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CHAPTER 1
LOCAL DECOMPOSITIONS OF CONTROL SYSTEMS

» Introduction

In this msection we review some basic results from the theory of
llrear systems, with the purpose of describind some fundamental pro-
perties which find close analogues in the theory of nonlinear Bystems.

Usually, a linear control syatem is described by equations of the
foom

x = Ax + Bu

y = Cx

i which the state x belongs to X, an n-dimensicnal vector space and
the input u and the output y belong respectively to an m-dimensional
vector space U and t-dimensional vector space Y., The mappings
As XX, B:U=X, C:X Y are linear rappings.

Suppose that there exists a d-dimensional subspace V of X with
the follewing property:

(1} Vv is invariant under the mapping A, L.e. is such that Ax € V for
all x € vy

theq, it i{s known from linear algebra that there exists a basis for X
(ramely, any basis tv1,....vn: with the property that (v,,...,vd) is
als> a bawis for V] in which A is represented by means of a block-
triangular matrix

whose elements on the lower (n-d} rows and left ¢ columns are vanishing,
Moreover, if thls subspace V is such that:

(L1 Vv contains the tmage of the mapping B, l.e. is such that Bu € v
for all u € u;

then, choosing again the same basis as before for X, regardless of the
cho_ce of basis in U, the mapping B is represented by a matrix

N



whose last n-d rows are vanishing.
Thus, Lf there exists a subspace V which satisfies (i) and (ii),

then there exlists a cholce of coordinates for X in which the control

system is described by a set of differential equations of the form

Xp T BgXy F Ryp¥p ¢ By

L]

Xy = A%y

By x4 and Xy wWe denote the d-vector and, respectively, the n-d vector
formed by taking the first d and, respectively, the last n-d coordina-
tes of a point x of X in the selected basis.

The representation thus obtained is particularly interesting when
studying the behavior of the system under the action of the control

u. At time T, the coordinates of x{T) are
T

xitT) = exp(AiIT)x1(0) +[exp(A11(T—T))A12exp(A22T)de2(U! +
0
T
+Iexp(A11(T—1))B1u(1)d1
Q
xz(T) = exp(AzzT)xz(Ol

From this we see that the set of coordinates dencted with x5 does
not depend on the input u but only on the time T. The set of points
that can be reached at time T, starting from x(0), under the action of
the input lies inside the set of points of X whose x, coordinate is
equal to exp(AzzT)xZIO). In other words, if we let x©(T) denota the
point of X reached at time T when u(t) = 0 for all t € {0,T], we ob-

serve that the state x(T) may be expressed as
x{T} = xO(T) + v
where v is8 a vector in V. Therefore, the set of points that can be

reached at time T, starting from x(0), lies inside the set

S = x°IT) + V

Let us now make the additional assumption that the subspace V,
which is the starting point of our considerations, is such that:

{iii) Vv is the smallest subspace which satisfies (i) and (ia} (i.e.
is contained in any other subspace of X which satisfies both (i)

¥

and {ii)}.

It is known from the linear theory that this happens if and only
if
n-1 i
v=} Ima'm

and, moreover, that in this case the pair (A11.B1) is a reachable pair,
i.e. satisfies the condition

d-t
rank(B1 A11B1 - A11 B1) =d

or, in other words, for each x
on [0,Tl, such that

d
1 € R” there exists an input u, defined

T
xy = [ exp(A11(T-Il)BJu(r)dt
, [

Then, if V is such that the condition (ili} is also satisfied,
starting from x{0) we can reach at time T any state of the form
LT + v with v € Vv or, in other words, any state belonging to the
set ST‘ This set is therefore exactly the set of the states reachable
at time T starting from x(0).

This result suggests the following considerations. Glven a linear
control system, let V be the smallest subspace of X satisfying (i) and
(ii}. Associated with V there is a partition of X into subsets of the
form

X +V

with the property that each one of these subsets coincldes with the
set of points reachable at some time T starting from a suitable point
of X. Moreover, these subsets have the structure of a d-dimensional
flat submanifold of X.

An analysis similar to the one developed so far can be carried
out by examining the interaction between state and output. In this
Case we consider a d-dimensional subspace W of X such that

(i} W is invariant under the mapping a

(ii} W is contained into the kernel of the mapping C (i.e. is such
that Cx = 0 for all x € W)

(iii) W is the largest subspace which satisfies ({1} and (ii) (i.e.

containg any other subspace of X which satisfies both (i) and
(1i)}.

Then, there is a choice of coordinates for X in which the control
system is described by equations of the form



From this we see that the set of coordinates denoted with x, has
no influence on the output y. Thus any two initial states whose last
n-d coordinates coinclide produce two identical outputs under any input,
i.e. are indistinguishable. Actually, any two states whose last
n-d coordinates coincide are such that their difference is an element
of W and, then, we may conclude that any two states belonging to a set
of the form x+W are indistinquishable.

Moreover, we know that the condition {iii) 1s satisfied if and
only if

n-1 i
W= 0Nker{CA"}
i=0
and, if this is the case, the pair (CZ,AZZ) is cbservable, i.e. sa=-
tisfies the conditicen

' o ad=t L
rank (C; A5,C, ...(Azz) Cy) =d
or, in other words,
szexp(nzzt}xz =0 = %, = 0

Then, if two initial states are such that their difference does
not belong to W, they may be distinguished from each other by the out-
put produced under zero input.

Again we may synthesize the above discussion with the following
considerations. Given a linear control system, let W be the largest
subspace of X satisfying (i) and (ii). Assoclated with W there is a

partition of X into subsets of the form
X + W

with the property that each one of these subsets coilncides with the
set of points that are indistinguishable from a fixed point of X. Mo-
reover, these subsets have the structure of a d-dimensional fiat sub-
mantfold of X,

In the following sections of this chapter and in the fqQllowing

chapter we shall deduce similar decompositions for nonlinear control

|k

systems.

2. Distributions on a Manifold

The easiest way to introduce the notion of distribution A on a
mantfold N is to consider a mapping assiqning to each point p of N a
subspace 8(p) of the tangent space TPN to N at p. This is not a rigo-
rous definition, in the sense that we have only defined the domain N
of A without giving a precise characterization of its codomain. Defer-
ring for a moment the need for a more rigorous definition, we proceed
by adding some conditions of reqularity. This is imposed by assuming
that for each point p of N there exist a neighborhood U of p and a set
of smooth vector fields defined on U, denoted {ti:i € 1}, with the
property that,

Alq) = span[TL(q):i € 1}

for all q € U. Such an object will be called a smooth distribution on
N. Unless otherwise noted, in the following sections we will use the
term "distribution” to mean a smooth distribution.

Pointwise, a distribution is a linear object. Based on this pro-
perty, it is possible to extend a number of elementary concepts re-
lated to the notion of subspace. Thus, if {11:1 € 1} is a set of vector
fields defined on N, their spa=, written sp{Ti:i € 1}, 1s the distribu-
tion defined by the rule(‘)

sp{rizi €E1}: pt span{t, {p):1 €1}

If A1 and Az are two distributions, their sum &y + 48, is defined by

taking

2

4

1 +A2 p ™A, ) +62(p)

and their Zntersection 4, N A2 by taking

A1 n AZ tp & A,(p) n Az(pl .

—_—
(*} In oFder.to avoid confusions, we use the symbol span{-} to denote any R-linear
combinztion of elements of some R-vector space {in particular, tangent vectors

ag a potnt). The symbol sple} is usad to denote a dfz*pibution {or & codigtricu«
tion, see later).



A distribution A, ig contatned in the distribution A2 and is writtem
8y G4, tf 40P C a,(p) for all p € N. A vector field 1 belongs to a
distribution A and is written ¥ € A if T(p) € A(p} for all p € N.

The dimension of a distribution A at p € N is the dimension of
the subspace A(p) of TpN.

Note that the span of a given set of smooth vector fields is a
smooth distribution., Likewise, the sum of two smooth distributions is
smooth. However, the intersection of two such distributions may fail
to be smooth. This may be seen in the following example.

(2.1) Ezample. Let M = Rz, and

3 3
by = splyg t xg)
_ a 3
82 = selittxyigs * 5!

Then we have

W

(8 N80 (x) = (0} if x, #0

(a, n 4,0 (%) = Aytx) = A, (x) Lf X, =0

This distribution is not smooth because it is not pcssible to find a
smooth vector field on Rz which is zero everywhzre but on the line
xy = 0. O

Since sometimes it is useful to take the intersection of smooth
distributions A1 and Az . one may overcome the problem that A1 n AZ is
possibly non-smooth with the aid of the following concepts. Suppose &
is a mapping which assigns to each point p € N a subspace A(p) of TpN
and let M(4) be the set of all smooth vector fields defined on N which
at p take values in A(p}, i.e.

M(a) = {t € ¥(N):1t(p} € A(p} for all p € N}

Then, it is not difficult to see that the span of M(A), in the
sense defined before, is a smooth distribution contained tn A.

(2.2} Remark. Recall that the set V{N} of all smooth vector fields ie-
fined on N may be given the structure of a vector space over R and,
also, the structure of a module over C“(N), the ring of all smooth
real-valued functions defined on N, The set M(A) defined before (whica
is non-empty because the zero element of V(N} belongs to M(#) for any

EEEEE?&&%*;v:w;»&&-av-

A) is a subspace of the vector space V(N) and a submodule of the module
V(N). From this is it easily seen that the span of M(A) is contained
in A. O

Note that if &' is any smooth distribution contained in A, then
A' is contajned in the span of M(A), so the span of M(a) is actually
the largest smooth distribution contained in A. To identify this distri-
bution we shall henceforth use the notation

smt(A) & sp Mea)

i.e. we look at the span of M{A) as the "smoothing"” of A, Note also
that if 4 is smooth, then smt{a} = A.

