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I. INTRODUCT ION

Chiral anomalies are objects discovered as such about fifteen yesrs
lgol). Preceding the discovery of dilatation anomalies, they constitute one
of the major conquests of the period of the seventies through which the
analysis of perturbative expansions essentially came to a final acceptable
stage.

They were recognized as important, not only in connection with our
views ou symmetry breaking, but also, somewhat later, as major obstructions
to the conaistency of the perturbative treatment of fully quantized gauge
theorias,

Over the last five years or so their mathematical structure has been
substancially better understood, but there are indications that more work
may be needed in view, for instance, of :h; idea, vigorously defended by
L. Plddecvz), among others, thet an anomaious gauge theory may very well riyrn
out to possess & consistent interpretation, at the non perturbative level,
of course. The axample of the chiral Schwinger model analyzed by R. Jackiw
and R. le(tlﬂlnj) does indeed force us to keep in mind th;t, so far, ancma-
lies have only been shown to spoil the perturbative regime.

To come back to the prasent, developments have taken place in several
complementary directions: in view of the often severs computational diffi-
culties met in direct Feyoman graph perturbative computations of ancmaliesb)
sevaral lines of attack have been devised to analyze their structure.

At the most primitive level, the algebraic analysis of the Wess Zumino
consistency conditions allows to reduce the computations to those of a finite
nusber of numerical coefficients. This method often requires sharpening the
algebraic formulation of the symmetry affected by anomalies. On the other
hand, neither does it explain the role of chirality, nor does it explain the
arithmetic regularity of the various coefficients involved, which has proved

crucial in the analysis of anomaly cancellation mechanisms.
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These more detailed, very important structural aspects can be reached by
application of sophisticated versions of index theory which have however so
far failed to incorporate ab initio the crucial concept of localitys).

It is to be hoped that, in the long range, the wheole subject will find
itself fully contained within s "local” index theory, but, at the moment, the
algebraic theory and the index theory appeal to different cchomology theories
and actually both approaches have provided results which the other one is not
able ko produces).

Since the coverage of the subject has fortunately been sharad between

73

Paul Sinsparg and myself, I will mostly describe here the algebraic aspects
of chiral anomalies, exercising however due care about the topological deli-
cacies involved here and there. I will most of the time illuatrace the
structurs and methods in the context of gauge anomalies and will eventually
rake contact with resulets obtained from index theory. I will then go iate
two sorts of generalizations: on the one hand, generalizing the algebraic
set up viz:ids e.g. gravitational and mixed gauge anomalies, supersymmetric
gauge an~nalies, anomalies in supergravity theories (0 model anoralies will
be treated in P. Ginsparg's lectures); on the other hand most constructions
applied to the first - and eventually second -~ cohomologies which characterize
anomaliazs easily extend to higher cohomologies. Although the latter have not
so far received firmly founded physical interpretations, they have appeared in
the topolougical analysis and definitely belong to the theoretical framework.
Section Il is davoted to a description of the general set up as it
applies tn gauge anomalies. It owes much to an article by J. Mades,

8)

B. Zumine and myself, whose writing has now come to an end (referred as
MSZ in the body of these notes).
Section III deals with a number of algebraic set ups which characterize

more general types of anowmalies: gravitational and mixed gauge anomalies,

supersymmetric gauge anomalies, anomalies in supergravity theories. It also

includes brief remarks on o models and & reminder on the full BRST algebra
of quantized gauge theories.
A mathemactical appendix is devoted to a description of the general

cohvmological constructions which underly the whele analysis.

II. GAUGE ANOMALIES

9)):

(Perturbative current algenra anomalies

Let 5($) be a classical action involving "matter" fields ¢, transforming
linearly under an internal compact Lie symmetry group G, of the rencrmaliz-

able type, [($) the corresponding vertex functional

Tee) = sy + ¢ &% r®™ gy (1)

n=1i

If § is invariant under the action of G it is in particular invariaamt

under the action of Lia 5. This is expressed by a Ward identity

“cl.(u) S(9) = 0 w € Lie G (2)

vhere “cl () is 8 functional differential operator linear in w. This
set up covers the situation where the internal symmetry G is seftly broken.
One can then show that the renormalized perturbative series representing

T{¢) can be defined in such a way that

Ww) T(¢) = 0 3
where W(w) fulfills the commutation relations

[Wiw) ,Wiw')] = W([w,w']) w,w' € Lie G 4)

Let § be the gauge group associated with G (maps from space time to &

- s . . . . . PAPIFEN - mra n -
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a is an external classical gauge field transforming under s in the well

knowm way, &nd wcl (w) inte 1{;1 (w), w € Lie a s in such a way that

W, @ S8 = 0 O)

This is easily carried out by "minimal coupling”.
The question is then whether T[($} can be extended into T(¢,a) and

W, . @ into W(w) in such a way chet

?
Ww) T'($p,a) = 0
w,w' & Lie 5 (6)

(w), Ww')] = W({w,w'})
It is found that this is in gsneral not the case, precisely when the matter

fields contair chiral spinors. Ratber, cue has an annmalous Ward identity

u(‘_‘__’) ?(4’.1) =

JH o(,ad 7)

vhere O{w,3) is a differenrial form linear in @, a local poiynomial in
a and its derivarives, and IM denctas space time integration.

This deacribes the situation for d = 4-dimensional perturbatively regorm-
alizable theories. The locality propertr of & is due toc che localicy
properties of perturbarive expansions; <+he fact it has canonical dimension
4 comes from pover counting. (L is partly characterized by the Wesa Zuymino

consistency conditions which follow from the commutation relations Eq.(6):

Ww [ e .a) - V) [ awer - [ alfw,ue')) = 0 . (8)
By the algebraic Poincaré lenma' applied to the local functiomal & (w,n),
one has

W(w) K(w',a) - Wy') Kw,a) - A([w,9']) = 0 mod d ¢}

vhere "mod d" means “"wodulo” the exterior differential of & form local in
w,w',a, and their derivatives.

