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Introduction

A cloud model is a set of equations which determine the micro-
physical, thermodynamic and dynamic parameters within a cloud as
functions of space and time. Models are used in two ways; the first is
to test, by mealns of comparisons between model predictions and obser—
vations, our descriptions of the cloud ptoecesses, and thus our
understanding of the underlying physics. The second is to simulate
propesed experiments or atmospheric evants, and thus to predict
outcomes of certain situationa which we cannot eadily aet up in the
real world.

No single model can provide a realistic description of all the
cloud parameters as they vary over space and time. Models ace always
approximations, and the proposed use for a model determines the
appropriate approximations to be made in it. The set of equations to
be used in a particular application is often truncated, with little or
no attempt made to realistically simulate processes which are not of
direct interest for that application. In these iectures we will
identify the various components and governing equatioens for geveral
models dgsigned for different purposes. A list of references 1is given
at the end in which t.he interested reader can find detatled discussions

of the tepies touched upon here.



I1. Cioud Models A. Thermodynamics

We assume that both dry air (density pq, pressure pg) and

Table I shows the variables to be determined by a cloud model. vapor (density py, pressure &) behave like ideal gases, so that ql¢= Qﬁr ek
iy

Table I and P=fre o= r{ﬁa‘T, & = %RUT 0 &)

Variable Symbol Dimensions r
o P ™ QAR‘*T‘J (0 L\
pressure of cloudy air p N/m? wih
Thermodynamic density of cloudy air [ kg/m® nhese C R .
Variables temperature of cloudy air T K or °C - v ._\ — g
® 4 2T \+C\., B %"Cla. ()
concentration of drops ng{mg)dmy aumber/m? cloudy air
of mass between my where Ry, and Ry are the gas constants for vapor and dry air. For
and mg + dmg
future reference we also define the saturation vapor pressures °sy
Microphysical concentration of ice ng{my ydmy number/m? cloudy air
Variables particles of mass and ‘-’s,,- These are the vapor pressures which characterize air in
between my and
my + dmy equilibrium over a flat surface of ice or of water. They are given
spaecific total water Q kg Ho0/kg cloudy air by the Clausius-Clapeyron equation,
content
specific humidity 9y kg vapor/kg cloudy &/ d_e'ﬂ- = Lv €sa (3\ ‘ﬂ
5
Water category aT R\JT
variables :E::;:;c liquid water q, kg liquid/kg cloudy air d.E:'.L = by 2 2y h)
47 R,
v !
specitic ice contenc 9i kg ice/kg cloudy air where Ly and L,(J/kg) are the latent heats of sublimation and of
air veioelly components U, ¥, w m/s evaparation, respectively. (Numerical values for the temperature
- dependent latent heats, saturation vapor pressures and other
bet us begin with an examination of the equations for the thermodynamic thermodynamic properties of cloudy air may be readily computed from
variables. formulae given in Bolton, 1980.)

Equations (1) and (2) are algebraic equations linking values of
several thermodynamic parameters at a given peint in space and time.
The aother variables in Table I are determined by differential
equations which yield their values at one point to those at other
points. The fundamental form for these equations is the following:

letting £ represent a variable in Taeble I:
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and ¥V @ {(u,v,w). The task of a cloud modeller is to represent the

physical processea denoted

"sources and sinks" {n these conservation

equations by realistic, yet manageable mathematical functions of the

selected variables.

The equation for p is derived by writing Equation {4) in the

case § = mass. Let M be the mass of an air parcel of volume W,

Then ™M = Q"?(- and

ar

To derive an equation for the temperature, we first write

Equation {4) in the form of a conservation equation for the moist

static energy h, defined here as

b = LyQy - Legy + 8z + cpT

Letd/kg) is the latent heat of freezing and Cpldikg -*CY is the

specific heat of clouwdy air. h is apptoximately c¢onceived in

adia

batic processes if ¥2/2 « h, as we shall assume here, We have

Dh . &

= mDaree L~ %ml'-‘.u\) = H (';4.;‘:]

where ﬁ(w/kg} represents pessible axternal energy sources and

sinks such as the radiative flux divergence or precipitation

fall

EFqua

out,

The equation far T is found frem the definition of h and

tion (ha): we have

. (Lb)

4
i
ol

P

B. Microphysics

In a model to be used for examination of size distributions
{called 'spectra') of cloud or precipitation particles we need
equations for the explicit microphysical variables ng{mg) and nj(my)
in Table 1. If, on the other hand, the spectra are of less
importance than the dynamics or the gross partitioning of water into
its three forms, we use the water category variables instead. In

thia section we discuss the appropriate equations in both cases.