Thus, if A1 n A2 is npon-smooth, we shall rather consider the dis-
tribution smk(4, N LPY

(2.3) Remark. Note that M(A) may not be the unique subspace of V(N),
or submodule of V(N), whose span coincides with smt{A). But if M' is
any other subspace of V(N), or submodule of V{N), with the property
thatrsp M* = smt{4), then M' C M(A).

(2.4) Erample. Let N = R, and

Then M{8) is the set of all vector fields of the form C(X)E% where
c{x) is a smooth function defined on R which vanishes at x = 0.Clearly
4 is smooth and coincides with smt(A). There are many submodules of
V(R) which span &, for instance

My ={t EvR):t(x) = c(x)x-aaT and c € ¢T(R) }

M2 = {1 € VIR):1(x) = c(x)x2

3 o

3z and ¢ € C (R)]

Both are submodules of M(A), M2 is a submodule of M1 but MT is not a
submodule of My because is not possible to express every function
cl(x)x as ¢(x)x2 with & € c™(m}. O .

(2.5) Remark. The previous considerations enable us to give a rigorous
definition of a smooth distribution in the following way. A smooth
distribution 1s a submodule M of V(N] with the following property: if
8 is a smooth vector field such that for all pEN

8{p) € span{t(p):r € M}



then 8 belongs to M. O

Other important concepts assoclated with the notion of distribu-
tion are the ones related to the "behavior™ of a given A as a "func-
tion™ of p. We have already seen how it is possible to characterize

the quality of being smooth, but there are other properties to be con-

sidered.

A distribution A is nonsingular If there exists an integer d such
that
(2.6) dim Alp) = 4d

for all p € N. A singular distribution, i.e, a distribution for which
the above condition is not satisfied, is sometimes calied a distribu-
tion of variable dimension. If a distribution A is such that the con-
dition {2.6) is satisfied for all p belonging to an open subset U of

N, then we say that A is nonsingular on U. A polnt p i5 a regular point
of a distribution A if there exists a neighborhcod U of p with the pro-
perty that & is nonsingular on U.

There are some interesting properties related to these notions,

whose proof is left to the reader,.

(2.7} Lemma. Let & be a smooth distribution and p a regular point of
4. Suppose dim A{p} = d. Then there exist an open neighhorhood U of

p and a set fr1...‘,1d] of smooth vector flelds defined on U with the
property that every smooth vector field 1 belonging to A admits on U a
representation of the form

%
(2.8) T = c, T
g9t

where each cy is a real-valued smooth function defined on U. O

A set of d vector fields which makes (2.8) satisfied will be cal-

led a set of local gemerators for A at p.

(2.9) Lemmag. The set of all regular points of a distribution A 1s an
open and dense submanifold of N.

{(2.10}) Lemma. Let 6, and 4, be two smooth distributions with the pro-
perty that 4, is nonsingular and A,(p) C 4,(p) at each point p of a
dense submanifold of N. Then Ay €4,

(2.11) fLemma. Let A1 and 62 be two smooth distributions with the pro-
perty that 4, is nonsingular, A, C A, and 4,(p} = 4,(p) at each point
p of a dense submanifold of N. Then 8y =8,. 0 -

:;m 4 A =

We have seen before that the intersection of two smooth distribu-
tions may fail to be smooth. However, around a regular point this

cannot happen, as we see from the following result.

(2.12} Lemma. Let p be a regular point of 44 ¢ B, and 8, n Az. Then
there exists a neighborhood U of p with the property that A1 n by
restricted to U is smooth. O

A distribution is inpeoluzrv» if the Lie bracket |11.12| of any
pair of vector fields L and 1y belonging to A is a vector fleld which
belongs to A, i.e., if

T? € A, !2 € . "IT1112' € A

(2.13) Remark. It is easy to see that a nonsingular distribution of
dimension d is involutive if and only if, at each point r. any set of
local generators TieeaenTy defined on a neighborhood U of p is such
that

3

d
btgenyl = y,“let

1 9’.__'
where each cfj is a real-valued smooth function defined on U. O

If f is a vector field and 4 a distribution on N we denote by
[f,4] the distribution

(2.14) [£,8] = spll£,c] € v(N}):1T € 4}

Note that | £,A] is a smooth distribution, even if A is not. Using this
notation, one can say that a distribution is involutive if and only if
l£,81 €A for all £ € 4.

Sometimes, 1t 1s useful to work with objects that are dual to the
ones defined above. In the same spirit of the definition given at the
beginning of this section, we say that a codistribution R on N is a
mapping assigning to each point p of N a subspace 1{p) of the cotangent
space T;(NJ. A smooth codistribution 1ls a codistribution 2 on N with
the property that for each point p of N there exist a heighborhgqpd U
of p and a set of smooth covector Fields (smooth one-forms) defined on

" U, denoted [wi:i € 1}, such that

Qlq) = span{wi(q):i € 1}

for all q € ©.

In the same manner as we did for distributions we may define the
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dimension of a codistribution at p, and construct codistributions by
taking the span of a given set of covector fields, or else by adding
or intersecting two given codistributions, etc. always looking at a
pointwise characterization of the objects we are dealing with,

Sometimes, one can construct codistributions starting from given
distributions and conversely. The natural way to do this is the fol-
lowing: given a distribution A on N, the annihi{lutor of A, denoted AL,
is the codistribution on N defined by the rule

.« _
Alzp"‘{v E'I‘pN

* .
: v ,v =10 for all v € A(p) -
Conversely, the anni{hilgtor of ii, denoted QL, is the distribution
defined by the rule

ot ipr (v € TpN: (v‘.v )= 0 for all v'€ Q(p)}

Distributions and codistributions thus related possess a number
of interesting properties. In particular, the sum of the dinensions of
A and of AL is equal to the dimension of N. The inclusion L C A2 is
satisfied 1if and only if the inclusion A; > a; is satisfied. The an-
nihilator (A1 N ﬁz)L of an intersection of distributions is equal to
the sum A# + 45

Like in the case of the distributions, some care is required wken
dealing with the guality of being smooth for codistributlons constric-
ted in some of the ways we described hefore. Thus it is eas.ly seen
that the span of a given set of smooth covector fields, as well as sum
of two smooth codistributions is again smooth. But the intersection of
two such codistributions may not need to be smooth.

Moreover, the annihilator of a smooth distribution may fail to be

smooth, as it is shown in the following example,

(2.15) Example. Let N = R

A = splx 5%]
Then

ab(x) = (0} if x #£ 0

1 *
AT (x) = TN if x =0

L
and we see that 4 is not smooth because it is not possible to find a
smooth covector field on R which is zero everywhere but on Ehe poeint

1

Or, else, the annihilator of a smooth codistribution may not be
smooth, as in the following example.

{2.16) Erample. Consider again the two distributions At and A, describ-
ed in the Example (2.1). One may easily check that

L— -
Ay = sp[dx1 dx2}
At = spldx, - (1 +x,)dx,)
2 plaxy 1719%2

The intersection 44 n A2 is not smooth hut its annihilator AL val s

1 2
smooth, because both A? and Aé are smooth, O
Cne may easlly extend Lemmas (2.7} to (2.12). In particular, if
p 1s a regular point of a codistribution 2 and dim 2{p) = 4, then it
is possible to find an open neighborhood U of p and a set (w1,...,ud}
of smooth covector fields defined on U, such that every smooth covector
field w belonging to Q can be expressed on U as
“d
o= ]y
i=1

where each c; is a real-valued smooth function defined on U. The set
{w1,...,wd} is called a set of local generators for Q at p.

We have seen before that the annihilator of a smooth distribution
A may fail to be smooth. However, around a regular point of & this
cannot happen, as we see from the following result.

(2.17) Lemma. Let p be a regular polnt of &, Then p is a reqular point
1

of 47 and there exists a neighborhood U of p with the property that at

restricted to U is smooth, O

We conclude this section with some notations that are frequently
used. If f is a vector field and R a codistribution on N we denote by
Lfﬂ the smooth codistribution

(2.18) Lef = splLow € v () 1w € q)

If h is a real-valued smooth function defined on N, one may as=-
sociate with h a distribution, written ker(h,}, defined by

ker(hy,): pt {v € TN i hev = 0}

One may also associate with h a codistribution, taking the span of the
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covector field dh. It is ecasy to verify that the two cbjects thus de-
fined are one the annihilator of the other, i.e. that

(spldhi}t = ker(h,).

3. Frobenius Theorem

In this section we shall establish a correspondence between the
notion of distribution on a manifold N and the existence of partitions
of N into lower dimensional submanifolds. As we have seen at the be-
ginning of this chapter, partitions of the state space into lower di-
mensional submanifolds are often encountered when dealing with reach-
ability and/or observability of control systems.

We begin our analysis with the following definition. A noasingular
d-dimensional distribution & on N ls completely integrable 1f at each
p € N there exists a cubic coordinate chart (V,£}) with coordinate func-

tions £1,...,E such that

n”*

(3.1} Alg) = span[(ﬁg—) }
"1

q.....{ggg)q
for all q € v.

