the structure group
Hpc. We establish their unconditional existence {as observed
by several authors: Forger & Hess {6], Rawnsley, and Plymen
(10]) and parametrize the space of their equivalence classes.
We describe how symplectic Spinors give rise naturally to
half-forms. Let £'(P) be the bundle of symplectic spinors
associated to the Mpc structure P via the metaplectic
representation of Mp® on E', let Pin) be the Hermitian line
bundle associated to P via the unitary character n of Hpc;
for a positive polarization F of (E,w) denote by Ll the
canonical bundle and by E'(P)F € £'(P) the bundle of vacuum

states; then the half-form bundle 0: = E'(P)F L] Kr is a



~3-

square-roct of P(n) @ KP. Half-form pairings are prasented

for transverse and reqular pairs of positive polarizations.

The use of Hpc structures compares favourably with metaplectic

structures; in particular, we show:

(a) Mpc structures always exist (indeed, (E,uw)
comes equipped with a canonical class of
Mpc structures); (E,w} admits metaplectic
structures Lff the Chern class ¢ (Brw) Hz(x:l)

ls even.

(b) Mpc Structures always pass to the symplectic
normal (D"‘/D,uD} of an i{sotropic subbundle D
of (E,w); in contrast, if (E,w) 1is metaplectic
then lD*/D,uD) is metaplectic Lff the Stiefeil-

Whitney square v, (IJI2 . Hz(xglzl is zero.

Our geometric quantization scheme for the symplectic
manifold (X,«) is presented in $4. We begin by setting up
prequantization data in the form of a prequantized Hpc
structure (P,y) for (X,uw). The ui{l)~valued l-form vy on D
corresponds naturally to a metric connection V' {of

curvature fﬁ) in the Rermitian line bundle P(n). (X,u)

admits such prequantized Mp® structures ife ['r,:-] + % cl(u)nmz(x:m

13 integral. As prequantization module we take the space

-8 -

T(X;€'(P)); the prequantization map § itself comes from
the prequantum form 7.' Although our approach to pre-
quantization seems at first sight to be unwieldy, it
leads to a natural development of quantization., If F

i3 a positive polarization of (X,w) then ¢ restricts to
give operators on E'(P)F defined for functions on X whoge
Hamiltonian flows preserve F; tensoring with Lie derivative
in (F then gives a representation GF of these functions

CEJL (X} on the space Ty (x:oﬁ) of polarized sections of the
ha lf-form bundle Q;. Our quantization & squares up on
Pinr & KF to give the Kostant-Souriau prequantization of
{X,2w) determined by (P(n),7") tensored with Lie differ-
entiation in l(r: this observation turns out to ba rather
useful {n practice. The half-form pairing allows for both
the construction of Hilbert spaces on which to quantize and
the cmparﬁon of quantizations arising from differant
polarizations. For background material on gecmetric
quantization consult (2, 9, 18],

We test our proposed scheme in §5, where we discuss
specific examples. As our first exampls we consider a
linear symplectic manifold - essentially Rzm with {ts flat
symplectic structurs. The first-principles method adopted
in this case tndicates how our general quantization results
are established in a local setting. The general method is
illustrated in our second example - that of a complex

Projective space. Ve are able to quantize all comp Lex



-5

projective spaces in a uniform manner, and recover the
familiar quantization condition on enexgy; quantization
takes place on spaces of hamogeneous polynomials, which
we realize as holomorphic sections of appropriate tensor
powers of the hyperplane section bundle.

In conclusion, it appears that Hpc structures are more
natural than metaplectic structures and that the geometric
quantization scheme {1necorporating symplectic spincrs} to
which Mpc structures give rise ig both elegant in theory
and effective in practice.

This article constitutes a revision and extension of an
sarljer {November 1982) warwick Preprint, and is in effect
3 condensed version of the first authar's doctoral thesis
216} developed fram the second author's informal notes
{14]. The first author acknowledges the financial support
of an S5.E.R.C. studentship: the second author thanks

R. Blattner and Q. Plymen for stimulating conversations.

§2. THE METAPLECTIC REPRESENTATION

We present here a brief review of the metaplectic
Tepresentation. Proofs are omitted: these may be found
in [14] (18] axcept where otherwise indicated. Let {v,0)
be a 2m-~dimensional real u'-mplectic vector space. The
symplectic group S5p(v,1) is the ‘group of all real-linear

automorphisms ¢ of V which preserve {1 in the sense
Vyev, €V -bﬂ(qvl.qul = v, ,vy )
5p(V,2) 1s a connected semisimpie Lie group whose Lie

algebra we deancte by spiv,q).

The Heisenberg group N(V,R) is the simply-connected

(2.1}

Lie group with underlying manifold Vv x R and multiplication
¢

given by

-1
(vl,tl)(vz.tzi - (\r1 + Vaet) + "2 3 n(vl.vw (2.2}

for VieVy ¢V oand t)¢t; ¢« R. The Reisenbarg algebra
n(v,Q) is its Lie algebra with underlying vector space
V &R and bracket given by

l:v1 LY v, ® tzl - -0 @ ﬂ(vl,vzj

for v,,v, ¢ Vv and t vty ¢ R, We naturally identity n{v,Q)

{(2.3)



with the Lie algebra of N(V,RQ) so that the exponential
map becomes the identity on Vv x R,
Let h be a positive rea)l number and write h = h/2rn.

Let

W:N{(V,{l) = Aut H (2.4)

be an irreducible unitary representation of the Heisenberg

group on a Hilbert space H {(with inner product t"'ﬁH and
norm H'"B) having central character given by
W{0,t) = exp (~ =t} I, t ¢ R (2.5

in

According to the classical theorem of Stone 3 von Neumann,
W is unique up to unitary equivalence; see [15] [21]. we

denote by Npc(V.ﬂJ the set of all unitary operators U on H
which satisfy

{(v,t) « N(V,0) => UW(v,t)U" = wigy,t) (2.6)
for some g in SpiV,) and define
a:Mp°(V,0) - Sp(v,a):u ~ g (2.7)

vhere (2.6) holds.

-fa

Proposition 2.1:

npctv.n) = Aut H is a Lie group and
[+ 9 .
1 = U(l) +» Mp (V,u&) ~ Spi{v,a) - 1 (2.8)

a2 central short exact sequence of Lie groups which does

not split. a

The representation y of Hpctv,ﬂ) on M coming from
inclusion Hpc(v.nl = Aut M is known as the metaplectic
tepresentation. Whereas ; is of course both faithful and
unitary it {8 not irreduciblae, being instead the sum of

two irreducibles; see [2¢],

Propcsition 2.2:

There exists a unique unitary character n:Hpc v,8) - vl
whose restriction to U(l) = Mpc{V,n) is the squaring map.
The karnal of n is a connected double cover of Sp(V,i)

which we denote by Mp(V,Q) and call the metaplectic group.

The representation W differentiates on its (dense Westable)

space E ¢ H of smooth vectors to give a representation
Winiv,q) - End € (2.9)

of the Heisenberg algebra which satisfies the canonical



commutation relations

. . 1

LH(v1 0 tl).wtvz ? tZ)] =i Rlvl.vz) {2.10)
for vy ® tl' v, L] t2 ¢ n{V,0). W extends to a representation

of the universal enveloping algebra N(V,i) of n{v,Q) and

the seminorms

L+R: f = INE} L, u « Miv,g) t2.11)

sndcw E with the structure of a Fréchet space,
Let £' be the space of 211l conjugate~linear functionals
on £t which are continucus in the Fréchet topology and equip
E' with the weak-star topoloqy.<-,-JH glves us an embedding
of B in ' and we have a rigged Hilbert space £ < M - E'.
The representations W (of 4(V,R) on M) and 4 (of n(V,q)
on £} and W (of n{v,) on €) admit unique continucus extensions
to ' (denoted by the same symbols) which are campatibie in
the sense that the extension of W is the derivative of the
extension of W. We Ffurther extend W by complex linearity

to obtain a representation
Winw,m® « gna g (2.12)

of the complex Heisenbery algebra n(V,ﬂ)c on the space F*

of symplectic spilnors. The space of smooth vectors for the

«10=

metaplectic representation ¥ is also E. wWe may differentiate

and extend § to obtain a representation
i Tmp® v, )% + End £ {2.13)

of the complexification of the Lie algebra mpctv.n) of
MoS v, 0) .