1. Explicit Microphysics

a) Warm Clouds

Putting £ = ng{my) in Equation (4), we can write

%Q? = hd\ + ﬁi\ * r.‘d) . + r'\d) * F\d + f.u (;)
actatian s Godernce bt omen
'N_Jutmv\ ! dntion

!.Hm.n -
rea
Let us consider each term on the RHS of this equation.

(1) Activation

Let Neoyl(sy) be the concentration of CCN activated in
steady state at supersaturationm sL‘where
Se T e -y ()
There 18 experimental evidence {Twomey and Wojciechowski,

1969) that

Nch(sk) 5 Cs,,k (9)
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where C and k are constants; k~0.4-0.7 and C depends on
time and location. Activation is usually assumed to occur
instantaneously as the supersaturation changes, and to
produce particles of a minimum mass, which we can denote
fily . Similarly, if the saturation iz decreasing, droplets
with the minimum mass m; are assumed to evaporate
instantaneously. [n other words, in numerical models of

activation we usually put

6&("%\‘\) = O ﬂ‘i rr\'
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where At is the timestep of the computatien. See, for

example, Glark (1973) ov Takahashi (1978) for further
details.
Vapor Diffusion

After activation diffusion of water vapor to and from
the surface of a draplet causes its radius rylmy) to
change. For r4q » lpm, the rate of change of the draplet

radius is approximately

3y DR )

N N

T %ra
where pyg is the density of liquid water, D(m?/s} is the
diffusion coefficient of vapor im air, and pg y the
density of saturated vapor at the environmental
temperature T. See, for example, Pruppacher and Kletr

11978) for details of the derivation of Eg. (11).

The concentration of droplets of mass in the interval

my, my + dmy changes with time due to vapor diffusion as

follows:
Ny (ma\) ) == ?’ ( q:ti nd(-"‘d\lv (12}
wpar am -
AR dmion 4

wheds %’t“'ﬂ. = Q,_Uc'l'\t’;gra ) %{’d. Quven 'D«i &, {wy,
To compute the RHS of Equation (12) in a numerical model,
all droplets are classified into discrete size classes,
and then the concentration in each size class is evaiuated
at each time step by considering how many dropiets grew
into or cut of that class.

For nonprecipitating elouds, when drop.let radii
remain smaller than ~ 20pm, the rest of the terms in
Equation {7) can be ignored. ‘If,_ however, it is necessary
to consider larger drop sizes, these terms become
important.

Coalescence

As droplets grow by condensation (Eg. (11)) to sizes
at which they begin to fall relative to the air, there are
collisions between droplets woving relative to one
another. Some of these collisions result in coalescence,
and the formation of large drops called precipitation, or
raindrops. If Afmg) 18 the cross-sectional aresa and
Ve{mg) the terminal fail velocity of a drop of mass my,
then in time dt a drop of mass mg encounters and coalesces

with all drops of mass md' within a volume we define as

-7-



Kimg, mg')dt = (Almg)+Almg" )3 |Voimg) - Vilmg ) |Eimg ,my")de Figure 1 Time developmeat of the drop spectrum computed from the 5CE,

{lﬂ‘J Equatioen (l4). The ordinate is related to ny(my) and the abscissa is ry.
where the factor E{my,my'} takes Into account the From Berry and Rhinehardt, 1974. Note the depletion of small droplets as
deformation of streamiines around the particles and the coalescence continues.

fFact that not all collisions result in coalescence. The
rate at which a given particle of mass my coalesces with
any particle of mass my' is thus ag{mg')K{mg,mg’)dmy’'.
Then, the mean rate of disappearance via coalescence
of drops of mass my in the interval (mg,my + dmg} is D{my)

@
= n‘(md)f Kimg,mg'Inf{mg )dmg’'. At the same time, new

drops are congtantly being ¢reated in this mass interval
by collisions among smaller drops. The mean vate of T
production by these collisions of droplets in the size B
range of interest is -‘l ~

-

P (m 2 L-_ l.c sr,afm’}jr;\ms-m;\K(m"‘ma-rr‘:'\.d,-ﬁl vl
L]
Thus the third term on the RHS of Equatien (7) is %
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Equation [14) is the so-called stochastic collectlon
equation (SCE}. See Berry and Rhinehart, 1974; Soong and
Ggura, 1973; and Pruppacher and Klett, 1978, for detailed
discussions of the terms in Equations (13) and {14).
Figure | shows an example of the results of calculations

of ndms) using the SCE.