There are two important consequences related to the notion of
completely integrable distribution. First of all, cbserve that if there
exists a cublc coordinate chart (V,f), with coordinate functions
51""’£n , such that (3.1) is satisfied, then any slice of V passing
through any point p of V and defined by

(3.2) sp = {g € vik (g} = Eqtprs & = d+1,...,nl
{(which is a d-dimensional imbedded submanifold of N}, has a tangent
space which, at any point q, coincldes with the subspace A(q) of TqN.

Since the set of all such slices is a partition of V, we may see
that a completely integrable distribution A induces, locally around
each point p € N, a partition into lower dimensional submanifolds, and
each of these submanifolds is such that its tangent space, at each
point, agrees with the distribution A at that point.

The second consequence is that a completely integrable distribu-
tion is fnooiutive. In order to see this we use the definition of in-
volutivity and compute the Lie bracket of any pair of vector flelds
belonging to A. For, recall that in the £ coordinates, any yector
field 1t defined on N is represented by a vector of the form

13

Y = (8ot (R

The components of this vector are related to the value of the vector
field T at a point g by the expression

_ 3 3
1i{q) = 11(£(q)l(gf;lq+...+1n(£(qll(3?:)q

If 1T 1s a vector field of & and (3.1} is satisfied, the last n-d
components Td+1(£},....1n(£) must vanish., Moreover, if 0 is any other
vector field of 4, also the last n-d components of its local repre-
sentation

(L) = (91(£)...0n(E))'
must vanish, From this one deduces immediately that also the last n-d

components of the vector

- o

are vanishing. Since this vector represents locally the vector field
{1,8] one may conclude that [1,8] belongs to 4, i.e. that A is invo-
lutive,

We have seen that ilnvolutivity is a necessary condition for the
complete integrability of a distribution. However, it can be proved
that this condition is also sufficient, as it is stated below

(3.3) Theorem (Frobenius). A nonsingular distribution is completely
integrable if and only if it is involutive

Procf. Let d denote the dimension of A. Since A is nonsingular, given
any point p € N it is possible to find d vector fields Taeeerly € a
with the property that 11(q),...,1d(q) are linearly independent for
all g in a suitable neighborhood U of p. In other words, these vector
fields are such that

Alq) = spanlt,(ql,...,14(q))

for all q € U.

Moreover, let Tqeqr---rlg be any other set of vector fields with
the property that span(rltp): i=1,...,n}l =T N% With each vector
field Ty 1 =1,...,n, we associate its flow °t1 and we consider the
mapping
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F 3 CC(U) — N

2 n
(g .....E ) F—*¢ e...a®, (p)

1 E‘ E En
where C_(0) = (£ € Bn:|£i| <eg, t <4i<n},
If € is sufficiently small, this mapping:
{i) is defined for all [ € CCIO) and is8 a diffeomorphism onto its

image
{ii) 1is such that for all £ € CE{U}
£l
Felnr—), &€ A(F(E)) i=1,...,d (*}
Ylag Tk !

We show now that (i) and (ii) are true and, later, that both imply
the thesis,

Proof of (i}. We know that for each p € N and sufficiently small |t]
the flow @i(p) of a vector field 1 is defined and this makes the finc-
tion F defined for all (€y¢...vf ) with sufficiently small |£i|.!'lote—
over, since a flow is smooth, so L1s F. "le prove that F is a local 1if-
feomorphism by showing that the rank of F at 0 is equal to n,

To this purpose, we first compute the image under F, of the
tangent vector (3%—35 at a point § € C {0). Suppose F is expressed in
local coordinates Then, it is known that the cocrdinates of F, lagl £
in the basis {(39 } ""'(3w } of the tangent space to N at the

point q = F(§) coincide w1th the elements of the i-th column of :he
jacobian matrix

oF
13
By taking the partial derivative of F with respect to £1 we ob-
tain
3F T Ti-1 a Tt

T
= (e, ), ... (9 do s (¢ 4.t o0 M (p)) =
£y £, R TP € F

-1

T T T
i-1 i n
) ves (@ Jo T, @ o .a0 o P (p) =
£, S I S £, 'P

I
=

T T
i-1 i-1
e 0 Ty e
E1 * 51_1 i £1_1

il
-
L

T4
sees b FUED)

(*) Note that (

F] . .
Dﬁi)ﬂ 1$ a tangent vector at the point £ of CC(O).

.

-
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In particular, at £ = 0, since F(0) = p,
F-‘i%‘)o = 1,{p)
i
The tangent vectors T,{p),...,1

n(p) are by assumption linearly inde-

pendent and this proves that F, has rank n at p.

Froof of (li). From the previous computations, we deduce also that, at
any £ € CC(O).

T
Ti-1 .8 1 -1 1

£ Yo «on (@ Ve Ty -, . ....¢_£1(q)

3
Felzi), =
MRELTR 1 £i-1
where g = F{f).
If we are able to prove that for all g in a neighborhood of p, for |t

small, and for any two vector fields T and 6 belonging to A,
3] g
(0.0, 1.9 ,{q) € 8(q)

i.e. that (Oi), r,@ft is a {locally defined) vector field of A, then
we easily see that (ii) is true,

To prove the above, one proceeds as follows. Let 0 be a vector
field of A and set

9
viltd = 127,), 1 .0 (q)

t

for 1 = 1,....d.
Then, from a well known property of the Lie bracket we have

8 <]
- = tw_t),le.ri].¢t(q)

Since both L and 8 belong to A and 4 is involutive, there exist func-
tions Aij defined locally around p such that

[6,1 A, .1

1 4373 v

Il e,

il =
]

and, therefore,

1., 8 8 8 - 8
(¢, ).l lij(¢t(q))|1j.0t(q) = Alj(tt(q))vj(t)

Il =100
-
[ KT+
-
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The functions V,(t) are seen as solutions of a linear differential
equation and, therefore,it is possible to set

LV (t) .. v (e)] = TV (0) . vty EX(E)

where X{t) is a dxd fundamental matrix of solutions. By multiplying on
the left both sides of this equality by (@2). we get

1} 0
[14e0p (@) .. 14000 tah] =1 (00) 41 M@)o . (80) y14(q)] X (L)
and also, by replacing q with ¢?t(q]
Lty crgl@l = Leod)r.0? @) . o)), 1ge0® (@rix(e)
1lar...1y4lq pleTeebop @) {0 ), T409 (g

Since X(t) is nonsingular for all t we have that, for 1=1,...,d,

3] 0
(@), 00  {q) € Span{T1{q)._...!p(q))

3] a
(¢t).11.¢_t(q) € A(qg)

This result, bearing in mind the possibility of expressing any
vector 1 of A in the form
i
T = c.t
121 i'i

completes the proof of (ii},.

From (1) and (i11) the ‘thesis follows easily. Actually, (i) makes
it possible to consider on the neighborhcod Vv = F(C {0)) of p the

coordlnate chart (V,F‘1l. By definition, the tanqent vector ‘ar )

a point g € V coincides with the image under F, of the tangent vector

(-é-%—)g at the point € = F 1(q) € C (0). From (ii) we see that the
*i

tangent vectors

3 3
(351,q PRI '(3Ed)q

are elements of Alg). Since these vectors are linearly independent,
they span A{q} and (3.1) is satisfied. O .

L g
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There are several interesting system-theoretic consequences of
Frobenius' Theorem. The most important one is Found in the correspond-
ence, established by this Theorem, between involutive distributions
and local partitions of a manifeld into lower dimensional svbmanifolds.
As we have seen, given a nonsingular and completely integrable, 1i.e.
involutive, d-dimensional distribution A on a manifold N, around each
P € N it 1s possible to find a coordinate neighborhood V on which A
induceg a partition into submanifolds of dimension d, which ar; slices
{and, therefore, imbedded submanifolds) of V. Conversely, given any
coordinate neighborhood V, a partition of Vv into d-dimensional slices
defines on V a nonsingular completely integral distribution of dimen-
sion d.

We examine some examples in order to further clarify these con-
cepts

(3.4) Example. Let N = R" and let x = (x1,...,xn) be a point on r"
Suppose V 139 a subspace of Rn, of dimension d, spanned by the vectors
vy = {vi1.....v1n) 1<1<d
We may associate with V a distribution, denoted AV + in the following

way. At each x € R", 4, (x} 1s the subspace of TxR“ spanned by the

tangent vectors

lIM3

1jax tsigad

j

It is easily seen that this distribution is nonsingular and in-
volutive, thus completely integrable,

Now, suppose we perform a (linear) change of coordinates in
n", £ = E(x) such that

Sl(vj) = 61j
In the { coordinates, the subspace V will be spanned by vectors of the
form (1,0,...,0), (0 1,"..,0), etc., while the subspace A(x) by the
tangent vectors (5——) ....,(a. ) . Thus, we see that the condition
5d

(3.1} is satisfied giobally on R" in the £ coordinates.

The slices

s = (x €ER": §0x) = ¢ i=d+1,....n}

characterize a global partition of R" and each of these is such that
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its tangent space, at each point x, is exactly Av(x). It is worth
noting that each of these slices corresponds to a set of the form

X + V

Thus, the partitions of the state space X discussed in section i may
be thought of as global partitions induced by a distribution associa=zed

with a given subspace of X.