We now proceed to describe how the mataplectic
tepresentation interacts with {positive) polarizations
of (V,i). Let tva,ﬂqj be the 2m-dimensicnal complex
symplectic vector space obtained by complexification of
V and complex-bilinear extension of 1. A polarizatjon
of (V,iil 18 a complex Lagrangian subspace of (Vc,ﬂt) -
thus, a complex m—dimensional subspace [ of VT which

satisfies
V¢V, € [ = ﬁu(v v,) = @ (2.14)
1772 1772 -

The symplectic group Sp(V.f1) acts naturally on the space
Lag(va,ﬂa) of all polarizations of (v,f)) by complexification:

q-r = {qclv)lv eI} (2.15)

faor [ « Lag(va.ﬂal and g ¢ Sp(V,Q). The canonical line
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corresponding to T ¢ Lag w‘.‘n“) is the one-dimensional

complex subspace K e Am(Vq)' defined by

r m._ 0

where T° ¢ (Vc). is the annihilator of T ¢ vc.
Let I ¢« Lag (Va.na). The stabilizers
@
Sp(V,0:T) = (qge Sp(V,n)|g'T = [}
and

sp(V.m?. = {£¢ sp(v.ﬂ)c‘fu‘:r c T}

of T for the natural representations on \l'c stabllize the

complex line Kr c Amwa)' in the natural represantations

on Am{vq)'. The characters thus determined are

DatpiSp(V,asr) + €*:q + Det,g®|r)

and

Trpiep v, ) - @ g err ).

The polarization I of (V,q) is said to be positive if

ver = 108%v,%) 2 0

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

~12-

where v - v denotes conjugation in Vc over V; I 1is

strictly positive iff the inequality in (2.21} is striet

for nonzero v « . We denote by Lag*lv,ﬂ) (respectively,
Lag++tv,n)) the space of all positive (respectivaly, strictly
positive) polarizations of (V,0). Note thae {f I . Lag (v,q)
then

T e Lag, (V,Q)<mm> [ n T =g, t2.22)

The action (2.15) stabilizes both Laq+(v,a) and Lag, _'V,a3};
indeed, the orbits of Sp(v.0) on Laq+(v,n) are parametrized
by the dimensions r([) of o F for T « Lag, {v,3).

We say that the polarizations r1 and I‘2 of (V,3) are

transverse (ff

i"l A I‘2 = 0, {2.23)

If l'l amd rz lie in Lag+ (V,5) then accerding to (3] we

always have
Iynf, e Ty n T (ryn Fy, {2.20)
whence l‘1 n Fz is the complexification of an isotropic

subspace of (V,Q) and strictly positive polaritations are

transverse to all positive polarizations.
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By virtue of (2.14) we can regard the polarization [
of {V,0) as an abelian (complex) Lie algebra embedded in
n(V,mc and so provide €' with the structure of l-mpdule

by restricting the representation W™ (2.12),

Proposition 2.3:

If [ is a positive polarization of (V, 2} then the

vacuum state

rE‘)r = £' of T defined by
II" .
(€)' ={fce'iver=wivae e = o (2.25)
1s a complex line. C

If T ¢ Laqlvu,ﬁ:) i3 not positive then (E')r is zero
and in arder to recover a complex line we must pass to
higher Lie algebra cochomlogy H'(r:E') of T with coefficients
in £';: see [4],

Let T ¢ Lag, {V.Q) and denote by Mpctv,ﬂar) the full

preimage of Sp(V,4;I) under G:Hpctv.ﬂ) * S5p(V,0). Differentiation

of {2.6) reveals that the metaplectic action of U ¢ upcev,n)
maps (E')r to (E'JG(U)'r. In particular, the metaplectic
action of Mp®(V,2;T) stabilizes (£')7 ang so defines a

character

-14-

tpimpC (v, 0 - (2.26)

Proposition 2,4:

If£ T ¢ Lag, (V,R) then the charactars Tr ,Dctroc, n of

upctv,ﬂ:r) satisfy the relation

(t7) % Det oo = n. G (2.27
Denote by mpc(V,ﬂ)g the full preimage of splv.ﬂlg under
the complexified derivative of:mpclv,ﬂ)t - sp(V.n]t of o.
Differentiation of (2.6) reveals the squality
W) W v 8 £)] = o8 (oFxv)) (2.28)
of operators on £' whenever x ¢ npc(v.mc and v @ t « n(v,n)c.

In particular, the ;c-action of npc w,mf stabilizes (E')r

ard so defines a character
: c a
Tpimp (V,ﬂ)r - . (2.29)

Proposition 2.5:

16 [« Lag,(v,0) then the character i of mp®(v,mE 14
given by

21-1.. - nf - Ttroof. o (2.30)
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An Sp{Vv,il)~invarjant pseudo-Hermitjian form ey is

defined an A (VF}* by
m, q .m =
kyoky € AMOVE)T > kR = Mg A K, (2.31)

2 L
where the Liouville form A, ¢ ATy o p m"v® ' is defined

by
midg = (-1} (mmL)gm (2.32)

It (rl,rz; is a transverse pair of polarizations of
(V,i1) then <-,->K restricts to give a canonical nonsingular
sesquilinear pairing of the canonical lines kI'! and kI'? into

. A similar property holds true for vacuum states:

Proposition 2.6:

The inner product <-.->B on H extends to give a

canonical nonsingular sesquilinear pairing

r
<ty T (&)
’ E'

ra

boen 2.q

of vacuum states for each transverse pair (rl,rz) of positive

polarizations of {(V,R). a

-16_

{2.24) suggests that in order to deal with non-transverse
pairings we should consider how the metaplectic representation
Interacts with isotroplc subspaces.

The subspace L of Vv is (f-) isotropic iff wholly con-
tained tn its (Q~) orthogonal

LY = (v « V{tv,2) = 0, w1 1) (2.34)

The restriction of 3 to L* then has kernel precisely " and
sc descends to a symplectic form S‘:L on the .juotient L*/L. The
resulting symplectic vector space (L‘/L.QL} 1s the symplectic rnorml of L= (v,5)
Let L be an isotropic subspace of (V,{1) and define

5p{V,n;L) = (g - SpiV.ii)|gL = Lj (2.35)
There is a natural Lie group epimorphism

VLiSPAVLAILY - SpLY/L ik )ig - 9y (2.36)
given by

L
g e Sp(V.mL)-—thoqIL =g, 0m (2.317)

where nsz* + LY/L 1s the projection map.
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Fix an irreducible unitary representation W, of

N(L‘/L.nL) on a Hilbert space M such that
W (0,8} = exp (- Z-ti1, ¥t ¢ R, {2.38)
Jenote by Hpc{LL/L.ﬂL) the ~orresponding automorphism
group and by tL < HL [ EL the resulting rigged Hilbert
space. Define

1% = (f ¢ E|W(te0)f = 0, vi ¢ 1) (2.39)

ana denote by Hpctv,n:bl the full preimage of Splv,R:L)

under o:Mp°(V,ii) + Sp(V,0). Assume L 4 o,ut.

Proposition 2.7:

There exists a cancnical topological linear lsomorphism
R tent - 12.40)
which intertwines W and HL. A Lie group epimorphism
v Mp% v, a:L) - Mp® (L'/L,0,) (2.41)

lifting v is then defined by

~18-
v (U) = {Det(oujL)|* R URY (2.42)
and satisfies
vy (U) = n(u) sign(Det (qU|L)} {2.43)

for v « MpS(v,q:L). u

We remark that there exists no 1ift Mp{V,0:L) - Hp(L*/L.ﬂLl
of vy to metaplectic double covers.

Finally we consider in more detail the case of strictly
positive polarizations.