(4)

Because of the complexity of the SCE, a simpler
approach to the study of coalescence is often adopted when
the geal is to determine (roughly) the rate of change of
size of only g ::rz"_-?“\rc".\gqpa.rticles, rather than to
develop a time-dependent expression for the entire drop
population. This second approach, called the 'continuous
coilection method', begins frem Equation {13). In the
approximation that a few large collector drops of mass %]
fall through a population of much smaller cleud droplets,

the instantaneous rate of growth of the large drops is

amy ¥ Kimg myp)a, s
at '

where q; is the liquid water content in the small droplets
and ;E' is a mean droplet mass in the cloud.
Breakup

The rate of growth of large droplets is limited by
three factors; the rate of supply of ligquid water, the
break-up of pairs of drops which have recently collided
and the spontaneous break-up of individual drops as they
oscillate and deform during fall. The second two

processes may be represented by the expression

L

. Y —

P‘&(-ma\l\‘l = - a\mﬂ ”‘\”‘a\l"' J ”4(”‘:\ Qa(mdllmj\ 1} {m;\)\imaf (‘, \
! . ™y =
Y T

whete wimy) is the rvate of break-up of a drop of mass my

and Qpimg',mq) is the fraction of break-up events of drops

of mass my' which result in the formation of a daughter

-10-
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drop of mass mg. The factors Qg and 7 are usually taken
from a combination of theory and experiment (Srivastava,
1978; Young, 1975).

Note that coalescence and break-up (Eqs. 14-16)
resuit in the transformation of a large number of cloud
droplets into a relatively tiny number of raindrops. To
accurately follow this transformation aumerically requires

tomgutuhanal
greathprecision. Any numerical aspreading in the drop
distribution will! result in apparent production of
raindrops = a medel st '-‘lra?: gpw'rm'l evu'\o4.on,

Sedimentation

tThe rate of change of drop number due to the
gedimentation of preclpitation sized particles (ry > 50
pm} is given by the expression

A Amy = -8 (thf“s\ na(md\\
tdmertakion ot
where the terminal velocities are taken from experimental
values (see Pruppacher and Klett for a review of these
data.}
Entrainment

Turbulent motions bring about the mixing of en-
vironmental air inte clouds, or entrainment. Entraiament
dilutes the cloud hydrometer populations and can deform
the particle spectra via evaporation. Inm a real cloud,
there is no artificial boundary separating the cloud from
the enviromment, In

general, however, cloud models which include microphysical

-11-



detail do net include much dynamic realism, and mixing is

figure 2 Schematic drawings showing the boundaries of (a) a self-similar
plume and (b) a self-similar thermal, both at large distances in a
neutral environment from the {point) source. The source ig*constant in
time for the plume;. (&) a single pulse for tha thermal. There is no
generation of buoyancy (as in phase change) and the inflow velocity is
proportional to the propagation velocity. With these asgumptions the
horizontal dimension R grows linearly with z in both cases.

usually highly parameterized. One approach to convective
cloud modeling is te sclve the model eguations inside a
set volume, called "the cloud”, and to parameterize the
fluxes {entrainment) over the bounding surface of this
volume, For example, it is often assumed that convective
clouds behave like self similar plumes or thermals (Mortom
et al.,, 1956; Turner, 1962). In this kind of flow the rate
of entrainment of envitonmental fluid into the rising
cloud is determined by ‘the assumption that the horizontal

ar fha vhelace
velocityhis proporticnal te the local vertical wvelocity w[ﬂ.)

— >

i.e., P\@"‘
e la = g wley el _‘l‘w(n_»_) u{B) ol w(%)
where u, is the radial velocity, a 2 0.1 for a plume and Sli) v ('-\

a = .25 for a thermal (see Figure 2}). This leads to the

expressions

= _ ~Tdw 5= . _) - af_f\_:«_\' E'«-s

Elma,&,,mm:‘ -y K‘o Se::::\‘v;u\'\ E@;MN& R k;\ \‘:""‘“\' (3 (e
L '\:\x.m-c\ Uhvermend

far the plume and thermal, respectively, where E- is the
average in-clvd valuecn'fany variable obeying a conservation
egquation (Eq. 4))and the radius of the cloud, R, grows
tinearly with height z. (See the above refarences for
derivations of Eq. 19.)

Warner {1970, 1973), Lee and Pruppacher (1977) and
many others have used these assumptions. Other authors

(Telford, 1966; and Lopez, 1973) have assumed the lateral

entrainment velocity is a mean turbulent velecity which

13-
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can be computed from a conservation equation for turbulent
kinetic energy. lt is te be noted that
difficulties with model predictions (to be discussed
below) and recent cobservaticnal studies of entrainment
throw same doubt on the extent to which these model flows
are useful analogies. GSee Simpson (1983) for a review of
the successes and failures of plume models in reproducing
abserved cumulus cloud behavicr.

We have briefly discussed each term in Equation (7),
which completely describes the microphysics for clouds
which do not rise above the D°C isotherm. We turn now to
an even briefer description of the analogous equation for
ni(mi).