{3.5) Erample., Let N = Rz and let x = (x1,x2) be a point on Rz. Con-

sider the one-dimensional nonsingular distribution

_ 3 3
A = spllexp Rolgem 4 T b
1 2
If we want to find a change of coordinates that makes (3.1) satisf_ed,
we may proceed as follows. Recall that, given a cocordinate chart w-th
coordinate functions E1,£2 » @ tangent vector v at x may be represanted

as

3

352 X

where the coefficientsg vy and v, are such that v, = Lv£1 and v, = L EZ'
Since the tangent vector

T{x}) = (exp xz"i%" +(*§—)

X 3x2 X

spans A{x) at each x € Rz, if we want that (3.1) is satisfied we h:zve
to have

T{x}) = (Lr£1)(a£1)x +(L1€2,(3E;’x = (sfqlx
for all x € U, or

(eby) = fexp g * 5,

-
i

352 BE2
0 = (Lrﬁz) = (exp XZ'EEI + g;;
A solution of this set of partial differential eaquationsis given

by

£y = 64

i
H4
~

]

£, = £y lx) Xy - exp(xz) -

+ El e .
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The napping £ = £{x) is a diffeomorphism £ : Rz —'Rz and solves
the problem of finding the change of coordinates that makes {3.1) sa-
tisfied, Mote that RZ is globally partitioned into one-dimensiconal
slices, each one being the locus where the function Ez(x) is constant,
1.e, the locus of palints (xi,xZ) such that

%y = explx,) + constant O

The pmrocedure described in the Example {3.5) may easily be ex-
tended. Foxr, let A be a nonsingular involutive distribution of dimen-
sion d. Let (U,v} be a coordinate chart with coordinate functions
®yre~.s®.. Given any point p € U it is possible to find d vector fields
Tye-++4Tq = & with the property that Tyla),...,741q) are linearly in-
dependent for all q in a suitable neighborhood U' CU of p. iIn other

words, these vectors are such that
slq) = span{r1(q),...,rd{q)}

for all q = p',
In the coordinates w1....,an + each of these vector flelds is
locally expressed in the form

Ti had

He=12

a
(L e.)(7—
321 LR Bwj

If (V.&) is another coordinate chart around p with coordinate
functions !1""'§n the corresponding expressions for Ty has the form

? 3
1, = (L. £.) (x5
i j=1 3 Bﬂj
For (3.1) to be satisfied, i.e. for
sp{ } =8 !—E— 3 }
P 11,...,Td P 361.""525
on V, we must have
1
L_E. =10
1,71
on V, for 41 = 1,...,d and j =d+1,...,n and, moreover
LT1€1 L11€d
rank can = d
Ly By oo Ly by
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on V. These conditions characterize a set of partial differential equa-
tions on V¥, which has to be satisfied by the new coordinate functions
Sqreeaebgs

Setting, as usual

-1
1ij(x) = (LTioj)og (x)

where x = (x1....,xnl eR", 1t is possible to express the functlions
L‘ Cj involved in the previous conditions as follows
i -1
? 3l on '}
L E.{x} = 1, (%)
i 3j Koq ik Bxk

-1
Therefore, using just Ej(x] to denote the composite function ﬁj.q (X},

one has
n af .
Le 6500 = kzirlk(x)g;i
Setting

111(x)...rd1(x)
Ti{x} = . e
11n(x)...rdn(x)

the previous equations for L‘igj become

Kix)

(3.6) v =

O¢n-d) xd

in which K{x} is some dxd matrix of real valued functions, nonsingular
for all x € gi{v).

Thus, we may conclude that finding a coordinate transformation
& = £{x) that makes (3.1) satisfied corresponds to solving a partial
differential equation of the form (3.6).

Note that the matrix T{x} is a matrix of rank d at x = g¢{n} be-
cause the tangent vectors r1(p).....1d(p) are linearly independent.
Therefore the matrix %é can be nonsingular at x = g(p} and this, ac-
cording to the rank Theorem, guarantees that £ = E£(x)} is a local dif-

feomorphism.

-
(3.7) Kemark. There are alternative ways to describe the equation {3.6).

21

For instance, one may easily check that solving these equations cor-
responds to find n-d functions A1""'An~d defined on a neighborhood
Vv of p with values in R with the following provertirs

{i} the tangent covectors di1(p),...,din_d(p1 are linearly independ-
ent

(ii) (dhitql,tj{q) ) =0 for all g €v, §f =1,...,n-d and j=1,...,d.

In fact, if (V,£) s a coordinate chart that makes {3.6) satis-
fied, then the functions

will satisfy (i) and (ii). Conversely, If A1""’An—d is a set of func-
tions that satisfies (i) and (ii), then it is always possible to find

d functions £1""':d defined on v and with values in R which, to-
gether with the functions €d+1 = \1""'En = An-d « define a coordinate
chart (V,£) with ¢ solving the equations (3.6).

From (il) we deduce also that there is a set of covector fields
[dA,,....dAn_d} with the property that at each q € v, (dhlﬁq).v Y=0
for all v € A{q). Thus

gt € ot 1=1,...n-a
Moreover, the tangent covectors dk1(q)....,dln_diq] are linearly in-
dependent for all g in a neighborheod of p and A" (g} has exactly di-
mension n-d. Therefore, we may conclude that the set of covector flelds
{dl,.....dln_d} spans at locally around p.

In short, we may state this result by saying that a nonsingular
distribution of dimension d is integrable if and only if its anniht-
lator is locally spanned by n-d zraet one-forms.

(3.8) Remark. We note that the involutivity of A corresponds to the

property that any two columns Ti(xl and Tj(x) of the matrix T(x) are
such that

(—aqx— Tj(x) - by Ti(x)lE Im{T{x}}

for all x € (V).

(3.9) Remark. We know that, given a set of functions [Al:i € 1}, de-
fined on N and with values in R, we can define a codistribution

= spldi,:1 € I]. It is easily seen that if Q is nonsingular then
is completely integrable. For, let d denote the dimension of 2, take
a point p € N and a set of functions A{s+...02g with the property that

1
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a({p} = Span{dl1 (P, ... dhy(p))

If U is a neighborhood of p with the property that di (q),...,d};(q)
are linearly independent at all ¢ € U, it ls seen that { is spanned on
U by the exact forms di,,...,di;. As a consequence of our earlier
discussions, ¥~ is completely integrable. O

The notion of complete integrability can be extended to a givan
collection of distributions. There are two cases of special importance

in the applications.
Let AI'AZ"“'Ar be a collection of nested distributions, i.e. a

set of distributions with the property

4, C 4, c...C Ar .

A collection of nested nonsingular distributions on N 1is completely
integrable if at each point p € N there exists a coordinate chart V,{)
with coordinate functions 51""'£n such that

= 2 9
a;{q) = SPan((Bﬂl)q""'(aﬁd }q}

for all q € Vv, where di denotes the dimension of Ai.
The following results extends Frobenius Theorem

{3.10) Theorem. A collection by = 4, < ... C Ar of nested nonsingular
distributions is completely integrable if and only if each distribu-

tion of the collection is involutive,

Proof. The same construction described in the proof of Thecorem (3.3)
can be used. O

A collection ﬁl""'ﬁr of distributions on N is said to be in-
dependent if
(1) 4, is nonsingular, for atl i = 1,...,r
(11) &, 0 (] 4,0 = 0, for all & =1,...,r

j#L

A collection of distributions A1,...,Ar is said to span the tar-

gent space if for all g € N
ﬂ1(q! +A2(q) +a.. +Ar(q) = TqM
An independent collection of distributions A1,...,Ar which spans

the tangent space is said to be simultaneously integrable lf at each
point p € N there exists a coordinate chart {V,£), with coordinate

Ca e

cmre .

T ok i . A b T S i, s s et s =«
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functions C1....,§n such that
(3.11) A 1@) = spani (s=2m) ..., (srie) |
i 3:,5 +1 9 I ¥ q
i F141

for all q € v, where sy = 0 and

s, = dlm(A1 +..,. *61—1’
for i = 2,..,,r+1,

The fo.lowing result is an additional extension of Frobenius
Theorem

(3.12) Pheo~em. An independent collection of distributions A1,...,A
) r
which spans the tangent space is simultaneously integrable 1f and only

if, for all 1 <1 < r, the distribution

r
{1.13} D, = § a
#

is involutive.

Proof. Sufficlency. Let ny

p one may find a neighborhood V of p and, for each 1 < i < r, a set of
i . 4+

coordinate tunctions Cj + ¥ <3 <n, defined on V with the property

that

= dlm(Ai). Using Thecrem(3.3)}, at each point

o, = sp{;gz : }

]

1 i -
<3 < neny

An easy computation shows that the covector fields

1

]
dﬁn_n1+,....,d£n,...,dg‘

r
n~nr+1""’d£n

are linearly independent at p. Thus, the set of functions
) . :
{Ej:n—ni+153 <ni V<4 <r) defines on V a set of coordinate func-
tions,
Since ?i is tangen: to the slice of V where all the coordinate
functions En-ni+1""'£n are held constant, one deduces that ﬁi is
tangent to tie"slice of V where all the coordinate functions

k
En-nk+1"""n ¢ for all k # i, are held constant. This ylelds (3.11).

The necessity is a stralghtforward consequence of the definition.
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4. invartant Distributions

The notion of distribution lnvariant under a vector fleld plays,
in the theory of nonlinear control systems, a role similar to the one
played in the theory of linear systems by the notion of subspace in-
variant under a linear mapping.