The Wess Zumino consistency coadition characterizes ICL(g,a) as an
element of H!(Lie - Tloc(a)) {cf. Appendix) where Floc(a) denotes the
space of local functionals of a, because a change of renormalization pres-

criptions, which does cot introduce a dependence unm 4 and altars ['($,a)

loc 1oc(.).

by & locsl counterterm T (a), alters @(w,a) by an amcunt W{w) T
In the case of d = 4 renormalizable theories the elimination of the linearly
transforsing "matter” fields requires a bit more than >he Wess Zumino consis-

I,10::

tency conditions when G contains U(l) factors; once {(a,d) is

Floc(a) there only remains to compute H'(Lie §, Floc(a)). The

reduced to
Ttesult, which will be described later turns out to be compietely expressible

in terms of the differentizl form a, and its exterior Jarivative, not sepa-
raceli on its coefficients and their derivatives. Besidas the complete

results for dimension d = 4 gummarized here, thare is nos one complete result
known, for arbitrary d, namely the general computstion of H.(Lie q. Tlcc(z)),
recently carried out by M. Dubois Violette, M. Talom, .M. Villletll). to

which one may apply the various general constructions described in the appendix.
For instance, given sn n cocycle mod d, Q2(m,£)+ of Lie S wvith values in

L
Floc(!). we may construct the corresponding Wess Zumiano cocycle'

[ % Gl (10
8, < Tn(so...su) x Cp
Bt

wvhere 2 is the gauge transform of a :

82 = g™'ag + g7'dg an

+from now on w denotes the generator of H-(Liz s), cf. Appendix, eq.{A9).

++
‘ef. Appendix eq.(Ald).
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and G; is a cycle in the base manifold, of dimension p, the degree of
Q: 2s a differential form.
In particular, for n=l, p=d, the dimension of the base manifold we

get the Wess Zumino action

- g
Tpen = [aalas,. et

T, (e, 8)xH,
which fulfills the Ward identity

¢ Tymlg,2) = [d’.(m.l) (an
Hd .
where & is defined by
da +» - du - [z,w]

(14)
g = ug

{cf. Eqs (A27),(a10)).

Note that a non trivial cocycle with values in rloc(

a) becomes trivig! -

up to noun uniformity - in Floc(g,!) whete a new variable g e 5. behaving
non linearly under g, has been introduced. This is one classical procedure
to "kill cohomology". The other known procedure, the so calied Greer
Schwartz procedure requ;tel the introduction of a 2-form with suitablz trarz-
formation properties and will be mentioned in the next section.

The non uniformity of FHZIZ)

is clearly parametrized by "5(5 Y, the
first hometopy group of the gauge group and, upon proper normalization, can
be gotten rid of by expenentiation in most cases of interestlj) {e.g. compact
space-time, see MSZ for further details).

We shall now describe in some details the results of M. Dubois Violetrte,

M. Talon, C.M. Vialletll) (referred to as DTV), namely exhibit the cona-

Some technical preparation is in order: Let
F = d£+%[g,_a_] 15

be the curvature of a.
Let Jn be a symmetric polynomial ¢en Lie G of degree =n, invariant under
the adjoint action of G.

Oune has the following transgression formulae inherited from Chern, Weil,

Cartan:

I (F(a)...F(a)} - Jn(F(go)...F(go))

1
= n(d+ 8 é Jn(dtﬂt, F(At)...F(it))

= (4 + §) Qn (18)

where [R is a fixed background connection (# 0 if counectiovs live on 2

non_trivial bundle, cf. MSZ), and

A« v+ (l-t) (atw) on

is a family interpolating between 8, and a+w. Qn is an element of total

degree 2o+l bigraded by the form degree p and the degree in w,g

(ptg = 2n-1):
g=2n-1 2 8
- (l.
% sfo %20-1-

Expanding Eq.{16) in powers of w we get the hierarchy of identities

I (F@) - 1 (Fa)) = d Q)

(-] 1
0 " 6 Qe Y4 Qo
- 3 g+!
8 an-l-g +d Q2n-|—g—l

. In=i
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If Jn is irreducible, namely is not the product of several invariant poly-

nomials, Q§n+l

is an irreducible antisymmetric invariant polynomial in w.
Conversely, one can show that these invariant antisymmetric polynomials
generste H‘(Lie G) when Jn spans & system of generators of ;nvariant
symuatric polynomials. The Qn's appear as building blocks for ;H.(Lie ﬁ .
rlo€(ayys

Th (D.T.V.): A system of representative cocycles for B.(Lie S.P loc(!)) is

given by expanding in powers of w all expressicns of the type:

gi=oin(2n5+1) 8 (
n E Q n I (F(a)) = J_ (F(a )}, (20)
nj 8;=0 Ing-l-g; mizn| = o e

nlfnzg...Snk

integrating them over cycles of the base sanifold, considering as distince

those for which the expressions

gi=minlng+2 81
z Qo -1- M {J_(F(a)) - J_ (F(a_)))} 1)
o g0 2718 gon, M o mp o
LIPLPSEPRES T l
are independent, with the notation
QM2 . 5 (F@) -9 (Fa ) )
-1 nj+l @ g+l L (22

The system of generators of H-(Lie 5, FlocF!}) has first been written down
by J. Thierry-ﬂiegla). That these expressions are &§ cocyclas mod d is a
consequence of eq.(19). This was partly conjectured by J. Dixon, as reported
in ref. 10)., On the other hand, the independence statement proved by D.T.V.
Tequires heavy use of homological algebra which ve cannot report on in any
detail here.

For practical purpose this anzlysis shows that anomalies are all of the

1
form QZn-Z (eq.19), and in one to one correspondence with non necesssarily

irreducible invariants Jn' for even dimensional space time,but it alse
provides amusing examples in odd dimensional space time when G contains

at least two (1) flctorsll)'lk).