Cold Clouds
The conservation equation for ni(m;) which is

analogous to Equation {}) for nglmy) is

™ . L . s -
‘\ﬂ‘\ = n\, + r\‘_) [ 4 .f‘\\ - f\_\ 1 ﬂh)
Tt ‘fnyde.- azar ) RRTIR

: i o et '.c.é_\..u.
faa disdtion g e hoamian talan (-> )
T

4 ﬁ;\
l’\'"&l-l”\’n;\‘
the terms in Equatien (7'} are in general mare complicated
than their counterparts in Equation (7} because of the
complex shapes and density distributions of the solid
particlos, Moreaver, we have fewer observvations of
glaciation processes than of the corresponding warm ¢loud

processes., Therefore there have been relatively few

attempts to use explicit microphysical models in coid
clouds. We shall just touch upon the main features of
each term in Equatien (7').

{1) Nucleation

It has been customary to assume that the first
stage in glaciation is heterogeneous nucleation on ice
nuclei (IN) whose concentrations Nyy increase exponen—
tially with cooling; (Fletcher, 1962)

Noy = Aep 7]
} {0

where T is in °C.

Typical values of the constants are A ~ 107% fliter, B
~ 0.6/°C. Nucleation is assumed to occur instan-
taneously as the temperature in a cloudy parcel

changes; i.e., in analegy to Equation (10),

':\,Lm;\\ = O, m & "

.
inacteat isn

ﬁ» (."‘ﬁ) = g__':_\lm B_—l \ T dwu.s.m-\
hadehan 5T Dt - (0"
=7 n.‘.i“"\' A Tmuuw's
At

where m; is the arbitrarily set minimum ice crystal
mass and At the time step of the model. We note,
however, that frequently there are far more ice
particles in clouds than can be explained as
descendants of the IN whose concentrations are given

by Equation (20}. The cause of this discrepancy is

-15-
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not yet known, but the use of Equation {20} to predict
the concentration of amall ice particles appears
questicnable until wore 1s understocd about
glaciation; it may be preferable to use empirically
determined concentrations of the small crystals. The
uncertainties in our present understanding of
glaciation limit the confidence teo be placed in
numecical models of both naturally and induced
precipitation development in cold clouds.
Yapor Deposition

For small ice «rystals, the most impertant
procesas of growth or decay is vapor diffusicon to and
from the particle surface. Because the surface is not
spherical, the wvaper flux at the surface is not
‘unifurm and the growth equation is somewhat more
complicated than Equation (11) for spherical droplets.

We have

3 ¥ L Dg, uf (21

St

where sy % efegy ~ 1, and £ is a shape factor. The
shape (growth habit} of small ice crystals depends on
temperature and vapor pressure; some shapes and the
corresponding  expressions for € are given 1In
Pruppacher and Klett,

The ‘'veatilation facter’, fy, is a semiempirical
factor representing the eftects of particle motion on

vapor diffusion to and from its surface. Ventilation

- b=

(3

is not important (i.e., £, = 1) at the small drop sizes
(rq ¢ S50 ym) for whieh vapor diffusion is the

duminanjrgzgwth mechanism, and thus f, was put equal
to unity fin Equation (11). However, ice crystals grow
via vapor diffusion to larger sizes, where ventilation
is important. f,, may be expressed as a function of
particle shape and mass and the viscosity and vapor
diffusion coefficients in the air. $ee Pruppacher and
Kiett (1978), for a discussion of the relevant

experimental and numerical studies of ventilation.

The vapor diffusion term in Equation (7') is

Weanr
&%amn

F\LKM,.\) = - 3 K%L nt_l,mh\\ Ln_')
om, \ St

Vapor deposition is the most Important crystal growth

mechanism until crystals are around 150-700 microns in

latetal dimensions {(the threshold depending on habit},

when the large crystals begin to fall relative to the

smaller ones and particle-particle collisions ensue.

Collection

Ice particles can <c¢ollide with other ice
crystals, to form the low density material called
snow, andfor they can collide with supercooled drops
to form rimed crystals and eventually graupel and

hail. Snow formation is usually represented by a

-17-
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continuoushmodel analogous to Equations (13) and {15);:
the relevant fall velocities and collection
efficiencies are determined from experiment (sae
Fruppacher and Klett, 1978). The rate of growth by
riming depends on the rates of shedding and of
freezing of any excess water; that is, the ef ficiency
E(mi,m;") in the analogue of Equation (13) for ice
depends on the liquid water content, the temperatures
of the grauvpeil particle and of the environment, the
updraft velocity, and the ice concentrations. In
general the continuous coliection growth model, i.e.,
Equation (15), is also used to describe the rate of
growth of ice particles by riming, although modified
SCE's of the type of Equation (l4) have been used
(Beheng, 1978}. (See Figure 3.)
Break-up/multiplication