A distribution A on N is invariant under a vector field f if the
Lie bracket [ f,1l of f with every vector field 1 € 4 is a vector field
which belongs to A, i.e. if

(4. 1) 1£.4]1 €A

{4.2) Hemark. There is a natural way to see that the previous defini-
tion generalizes the notion of invariant subspace. Let N = Rn. A a
linear mapping A : R" - ®r" and v a gubspace of R" invariant under A,
j.e. such that AV © V., Suppose V is spanned by the vectors

v, = (v11....,v1n) 1 <1 <4d
and consider, as in the Example {3.4), the flat distribution Av spanned
by the vector fields

E 2
T, = 1 <4 <d
oy By T
With the mapping A we associate a vector field fA represented, in the
3 9
canconical basis (5§T,X'°"'(§§;)x of Téﬁn by the vector
fA(x) = AX

(note that the right-hand-slde of this expression represent
of coordinates of an element of the tangent space at x to ®" and not
a vector of coordinates of a point in r").

It is easily seen that the dilstribution Av is invariant under the
vector field fA in the sense of our previous definition. For, observe
that any vector field t in 4, can be represented in the form (2.8) where
Cqs-.sCyq is any set of real-valued functions defined locally around x.

Computing the Lie bracket of fA and 1 we have

d d d
lf,,tt = JUE ot} = J e lE, 1,0+ | (L. e}t
A iiq AT TN S 3Lq ST
Moreover, 311 afA(x) .
£t (%) = =, (x) 57— Ty (X} =-AT (x)
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Note that ti(x), regarded as a point of n", is an element of v, so also
At, (x}) € ¥V, Then, for each x, IfA'til{x, € 4, (x} and

[ £y, 11(x) € 8, (x)

that proves the assertion. 0O

The notion of invariance under a vector fileld is particularly
useful when referred to completely integrable distributions, because

it provides a way of simplifying the local representation of the given
vector field.

(4.3) Lemma. Let 4 be a nonsingular involutive distribution of dimen-
sion d and assume that A is invariant under the vector field f. Then,
at each point p € N there exists a coordinate chart {(U,£) with coord-

inate functions &qyre-.eb , in which the vector field f is represented
by a vector of the form

TR LD SN2 FIPH 8

{4.4) ey = | fatreefarkangeaaty)

SPE PP 3

- - -

o (Eqeqreeriby)

Proof. The distribution 4, being nonsingular and involutive, is in-
tegrable and, thefefore, at each point p € N there exists a coordinate
chart {U,f) that makes (3.1) satisfied for all g € U, Now, let

£4(8) ..., £ (£) denote the coordinates of f(q) in the canonical basis
of TqN assoclated with (U,£), and recall that

n
£lq) = J £, (E(q)) (x2m)
1£1 i SEI q

The invariance condition (4.1) implies, in particular,that

f, == €
| 3 |(q) span{(as q""'(BE q}

for all g € ¥ and j = 1,...,d. Therefore we must have that

n n J3f
e 52t = J e, 22,220 oo § (o) 2 € spid
a&j = i aCL agj 151(35:")351 Sp{ag c---;aEd]
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af,
From this we see that the cocfficients §E£ are such that
b]

Dfi
= = 0
TR
f']
for all i =d+1,...,n and j = le...,d and all £ € £{U). The companents

fd+1""'fn are thus independent of the coordinates 51""'Ed , and
the (4.4} are proved. [1
The following properties of invariant distributions will be alss

used later on.

{4.5) Lemma. Let A be a distribution invariant under the vector fielis
El and f2‘ Then & is also invariant under the vector field [f1,f2|.

Proof, Suppose 1 is a vector field in 4. Then, from the Jacobi ldentlity
we get

(L gylutl = Le ley 0l 1=y, 0 gy, 1]

By assumption Ifz,rl € A and so is lf1.ff2,rl]. For the very same
reasons [f2,1f1,rl] € & and thus from the above equality we conclude
that llf1.f2|,1| €A.0

(4.6) Remark. Note that the notion of invariance under a given vector
field f is still meaningful in the case of a distribution A which is
not smooth. In this case, it is simply required that the Lie bracket
[£,1] of £ with every smooth vector field in & be a vector field in a.
Since [£,7] is a smooth vector field, it follows that if &4 is a
(possibly) non-smooth distribution invariant under the vector field £,
then also smt{A) is invariant under f£. O

When dealing with codistributions, one can as well introduce the
notion of invariance under a vector field in the following way.

A codistribution  on M is invariant under a vector field f if
the Lie derivative along f of any covector field w € Q is a covector
field which belongs to R, i.e. if

(4.7) LEQ < a

It is easlly seen that this is the dual version of the notion of
invariance of a distribution,

(4.8) Lemma. 1f a smooth distribution A is invariant under the vec-or
field f, then the codistribution 1 = AL is invariant under f. If a
-
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smooth codistribution @ is invariant under the vector field f, then
the distribution &4 = ° is invariant under f.

Proof. We shall make use of the identity
(wa,r = Lf(w,t Y- Cuw,l £,1)?

Suppose A is invariant under f and let 1 be any vector field of A. Then
l£,71] € A. Let w be any covector field in 2. Then, by definition

Cw, 7} (p) = 0
for all p € N, and also

tw,[ £,1]Y (p) = O
This yields

(qu,t Y(p) =0

Since A is a smooth distribution, given any vector v in A(p) we
may find a vector field t in & with the property that ti(p) = v and,
then, the previous result shows that

(Lfm(p),v Y =0

for all v € A(p), i.e. that Lew(p) € fi(p). From this it is concluded
that Lfm is a covector field in 0.
The second part of the statement is proved in the same way. O

(4.9) Remark. Note that in the previous Lemma, first part, we don't
need to assume that the annihilater AL of A is smooth, nor, in the
second part, that the annihilator ﬁl of 1 is smooth. However, if both

A and Al are smooth, we conclude from the Lemma that the invariance of
4 under f implies and is implied by the invariance of ot under the same
vector field. In view of lLemma (2.17) this is true, in particular; when-
ever A is nonsingular. O

By making use of these notions one may give a dual formulation of
Lemma (4.3). Instead of a nonsingular and involutive distribution A,
we have to consider (see Remark {3.7)) a nonsingular codistribution 22
of dimension n-d with the propertv that for each p € N there exist a
neighborhood U of p and n-d functions Ed+1"“'€n defined on U with
values in R such that
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R{q) = span!dﬁd+1{q).....din(ql}

for all g € U,

1f u satisfies these assumptions and if 2 is also invariant under
f, then it is possible to find d more real-valued functions 51'---'Ed
defined on U with the property that, choosing as local coordinates on
U the functions Fi , 1 <1 <n, for each q € U the vector field f is

>

represented by a vector f(f) of the form (4.4},

5. Local Decompositions of Control Systems

Throughout these notes we deal with nonlinear control systems

described by equations of the form
. m
(5.1a) x = E{x} + } g txiuy
i=1

{(5.1b) ¥y o= hi(x) (i = 1,...,8

The state x of this system belongs to an open subset N of Rn, i
while the m components Ugsean sty of the input and, respectively, the E
! components y4,....y, of the output are real-valued functions of time. {
We shall make later on some further assumptions on the class of admis-
sible input.functions to be considered. The vector flelds f,q1,...,qn
are smooth vector fields defined on N and assumed to be complete. The

output maps h1....,h£ are real-valued smooth functions defined on N.

{5.2) Remark. One may define systems with the same structure as (5.1,
with the state evolving on some abstract manifold N (not necessarily
diffeomorphic to an open subset of E"}. In this case, instead of (5.1},
which is an ordinary differential eqguation defined on an open subset
of R",one should consider a description based upon an ordinary dif-
ferential equation defined on the abstract manifold N. The vector
fields f,q1,...,gm will be defined on N and so the output functions
hy,... h,. If we let p denote a point in N ther, instead of (5.1}, we
may use a description of the form

m
(5.3a) P = £({p) + 1§1gi(p)ui

(5.3b) y; = hy(p) L=1,....,0)

-
with the understanding that p stands for the tangent vector at the
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point p to the smooth curve which characterizes the solution of (5.3a)
for some fixed initial condition.

If this is the case, then (5.1} may be regarded as a local re-
presentation of (5.3) in some coordinate chart (U,9) with the under~
standing that x = g(p). [I

The theory developed so far enables us to obtain for this class
of systems decompositions similar to those described at the beginning
of the Chapter. The relevant results may be formalized in the fol-
lowing way.

(5.4) Proposition. Let A be a nonsingular involutive distribution of
dimension d and assume that A is invariant under the vector filelds
£.94s...,9,. Moreover, suppose that the distribution sp(g,....,gm} is
contained in A. Then, for each point X €N it is possible to find an
open subset U of x and a local coordinates transformation E = £(x)
defined on U, such that, in the new coordinates, the control system
{5.1a) i3 represented by equations of the form

m

{5.5a} Gy o= £4(E 8, 4 _11q1,t£,.£2)u1

{5.5b) éz = £,(L,)

where (51.£2) is a partition of ; and dim{g,) = d.

Proof. From Lemma (4.3) it is known that there exists, around each

X € N, a coordinate chart {U,£} with coordinate functions E1""'En
with the property that the vector fields f.g1,...,gm are represented
in form (4.4). Moreover, since by assumption g; €4 for all i=1,...,m,
then the vector fields Gqreenedp in the same coordinate chart are re-
presented by vectors whose last (n-d)-components are vanishing, This
coordinate chart {U,f) may obviously be considered as a local change
of coordinates around x and therefore the Proposition is proved, O

(5.6) Proposition. Let & be a nonsingular involutive distribution of
dimension d and assume that A 1s invariant under the vector fields
f.g1....,gm. Moreover, assume that the codlstribution sp{dh|,...,dhl}
is contained in the codistribution AL. Then, for each x € N it %s pos-
sible to find an open subset U of X and a local coordinates trans-
formation £ = £(x) defined on U, such that, in the new coordinates,
the contrel system (5.1) is represented by equations of the form

. m
{5.7a) &y = FilE.85) + {1q11(g1,52)ui
1=
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. m
{5.7b) by = fpley) + if1qiz‘52’“1
{5.7c) Yy = hy(65)
where (51.£2)13 a partition of { and dim(E,) = d.