A Hilbert structure for (v,Q) Ls a real-linear auto-
morphism J of V such that J2 = -1 and such that the real~
bilinesar form

!
V=V +R': {Vllvz) - ﬂ(Jvl,vzj (2.44)
ia symmetric and positive-definite.
NSTAS L B n(Jvl,vz) + 1n(v1.vz) (2.45)
then defines a Hermitian inner product on the complex vector

space V, {having Vv as underlying real vector space and

iv = J{v) for v ¢« V). The unitary group
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Uv,2:J) = {g ¢ Sp(v,R)|gJ = Jg} (2. 45)

of the hilbert space (Vyrcrer>4) i35 a maximal compact
subgroup of Sp(V,fl}; moreover, all maximal compact
subgroups of Sp(V,Q) arise in this way. The (+1)-eigenspace

r, o= (1-13%5v (2.47)

J

of Ja is a strictly positive polarization of (V,Q); morecver ,

all strictly positive polarizations of (V,{l) arise in this

way. Note that
UV,0:J) = Sp(V.ﬂ:FJ) (2.48)
when (2.47) holds. Fix a Hilbert structure J for v,Q) and
for convenience write U(V) in place of U{V,Q;J). Denote by
Mu% (V) the full preimage of U(V) under a:Mp° (v,0) + spwv,q).

In contrast to Proposition 2.1 we havae:

Proposition 2.8:

The central short exact sequence of Lie groups
Leutt) - vy Lo gevy - 1 (2.49)

splits; indeed, MU®(V) 1s the direct product of U() and U(V). 0

-20~

Remark:

The gqroup Hpctv,n) and its metaplectic representaticn
are of course dependent on W. 1In theory this dependance
is natural with respect to intertwining operators for W;
in practice the particular form of W is important. In the

Schr8dinger model v = R%®

sy H = I.2 mm), £ is the Schwartz

space S"), and €' the space S' ®") of tempered distributions:
unfortunately, the metaplectic representation has only been
written down explicitly on certain generating subgroups in
this model. In the Bargmann-$eqgal model on Fock space (as
presented by Rawnsley [14]) v = ¢™ and E, H, E' are all
spaces of entire functions on a“ subject to certain growth
conditions; the metaplectic representation can ba written

Jown explicitly and in particular vacuum states and their

pairings become transparent. See [14, 16] .
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§3. Mp" STRUCTURES AND SYMPLECTIC SPINORS Proof:

Since U(V) is maximal compact in Sp(V,(i}, there exists
Let (E,u) be a real symplectic vector bundle of rank a U(V)-reduction B of Sp(E,w). According to Proposition 2.8
Im over the manifold X. there exists a splitting of 0:MUC(V) + U(V), by means of
The symplectic frame bundle of (E,u) modelled on (V,q) which B extends to a principal Muc(Vl bundle B, g° axtends
is the principal $p(V,2) bundle Sp(E,w) on X having as fibre via inclusion HUC(V) [ Mpctv,nl to an Hpc structure PB for
dver x ¢« X the set of all real-linear isomorphisms b:V + Ex (E,o). The class [PBJ . Hpc[E,u] 1s independent of B, since
satisfying all maximal compact reductions are squivalent. g

we bV, bvy) = Qiv, vy, VitV e v (3.1} Remark J3.2:

See also [10]. We may refer to the distinguished
and on which Sp(V,il) acts on the right by composition. element of Hpc[E,u] as the neutral class.

An Hpc structure for (E,u} is a principal Mpctv,ﬂ) We now introduce certain fibre product constructions
bundle P over X together with a d-equivariant morphism whose immediate function is to yleld a deeper understanding
2 - SplE,w) of principal bundles. The npc structures P, of MpS[E,u).
and P, are equivalent iff there exists an {(somorphism Let P be an Hpc structure for (E,u) and let ¥ be a
P, + ?, of principal Mp®(V,?) bundles which commutes with principal U(1) bundle on X. The fibre product
the respective projections on Sp{E,w). We denote by

c. ¢
Mp (E,u] the set of equivalence classes [F] of Mp® structures Y% Pow{(yp) e ¥xPln(y! = nipl) (3.2)
P for {(E,w). Our first result in this section is the

Q
unconditionsl axistence of Mp~ structures. is a principal U{1) x Mp®(v,0) bundle over X to which is

associatad via the morphimm
Proposition J.1:

{E,w) always admits Hpc structures: lndeed Hpc[E,w] g1} » Hpclv.n) - npccv,n)a(x,u) - AU (3.3)
has a natural base point.

an Hpc structure p¥ for (E,w) having the obvioua projection

on Spl(E,w).
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Let ?, and P, be Hpc structures for (E,w). The

fibre product
P, % P, = ((p,spy) € P = P,y|olp,) = o(P,)} (3.4

of P, and P2 over Sp{E,w) 1s a principal bundle on X having

1
structure yroup

p“Cv,q) = {0y < up® « MpSlou, = au,l, (3.5)

Associated to Pl x Pz via the unitary character

#p"C v, ) - U1y = .0y - ulto, (3.6

is a principal U(l) bumdle on X which we may denote by
-1

P, Pz‘
The following relationships between these constructions

are readily established.

Proposition 3.3:

Let P, Pl and P, be Hpc structures for (E,w) and let Y
be a principal U(l) bundle on X.
-1
(1) The Mpc structures Pl lpl "2’ and 1’2 are canonically

equivalent,

(i1) The principal U(l) bundles P-le and Y are canonically

isomorphic.
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{(1it) There is a canonical bijection between equivalences
PY + P and trivializations of Y. N
Recall that {somorphism classes of principal U(1) bundles
on X naturally constitute the cohomology group Hl(x;gill}

and that the Chern class gives an isomorphism
1 2
c:H (X;U{L)) - H"(X;3). 3.1

As a routine consequence of Froposition 1.3 we have

the following description of Hpc[E,u}:

Proposition 3, 4;

MpP[E ] is naturally a principal aztx;z) space for

the action
cl¥, [P]) - [pY) (3.8)

Remark 13.5:
More is true. It is clear from Propositiocns 1.1 and

1.4 that Npc[E.w] is raturally an abelian group isomorphic
to ll2 (X:3). We shall see this again in Proposition 1.13.

our primary reason for introducing Mpc structures 1is

that they enable us to define bundles of symplectic spinors.
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Let P be an Mpc structure for (E,uw). Associated to P via
the metaplectic representation of Hpc(V.a) on the rigged
Hilbert space F ¢ H < £ are vector bundles E(P) c H(P) < E'(P)
of infinite rank over x. We may refer to E'(p) - or to any
of its subbundles - as a bundle of symplectic spinors for
(E,u).

Let Y{E,w) be the bundie of Lie groups on X with
fibre N(Ex.uxl OVer x ¢« X and let n(E,u) be the bundle of
Lie algebras on X with fibre n(Ex'”x) over x ¢ X. These
beisenbergy bundles are Cancnically associated to Sp(E,uw)}
via the natural actions of Sp(V,%) on N(V,Q) ang n{v,q).
By association, the representation (2.4) gives rise to a
bundle of representations W of N(E,uw) on H(P); we likewise
obtain a bundle of representations ﬁn of the Lie algebra
bundle n(£,w}® on £°(p).

A polarization of (E,w) is a complex subbundla F of

Ect having rank m and satisfying
T
X ¢« X3 vl,vz € Fx -3 mx(vl.vz) =0, (3.9)
We shall always assume P to be positive:

XX vooF, m:(v.G: 20 (3.10)
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- for the gemeral case we refer to [4]

+ The canonical bundle

' of F is the complex line bundle defined by

K - A"p0

*
where F° c (La} is the annihilator of F = Ec. We remark

(3.11}

that positive polarizations have lsomorphic canonical bundles

(as follows from the existence of the Pairings (3.18)); this

enables us to define the Chern clasg

(Llu) bY

¢, {E,w) = c[KF]

c, (E,w) ¢ B2 (X:%) of

for any positive polarization F of (E,u). wWe say that F is

regular 4ff F n F ia a subbundle of

Ea {or, has constant

rank); in this case a choice T of positive polarization of

(3.12)

V.8) such that dim (I o F) aquals rank (F n F) determines a

reduction

Sp(E,w:P) = {b ¢ Sp(B,mllbc

of Sp(E,u} to structure group Sp(v,Q;

assoclated via Dotr.

e )

I} to which K& is

(3.13)
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Let P be an Hpc structure for (E,w), and F be a
Positive polarization of (E,u). For X ¢ X we define
F
E' (P’x to be the vacuum states for Fx € Laq+t5x,mx) in
the represantation