IIT. MORE GENERAL DIFFERENTIAL ALCEBRAS'S’

It mist be clear from the preceding section what soomalies are in other
similar situatiors which are of assentially two types:

~ the anomaly is still associated with the cohomology of a Lie algebra;

- the incmely is associated with a differential algebra which is not neces-
sarily - known to be or to contain - the cochomology algebra of a Lie
algebra.

Of course the first type is a particular case of the second. It covers the

following situations of interest:

“)'8)'16); this is both useful and

- gravitaticnal and mixed gauge anomalies
educative because the problem is often set up in such & way that it is not
apparent whether one is desling with the cohomology of & Lie algebra, a
situation which still prevails in s number of cases touching supergravity
thecries;

17):

~ supersymostric gauge anomalies the intaresting feature here is that
the non polynomial structurs of the anomaly is rather obscura from the
poiat of view of differential geometry. The reduction of the anomaly to
the Wess Zumino gauge, on the other hand, poses s problem of the second

typels)’3z):

N,
- anomalies in o models (see in particular P. Ginsparg's lectures )y 9)).
In this case thera remains to cospute the relevant cohomology with values

local functionals of the 0 model fields.
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In the second class one finds for instance:

= the full BRST cohomology relevant to the perturbative renormalization of
gauge theories; H'(BRST, rloc) was computed by BRS under restricrions

provided by power counting. ¥. Kluberg Sterm, J.B. Zuber, B.W. Lee,
20)

5.D. Joglekar, John Dizon performed a number of additional steps but

this problem may have to be taken up again in order to investigate the

structure of the Ward identity characterizing a fully quantized anomalous

gauge theoryz)’ZI);

= supergravity theories: i terms of various secs of component fields res-
tricted by gauge choices, these theories are characte;ized by diffarential

22)

algebras which are not cbvious extensions of Lie algebra cohomology
algebras. In most cases there remains to check that, extending the gra-
vitarional case, local supersymmetry does ot oodify the classification of

23)

anomalies; e.g. the Green Schwartz cancellation mechanism can be
performed in a wav compatible with supersymmetryza).
This list is certainly nct exhaustive;a number of other differential
algebras are in sizht e.g. the algebra associated with differantial formsZS).
the algebras associated with comstrained dynamical systemsZE).

In the following, we shall gather some results pertaining to a few

examples of recent interest we have listed above.

III.l Gravitationmal and mixed nnomalies&)'Sb)'ls)

An externmal gravitational field on space time M wmay be represented by
a vielbein form
e a=l...d=din¥ (23)
" Bel...d=dimM

and a spin connection

- U
b bu dx (24)

-{i-

which is a Lie (S04) valuedlone form. At the classical level, the action
describing the coupling of matter with external gravity is invariant under
50(d) gauge transforuations and diffeomorphisms of M. At the quantum level
the qLeution is whether this is true for the vacuum functional [(e,8). The
action of D) gauge transformations is clear Sut that of the diffeomorphisms
of M 1is not uniquely defined: a sensible definition requires the intro~
duction of a firxed background spin conmnectior 8.

The structure equations of the correspsnding differential algebra arelﬁ):

de = = Qa - :SEE.

88« - D(OI - i R(8) + D(8)i, (8-0)
_1 2 b, . .2
&0 3 [2,8] - «‘fin - 7 i R(E)
1 ..
66 = -5 [£,E] {2%)

where (1 and £ are the cchomology generatsrs corresponding to S0(d) gauge
transformations and diffeomorphisms of M, N(A} = 4.+ {s9,.1,

1 . .
R(8) = d¢ + 3 [e,8], 1E denotes saturation of a differential form by the

vector field £ apd

o . o o »
85 » 1D(8) - D(B)i, (26)

is the covariant Lie derivarive Operator acting on forms. These are the

. o
stTucture equations for the cohomoiogy algebra of a Lie algebra ¢(8) with

values in r1°°(e,e). The commutation relations defining E(g) are:

(WD, W@yl = wn,a')

o
(W), M(M] = W2 - w(igﬁm
MEE), WEDT = WAUEED - uiigi 2B an
If M is parallelizabla one may of course choose g . 0.

] 1

Givon twun hanbasao_a . .
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o 1
e(8) = g{(9) = ¢ (28)
given by
) 1 def
WD) = WO = W
o 1 0!
W(E) = W(E) + "(iz(a'ﬁ)) . (29)

A change of generators in the differential algebra (£q.25):

8 = q- 15(9-3) (30)

allows to cast the srructure equations inte the form

Se = -fle - (1,D(8) - D(B)L,) e

0 = - Dp{e)f - iER(B)

-

6 = -7 (B8 + § 1,1,R00)

Nl= M-

SE = -3 [E,£] (I

from which 8 has dropped out but which is no more sbviously the set of
structure equstions of a Lie algebra; as one cften says. it is related to a
"field dependent” Lie algebra in which W(£) 1is interpreted as generating
“parallel transport”. This may be physically appealing but is mathematically

]
obscure. The cohomology H (e, rloc(s,g)) has not yet been computed, but

it is a relatively aasy cxcrcilclﬁ) Lo construct some rapresentatives of

(e, T1°°(2)): 1ic curns out that

R(aefl) =  (de8)(B+3) + -'2- [8+81, 0+
- o€ peey (32

It follows that

&n - an -
Ja(dh™) TR ) (d+§) Q, ., 33

-13-

wheras
1
o . -
Q. = ufJ (8-84,877 (4)
[+]
with
8 = R+ ¢ K-Sy (35)
S0,

-1 n on
o £ RO - 3 (R(8))

1 -1 o -1 o n-1
= ) 0 LI (e EEB), RO+t e E5-000) (16)
0
Now, in dimension < 2n-2
k n an
(iE) J,(R(6)7) - J(R(B) } = 0 i37)
¥ k2> 1. The terms an_l_x, g 21, of the expansion of Upny thus

yields representatives for H‘(e. r1°°(e)) upon integration over cycles

') rnar wce, pl°%any

of the correct dimension. One may thus conjecture
£ E‘(Li.e L Tloc(g_)) where Lles € £ is the relevant gauge group (corresponciag
te $0(d) x ¢ in the mized gravitational gauge case).