Proof. As before, we know that there exists, around each x € N, a
coordinate chart (U,f£), with coordinate functions 51,...,5 , with

the property that the vector fields f,g1....,g are represented ln the
form (4.4). Moreover, we have assumed that

A C isp[dh1.....dh£]|L

For each point x of the selected coordinate chart we have in part-

icular, for j = 1,....,d,

R L
(o) € A0 €1 T spanfdh, (015 = A [spanidn, (x)11*
af. " x i _
J 1=1 i=1
As a consequence, for j = 1,...,d and i = 1,...,% and for all
x €U
{dh (x).(aa Y =0

2f, in other words, we see that the local representation of hi in the
selected coordinate chart is such that

ar
-
oS

|
o

g2
e

)]
for all j = 1,...,d and 4 = 1,...,¢ and for all { € £{U}. We conclude

that hi depends only on the local coordinates £d+1""'cn on U and
this completes the proof. O

The two local decompositions thus obtained are very useful in
understanding the input-state and state-output behavior of the control
system (5.1).°

Suppose that the Lnputs u, are piecewise constant functions of
time, i.e. that there exist real numbers T, =0 <™y < Ty < ... such
that

ug () = of

i for Tk £ e <T

k+1
-
Then, on the time interval ITk'Tk+1)‘ the state of the system evolves

K}

along the integral curve of the vector field

£+ g1ﬁf ... +gmﬁ:

passing through the point x(Tk). In particular, if the injtial state
x at time t = 0 is contained in some neighborhood U of N, then for
small t the state x(t) evolves in U.

Suppose now that the assumptions of the Proposition (5.4) are
satisfied and that x° belongs to the domain U of the coordinate trans-—
formation {{x). If the input u is such that the x(t) evolves in U, we
may use the equations (5.5) to describe the behavior of the system.
From these we see that the local coordinates (Ei(t"cz(t)) of x(t) are
such that E51t) is not affected by the input. In particular, let x%{7)
denote the point of U reached at time T when u(t) = 0 for all teto,Tl,
i.e. the point

x(T) = o5 (x%)

o£ being the flow of the vector field £, and let (& (T}, E (r)) denate
the local coordinates of x®{T). We see that the set of points that
can be reached at time T, starting from xo, lies inside the set of
points whose local coordinates 52 are equal to Elej. This set is
actually a slice of U passing through the point x°(T}.

Thus, we see that locally the system displays a behavior strictly
analogous to the one described in section 1. Locally, the state space
may be partitioned into submanifolds (the slices of U), all of dimen-
slon d, and the points reachable at time T, along trajectories that
stay in U for all ¢ €[0,T|, lie inside the slice passing through the
point x (T) reached under zero input.

The Proposition {5.6) is useful in studying state-output interac-
tions. Suppose we take two initial states x? and xb belonging to U
with local coordinates (E?.Eg) and (i?,&?) such that

L}
t.e, two initial states belonging to the same slice of U. Let x (t)
and x (t) denote the values of the states reached at time t, starting
from xa and xb, under the action of the same input u. From the equa-
tion {(5,7b) we see immediately that, if the input u is such that x 2oty
and xb(t) both evolve in U, the 52 cocordinates of x (t) and of x (t)
are the same, no matter which input u we consider. Actually these
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coordinates E;(t) and &g(t) are solutions of the same differential

equation (the cquation {5.7b)) with the same initial condition. If we

take into account also the (5.7¢) we have the equality

.a _ b
h (E3(E)) = hyteden)

b

which holds for every input u. We may conclude that x® and x° are in-

distingulshable.

Again, we find that locally the state space may be partltiongd
into submanifolds (the slices of U}, all of dimension d, and pair of
points of each slice both produce the same output (i.e. are indistin-
gulshable) under any input u which keeps the state trajectory evolvina
on U.

In the next sections we shall reach stronger conclusions, showing
that if we add to the hypotheses contained in the Propositions (5.4)
and (5.6) the further assumption that the distribution A is "minimal®
(in the case of Proposition (5.4)) or "maximal®™ (in the case of Pro-
position (5.6)}, then from the decompositions (5.5) and {5.7) one may
obtain more informations about the set of states reachable from x° and,
respectively, indistinguishable from <.

We conclude this section with a remark about a dual version of

Proposition (5.6]).

(S.8) Remark. Suppose that R is a nonsingular codistribution of di-
mension n-d with the property that for each x € M there exist a neigh-
borhood U of x and n-d real-valued functions £d+1""'5n defined on U

such that
Q(x) = span[d£d+1(x).....d&n(X)}
for all x € U. Let 51""'£d be other functions defining, together
with £d+1""'£n , a coordinate transformation on U. In these coord-
inates, the one-form dh, will be represented by a row vector
whose components are related to the value of dh1 at x by the expression

dh, G0 = v (EGO AR + o+ (800 (AR,

1f we assume that the covector fields dh1,....dhn belong to 2, then,
-
since 2 is spanned by d£d+1,...,d£n on U, we must have

3 B e
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Yijlﬁl =0

for all 1 < { <k, 1 <3 < d and all £ in f(U). But since
gh.
Yi](C) = {;.
]
one concludes that h1,...,ht are independent of €1""'£d on U, like
in (5.7c). O .

6. Local Reachability

In the previous section we have seen that if there is a non-
singular distribution A of dimension d with the properties that:

(1) A is lnvolutive

{iL) & contains the distribution sp{q1....,gm}

(iii) & is invariant under the vector fields £.q1....,g
m

then at each point x € N it is possible to find a coordinate trans-
formation defined on a neighborhood U of x and a partition of U into
slices of dimension d, such that the points reachable at some time T,
starting from some initial state x° € y, along trajectories that stay
in U for all t € [0,T], lie inside a slice of U. Now we want to in-
vestigate the actual "thickness” of the subset of points of a slice
reached at time T.

The obvious suggestion that comes from the decomposition (5.5)
is to look at the "minimal® distributicn, if any, that satisfies {ii),
{i11) and, then, to examine what can be said about the properties of
points which belong to the same slice in the corresponding local de-
composition of N. It turns out that this program can be carried out in
a rather satisfactory way.

We need first some additional results on invariant distributions,
If U is a family of distributions on N, we define the smallest or
minimal element as the member of D (when 1t exists) which is contained
in every other element of 7. '

{6.1) Lemma. Let A be a given smooth distribution and TyreeasT ;
g

given set of vector fields. The family of all distributions which are
i

nvariant under T1....,Tq and contain A has a minimal element, which
ls a smooth distribution.

froof. The family in question is nonempty because the distribution
sp{V{N)} clearly belongs to it. Let Ay and A, be two elements of this
family, then it is easily seen that their intersection A1 [a] Az con-
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tains & and, being invariant under 11,...,tq , is an elfment of the
same family. This argument shows that the intersection & of all elenents
in the family contains A, 1s invariant under 11,....Tq and is cor-
tained in any other element of the family, Thus is its minimal edlemencz,
4 must be smooth because otherwise smt(ﬂ) would be a smooth distribu-
tion containing A (because 4 is smooth by assumption), invariant

under 11....,Iq {see Remark {4.6)) and possibly contained in A, O

In what follows, the smallest distribution which contains & and
i{s invariant under the wector fields T1""'Iq will be denoted by ‘the
symbol

(11,,._,quﬁ }

While the existence of a minimal element in the family of distri-
butions which satisfy (ii) and (1ii) is always guaranteed, the ncn-
singularity and the involutivity require some additional assumptions.
We deal with the problem in the following way. Given a distribution &
and a set Tqgreaesl of wector fields we define the nondecreasing se-

quence of distributions
(6.2a) Ay = &

q
(6.2h) By = 84 * Et(Ti’Ak-ii

i
There is a simple consequence of this definition

{6.3) Lemma. The distributions ao,b1,... generated with the algorithm
(6.2} are such that

a, < (11,...,Tqia)
for all k. If there exists an integer k* such that bpu = By 4yq ¢ then
By = (11,...,1q|A}

Proof. If A' is any distribution which contains A and is invariart
under T then it is easy to see that A' DAk implies &' Dﬂk+1' ror,
we have

q q
[1,.8,1 =8, ¢ § split,,1l:1 € 8.}
LTyl =0y i k

B, q = By +
ket T Ok i

i

Ca + }§ Sp{[Ti,T]:T € A"} Car

L

st 8 i . ki L
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Since ' 3A0 . by induction we‘see that aA* DAk for all k.

If 4., = by eyq LOr some k we easily see that 8, 2 4 (by defini-
tion) and Ak‘ is invariant under Tyr-...,1, (because [Ti Ak*l Ca =
) ’ k*+1

8ye for all 1 < i < gj. Thus 4y must coincide with (11,_..,rq]A?.D

The property Ak' = Ak‘+1 expresses a sort of finiteness quality
of the sequence AO.A1,..., and such a property is clearly useful from
4 computational point of view. The simplest practical situation in
which the chain of distributions (6.2) satisfies the assumption of
Lemma (6.3) arises when all the distributions of the chain are non-
singular. In this case, in fact, since by construction

dim Ak < dim Ak+1 <n

it is easily seen that there exists an integer k‘ < n such that
Be = Brayy-

If the distributions a
lowing weaker result.