W t n(E,w)S oknd E'(R),. (3.14)
It is apparent from Proposition 2.3 that E'(Plr i3 a
complex line bundle on X. E° (P)F is related to the

hermitian line bundle P{n) (associated to P via the unitary

character ) and the canonical bundle KF, as follows:

Proposition 3.6:

Thers axists a canonical isomorphism of complax line
bundles

T om0 f 2, P(n) (3.15)

Proof:

Suppose P to be regular and choose a model T ¢ lag, (v,n).
The part 'l of P lying over Sp(E,w;F) is a principal
M (V.2:T) bundle to which E*(p)F, P(n) are associated
via L D-troa,n. In this case (3.15) comes directly
from (2.27). The general Case (in which the rank of ¥ » B
may vary) follows from a Closer study of the metaplectic

[epresentation. See (i16].
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Remark 31.7:

Define the half-fom bundle Q: by

of = e 2)F o xF

As a corollary of Proposition 3.§ there exists a canonical

isamorphism of complex line bundles
G ©0y == p(m) 6 K (3.17)

- otherwise said, u: is a canonical square-root of P(n) @ KF

Let (F,G) be a pair of POsitive polarizations of (E,w).
We say that (F,G) is transverse {f F n G = 0. There is then

a canonical nonsingular sesgquilinear pairing

<-,->K: pr KG-oG

] (3.18)

into the product iline bundle € =X =@ given by
ac X, e % o @B A= i s ) {3.19)

where A, « TA™™E%)e) 1s the Licuville volume
A, = (-1)mE-1) % (3.20)
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For vacuum states and half-forms we have the following

analogue.

Proposition 13.8;

Let (F,G) be a transverse pair of positive polarizations

of (E,w). There exist canonical nonsingul ar sesquilinear
pairings
e’ « e . g (3.21)
o oS ¢ (3.22)
Proof:

If x « X and p « P, then (p—lrx.p'lcx) ts a transverse

pair of positive polarizat{ons of (V,0); (3.21) is defined

over x ¢ X by transport of the pairing
-l -
(E9° Fx x (g0)P'ox

<. > H

1] E.
2.6. {3.22) comes from {3.18) and (3.21).

= T guaranteed by Proposition
See [14] [16]
for details. a

In order to deal with AoOn~transverse pairings we
consider isotropic subbundles of (E,w) and invoke Proposition
2.7.

Let D be an isotropic subbundle of (E,w); thus, »
is contained in

-39~
bt {v ¢ Elu(v,4) = 0, vd ¢« D}

and D‘/D inherits a symplectic form .

isotropic subspace of (V.R) with dim L = rank p then

If L is an

Sp{E,w:D) ={b ¢ Sp{E,w)|bL = p}

is an SpiV,q:L)-reduction of Sp(E,w) to which
sp(D*/D,up) is associated via v, 12.36), IfF is a
positive polarization of (E,u) such that Da € F than
FD - F/DG is a positive polarization of the symplectic
normal (0'/D,u ). If a « R then the bundle 0% 0) of
a-densities on D is associated to the frame bundle of »
via the character |Dct['° of the general linear group.
Hpc séructure: always pass to symplectic normals.
Let P be an Mp° structure for (£,u) and let D be an
isotropic subbundle of (E,w) with D # 0, p*. Writing
E*(P)” for the subbundle of €'(P) annihilated by D under

W, wa have:

Proposition 3.9:

{0 /D.ubj inherits an Hpc structure PD and there

exists a canonical iscmorphism

£ p)® —es E',) o 0% D)

(3.23)

(3.24)

—
]

]

..
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which restricts to a canonical isomorphism of complex line

bundles
F _~ s Y
E* (P} — E'(PDJ 8 '(m) (3.26)

whenever F {5 a positive polarization of

(E,w) such that D't < F.
Proof :

A consequence of Proposition 2.7, fp 1s associated
to that part of P which lies over SplE,w;D) via the 1lift
vy (2.41) of vy {2.36). The isomorphism (3.25) is clear
from the definition (2.42) of ;L' That (3.25) restricts
to {3.26] follows from the fact that RL intertwines W and

W u

L
We say that the pair (F,G) of positive polarizations
of (E,u) Ls regular L{ff F n G is a subbundle of Poad {or,
has constant rank); in this case, F n & = pC for some
isotropic subbundle D of (E,u], (?D.GD) is a transverse
pPair of pasitive polartzaticns of (Dl/D.uD). and we have

2 canonical nonsingular sesquilinear pairing
o« i€ . 072, (3.27)

see (12, 16].
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The regular pairing of vacuum states and half-forms

is as follows.

Proposition 3.10;

Let P be an Hpc structure for (E,w). If (F,G) 15 a
regular pair of positive polarizations of (E,w) with F - G = D%

then there exist canonical nonsingular sesquilinear pairirgs

Ermf v p)S o plip, (3.28)

w0 - 07y (3.29)
Proof:
{3.29) comes from (1.27) and {3.28), To define (3.28)
we pass to the sympletic normal (Proposition 3.9), apply
the transverse pairing to (FD,GD) (Proposition ).8) and

self-pair 0'(0) naturally into ? (). Sses (14, 16] for

amplification. v}
{3.27) and the Hermjitiap structure on P(n) give a

pairing

(P(n) ® K°) x (P(n) & k%) « p~2(p, (3.30)
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Proot:

which is the square of (3,29) jin the sense determined by Uil < MpS(v,q) 1s central, acts trivially on n(V,n)c,
1

Remark 3.7. The Licuville density IAwI € DUE) gives and acts by scalars in the metaplectic repressantation on E'. 0

fise to a canonical {somorphism Pl (p) DI{E/D) so that

In Remark 3.5 we saw that Hpc[E,u] is naturally an abelian
(3.29) can be considered a8 a pairing

qroup isomorphic to Hztx:l); let us now see this explicitly

F

G 1 in terms of symplectic spiners.
Cp * O - 7 iE/D) (3.31)

Proposition 3.13:
see [, 123,

A canonical isomorphism of principal HZ(X:I) spaces
Our next result tells us how the symplectic spinors

assoclated to an Mp® structure transform under the twisting x:Mp (E,w] = HZ(x;:):[p] - cle ) (3.34)
\Y,p) - PY of an Hpc structure P for (E,w) by a principal

Utl) bundle Y to which is associated a Hermitian line bundle 1s defined independently of the positive polarization F of
L via the standard action of U(1) on €. {E,w). Mp®[E,w) is thus naturally an abelian group isomorphic

,
to nz(x:z). -
Proposition 1.12:

There is a canonical isomorphism Proof :

That c[E'(P)FI is independent of F and depends only on
L] Y\ ~ - o ] »
£ TEE e 3.32) (P] is clear from Proposition 3.8 (after fixing a strictly

positive polarization G of (E,w)). The squivariance of « is
vhich restricts to an 1eomorehisn a4 consaqusnce of Proposition 1.12. Since Hpc[E.m] ad Hztx:l) arc -

principal, (3.34) muat perforce be an isomorphism. ()
2N] A LT SN S (3.33)

Remark 3.14:
for each positive Polaxization P of (E,u). Wa note that the Hpc structure P for (E,w) belongs to the

neutral clase 1ff the bundle E'(P)r of vacuum states is trivial
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for any (equivalently, same) positive polarization F of (E,u). admit metaplectic structures iff ul(D)2 = ) {(when we say
We close this section by comparing "Pc structures with that D is metalinear}. Thus metaplectic atructures do
metaplectic structures. not generally pass down to symplectic normals - in marked
Metaplectic structures for (E,w) are defined after the contrast with the case (Proposition 3.9} for Mp® structures.
fashion of Hpc structures but with Mp(V,1) in place of
Hpc(V,n). we denote by Mp[E,w] the space ¢f equivalence
classes of metaplectic structures for (E,w} (which may be

empty) .

Remark 3.15:

(E,w) admits metaplectic structures iff cl(B,u) is even
tff the second Stiefel-wWhitney class wz(z} - modzcl(E.u) is
zero; see [12] . Compare Proposition 3.1. When nonempty,
Mp[E,w] is naturally a principal space for H‘tx::zi. [12].
In contrast with Proposition 3.1, however, Mp(E,w] has no

preferred base~point in general.