In the language of ref. 8s) the derivetion iE is a homotopy which intev-
twines d+5. and &+63, vhere Gﬁ - 6|£-O'

The first cohomology has bean more extensively studied, since it is of
immediate physical interest. In particular other particular representatives
bave been found by W, Bardeen and B. ZuniaGZT) for H'(e, Tloc(n,B)) fron
which the 0 component has been eliminated via a Wess Zumino counterierm.

We now turn to:

ITI.2 Supersymmetric _gauge snomalies in flat d=4 dimensional sugerspacelT}za)

The previous examples have lead to results rather compactly expressed in

terms of differential forms, most of which can be obtained by topelogical
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arguments, via the index thgoremg?)through the isomorphisma H'(Lie 3,. )

= H;R.inv.(g ,.) as explained in the appendix. Once the role of locality
gets incorporated into the index type analysis, the latter offers of course
more accurate results in each specific case since it provides an identifi-

cation of the relevant invariaut polynomials.

The supersymmetric case to be described now is one in which the geometry
is still in & complete state of obscurity and in which the algebraic set up
yields an answer through an equally obscure route.

Whereas the connection form a naturally appears in the classical case,
the corresponding gauge superfield V appears by solving constraints to be
imposed upon the super-connection forms @, @ which respectively transform
ﬁnder the chiral and antichiral gauge groups. The search for a manifestly
superaymmetric solution of the consistency conditions is ascertained to be a
difficult task in view of the theorem that, if the structure group is semi-
simple, the anomaly cannot be polynomisl in the components of ¢, P 29).

It is known to be parametrize# in terms of invariant polynomials of degree 3,
Jy by a theorem of O. Piguet aud K. $ibo1d>?) (the P.S. theorem).
On the other hand, remarkably enough, it has been shown by L. Bonora,

P. Pasti, M. Tonin (B.P.T.)l7)

that a representative, polynomial in the
components of (p.iﬁ, can be found for the firat cohomology of the graded Lie
algebrs generated by gauge transformations, space time t;anslacions and rigid
supersymretry transformationa: the algebra used to find gravirational ano-
malies applies, with £ restricted to vector fields generating space rime
translations and rigid supersymmetry transformations. In the present case
however the vanishing of e-ig Jn(R(G)n) (cf. eq.(36)), in the useful
dimensions, does not apply in rigid superspace. However, remarkably encugh,

the use of the constraints on ¢, P, allow to throw the l.h.s. of Eq.(33)

into the r.h.s. under the d+4 symbol! There follow polynomial expressions

-15=-

involving an explicitly non vanishing supersymmetry anomaly. By a theorem

3‘). tha latter is trivial. However it

of 0. Piguet, M. Schweda, K. Sibold
turns out to be the coboundary of a non polynomial Wess Zumino type local
functional and its elimination provides the manifestly supersymmetric, nom
polynomial form of the anomaly precedingly announced, which can also be
directly obtained by 1pace anulysil?) We tefer the reader to the
original articles, since the final formulae are neither appetizing nor
methodologically illuminating.

Clearly, more work has to be done in order to reach some decent under-
standing of this structur- which should reasonably emerge from a clear
description of the geometry.

Another interesting exercise is to find the anomaly directly in the Wess

18}

Zumino gauge. This has been dome by H. Itoyama, y.P. Nair, H.C. Ren who
find both a gauge and s supersymmetry component, with vanishing translation
component. The interest of the exercise lies in the fact that the corres-—

ponding differantial algebra (cf. ref. 12, eqs 6.2, 6.3) is the prototype of

one for which it is not known whether it is an extension of the cohomology

algebra of some = in this case graded - Lie algebra.

I1I.3 Q_EQQEEET)'IQ)

Anomalies in ¢ models are treated in detail ia P. Ginsparg lectures?).
They have been investigated by topological methods first by G. Moore and
P. Nelson, then, together with A. Manohar. This work has now been somewhat
deepened and generalized by I.. Alvarez Gaumé and P. Gipsparg.

The Lie algebra defining the anomalies is generated by the igometries
of the target space and the gauge transformations of the corresponding
bundle of frames. It is a relatively simple matter to find representative

|-cocycles by substituting into the usual formulae the expressions of the
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gauge field in terms of the g field. But there is at the moment no complete
tesult concerning the non triviality of these expressions (there is no proof
either that these are the only possible anomslies). At the moment, anomalies
astociated with topological obstructions are kmown to be nom trivial in the
local sense. In the particular case vhere the target space is a homogeneous
space G/B sufficient triviality conditions on the known candidates have
been found by L. Alvarez Gaum& and P. Ginsparg, namely that the H repre-
sentation of the chiral fermion fields originates from the reduction to H
of a representation of G.

More complete results would be welcome in particular because of the role

19)

played by o models in supergravity theories

I17.4 B.R,5.T. cohomalogy’ **)

Az the cluasical level, the action for a fully quantized renormalizable

gauge theory veads

rcl. - r @

inv

(0,9) + 5.6 L S gt qmy (38)

where a is the gauge field, ¢ the matter field, b the Stueckelberg

field, w the Faddeev-Popov (47) cohomology generator, @ the 4T multi-

plier, § a gauge function. On has

arcle m (;9)
with

s2 = -~(du + [s,w]) w o= - % [w,w]

50 = t{u)e¢

sw = -b sb = 0 (40)

where ¢(.) 1is the representation of Lie 5 on the matter field.