The discrepancy between ohserved numbers of ice
particles and observed concentrations of ice nuclei
has led to several hypotheses for secondary ice
multiplication mechanisms. Among these 1is the
Hallett-Mossop process (Hallett and Mossop, 1974}), in
which timing particles can give rise to small ice
splinters if the riming occurs within a narrow
temperature interval (roughly -3°C to -89C) and if the
drop spectrum is sufficiently wide. It has been shown

(Chismell and Latham, 1976) that this process gives

-1~

Figure 3

1800 s. {compare with Fig. 1). From Beheng, (1978),
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Time-dependent evolution of the liquid drop and graupel particle
size spectra cowputed via the SCE. (a) and (b): coalescence with riming,
in 200 s. intervals up to 1200 s. The dashed line in (b) is the initiai
ice particle spectrum ({c) Coalescence only in 100 s. intervals up to




rise to a roughly exponential rate of growth of ice
crystal concentrations; the rate of production of

small crystals is

o) = an e )
e

W hiatinn |
L‘r.d:':".-.\-',ﬂmr;

where the lifetime 1/p,; is & complicated function of
cloud properties. Ice multiplication is still not
sufficiently well understood to allow its detailed
description within the framework of a cloud model.

(5) Sedimentation

The convergence ot precipitation of ice particles
is treated exactly as for liguid precipitation
particles (Eq. 17). The terminal velocities are taken
from experiment (Agaln, see Pruppachar and Klett for a
review of the experimental literature.)

(6) Entrainment

The commenta above on entratnment of liquid
particles are relevant also for the ice particles. It
has also been recently suggested (Hebbs and Rangno,
1983} Lhat entrainment may play = fundamental role in
initiating glaciation by promoting contact nucleation

may be an im-

suggesting that the term hh(m,‘\"-} )
EATirmdn]

portant one at small sizes.
lr is perhaps cleav by now that attempts at including all the
impertant microphysical pracesses explicitly within a cloud model
ares hawmpered by the large uncertainties in many of the numerical

prrameters, by the complexity of ice phase processes, and by the

.

wide variety in sizes and types of particles which must be
considered and hence the enormous computing time requirements for a
complete model. Therefore explicit microphysics is uwaually included
only in models which deal with a limited range of temperatures and
water categories (initial condensation stage caiculations, for
example), and usually these have very simple dynamic equations.
If the details of the microphysics are of less interest than
the distribuytion of water quantities and the larger scale features
¢f cloud evolution, then the processes we have discussed hers are
represented by eimplified terms in parameterized versions of the

congervation equations, which we now discuss.

Parameterized Microphysics {Water Continuity)} Models

The aim of parameterized, or water continuity models, is to
represent the integrated size-dependent microphysical precesses in
such a way as to preserve thelr major features but to replace the
variables ng(mgq) and ny{(my) by the (far simpler) water category
variables listed in Table I. (Note that there are other ways to
approximate the size dependent microphysical processes: see, for
example, Yau and Austin, 1977 and Lopez, 1973.} There are several
parameterization schemes (i.e., sets of equations for these
variables) often referred to in the literature. In general, thase
are based on Kessler's original scheme (Kessler, 1969) and differ
mainly in their representation of the ice phase processes. The

reader is referred to Orville and Kopp (1977}, Stephens (1979) and



Lin et al. (1983), for details. As illustration of these models, we
briefly describe that of Stephens (1979), as adapted by Taylor and

Baker (1985%). In this model

qp = dg +qp H Qe is the specific liquid water
content in cloud droplets (those
which move with the air) and q, is
the spec¢ific liquid water content in
precipitation drops. These are
usually assumed to be exponentially
distributed in radiuvs; i.e., nglry) =
ngexp{~iry).

qg is the specific ice content in
snow {low density ice} 9g is the
specific ice centent in graupel (high
density irce)

Each water content variable cbeys an eguation of type (4), in which
the sources and sinks are due to (A) microphysical transfermations

(B) fallout of precipitation and (£) entrainment. These equations,

in a ene-dimensional entraining plume model, have the foilowing

forms:
Da I
:l:)‘é =T C"-'+ S =p S\M‘\ "\j:c.:f: *\aneg - G’. - (a\v' vae”\ qu’\
Jeee R !
- _ ) - -
T’\i‘t R R R T Lage (15)
v R
e __ o . o . D . -
LT Eer R = Lo S = Bl - B G- e ()
Do | G S Y C S e .-{ q - 2 -
6" - LT wied T Nodep Y Dvee T Shiaa” Ut a';=.+ Tlon —-Qﬁ (-’a:)
4 ; G E
™ I < - _r 3
VT“E = St < ":m [CTNE r’g:.g. T Yasy TR T E:x_roﬁ (24>
- <Y