Remark 3.17:

If D {8 an isotropic subbundle of {E,w) then
0d,C, (E,u) = mod,c, (D'/0,u)) + v, )2 (3.35)

-~ see [16]. 1In view of Remark 3.15 it is now clear that

if (Eyw) admits metaplectic structures then (D‘/D,mb) will
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4. GEOMETRIC QUANTIZATION : THEORY

Let (X,w) be a connected symplectic manifold of
dimension 2m. We denots by C(X) the associlative algebra
of smooth complex functions on X and by X(X} the Lie
algebra of complex vector fields on X. The Hamiltonian
vector field 59 e X of 3 ¢ C{X) is given by
q

LA

¢ = d¢ (4.1)

The Poisson bracket on C(X) is then defined by

4,9} = cow (4.2)
for 9,¢ ¢ C(X) and gives C{X) the structure of a comp lex

Lie algebra: the Poisson algebra C(X,w}). The map
E:C(X,w} = X(X):¢ ~ €¢ (4.3)

is a homomorphism of Lie algebras.
A prequantized Hpc structure for (X,w} is a pair (P,v)
with P an npc structure for {TX,w} and vy a u(l)-valued

i-form on P satisfying

-3g8-
a e Mp©(v,a) = Ry = v (4.4)
c - 1
T ¢mp (V,Q) => y(z2) = 3 NaZ (4.5)
dy = »* I (4.6)

where R, is right multiplicatton by a, z is the Fundamental
vector field generated by z, and n:P - X is the bundle
projection. We say that P is prequantizable when (P,vy)
exlsts and that y iy a prequantum form. The prequantized
l"lpc structures (PL'TI) and “’z"fz’ for (X,w) are equivalent
iff there exists an equivalence f:l’I - Pz of Hpc structures
such that t'72 ® v,+ The concept of a prequantized Hpc
structute is due to Hess [7].

Let us ’-mcdiltely felate praquantized Mpc structures

to (the more familiar) Hermitian line bundles with connection.

Proposition 4.1:

If P ia an Hpc structure for (TX,w) then there is a
canonical bijection between proqunutu-'fon- y on P and

Bermitian connections v’ of curvature :—: in P(n).

Proot:

Let Y be the principal U(1) bundle associated to P via
n with associating morphism £:P ~ ¥; ¥ ia naturally the
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unitary frame bundle of Pln). The bljection asserted in (2] - %. <, (..,)n

i {4.9)

the Proposition is effected by

is integral (when we say that (X,w) is quantizable). a

- 4.7
f*a 2y 4.7 A flat U(1) bundle (¥,a) on X s a principal U(1)

bundle Y equipped with a flat connection a. The flat U(1)
where ¥ denotes the principal comnection in Y corresponding bundles {Yy,a;) and {Y;,05) are equivalent iff there exists
to 97 in Pn). a R an isomorphism E:‘!1 + Y, such that £*a, = a,. We naturally

Write ¢ le) = cl(Tx”"’ and dencte by ¢ the real identify the space of equivalence classes of flat U(l) bundles
cohamology class arising from the integer cohamology class c on X with fech cohamology hl (RiU(1)) of X with (locally
under change of coefficlents H*(X;3) - H* (X:R}. constant) coefficients In U(l).

in order to describe the space of equivalence classes
Proposition 4.2;

ot prequantized Hpc structures for (X,w) we adapt the various
<

P X r tizable {ff
The Hp~ structure for (TX,u) is prequan constructions that were introduced to establish Proposition

. 4.

R W 1 R '

P - ¥ . ~ 4.8 :

<((P1) Lhl 79w ( ' Thus: let (P,y) be a prequantized Mp® structure and

(Y,a)} a flat U(l) bundle. The fibre sum a . Y is the
Proof:

u(l)-valued l-form defined on ¥ x P (3.2) by
A consequence of Well's theorem [18], Propositions 3.6
and 4.1, and definitions (3.12) and (3.34). a . .
) la + v) (g = £} = alg) + y(E) {4.10)
As a corollary of Propositions 1.13 and 4.2 we have
the following axistence criterion (first derived by Hesa [7)]

for ¢ x £ ¢ T{(Y x P). Asasociatad toa+yonYaxP is a
using different methods):

prequantum form Tu on PY. The twisting

Proposition 4.3:

. ({Y,a), (B,y)) = (Y, % (4.11)
(X,w}) admits prequantized Mp~ structures iff the real

cohomology class
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Passes to the level of squivalence classes to Yield:

Proposition 4.4:

The set of equivalence classes of Frequantized Mpc
structures for the quantizable (X,,) is natyrally a

erancipal chx:uun space for the action

LY,al[P,y] = EPY,~,°] 4.12)

Proof :
Along similar lines to that of Proposition 1.4 -
we omit the detajls. a]

Remark 4.5;

Recall from (9] that the polarization-independent
part of the Kostant -Souriau quantization scheme invoives
both a prequantum U1} bundle (v,p) (thus, a Principal
Ull) bundle Y equipped with connection § of curvature 1”5)
and a metaplectic structure P, and thus Tequires both that
[;‘—;] be integral and that €1 (w) be even. It {8 clear from
Proposition 4.3 that (X,u) is quantizable (in our sense)
whenever the Kostant-Souriau scheme applies: indeed, a
twisting akin tgo (4.11} produces a Prequantized Mp® structure
from the Prequantum U(l) bundle (¥,8) and the Hpc structure p

4s30ciated to P_ via inclusien Me(v,0) < mp°iy,n).

Let us now outline our geometric quantization

~42=

The first step is to construct a representation of the

Poisson algebra CiX,uw).

Assume (X,w} to be quantizable and let (P,Y) be a

Prequantized Mpc structure for (X,uw);

connection (Hpc-invarlant and of curvature #*

pPrincipal Ui(i} bundle P+ Sp(TX,w).

As prequantization module we take

of smooth symplectic spinors. We ldentify sections

8 € TIX:E'(P)) with functions s:p « £' which transform

as

PeP, acmpSv,n = s(R,p) = yia)~Y3(p)

I

If ¢ ¢ C(X) then Lie differentiation along £° annihilates

mc 80 that (0 lifts to a complex vector field E‘ on the

symplectic frame bundle SP(TX,w). The vy

of E‘ is then a complex vector figld on P along which we

can differentiate s for s « T{X:E'(P)). Since Y is Hpc

invariant we have

~

E,l = (D.si

for some D.l e T(X;E'(P)).

This gives a map

scheme,

observe thae Y is a

&J in the

the space r(x;E'(p;)

{4,123)

~horizontal 1ife E‘

(4.14)
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D:C{X,w) + End T{X;E'(P)} (4.15)

which satisfies

D, t¥s) = wnos + {e,vls (4.16)
1
= —— (4.17)
n{¢'w}s [Do.osz + 1 (6.vls

for 3, ¢ ¢« C(X) and 3 « F{R;E'(P)). (4.16) holds since
E’ and E? are n-related for the bundle pProjection m:P -+ X;

{4.17) holds since y has curvature n* f% in P « S5p(TX,w)

and ¢ - E’ is bracket-preserving.
As a straightforward consequence of (4.16) and (4.17}

weé now deduce:

Proposition 4,6:

A Lie algebra morphism $§:C(X,w) -~ End T(X:E'(P)) (4.18)

is defined by the prescription
8,8 =D.8 + -1 os (4.19)
[ L in

for ¢ ¢ C(X,u) and s « F{X:E'(P)). 0]

We rafer to the Lie algebra morphism § as prequantization
of (X,s) relative to ?,v).

~4 4=

It is desirable to have available a local description
of prequantization, According to the Darboux theorem
on the existence of local symplectic coordinates, every
symplectic manifold is locally linear. The case of a
linear symplectic manifold, treated in cutline in §5 and
at depth in [16], thus provides a convenient framework
tor the local picture. oOf Course, every symplectic
manifold admjits locally both Prequantum U(1l) bundles
and metaplectic structures; this 15 reflected in the local
picture in the light of Remark 4.5 and {9] (see Remark
3.3).