In order to allow the invariance property (eq.39) to go through the
construction of the perturbative series describing quantum corrections, one

introduces sources A, 9,  linearly coupled to sa, ad, sw

T*o%C wfasa+ dad+Qew '3}
S0 that

0 rd 4 pBource 2)
fulfills

This is the Legendre transform of the linear Ward identity which Zc. the
connected Green's functional rfulfiils.

Aszsuming thac

r = .y r@ (44)

has been proved tc fulfill eq.{43) up to and including order n-I, the

question is whether eq.(33) caa be fulfilled at order n:

gr® sr™ _ er® o1 or® sr® _ o1 ar®  gr® sr® _ sr® sr® _ sr® ,,)
IGTGA A Ga 56 & ~ &% &b 3o W & Bw &

o=l spP 413 5P 5r7 P

+ PEI GT —---GA + W 3—-—'——° - 0 . (45)

This is an equation for the uth term in the local effective action

J np(n) =8 46
reff reff +Lh I‘gff T, T (46)

obtained, for instance (in the BPHZ framework), by truncating the p-space
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Taylor expansions of the coefficients.-of I' in such a way that only dimension
4 mopomials survive, from which renormalized Feynman graphs are constructed.
One may also appeal to a regularization procedure and carry out renormaliz-

ation by the separation of divergent parts. Equation (45) may be rewritten as

£+ r - 0 4
where
-l p ponp P 0P D h-p
n &TF 8T 4TY 4T &7 &r (48)
RY = 'pfl ga A T3 Tt oo

is fully determined by lower order terms assumed to fulfill the Ward identicy

and
o o orte _er®s  ar®s  er®s  sr®s _er%s 85
S5a SA dA da o & ab 4 Sw 62 8 dw [
(49)
which fulfills identically
0.2
(4% - o (30)
by virtue of
o, - &% ar® s ar®  er er” . sr°
A 2 s a0 1)
Now, it follows from the action principle that
41"+ g® - a? (52)
where A" is a local expression.
We will see in a short while that the recursion hypothesis implies
°r" - 0 (53)
It follows that
34" = 0 (54)

-19-

Thus, if the first local cochomology of 3° is trivial

FLEN L A rn
loc

so that,replacing e by

r“—ar'l‘ -
oc

which amounts to altering T " = "
“ eff

one fulfills the Ward identity at order n :
A°T™ e r® - 0.
The first local cohomology of 4% was computed
shown to boil down to the Adler Bardeen obstruction.

the definition of invariant local operators haz beer

S.0. Joglekar and B.W. Lee, H. Xluberg Stern and J.®.

analysis undertaken by J. Dixonzo)

and pursued by J.
L. Baylieu and others, but at the moment theres is no
local cohemology of Jo'

We end up this section proving eq.(54) from the
A% = 0
4°rt .0

£rier A0 <o

A0 r.n-l . % [411..11—: . 'SZI‘n-‘ R +4“"z*“]

with the definitions

A Igﬂa 5rP &

by the lozal counterterm A T

41)

one has

(55)

(56)

loe’

€2)]

9).33) and

by 3.R.S.
Extension of this to
parirrmed Yy
Luber and a general
Thier:y Hieg!a),
comhpizte -esult on the

recursion hypothesis33):

Q (58)

> 1 (59



ry

LRl

(33
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vhere for any functional P,
SF & _6F & 60

ag(F) = IWW W (60}
and

o= (a,9,w)

¥ = (A)oln) (61)

s 42)

One has here a graded symplectic structure :

B = [ SpASY (62)
o(F) is a vector field defined by

B(a(F)) = &F (63;

For two functionals F, G, one has:

a6 = (-)98F4EC ;oo

Def
- (64)
[F'G]graded Poisson bracket (642
with
- f
AFCL gedd = [0D.0@)], 00, (63)

Thus the graded Poisson bracket fulfills the graded Jacobi- identitv, With

these notations

n
R® - Loz oqrf, P . L r Ire,r4 (66)

-l {pa).p*qen
p#0,n p<q

Sow A° acts as a Braded derivation on the graded Poisson algebra:

degF

AR, 61 = A% o(F)6 = E°,0(F)] G+ () o(Fy A% (67)

graded

degF

= gA%F)G + (~) a(F) A%

-21-

(The main step of this derivation is to check thar [4°,0(F)] = oA’y ).

So,
A°R® = 2T [OTPrT) 4 [P, A0)
= TP - L (a0
= - o (PP - L [P, g e

« -5z [P0, (68)

where the summsations range respectively over:

Ps»9 ¢ P*q*mnu  pfO,n ;
P1:Pz+9 : P1+pztq = n q#0, p1#0, pa¥0
P.41,92 : Pptq1+qz = n P, q:F0, q;¥0

P> 4 T : ptqtr = 0 pid, qd0, " zd0 .

The final expression vanishes since each triple p,q,r sactisfyicg the correct
conditions occurs in three terms which cancel by the Jacobi identityzﬁ).

This concludes the proof which, in the present form, I dedicate to V. Glaser.

As & last remark, let us point cut that 2q.(43) is also fulfilled by
F.ff and provides in particular a deformation of the classical invariancs

defined by eq.(40).

ITI.5 Supergravity theories

We shall limit ourselves to N=I supergravity, possibly coupled to
Yang Mills and chiral matter. Ip a uﬁperupace formalism, the geomerrical
set up is reasonably clear, namely one has invariance under superdiffeomor-

phisms, Lorentz supergauge transformations, gauge transformations. The

variables are superdiffersntial forms subject to invariant cons:raintsJS).
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However, solving constraints and imposing Wess Zumine - like gauge
conditions leads to various syscems of component fields and auxiliary fields.

22)

The corresponding differential algebras expressing the invariance of the
action have been written down explicitly by K. Stelle and E.C. West in the
case of the minimal, auxiliary field system, by L. Baulieu and M. Bellon in
the case of the Sohnius-West system. The structure equations look like a
fairly opaque amplification of those describing the Weas Zumino 3auge32).