Gy, and Gg ave condensation onte nonprecipitating liquid and ice, and
B and l'lp are evaporation of cloud and precipitatien liguid. Aute is

the rate at which «laud liquid is transformed to precipitation

liquid by condensation; Coll is the rate of increase of
precipitation liquid via collection of cloud water. Smelt and Gmelt
are rates of melting of snow and graupel and Srme, Grme the rates of
timing of smow and graupel. Pgcol is the rate of collection of
precipitation by graupel. $Sinit is the rate of nucleation of snow
crystals and Vsdep the '‘rate of vapor deposition on ice crystals
(assumed to be hexagonal plates). Csfz is the rate of homogeneous
freezing of cloud droplets to form snow and Pgfz the rate of
freezing of supercooled precipitatiom vila eollision with ice
crystals to form graupel. Sgcon is the rate of conversion of snow
to graupel. The terms Ppg., Sgjyx 8nd Gfyyy are sedimentation of
precipitating particles and the terms {n a ave enfrainment terms.
Each of these processes is represented as a semiempirical function
of the q's , the temperature T, pressure p, and the air velecity V.
Each water quantity (except gy} represents an integral over mary
particles of different sizes, and as such the sources and sinks in
the conservation equation represent integrals of the size dependent
processes over the range of sizes of the particles.

To give the flavor of the kinds of approximations involved, let
us ronsider the first few terms. The net rate of condensation on
cloud drops in an explicit microphysical model would be given by

C‘A:" EL = —: Q.l ‘ ni(’mé\ E\ ;..L“"‘\ &""d (1‘1\

n

Q Glood drolen, *

L )
with 3 given by Equation (11}, and the supersaturation 7} {defined
in Eq. 3) computed as a function of temperature and pressure (thance,

temperature and height). In the Taylor and Baker ({(1985)
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parameterization, the net cendensation rate is computed as a
tunction of Aqy{z) = gy (z+Az) - g, {z) whers Az is the minimum

resolvable verticsl distance. We have:
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Similar simple approximations are applied for the calculation of
eack of the other parameterized terms in Eqs. (24)-(28). See also
Lord et al. (1984) and Yau (1%77) for other representations of these
terms.

We note that mic¢rophysical preocesses are important in
detarmining vertical accelerations of cloudy parcels, both becauae
of the drag due to hydrometers and because of the latent heat
release during phase change. Moreover, since phase change itself
depends on the ve'rtical velocity and acceleration, the dynamics
modify the microphysics. Therefore the use of different
microphysical parameterization schemes in numerical models can
produce very different microphysical and dynamical results,

After this very brief louk at the thermodynamic and
mictophysical framework for c¢loud models, we now turn our attention

to the dynamie eguations.

C. Cloud Dynamics

There are two kinds of models for air motions in atmospheric
studies; kinematic models, in which the air motions (and often the
temperature) are prescribed as functions of space and time, and
dynamic models, in which these are computed. Kinematic models are
useful when the dynamics are well understood and simple (as in a
steady state orographle, or wave cloud) or in which the links
between dynamics and other cloud properties are not of first
importance. Kessler’s (1969) original parameterized cloud model was
of this type as were those of Scott and Hobbs (1977) and Rutledge
and Hobbs (1983). Kinematlc models appear particularly useful in
cloud chemiatry studies, where the focusz is on chemical interactions
and the air moticns are assumed unaffected by the chemistry.

In dynamical models the air velocity components are computed
from Egquation (4), putting § = ¥, so that Equation (4) becomes

Newton's Second Law. Ignoring molecular effecta, we have

F
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Q(s7%!) is the angular velocity of the earth; 28 x V is the
'Corielis' term, which is important only when the time scales of the
phenomena of interest are comparable with or longer than the

Cariolis time scale (~ 10*s in midlatitudea}.

We have now written equations for each of the variables in

af --qua‘ﬂgm_y
Table I, and therefore in principle we have a system:\which can

be solved to give all the cloud variables & functionsof space and



time. However, because turbulent air motions on all spatial sacales
contribute to V, a numerical model with finite resolution cannot
completely reproduce the turbulent fluctuations in the velocity
field or the other variables.

There are several ways to approximate turbulent tluctuations
for the purposes of numerical modeling. One convanient method is to
use "volume averaging."' A grid size (Ax, Ay, 8z) is chosen for the

computation and each dependent variable is written as a sum;

—
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where £y represents the value of the quantity in a "base"™ {usually
clioud-Free) state; fp represents that part of the perturbation in §
characterized by spatial variations on scales larger than {8x, Ay,
Az), and Elsg is the subgridscale, or non resolvable perturbaticn.