The bundle representation W of n(Tx.mJa on E'(P) -
see (3,14) - induces an action of X(X) < F(X:n(Tx,w}c) on
FIX;E'(P)}.: This map interacts with D (4.15) in the

followingy manner (which should be campared with (2.28}):

Proposition 4.17:

If ¢ « CIX) and Ee¢ X(X} then
Froof:

A local verification is sufficient; for this we refer
to [16]. a

(4.20)
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A polarization of (X,w) is a polarization F of the
symplectic vector bundle (TX,w) which is involutive as a

subbundle of Txa, thus
[‘x'¢2] € T(X;F), ¥ L1068y ¢ TX:F) (4.21)

As before we suppose F to be positive. Let U be an open
subset of X. We denote by Cp(U) the set of all y ¢ CIU)
for which £, « [(U;F) and by C_(U) the set of all ¢ « C(u)

for which

5 ¢ T{U;F) = [E,.cl e T(U;F). (4.22)

c:.(U) is a subalgebra of the Poisson algebra c,w|u),
and Cp(U) 1s an abelian idesl in Cp(U). In view of (4.21)

and (4.22) it is clear that if ¢ « C;(X} then Lie differantiation

in "mT‘xa along £¢ stabilizes KF.

Ag a corollary of Proposition 4.7 we deduce

Proposition 4.8:

o cclix) and s ¢ rone' @)F) chen Dys and &3

lie in r(x:E'lP)P}. 0

Prequantization thus restricts to define a representation

of c;(x) on the space of sections of the vacuum state bund le

-4 f=-

EY (P)F, which upon tensoring with Lie differentiation in
Rr yields a Lie algebra morphism

sFicp () » End rtsh) (4.23)
gecii)m sFus 014108 (4.24)
F 4 L) E‘
F ' r F
where Gp i3 the haif-form bundle E'(P)° ® X . In similar
fashion D (4.15) gives rise to
pf :Cp (%)  End T (Xsgh) (4.25)
F | 4
satisfying the analogues of (4.16) and (4.17). & and D
are clearly related by
1 - F F Ry 4.26
occptx)>6’-n ‘m‘ {4.26)

having reduced the algebra of observables from Ci(X,u) to
c!‘, (X} and the representation module from P(X;E'(P)) to
NX:Q:). we further cut down the representation module to
the space of polarized sections of the half-form bundle,
as follows.

The section s of Q; is said to be polarized iff
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v ¢ CplU) = o:s -0 (4.27)

F
whenever U is an open g in X. We write FFIX;QP) for the

F
space of all polarized sections of Q-

Proposition 4.9:

1 F
Let U < X be open. If ¢ « CF(U) and 3 ¢ T (U:Qp) then

558 ¢ TolUing).
proot:
Let ¢ « CF(U}; then using (4.16) and (4.17)
Dg(éisl - Djbys + D:‘Tlﬁ 0s)
- (0y0;s + n’w'ﬂ- - & el
+ (1% QD:S + I% {veals)
which vanishes since CplU) is an ideal in C;(U). a

Remark 4.10

In particular rr(x:Q;) is naturally a cr(x)-module since

F

F 1
6. acts on I‘r (x:QP) as multiplication by mY when ¢ ¢« CF(X).

-4B~

By restriction we therefore have a Lie algebra morphism

F .1 . F
8 .CF(X) + End rFtXrQP) (4.28)
which we call yuantizatton of (X,w) relative to the

quantization data {P,y;F). As has come to be expected

of a quantum bundle, Q: has real Chern class
clepT = [§1 + § o (@® (4.29)

in view of Proposition 4.2.

As we have presented it thus far, our gJeometric
quantization scheme is perhaps rather abstract: let us
therefore cast it into a more familiar form.

Recall f:cn Remark 3.7 that there is a canonical

isomorphism of complex line bundles

vp 0 Gp > Pin) 0 K (4.30)
In u: we have the operator Dr (4.25), tn P{n) the metric
connection ¢ of Proposition 4.1, and in Kr the Lie
derivative along Hamiltonian vector fields. Relative
to (4.30) these satisfy the following Leibnitz rule (which
ahould be compared with {2.30}):



By 1 I
Proposition 4.11:
If 9 « C;(XJ then
F F Y
D’OI+IDD’-VEQI+IOLF [4.31)

» -

Proof:
It suffices to establish the formula locally: this

15 done in _16] to whizh we refer for details. o

This result has a number of important consequences.

Remark 4.12:

Qur scheme can be phrased in terms of flat partial
connections (for which see [11]). Indeed V" @ I + 1 @ L
gives a flat F-connection in P(n) @ ' and so uniquely
determines a flat F~connecticn VF in Qg via the Leibnitz
tule. The operators "{ and D: agree whenever y « Ce x).
Note that polarized secZIms of Qg are determined by 7F
after the usual fashion for flat partial connectioms:

5 ¢ r(x:of;) is polarized Lff
£« F{X:2) m VE: -q, {4.32)

Remark 4.13:

If we are given both (P{n},%'} and the square-root QE,

of P{n) @ KF, then in order to campute the quantization wa
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simply pasa V' @ I + I @ L to Qg (uniquely) via the
Leibnitz rule and add the appropriate multiplication
operator. This technique is particularly effective,

especially when the topology is simple; see 5.

Remark 4.14:

As a special case suppose (X,u) to be the aymplectic
manifold which underlies a Xihler manifold apd suppose F
t0 be the bundle of antiholamorphic tangents; cF then
consists of the holomorphic functions and RF the holo-
morphic m-forms. If P is a prequantizable Mpc structure,
then each prequantum form vy on P endows Qg with a flat
F-connection VF (as in Remark 4.12), and according to
[13] there is a untque holomorphic structure in Qg which
is compatil;le with VF in the sense that the [local)
holomorphic ssctions are precisely the (local Vp-l
polarized sections:; P(n) is likewise given a holomorphic
structure, and {(4.30) is a holomorphic isomorphism when
Kr has the canonical holomorphic structure.

Once having set up the quantization map {4.28) the
subsequent developmant of our scheme differs little from
that of the usual scheme of Blattner, Kostant, Sternberg
{2]. Let us outline the procedurs. Choose a positive

polarization F of (X,w) With F n F = Dc and assume
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{a) D ts fibrating (thus, the leaf space X/D is a manifold
and the projection X + X/D a submersion);

{b) Blattner's obstruction for D vanishes (see [3,12]).

Referring to Remark J.11 we have a self-pairing <<-,->>F
of the quantum bundle Q; into Dl(Tx/D). If s and ¢ lie
in rrcx;os) then c(a,t»F descends to a density <s,t>F on
the leaf-space X/D. Denote by Hy < FP(X:QS) the space of
those &8 for which <s,8%p has compact support {and so may
be integrated over X/D). HF ls a pre-Hilbert space with

inner product [<-.-> and is stable under &F for ¢ « c:.(x)

F L
since 65 is support-decreasing. The completion HF =-

nplx,u:P,y) of hF is the Hilbert space on which we quantize

1
CF(K).

OQur scheme allows for the comparison of guantizations
arising from a pair of positive polarizations; indeed the
pairing CCgedrn G of half-form bundlies given in {3.11)

’
will give rise to a pairing [<-,->P'G of HF and H_, in

G
sufficiently regular situations.
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§5. GEOMETRIC QUANTIZATION : EXAMPLES

In our final section we demonstrate how our gqeometric
quantization scheme applies in two specific cases - those
©f a linear symplectic manifold and a complex projective
space. Since every symplectic manifold 1s locally linear,
a study of linear symplectic manifolds vields a local
picture of our scheme. Complex projective Spaces arise
4s Grbit spaces for the enerqgy surfaces of harmonic
wicillators; our scheme provides a uniform treatment of
harmonic oscillators irrespective of dimensicnal parity
whereas the Kostant-Souriau scheme is unabie to deal with
the odd-dimensional harmonic oscillators. 3See [16] for

more detajil,

Linhear sxggiectic manifolds

Let (V,0} be a 2m~dimensional real symplectic vector
Space. X will denote V endowed with its natural manifold
structure. For each x ¢ X the real-linear isomorphism

btav - Txx:v - vx
dt

fecCc(X) = vt = 4 fix + tv)lt_0

L ]
induces w e Azrxx according to

(5.1)

(5.2)
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mx(bvl,bvz) = O(vl,vzl, v €« V. (5.3