This renders the solutiom of the ;nomaly prublem rather difficult to
treat thoroughly. 1In the case of the Sohnius West system the abesence of U(l)
anomalies has however been carried out by L. Baulieu and M. Bellonzz).

The question of the cancellation of anomalies in the zero slope limi:c

23)

of string theories has led M.B. Green and J.H. Schwarz to the discovery of

3 nevw mechanism which allows to trivialze anomalies igp rloc(gauge fielda;

)

by going to rlac(gauge fields, antisymmetric tensor fields' ) similar to the

Wess Zumino trick. However, in order to cooplete this program, it is neces-
sary to show it can be carried out without violating local supersymmetryza).

Clearly this requires working within the framework of a well defined diffe-

40)

rential algebra - There are several indications that supersymmetry, be it

local, is cohomologically trivial as it is in the pure gauge caselo), 2~

36)

dimensional supergravity™ ’, (see also ref. 22)). This matter deserves te

be pursued.

)preaent in supergravity theories.
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IV, CONCLUSION AND OUTLOOK

In these notes we have attempted to insist on the structural definition
of perturbative aaomalies as they show up in a number of geometrical contexts
ariszing from and usually extending symmetries to be implemented at the
classical level. The mathematical framework has considerably cleared up, but
weny of the differential slgebras which arise deserve further study. Some of
thesz anomalies are connected with the topologjcal amomalies so far investi-
gated (see P. Girsparg's lectures) through the canonical constructions
sumrarized in the following appendix. Whereas the local structure of pertur-~
bative theories i3 essential here, its connection with the topological
progerties of various field spaces seem at the moment rather miraculous. The
miracle is prasurab’ ted to the structure of the local formlae which
exprasgs the vdrisus index theorems. Both the local cohomologies envisaged
here and the topulogical cohomologies which are the objects considered by

the index theorems are awaiting some common cohomological denominatorjg).
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APPEND IX

COHOMOLOGY OF LIE ALGEBRAS, LIE GROU?S37)

Let G be a Lie group, Lie G its Lie algebra, V a representation
space for G, and, consequently, Lie G.

c™(Lie G, V), the vector space of n cochains of Lie G with values
in V 1is the vector space of multilinear alternate n forms on Lie G,
with values in V. Evaluated at xc""’xn-l € Lie G 3such an n-cochain ?n

is an element of 7 : 13 (X ..., ).
o e n-1

On C.(Lie G, V)~ ® c™(Lie G, V), one defines the coboundary operator
n=o

8
6 c(Lie 6, V) > c"!(Lie G, V), such that &2 = 0, by

-+ n i - N
- ¥ (=
(5fn)(xo...x“) A ) r(xi) £ (xo...xi...xn)
1=9
i‘*j - - -
+ I (=) f ([X.,X.1, X ...% ...X....X ) (al)
vci<jen 27 e i J n

whete t(xi) denotes the representation of Lie G in V.

As i3 usual one then defines

"Liec, V) = [ £ /88 =0}, : \2)

BLieG, V) = {f /g =g ., £ ec™ ] (A3)
and, since obviously B8%(Lia G, V) c 2"(Lie G, V),

W' (Lie G, V) = z%(Lie G, V) / B"(Lie G, V) . (A4)

The alements of Z" are called cocycles, those of B" are called co-

haundarias  and rhasa af 07 apa nallad snhamelnow ~lsssss  Qamarimes

~25=

8 is appended as & subscript or after V, within parentheses e.g.
Zg(Lie G, V), or 2% (Lie G, Vi 8).

The easieat way to check+ that 52 « 0 is to observe that the anti-
symmetry of ; in its n argudents allows to substirtvte them through the
Maurer Cartan form w = g"dg thus obtaining a left invariant differential
form on G with values in V : fn(m,...w). Convarsely, fn(xo...xn) is
recovered by evaluating fn(m....w) at the set of left invariant vector

fields x:...x: and substituting X: through tke corresponding element xi

of Lie G. _One then finds

(an)(m.--.m) - [d+t(m)lfu(w,---w) (A5)

and

1
[d+tf{w)] = O (A6)
follows from the structural equation
dw + %-[m.m] - 0 (A7)

. - . -3
The substitution xi + w transforms ¢¥Lie G, V) inco Qinv.(q’v)' the

space of invariant differential forms on G, with values in V.

. X R n
C'(Lie G, V) 1is then isomorphic to hinv.(G.V) -® ﬂinv_(c.v).
If V, besides being a vector space has a graded commutative algebra

structure, Q;nv (G,V) beccmes also a graded commutative algebra

w . Iy
© ® Vv, and 3o doss C'(Lie G, V) = C (Lia G) ®V. C (Lie G) is
graded ——
nothing else than the exterior algebra of Lie G, the dual of LieG (as a

Q.
inv.

vector space). As an algebra, it is generated in dimension 1 - the product

being the exterior product. In terms of a basis L of Lie G and a dual

P . 15
basis EB of Lie G (eﬂ(eu) - 62). the structure equations read )

e [ U e T 2 A |
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Se = -3 [egel (A8)
N
where e is the "Lie algebra valued genetator of Lie G"
e = Lee . (49)

¢ is pamed by physicists the geowetrical Faddeev Popov ghest of Lie 3. It
is a purely algebraic concept. Note that the covariant differential 4+t(w)

can be transformed into the ordinary differential 4 by the ztansformation
f+f = g.f (A10)
where g.f. denotes the action of g in V, so that

-~ P
d £ = (dee(w))f (Al1}

L D . .
Finally, the complete structure equations of C {Lie %, ¥} are 2iven by

eq.{AB) together with

§u = 3(e)u resp. 3 F = O (412)

where 4 resp. U denotes a set of generators of V and © ths corres-
ponding representation of Lie G.