We expand Equation (1} about the base state to find

(-7 L = Vempd o leope R

e, Q‘h P

¥or shallow convection the last term is much smaller than the
cthers and the equation of state is usually approximated by the
tirst kwo terms alone.

We substitute Equation (31) in Equations {30) aad (5) and

average ovaer a grid velume, assuming tor convenience that Clsg =

v, = 0, kwhere the overbar indicates the averag%. We also usually
assume e L . ; g vt
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Then we have

Q-E (3
R
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which is usually simplified by assuming the last two terms are

aAver o aina
negligible. Applying thek'“r‘s—'ﬁ’rocadure to Equation (9) yields

- Tlehe gloogli Yo C

1t can be shown {(Dutton and Fichtl, 1969) that Y_-y_},g = 0,
for motions on time scales long compared with the periocd of
Brunt-~Vaisala oscillations in the air Equation (5'} can be
approximated in general by

7.(pg¥g) = 0 (the "anelastic" approximation} (5“)
and for the special case of shallow convection by

Y-¥g = 0 (the "incompressible" approximation) (Sm)

Equation {1'} ({without the pressure term} plus Equation (5''")

constitute the "Boussinesq™ approximation, in which the fluid'is
treated as if 1t were incompressible except that the density is

temperature dependent. The fluctuetions in density are thus

significant enly when multiplied by g, the acceleration due to
la thon dgpenmation

gravity,  we can write Equation (4) for a fluctating cleud

variable £ as fellows:
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A great deal of attention has been devoted te parameterization
of the subgridscale fluxes in recent years: see, for example, Moeng
and Arakawa (1980) and Cotten (1975a). A time-honored
approximation, used more for its convenience than its realistic
representation of the turbulent motions, is that the effects of
small scale turbulence on large scale properties are similac to the

affects of molecular diffusion, and therefore thart
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Kg is called an "eddy diffusivicv", and is either prascribed or

parametetrized in terms of local preperties of the flow.

The partiecular form in which the decomposed equations are
written depends on the application. We now discuss models of
stratiform and then of convective clouds.

Stratiferm Clouds

In laver clouds tha horizontal spatial secale is much larger
than the verticasl scale, given by the layer depth. Therefore the
variation of base stare cloud properties in the horizontal is
usually ignored completely and the only turbulent fluxes considered
are these in the verticzl. Moreover, the ronditions hold for the
Boussinesq approximation, Equation (5'7'). Layer cloud {or fog)}
models are written in one, rwe or three dimensjens.

The higher

dimensional models ravely include explicit microphvsics, and often
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are written as models of the cloudtopped boundary layer {including
the subecloud region). The eqguations for a warm cloud take on the

form {dropping the subscripts p and sg)
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where GHL\’P\ L _,'é)i and we have_ assumed the layer is always

I3 ‘;

saturated {see Eg. 31). c]' is conputed from Eguations (3},
(32), and (37). The radiative term H in Equation (38) is either
prescribed or calculated from the temperature and water category
distributions. (See Herman and Goody, 1976; Paltridge and Platt,
1976, for example.) 'In layer clouds entraimment occcurs along the
upper surface and is sometimes included as a boundary condition.

(Self-consistent modeling of entrainment constitutes one of the most

active areas of layer cloud studies today.)

Convective Clouds
In ¢cenvective clouds the driving force is the generation of
density fluctuations which create large up- and down drafts. These

can no longer be treated as small fluctuations on a quiescent state.

Moreover, the assumption of infinite horizontally homogeneous layers
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is of course no longer valid. Thus dynamic modeling of convective
clouds requires different approximations than that of stratiferm
clouds.

Whereas numerical layer cloud models are wsually written in an
Eulerian (fixed) coordinate system, which allows the properties of
the entire cloud to be galculated at each time atep, it is often
desirable in convective cloud models to use (Lagrangiam) coordinates
fixed in a moving air patcel, and to follow the evolution of
properties inside that parcel while neglecting the rest of the
cloud. The Lagrangian approach is particularly convenient if we can
assume (a) the cloud properties at a fixed locatien are independent
of time, or equivalently, (b} that the properties inside the moving
parcel change with time only because the parcel location changes.

Then TE/MQE = V-¥E on the LHS of equation {4). Ef the parcel
T
T

H

path is aleng the z~axis, then = W

s
-

Let us consider this simple, cften used approximation, applied to a
‘:\:nrmg
shallow, monprecipitating convective cloud with parameterized
microphysics,
Becauge we are writing the equations for propecties inside a
finite parcel, we must consider flow across the boundary of the
parcel; L.e., entrainment. Using the self-similar plume ap-

proximation (Egq. 19} fer the entraimment, the cloud model equations

using Stephens’ notation (sea Eqs. 24-28) hecome
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See Figure 4 for results computed from this model,

To include explicit microphysics we would replace the terms G. - Eg
by an integral as in Equation (29). See Warnar (1973), and Lee and
Pruppacher (1977), as examples of the use of this model.