1°V2
We refer to (X,w) as the linear symplectic manifold mode 11led

on (V,?). Note that Sp{TX,u) is canonically trivialized by
B:X « 8pi{V,i} +» Sp(TX,w):(x,g) + bxog (5.4}

Choose a symplectic basis {el"“'em'fl' ...,fm) for
tV,i) - thus

Rlejie) = Al £} = 0

i

(5.5)
ﬁ(eJ.fk) =- ij

This has the effect of identifying (V,I) with nZn and
5p{V,Q) with the real symplectic group Sp{m:R). The
dual basis (pl.---,pn-ql.---.qm) for ¥v* then forms a global
symplectic coordinate chart for (X,w):

m

sy

and the Hamiltonian vector field of ¢ e CIX) 1is

m
g, = [ (3% .3_-1’__9_) 5.7

-G 4=

Since Hz(x;l) = 0 it follows from Proposition 1.4

that all Mpc structures for (TX,w) are equivalent., We

2hall work with the product Mp® structure: P = X x Mp®(v,q)

with projection Bo (I = g):P + Sp(TX,w) .
From Propcositions 4.3 and 4.4 1t 13 clear that (X
is quantizable and has precisely one class of prequantized

Mpc structures. Denote by a the natural fiat connection

in the principal Mpc {V,0) bundle #:P + X; a routine exercise

in basic forms establishes the following description of

prequantum forms on P,

Proposition 5.1:

The u(l)-valued 1-form vy on P is a prequantum form

for (X,w) iff

y-%n,u*-fﬁn'o

for some primitive 9 of w (s0: w = dae).

Let a® denote the (complexification of the] connection

in $pi{TX,uw) + X induced from the natural flat connection

in X x Sp(v,1) - X via B (5.4).

z:C{X) - C(X} ® -p(v,m’

A map

o

(5.8}

(5.9)
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is defined by
¢ eCiX) >z =a®€.) 0b (5.10)
’ 0

In terms of our chosen symplectic coordinates, if ¢ « C(X)

then z°:x » spw,mc corresponds to the function matrix

t
]
]
¥
]
1
]
]
i
L P

"l a3 b
where (PO}Jk 55:%5; ’ (Qa)jk °qk3qj

2 2
---..3.._’_.'(5, a

(R}, == .

Since P is the product X x Mpc(v.ﬂ) we have a canonical

trivialization of E'(P) and hence a canonical identification
0:2C(X) @ E' - T(X:E'"(P)):f = sg (5.12)

of E'-valued functions with smooth symplectic spinors.
Ragarding spiv,fl) as the Lie algabra of Mp(V,) wa
have the following formula for prequantization relative to

1 i
P,y = Mo H 1*9).
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Proposition 5.2:

If 9 ¢ C{X) and £ ¢ C(X) ® E' then

£ - .88 (5.13)

|
60(8(511 - S(Ii P + SEQ)E + E‘ N

Proof:

A matter of identifying the y-horlizontal 1ift E’ of
Eb in terms of Z4: See [16]. 13
demark 5.3:

This formula for prequantization campares with the
local formilae in [9], modulo notational conventions and
the term in I%'(3€¢’ (which arises from the structure of
a preguantum U(l) bundle}.

m( T

Since A“T'xa is canonically isomorphic to X x A" (v )

we have a canonical identification

81CX) 8 A (VE)r o ra™ren®) ik - 8 (5.14)

k

of An(vc)'-valuad functions with complex m~forms, and In
terms of the natural representatiocn of splv,n!c on Am(vci‘

we have the formula

LE’ s(k) = s(E’k - zg.ki {5.15)
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when 3 ¢ C(X) and k ¢ C(X) @ A" (v,

Far an account of quantization with respect to an
arbitrary positive polarization of (X,u) see [16]; we
are here content to deal with a translation-invariant

polarizacion.

let |« ;ag’[V.aJ; the linear polarization of (X,w)

moge_.ed on [ is the transliation~invariant positive

peclarization F of (X,,) defined by
e X = Fx = bzf

Let £ ¢« C(X) @ £' have constant value fr € (E')r and
T

et k « 20X} @ A" (v®}* have constant value kp € kT; thus

Sg @ S, is a zero-free giobal section of the gquantum
tundle dg.
LeT 3 ¢ C;(X). It is readily verified that
X ¢ X = g (x} « sp(V ﬂ)c
] R

Fram Propositions 2.5 and 5.2 it follows that

fFz ¢ = 4 g -{—‘—(¢+eg)+-!-'rrz}s

-tr ¥ f ifi ¢ F [ Rt 4

Fram (5.15) and since sptV,ﬂl? acts on Kr via Trr it

follows that

[5.16)

(5.17)

(5.18)
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K=k L g ={-Tx z,ls,

S

We therefore have the following explicit formula for

quantization of (X,s) relative to (P,v:F) in terms of

the translation-invariant sect ion s, " 8 ? 8, of Q::

Proposition 5.4:

If ¢ e C;(Xl and ¢ € C(X) then

F 1 !
Sp¥esyl = ((fg (o + 8,0 = PTrpz v + lo.u)is

Remark 35.5:

It can be checked that

X « cle) ->T:rzx = {

G

F
Consequently the section LA of QP 1s polarized 1ff

satisfies the differential equations

Xecptu) m» g4+t (8,)¢ = 0

ih

On each ocpen set U c X. Since F + F c TXO is involutive,

thers exists GP € r(x:t“) such that der -

a
w

since X is

(5.19}

(5.20)

(5.21)

(5.22)
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cohuomologically trivial, there exists XF e C({X) such that

F

4 =48 + dAF. The condition for ¢-3_ to be polarized can

0
now be written in the form

F 1 F
¥°8, « [plXiQy) <=> yeaxp {- X } e Cp(X). {5.23)

We close this section with two concrete examples. These
are essentially the simplest cases of quantizing: first, a
cotangent bundle (T*R™) with respect to the vertical
polarization, and second, a Kilhler manifold with respect

to the antiholomorphic polarization,

Example 5.6:

Let [ be the (real) polarization of (V,R) having hasis
(8)0-21@y). If ¢ ¢ C(X}, then ¢ ¢ Cp (X} iff 51’—- 0 for
1 £3J <m (thus: " ¢ is a function of the gq's alone®) and

;u::un 1££r-’—-0totlsj.ksm(thu!'oua

function of the q's, linear in the p's"). If ¢ ¢ C:.lx)

then
[ ] a2
Trpz, = (5.24)
£ g %0509y

Let the prequantum form y = %n, a+ I%h— "9 be determined

by the primitive

m
8 = I .
jur ©3

The section Vs, of
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dqj

F
Cp is polarized iff y ¢ CF(J().

wantization (4.28) appears as

E.o. .
% (v so)

1 -
tig -ipg

for 5 ¢ C;{XJ and

kxample 5.7

Let [ be tha (strictly positive) pularitzation of (V,Q)

haviny basis (tai + 1

be Cp {X} iff the Cauchy-Rlemann equations

¢ CF(K) .

fl"""m

+ Lfm} .

1.«.35m-)—1-+1—!.-o

hold amd ¢ « C:.(X) i

123, ksa =

P3 Py
ff
2%y 2%
apjaqk aqjapk
2%y 2%y
3pj§qk aqjapk

If 3

0

¢ C{X}, then

(5.2%

15.26,

{5.27)

(5.28)
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If o ¢ C;[XJ then

m 32
Tr.z, = i [ - {5.29)
o g1 99579
Let the prequantum farm y = %n.u + ﬁﬁ T*8 be determined
S5y the primitive
L ®
® = 7 tp.dqg. - gq.dp. (5.3n
L ey F3%% T d59py) )
The section RN of Qg i1s polarized iff
. exg i;% ;!pf + qj)} ¢t Cp{X). Quantization (4,28)
Appears as
F
°o'°'so’ =
2
N I TRE L X 20, L 2
R e- 7 ity - vay 3 - i L4y, (5.31)
3 J dqy

1 1 2 2
for 3 « CF(X) and ¢ -exp{ rry I(pj - qj)] € CF(XD.