Thus every f € C.(Lie G, V) can be represented as a polymomial in 2 and

u, and &f is computed from the equations (A9), (ai2).
The differential form version of cohomology is denoted

» »
Hirw. G,v) = 1.'l!:)l!,im.v. OV

where DR is an abbreviation for de Rham.

37a)38)

An isomorphic representation is given by integrating n-forms over n-

simplexes in G: Let Tn be a simplex in G, with vertices B,---&

n-1"
and let

£T) = J‘Tn £ (w,...w) (A13)

“17=

Then, by Stokes theorem

(dfn)(rn*l) fn(nTn+l)
2 i i
= L fn(BTn+l) (514}
i=o
where ari is the oriented ith n~f £ T I f
n+1 n~face o ael” n terms of the corcas-

ponding vertices

n .
i -
)} L (- fn(Tn(go"

GEN (T, (8.8 _
1=

n+|

B8 ) (A15)

Note that under a smooth deformation of Tn with fixed verrices,a cocycle

En(Tn) changes by a coboundary

- - ; ' - .
£AT) - £ (1)) i d £ (w..w) (Alb)
()xT_(7)
n
-1
where w, = 8. d 8, where E.

interpolates between T, and T;. J<ret,

Using the cocycle condition in the form

F -l -1 Y
(d':-"d‘r)fl_l(g,r dTgT *+ 8] dtg:,...) - 0 (Al7}
yields
- . a i~
£T) - £ (T) = iEO =)o __, (T (8yr-- ;- --8)) (818)
with
-~ - - - T -1 -1 =1
Ope (T (8a---Byen8 D) [ =a f, (87 de.8,'d g ...87"d8)
Tn(f)(so---si---sn,[)x(r) (A19)

The corresponding version of cohomology is denoted H:op(G,V), and the
corresponding cocycles are usually referred to as Wess-Zumino cocycles and

sometimes named (not everywhere defined, possibly non uniform) discrate group
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cocycles. This is because "discrete” group cochomology is defined via V

valued cochains C° (G,¥) which are functions of n-1 group elements,

diser.

with the coboundary operation

n+l
i
(ﬁfn)(so...gu+l) = 150 ) fn(go...zi...gn+l). {A20)

These so-called homogeneous cochainl+ are furthermore supposed to be invariant
in the sense that
. - -1 -1 . A
futso---nn) Y fn(y Byreer ¥ gu) . (A21)
Invariance implies the possible non triviality of cohomology defined by
eq.{A20) (which is otherwise trivial).

if it so happens that every n+l-tuple of points in G are the vertices

of some aimplex Tn(so.--sn). unique up to homotooy, then one is allowed to

writa
En(rn(sc"'gn)) fu discr.(go"'sn) (A22)
. . n .
apd one 3ay identify the Wess Zumino elements of Htop.inv.(c'v) with those
of ggiscr (G,V), since the Wess Zumino cocycles do fulfill the invariance

property. It is however safer to consider Wess Zumino cocycles as elements

n

of Htop

G,V).

Although no general analysis of the non uniformity of the Wess Zumino

cocycles is known to the author, it can be reduced via the exponential

13)

map :

¥ : A . .
We shall not go here into the descripticn of discrete group cchomology via
inhomogeneous cochains, which, also more widespread in the curreant lite-
rature, is less suitable for the present purpose.

=29~

> n
1eV, fn" z:op.inv.

(G,v)
- cxplfn = exp i a(fn) (A23})

vhenever, upon proper normalization the change in homotopy class of T
n

tesults into the additicn of an integer. Of course, then, cohomology defi-
nitions have to be writtan in multiplicative,rather than additive, notation.

It is finelly worthwhile describing the procedure which allows to
convert a diacrete grour cocycle into a de Rham cocyc1¢37l):
Let £n(go...gn) be a smooth discrete group cocycle. Then construct

w(f) = A" 4 d_ £ ¢

n'n qsl°.' 8, o so""n) (424)
] . - £l 4

where A 1s the pull back of the diagonal application G+ C x ... G :

B> (Byov. &)

It is a simple matter to show that

mn*l(ﬁfn) - 4 un(f) (A25)

In particular, applving this construction to a Wess Zumino cocycle

€(g ...8) = [ E(w,...w) (A26)
aortd * Bl

yields

A'(d | f E(m....m) - E(w,...m) mod. exact form. (A27)
| § .
T (8, -8,)



E

k&S



2)
k)

4)

5)

6)

7}

8)

9}

10)

11y

=30~

REFERENCES AND FOOTNOTES

A thorough review of and bibliography on the early perioed can for

instance be found in:

R. Jackiw: "Topological inves:igations of quantized gauge theories" in:

Relativity, Groups, Topology I1I, Les Houches lectures (983, B.S. de Witt,

R. Stors eds., North Holland Publ. Acsterdam 1984,

L.D. Faddeev, private communication.

R. Jackiv, R. Rajaraman, P.L. i54B, 305, 1985.

A good example of the complexity invelved is given by:

L. Alvarez Gaumé&, E, Witten, N.P.B. 234, 269-330, 1984.

See, for instance 0. Alvarez, I.M, Singer, B.Zumipo, C.M.P. 94, 409, 1984,

M.F. Atiyah, I.M. Singer. P.N.A.S, 81, 2597, 1984.

Typizally, the familv's index traatront is related to the topology of

the field configuration space wheress the algebraic treatment based on

locality is not.

P. Ginsparg, Lectures in this volume.

a} J. Mades, R, Stora, B. Zumins, "Algebraic study of chiral anomalies”,
submitted to C.M.P.;

b) L. Alvarez Gaumé, P. Ginsparg, Ann. Phys. 161, 423, 1985.

C. Becchi, A, Rouet, R. Sctora: "Penormalizable theories with symmetry

breaking” in: Field theory quantization and statistical mechanics,

E. Tirapegui ed., Reidel 1981.

R. Stora: "Continuum gauge theories" ip: New developments in quantum

field theory and statistical mechanics, 1976 Carg&se Lectures, M. Levy,

P, Mitter eds, Plenum New York 1977.