If it is necessary to describe phenomena occcurring simul-
taneously ia different parts of a cloud, if the time development at
fixed locations is important, and/or if the fallout of precipitation
through a cloud is of interest, then a Lagrangian model, which
follows only one air 'parcel"is inadequate., In this case an
Eulerian 1-D, 2-D or 3-D model must be used. See the reviews by
Simpson {1976} and Cotton {1975b)} for comparisons of various cumulus
models,

In one-dimensional Eulerian models (Ogura and Takshashi, 1971)
the cumulus cloud is wsually assumed to grow as a right circular
cylinder of radius R. All the dependent variables
([ = Tyu,v,w,q9y,qy, etc.) inside the cloud are written

g £(2) + £'(2)

where £(z) is the horizontal average defined by the egquation

- 3
£(e) = ?'?\L SdeS Faiﬂg\e‘f (4
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Figure 4 C_omputed cloud properties obtained from Equations
(39)-{42) with 4=0.l assuming the cloudy alr remains exactly
saturated throughout. The abscissa {9 the ratio of liquid
water content,h g3 A to the value obtained if there is no
entrainment (i.e., @ = 0.0). The solid and light dashed curves
differ in assumed initial updraft velocity and temperatures and
are marked with the value of the initial radius. The lines
terminate at the cemputed cloudtop. The heavy dashed line shows
the observed values. From Warner (1970). Note that none of
the computed curves comes close to the observatlons, thus
casting doubr on the entrainment hypothesis, Equation (18).
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We also define a perimeter average;
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and we can define the deviation £" by the equaticn
- e ¥ + BV,
gle=R) = £+ &
Assuming the anelastic approximation {Eq. 5"), multiplying Equation

(4) by pepy and integrating over the ecylinder yieldsthe following

congervation equation fo £ A ,-—L-] f__._s:__:%\
3% ! 2o \:J":\\ﬂr l’\dp\? *&G?‘{"-\-J. Q(Q__ SY
e T T RO R S B, 3t
7 @

= 'bwnu_LS\ - Smu.(\-\ oy

where €4 = Egqy 1f ug(R) < 0 3 Fg = £ if u (R} 2 0. The
termas (A, B, and C) represant entrainment and mixing. A is "dynamic’
entrainment'; infiow due to acceleration in the vertical; term B is
jateral mixing and C is vertical mixing. B and C must be further
parameterized to be able to solve these egquations. Because
convective clouds are in general highly turbulent, these terms can
be quite large, and their realistic representation in numerical
models is therefore important: unfortunately, Aoy akse very Af&eoth,
The
approximations involved in (1) averaging over the horizontal cloud
area (Eq. 43), which eliminates small scale variability, and (1i}
parameterization of the terms B and C, constitute major weaknesses

in one-dimensional cloud models. Moreover, the 'dynamic

-33-



entrainment,” term A, is due to the constraint chat R = constant and
deqoite Prase srortzeain 5,

However,  the reldtive ease in

is therefore fairly nonphysical.
constructing and using 1-D models makes them quite attractive Ffor

many purposes. Often C is put equal to zero and B is written

ey = - istls,, - )
Y SR

where B 1z a constant.

(See Ogura and Takahashi, 1971; Cottan, 1975b.) Then for warm

clouds the cloud model becomes
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where §% is the deviation of the average pressure from the
hydrostatic value cbtained from Equation (32). (See Fig. 5 for some
results obtained from this model.)

In higher dimensional models we sclve Lhe eguations for the
variables in Tahle I without the artifical constraint that the cloud
occupy a cylinder or thermal or plume. The Boussinesq approximatiaon
is used for shallow cumulus but for deep convection the anelastic
approximation Equation (5"} is necessary. In geneval, because of the
complexity of the dynamics in higher dimensional models, the micro-
physics is highly parameterized. {(See, for example, Wilhelmson,

Withduson o G, W32, \
1974V Soong and Ogura, 1973; Cotton, 1972: Yau, 1980,} Takahashi,

. § ]
%5 LT moers jiea

1,
{1 981y and Hall, (1980) have developed Wmadels of warm precipitating

rumulus which are exceptions.
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Figure 5 a) Time-dependent vertical velocity (cm/s) computed for a marine
cloud from a model based on Equations (47)-{49) with explicit cecld cloud
microphysics, and the turbulent fluxes parameterized by expressions
similar to Equation (34). k) As in a), for liquid water density,
pq;(glm’). From Scott and Hobbs (1977). Note the time scales and the
abrupt fall off of vertical velocity near cloudtop, both consequences of
the fixed radius assumption.
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