Complex Projective Spaces

Let (V,<.,.5) be a complex lilbert space of dimension
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m = n+l with n > 0. The projective space P(V) is the space
of all complex lines in V and ias naturally a complex manifold
of dimension n. The hyperplane saction bundle "H’HV - P(v)
over P (V) is the holomorphic line bundle whose total space
b, is the set cf all ~omplex-linear functionals on complex
lines in 7 and whose projection "y assigns to each linear
functional the line on which it acts.

Recall that on every complex manifold there is a

natural bigrading

W= @ P (5.32)
prqar
of caomplex forms according to type, and a natural decomposition
of the exterior derivative into d = 3 + 3 with 2:0P*9 . pPtl.q
and 3:pPr9 . Qp.q+l.
If |.] denotes the norm on V defined by the Hermitian
irner product <:,-> then
$ =37 log |-)? 2ty (5.33)
descends to a (l,1)-form ¢ on P (V) under the natural map
0,:VA(0} P (V) which assigns to each v ¢ V\{9} the complex
line through v, thus

PR p2e (5.34}
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Choose a unitary basis {vl....,vm) for (V,<+,*>»), with
m
dual basis (z',...,2") for V*. This identifies V with ¢
f1.]
and <*,+>» with the standard inner product on U, and P (V)

becomes P (C") = CP(n}. If we define

Uy = 12 « POV) fen ker 27 = 0} (5.35)
and
k
I TRPUr SV i (7] (5.136)
b | v 23 (v}

then (u;.....ai.... ,w';'} are holomorphic coordinates cn the

cpen set Uj c P{V} and

4 k

{L§ Todwt A aw® - aFeSaet A al)  (5.37)
k#j I

0|Uj =L cospy 129

where the length function Lj’uj + R, 1s defined by

i e1e ¢ X2 (5.38)
In subsequent local formulae we shall generally simplify
notation by weiting U = Uj' L = Lj' and (ul....,un) in

place of (u;,...,ii,....w?), for a fixed j in the range

b]
l €4 s m,
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For each positive real number E (energy} we define
wp = 1E &, (5.39)

IP(V).uh) is then a symplectic manifold of which the
intihclomorphic tangent bgndle F is a pusitjive pelarization.
Up to scalar multiples wp 18 the fundamental Kihler foim

2t the Fubini-study metric on P(V),

Yefore quantizing 'J’W).usl we digress o recall some
ds1c factd converning (Hermitian holomorphic) complex lite
hurr'les on complex projectiva Space,

We shall denote by ¢ (P(V);L) the space of holomorphic
sectiuns of the holomorphic ljne bundle L + P{¥) over the

Jpen set U = PV}

Remark 5.8:

Each f ¢ V* gives rise to a global holomorphic section

3¢ of the hyperplane saction bundle H, according to

3pPIV) = H o1t £ (5.40)

and we have a natural complex-linear Lsomorphism of the

global sections of HV with v,

Ve - OCI’(VHHv):f .8, (5.41)
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Remark 5.9:

More generally, if Pr(v} denotes the space of homo-
geneous polynomials on V of degree r ¢ N o {0} then there
1s a natrual complex-linear isomorphism

25wy - 6P V)R (5.42)

“iere h.,i = H.v. e ... ©® H, {r factors) and if s - 0 then

I V)RS » ) where S = (%), g

'

We shajil denocte by s:i = g j e OCP(V):HV) the holomorphic
z

seztion of H, corresponding to z3 ¢ e under (5.41). More

generally, for r «+ R we shall write s . OCP(V};H:) for

tre rth. tensor power of s = 55 when j is understood.

Remark 5.10:

By restriction and dualization, <+, > on V induces a
nermitian inner product <ty On A% = ﬂ;l(l) for each
t « PIV). 1In this way <-, > gives rise to a Hermitian
structure <-,~>H in the hyperplane section bundle Hv

Qver Uj 2 P(V) we have the local formula

LITL I L]T (5.43)
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Remark 5.11:

Let V¥ dencte the unique connection in Hv which ia
compatible both with the natural holamorphic structure and
with the Hermitian structure ety It is readily verifjed

that over Uj c P(V)

-2 -k
£ e X(uj) - 755. 2 oL b wjdw

k3

k
j(EJSj (5.44)

and that 7 has curvature precisely ¢ (5.34):

r 7 Te w -
J?i,in_,s V[E’n]s bE,n)s (5.45)

whenever £,n ¢ XP(V}) and 5 « I'[P(V):Hv).

As a consequence of (5.45) the hyperplane section

bundle has real Chern class

c[HvJR = [- 2—:-1.] (5.46)

and more generally if r « & then

lHfI® = (-r 7%1. (5.47)
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Remark 5.12:

The group of isomorphism classes of (holomorphic or
complex) line bundles on P(V) is Infinite cyclic, generated
by the hyperplane section bundle. Up to Lsomorphism these
line bundles onh P(V) are determined by their real Chern
classes.

In particular a careful consideration of transition
functions shows that the canocnical bundle KF of holomorphjc

m-forms is isomorphic to H;m - (H;)n+l, 30 that

c[KP}n = [m 3_%-1-]. {5.48)

This concludes our digression; we can now descrihe our
quantization of (P (V) ""E, .

Since HZG’(VJ:I) is infinite cyclic (generated by c[l-lv])
the group Hpc[EPfV),mLJ of equivalence classes of Mpc structures
for (‘u’(v).uE} is likewise infinite cyclic.

Fram (5.39) and (5.48) we deduce

(1t de R . (- 3 miger] (5.49)

and 30 in view of Proposition 4.3 and Remark 5.12 we

have:

Proposition 5.13:
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CP(V),mE) is quantizable (ff

E= (N+imn, Nex,

(5.50)

Assume henceforth that the quantization conditicn {5.50}

is satisfied.

Since P (V) is simply-connected it foljows that n'(x:ut1L

is =rivial and therefore that all prequdntized Mpc structures

fur QPtVJ.uE) are equivalent.

Mpc structure (P,y).

Referring to Remark 4.14 we have canonical structurea
of oclomorpnic line bundle on KF, P(n}, E'(P)F,Qg. and a

canonical Lsomorphism of holomorphic line bundles

~

F o F
Gp ® G, — Pin) o

It is a simple matter to deduce from {5.39) (5.48} (5.51})

that we have holomorphic 1Lsomor phisms

e

ey ol tm

P(n) ~—>

P ~
o, —>

2N+m

Hy
By .

Thocse and fix the prequantized

{5.51)

(5.52}
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Since P(V) is compact these isomorphisms are unique mndulo
honzero constants and may be chosen so as to make (5.51)

correspond to the standard isomorphism

H, ®© —_— Hv ® HV (5.53)

Remark 5.14:

The space rra’tvnog) of polarized sections of the
gquantus bundle Qi = H‘:‘, is precisely OCP(V)H%) » In view
of Remark 5.9 we therefore recover the familiar quantization

condition
Es (N« dmn v o=o0,1,2,... {5.54}

for the quantizatian module to be nonzero.

Assume henceforth that the quantization condition (5.54)
holds.

To develop an explicit farmula for quantization &F of
CP(V).uE) relative to {P,y;F) is now quite straightforward.
By meana of the isomorphisma (5.52) we pass across the
various operators involved in quantization to the appropriate
teansor powers of the hyperplane section bundle. In particular
(#(n),?') becomes the (2N + m)th. tensor power

M, g2Nem e (#,,9) .
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Obsarve that we are now in the position covered by
Remark 4.13: we have identified both (P(n),?") = (u2*%, o2M*m,
and the square-root Qi - l¢ of Pln) @ K = HVZN“ ) HV"ln - H&N.
After some routine computation the technique suggested by

Remark 4.13 results in (see [16]):

Proposition 5.15:

If 9 ¢ C:.(U) then quantization

, : &0 (5.55)

is determined on the cancnical holomorphic section

SN n Sl;.‘ of tﬁ - Qg aover U = Uj by the formula

2 2
of o = L (67 4 WTa® s S 23" (5.56)
¢ (2N+m) LN Iw 3w Aw
where the indices b,r,s are summed over (1,...,n}. !

Remark 35.16:

By vu-:.ue of (5.42) any holomorphic {(or, polarized)
saction of l{; - Qg is a polynomial multiple of the canonical
section SN over U; it is clear how such a section can be

quantized using {5.56).
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