U'A1"" are singular, one has the fol-

(6.4} Lemma. There exist an open and dense subset N. of N with the
property that at each point p € n*

C14,..., y =
7y rq[ﬁ (p) =4 _,(p)

Proof. Suppose U is an open set with the property that, for some k*
841p) = Ak,+1(p) for all p € U. Then, it is possible to show that
111....,tq|d Yp) = 8 +{p) for all p € u. For, we already know from
Lemma (6.3} thaf <r1,...,rqld } D 4 .. Suppose the inclusion is
pProper at some p € U and define a new distribution 2 by setting

aip) = A o p) it pEuy

& (p)

fl

(11..-..quﬁ)(p) ifpgu

This distribution contains & and is invariant under TpaeeesT

For,hif t ts a vector field in &, then lTi'T] €l t |8
{because & C (Il,...,tqlﬁ Y} and, moreover, [ti.rl(p) € 4, ,(p) for
all p f U (because, in a neighborhood of P, T E 8, and !TﬂA;ICﬁ;L
Since A is properly contained in (Tys-0uet 18 ), this would con-

tradict the minimality of (11....,1q|a).

Now, let N, be the set of reqular pelnts of 4, . This set is an
OpPen and dense submanifold of N (see Lemma (2.9) and so is the set

*
N =
L IRAN, PR AR N.-1- In a neighborhood of every point p € N* the
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distributions Ao,....nn_1 are nonsingular.This,together with the pre-

vious discussion and a dimensionality argument, shows that

a4 =(t1,....1q16 ) on n' and completes the proof. O

(6.5) Remark. 1f the distribution A is spanned by some of the vector
fields of the set [11....,1q}, then, 15 is possible to show that there
exists an open and dense submanifold N of N with the following pro-
perty. For each p € N' there exist a neighborhood U of p and d vector
fields {with @ = dim{T . ..., zin Y (p)) 9,,...,84 Of the form

e, = lvr,[vr_1.....lv1.v0||l

i
where r < n-1 is an integer which may depend on i and VprereeVy are

vector fields in the set lT1....,Tq}. such that

(T1,...,Tq|b Yq) = 5pan{91(q).....ﬁd(q)}

for all g € U. .
This fact may be proved by induction using as N the subset of
N defined in the proof of Lemma (6.4). Let d0 denote the dimension of
AD (which may depend on p but is constant locally around p). Since,
by assumption, Ao is the span of some vector fields in the set
[11,....Tq}, there exist exactly d, vector fields in this set that
span Ao locally around p. Let d; denote the dimension of Ak(constant
around p) and suppose A, is spanned locally arcund p by dk vector

fields 8,,...,8 of the form
1 dk

6, = lvr.ivr_1,....lv1.volll

1
where vy, ....V, (with r < k and possibly depending on 1) are vector
fields in the set (TI....,Tq}. Then, a similar result holds for
For, let 1 be any vector field in A, . From t,emma (2.7) it is

A .
k+1
known that there exists real-valued smooth functions c.l,...,cdk de-

fined locally around p such that t may be expressed, locally arcund
P, as T = c 0y +o.. +cdk8dk. If 1, is any vector in the set [T1,...,Tq}

we have

T,,C B 4. ..4C, O sl 1., B 4. ey (15,0, 1+ (L cylo 4.+ (L L)
[15.249, a,%a, ! =1l t5e a L7500 )+ e €100 (AN

4

As a consequence -

L O S I g L
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Ak+1 = ﬁk + lt1,Akl+ aae +ltq'ﬁkl i

sp{Bi.[1T,ﬂi|,...,II , 0

q _-|_|5 i=1,...,d

Since Ak+1 is nonsingular around p, then it is possible to find ex-
actly dk+1 vector fields of the form

e, = !vr.lvr_1.....lv1,v0|||

where Vgre-eaV {with r < k+1 and possibly depending on i) are vector
fields in th
e set {11,...,tq}, which span &, locally around p. O

The previous remark is useful in getting involutivity for the
distribution (11,...,1 |a?.
q

(6.6) Lemma. Suppose A& is spanned by some of the vector fields
T1,....tq and that {7,,...,1

la} is nonsingular. Then {1 )
is involutive. g 1:---.Tq|ﬁ

Proof. We use first the conclusion of Remark (6.5} to prove that if
1, and 1, ar
[1 i i e ;wo vector fields in A__, , then their Lis bracket
1+ 7,1 is such that [1‘,tzl(p) € 8, _4{p} for all p € N . Using again

Lemma {2.7) and the previous result we deduce, in fact, that in a
rneighborhood U of p

d d
“1-T2' =11£1c101 .ch;ej] Esp{ﬂi,Bj,lﬂi.le:i,j =%1,....d}
where ei,ej are vector fields of the form described before.

In order to prove the claim, we have only to show that[ei,e-ltp)
;s ih:azizzzizzizzz :n AnI;(fl; For this purpose, we recall that on

n-1 ariant under the vector fields
11....,Tq (see Lemma (6.4)) and that any distribution invariant under
vector fields T, and 15 1s also invariant under their Lie bracket
|T1,T2| (see Lemma (4.5)). Since each Bl is a repeated Lie bracket of
the vector flelds 11,...,Tq, lai.nn_1](p} C 4, _1(p) for all 1<i<d and,
thus, in particular Iel,ej!(p) is a tangent vector which belo;g; to
NI *

Thus the Lie bracket of two vector fields T in 4 is such that
lty.7,lp) € & _:({p). Moreover, it has already beenzobser:;; that
;Il;;-;;gglzt)a: 4.4 in a neighborhood of p and, therefore, we con-

Y point p of N the Lie bracket of any two vector

flelds 1,1 {
107 1n T1,....Tq’ﬁ ) is such that Lryirybp) €Cag, ool |80 (D).
Consider now the distribution ?
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A = (11-..‘-Tq|‘3 ' +5p”ei'ajl:ai'ej € (T1“”'qua &

which, by construction, is such that

B lrg,aerglad

9
From the previous result it is seen that a{p) =(r1,....TqIA Y ip)
.
at each point p of N , which is a dense set in N. By assumption,
(S PP |a ) is nonsingular. So, by Lemma (2.11) we deduce that

A = (11,...

,1_|a Y, and, therefore, that [Bi'ajl € (11,...,tqlb)
for all pair ei,ej € (11,...,rq[A } . This concludes the proof. O

{6.7) Remark. From Lemmas (6.4},{6.6) and {(2.11) it may also be
deduced that if & is spanned by some of the vector fields 11""'Tq
and L S is nonsingular, then

(11.---quIA) = An-—i

and {1 .,rqlA } is involutive. O

qe .

We now come back to the original problem of the study the
smallest distribution which contains sp[g1....,qm} and is invariant
under the vector fields f,g1,....gm. From the previous Lemma it is
seen that if (f,g1.....gm| splg,¢..-,9,) is nonsingular, then it is
also involutive and, therefore, the decomposition {5.5) may be per-
formed, We will see later that the minimality of (f,g1,u.,gm|sph”,...,qnp
makes it possible to deduce an interesting topological preoperty of
the set of points reached at some fixed time T starting from a given
point x°. However, before doing this, it is convenient to analyze
some other characteristics of the decomposition {5.5).

Consider the distribution (f,q1,...,gm]sp{f,g‘,....gm]), ie.
the smallest distribution invariant under f,q1....,gm and which con-
tains sp{f,gi, ..,gml {note that now not only the vector fields
L FTEETE: Y but also the vector field f is assumed to belong to this
distribution}.

If this distribution is nonsingular, and therefore involutive by
Lemma (6.6), it may indeed be used in defining a local decomposition
of the control system (5.1) similar to the decomposition (5.5). We
are going to see in which way this new decomposition is related to
the decomposition (5.5) and why it may be of interest.

In order to simplify the notation, we set

(6.8a) P = (f,g1....,gm|sp{g1f....gm!)

Y i e X s e e c—r—

Wi
I NI s
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{6.8b =
} R = (f,g,,...,gmlsp{f,g1,...,gmH

The relation between p and R 1 escribe in t fol] i t e
s d Led bed he cllowing stat

(6.9} Lemma. The distributions P and R are such that
{a) P + splf} Cr

(b) if x is a reqular point of p + sp{f}, then

(P + sp(f}) (x) = R(x)

Proof. By definition, P C R and £ € R, s0 (a) is true

It is known from the proof of Lemma (6.6) that

- ]

x of an open dense submanifold N‘of N,
of the form

around each point
R is spanned by vector fields

Ui = lVr....,IVT;VOII
where ¢ < n-

1 is an integer which may depend on i, and v

are vector fields in the set {f Errreito

It is easy to see th 'g1’...'gm}.

at all such vector fields belon
For, if 81 1s just one of the vector fields in the set
either belongs to P {which c¢ontains gq,,.
the general form shown above we may, :
that Yo is in the set [g1,

g to P+sp(f}.
{f,g1,...,gm} it
<+¢9p) or to spl{f), If 8, has
without loss of generality, assume
...,gm}. For, if vy = £ and vy = £, then

i) = 0 ()themjse, if V[ = f and V1 = 9;: , then -61 = [Ur....-[f:‘Jj“

has the desired form. Any vector of the form

8

i [vr,...,lv1,gjll

with v_,...,v, in th

! vy e set [f,g1,...,qm} is in P because P contains g,
19, and so the claim is proved. ’
we deduce that on an ocpen and dense submanifold

and is invariant under f.g1,.
. From this fact
N of N,

RC P + splf] *

and therefore, since R O p + splf} on N, that on N'
’