M. Dubois Violette, M, Talon, C.M. Viallet, "BRS cohomologies”, to

appear in C.¥.P.

12)

13)

14)

15}

16)

N

18)
19)

20)

21

22)

-3l

E. Witten, "Global aspects of current algebra™, N.P.B. 223, 422, 1983,
G. Falqui, C. Reina, "BRS cohomology and topological anomalies',
Annales IHP to be published.

J. Thierry-Mieg, P.L. 1478, 430, 1984,

I am indebted to P. Van Nieuwenhuizen for poiatiung out and discussing
the article by D. Sullivan, IHES Pub. n'ﬁl, p-269, 1977, vhose reading
led in particular to the algebraic interpratation of the Faddeev Popov
ghost which can be found in the appendix.

L. Beulieu, J. Thierry-Mieg, P.L. Y458, 53, 1584,

F. Langouche, T. Schiicker, R. Stora, P.L. 1438, 342, 1984;

L.'Bonora, P. Pasri, M. Tonin, N.P.B. 1985 to appear.

L. Bonora, P. Pasti, M. Tonin, P.L. 1558, 341, 1985 and to appear in NPR;
G. Girardi, R. Grimw, R. Stora, P.L. 1568, 201, 1933);

J. Wess, B. Zumino, in preparation.

H. Itoyama, V.P. Nair, H.C. Pen, IAS Primceten pravrine 1985.

G. Moore, P. Nelson, P.R.L, 53, 1519, ieds;

G. Moore, P. Nelson, HUTP-84/4076;

A. Manchar, G. Moore, P. Nelson, HUTP-84/A083;

L. Alvarez Gaumé, ©. Ginsparg, HUTP 85/A0!5;

P. di VYecchia, S. Ferrara, L. Girardello, P.L. 1513, 199, 1985;

E. Cohen, C. Gomez, N.P.B. 254, 235, 19085;

J. Bagger, D. Nemechansky, S. Yankielowicz in Anomalies, Geomerry,
Topology, Argonne—Chicage 1985.

H. Kluberg Stern, J.B. Zuber, P.R.D. 12, 467, 1975; P.R.D. 12, 3159, 1975;
5.D. Joglekar, B.W, Lee, Ann. Phys. 97, 1560, 1976;

J. Dixon, 1976-1978, unpublished.

L.D. Faddeev, S.L. Shatashvili, TMo 60, 206, 1984,

K.5. Stelle, P.C. West, N.P.B. 140, 285, 1978;

L. Baulieu, M. Bellon, to be published.

M.R. Craan T U Cabeenae n + P Cm-



e



25)

25)

26)

2N
28)
29)
3
n

32)

33)

34)

35)

36}

in

-32-

S. Cecotti, S. Ferrara, L. Girardello, CERN.TH.4253/85.

J. Thierry-Mieg, unpublished, 1979;

L. Baulieu, J. Thierry-Mieg, B.iP.B. 228, 259, 1983;

Although both BRS and BRS are uind in these papers, BRS alone is suffi-

cient if one does mot went to restrict oneself to linear gauge functious.

E.S. Fradkin, G.A. Vilkovieky, P.L. 558, 224, 1975;

I.A. Batalin, G.A. Vilkevisky, P.L. 698, 309, 1977.

W.A., Bardeen, B, Zumino, N.P.B. 244, 42]1, 1984.

L. Bonora, P. Pasti, M. Tonin, P.L.B. to appear.

S. Ferrara, L. Girardello, 0. Piguet, R. Stora, P.L. 1578, 179, 1985,

0. Piguet, K. Sibold, N.P.B. 247, 484, 1984,

0. Piguet, M. Schweda, K. Sibold, N.P.B. ﬂ. 183, 19890,

B. Zumino in Symposium on Anomalies, Geometry and Topolegy, Argoane-

Chicago, 1985.

a} G. Bandellomi, €. Becchi, A, Blasi, R, Collina, Ann. IHP XXVIII.
225-154 and 255-285, 1978.

b) O. Piguet, A. Rouet, Physics Re_ports 76, 1-77, 1931.

cf. Eq. 6.16 of Ref. 33b).

I am indebted to R. Grimm for stimulating discussions on this eubfact.

Y. Tanii, TIT/HEP 85;

P. Howe, P. West, P.L. 1568, 335, 1985,

a) A. Guichardet, "Cohomologie des groupes topologiques et des algdbras
de Lia", CEDIC-NATHAN Paris 1980.

b) S. Mac Lane, "Homology”, Springer |975.

c) H. Cartnn; ; Eilenberg, "Homological algebra”, Princeton University
Press, 1956,

d) N. Jacobson, "Lie Algebras”, Interscience, 1962.

38)

kL))

40}

41)

42)

Bk BN

A.C. Reiman, M.A. Semenov-T jan~Shansky, L.D. Faddeev, in Journal of
functional analysis and its applications, 1984-1985;

L.D. Faddeev, P.L. 1458, 81, 1984;
B. Zumino, N.P.B, 25_3, 4717, 198%:
and teferances found ia 8a).

I.M. Singer, in Colloque Elie Cartan, Lyon, June 25-29, 1984, to appest
in Ascérisque, and referances therein.

G. Girardl and R. Grimm have Jjust informed me they have constructed a
consistent suparspace geometry [namely, a correct system of constraints]
which allows to incorporate (in a sanifestly supersymmetric way) Chern
Simons terms into the curvature of the super two form appearing in the
Sohnius West multiplec,

When an ancmaly is preseat, cne can prove a modified Ward {dentity of

the form

ST &T ST ST, 8L 6T _6r, _ 3
| & &

01
4
+
8l
3l
+
&l

O

)
]
&
o

1
&l
-

a
Q

wvhera o {3 a constant odd scalar with dimension =1, ¢n charge -I.
(C. Becchi, private communicstion).
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