R =P + sp{f}

Suppose
pp that P + span f has constant dimension on some neighbor-
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hood U. Then, from Lemma (2.11) we conclude that the two distributions
telul . [l

R and P + spl{f} coincide on U. 0
{6.10) Corotlary. 1£ P and P + spl{f} are nonsingular, then

dim{R) - dim(p) < 1. D

If P and P + splf} are both nonsingular, so is R and, by Lemma
{6.6), both P and R are involutive. Suppose that P is properly con-
tained in R. Then, using Theorem (3.10),one can find, locally around

ach x € N, a neighborhood U of X and a coordinate transformation

£ = L{x) defined on U such that

] 3
{6.11a) Pix) = SP[(ﬁf:)x""'(SEZ:T)xj
{(x2-) S
(6,11b) R{x) = sp Sf: X't 3£r_1 x EE; x

for all x € U, where r = dim{(R).
In the £ coordinates the control system (5.1a) is represented by

equations of the form

m
By = £(Eq, e b} * i£1gi,(;1.....£n)ui

m
1 = y (Gqreareb tu
Cr_1"fr_1(C1n---o£n)+i£1gi.r_1 Q1 n i
{6.12) E = £ (6 o B)
€r+1 =0
£, =0

The last components of the vector field f are vanlishing because,

by construction.f € R. In the particular case where R = P also

the r-th component of f vanishes and the corresponding equatiom for [

is

-
From the equation (6.12) we see that any trajectory x{t} evolving
on the neighborhood U actually belongs to an r-dimensional slice of U
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passing through the initial point. This slice is in turn partitioned
into {r-1)-dimensional slices, each one including the set of points
reached at a prescribed time T.

(6.13} Remark. A further change of local coordinates makes it pos-
sible to better understand the role of the time in the behavior of
the control system (6.12). We m&y assume, without loss of generality,
that the Initial point xZ is such that E(xoi = 0. Therefore we have
ﬂi(t) =0 for all i = v+1,..,,n and

bp = £.06.,0,...,0)
Moreover, if we make the assumption that £ £ P, then the function E
is nonzero everywhere on the neighborhood U, Now, let E {t} denote
the solution of this differentjal equation which passes through 0 at
t = 0. Clearly, the mapping

wor ot g (E)

is a diffeomorphism from an open interval (-c,c) of the time axis
on:o the open interval of the E axis (E {- c).,r(c)) If its inverse
u 1s used as a local coordinate transformation on the E axls one
easily sees that the new coordinate

=l =

satisfies the differentjal equation

In these new coordinates, points on the r-dimensional slice of U
passing throuch the initial state are parametrized by (51.....5 1.t)
In particular, the points reached at time T belong to the (r-1)-dimen-
sional slice

= {X € U: Er(x) =7, £r+1 (x} =O,___.£n(x) = 0}. O 1Y

(6.14) Remark. If f is a vector field of P then the local representa-
tion (6.12) is such that f vanishes on U. Therefore, starting from a
point x° such that E(x } = 0 we shall have E {t) = 0 for all i=r,...,n
and the state x(t) shall evolve on a (r-1)- dimenslonal slice of U pas-
sing through x°. O



42

py definition the distribution R is the smallest distribution
which contains f,g1....,qm and is invariant under f,g1....,gm. Thus,
we may say that in the associated decomposition (6.12) the dimeision
r is "minimal®, in the sense that it is not possible to find another

set of local coordinates &1,...,£m ....,E ., with r strictly less than
r

r, with the property that the last n—r coordinates remain constiant
with the time. We shall now show that, from the point of view of tae
interaction between input and state, the decomposition (6.12) has 2ven
stronger properties. Actually, we are going to prove that the stat=s
reachable from the initial state x® £111 up at least an open subset of

the r-dimensional slice of in which they are contained.

(6.15) Theorem. Suppose the distribution R {i.e. the smallest distribu-
tion invariant under f.g1....,gm which contains f,g1,....gm) is non-
singular. Let r denote the dimension of R. Then, for each x© € N it is
possible to find a neighborhood U of x% and a coordinate transforma-
tion £ = £(x) defined on U with the following properties

{a) the set R(x°} of states reachabie starting from e along trajec-
tories entirely contained in U and under the action of piecew.se
constant tnput functions is a subset of the slice

[ +] (o]
sxo = {x€Ug_  (x) =E_,,[x boooo £ (x) =€ (X AN

{b) the set R(xo) contains an open subset of 5 .
£

Proof. The proof of the statement (a) follows from the previous discus-
sion. We proceed directly to the proof of (b}, assuming throughout the
proof to operate on the neighborhood U on which the coordinate trsns-
formation £(x) is deflined. For convenience, we break up the proof In

several steps.

(1) Let 81,....9k be a set of vector fields, with k < r, and et
¢l,...,o: denote the corresponding flows. Consider the mapplng
F : l-e,s)k -+ N

(t1....,tk)'—’¢t oo adt (x

k
where x° 1s a point of N and suppose that its differential has
rank k at some SqeenesSy o with 0 < 8, < e for 1 < i < k, For

£ sufficiently small the mapping

e~ el s et e Sl b 4wk MY e AT B b
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{6.16) F: (sq.edx...xls ,e) > N

(ti""'tk) — F(t1....,tk)

is an emkedding.
Let M dencte the image of the mapping (6.16}) (which depends on
the point xO). Consider the slice of U
5,=x€Uu:g,00 = Ei(xo), r+1 <4 < n}

o
X

If the vextor fields 81,....8k have the form

T 3
8. = +
] f E 943

j .
with uj € R for 1 < 4 <mand 1 < j < k, then for ¢ small M is an

embedded submanifold of 5 o This implies, in particular,that for each
x €M ®

(6.17) T M C Rix)

where R, 15 before, is the smallest distribution invariant under

f.g1,...,;m which contains E,g1....,gm (recall that R(x} is the tangent

space to 3 o At x).
X

{ii) Suppose that the vector fields f.g1,...,gm are such that

(6.1Ba) fix) € T.M

(6.18b) gy {x) € T M T <i<m

for all x € M. We shall show that this contradicts the assumption k<r.
For, cons:der the distribution 4 defined by setting

Atx) = T M

. for all x € M

A () R(x) for all x € (N\M) o
This distribution is contained in R (because of {6.17}) and contains
the vector fields f,g.l,....gm (because these vector fields are in R
and, morecver, it is assumed that [6.18) are true).

Let 1t be any vector field of A. Then 1 € R and since R is inva~-
riant under f,g1,...,gm ¢+ then for all x € (N\M)
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{6.19a} 1£,1) (x) € &Bix)

(6.19b) lg,.tl(x) € B(x) 1<ti<m

Moreover since t,f,94,...,9, are vector fields which are tangent
to M at each x € M, we have also that {(6.19) hold for all x € M, and
therefore for all x € N.

Having shown A ls invariant under f,gq,...,g, and contains

Ergqeveesty o+ We deduce that A must colncide with R. But this is a
m

contradiction since for all x € M

]
o

dim 2 (x)

dim R{x) > k

n
a3

{(iii) If (6.18) are not true, then it is possible to find m real
numbers u§+1 ..,u*! and a point X € M such that the vector field

.

k+1

m
8 =F+ g,

k+1 11

satisfies the condition 8k+1(§) ET_ M

X
Let X = F(si....,si) be this point and ¢t+1 denote the flow of

Bk+1' Then the mapping

Frr (e, )t - n

0k+1

(tyooantyety  4) 1 3 PR %
1 k* "k+1 et 1 Tk

at the point (s;,...,si.o) has rank k+1.
For, hote that

(F), (5%? (s

. J
(F )*(ﬂ;l(si...-aﬂivo) ;,---tsl:,

for 1 = 1,...,k and that

a -
Py ) ;s ' =19 (x)
*at g (53,.-.08¢.,0) k+1
The first k tangent vectors at X are linearly iindependent, be-
cause F has rank k at all points of (51,5)1...1(5k.cl. The (k+1)-th
one is independent from the first k by construction and therefore F'

has rank k+1 at ls1.....sk.0}.

-t e S S g e

L -

a5

Since s; > 8, , we may conclude that the mapping F' has rank k+1
at a point (s;,....s£+1), with 0 < 5i <e for 1 <1 < k41,

Note that given any real number T > 0 it is always possible to
choose the point x in such a way that

{(s] —51)+...+(si =8 ) <T

For, otherwise, wc had that any vector field of the form

would be tangent to the image under F of the open set
ey, oty E{sy,edxiin(s e (ty=S )4 4t -5, ) < T}

and this, as in (ii},would be a contradiction.

(iv) We can now construct a sequence of mappings of the form {(6.16).

m
Let 6, = £ + Z1giu1 be a vector field which is not zero at x°
i=

{such a vector field can always be found because, otherwise, we would

have R{x®) = {0}) and let M, denote the image of the mapping

1?1 : (0,6} * N

1 o

ty, — ¢t1(x )

- = 1
Let x = F1(s1) be a point of M, in which a vector field of the

m
form 8, = £ + Z

. qiui is such that 62(§) ¢ T_M;. Then we may define
= x

the mapping !

F, t (s),e)x(0,e) =N
2 1 o
(Boty) b= op ooy (=)
[ ]

Iterating this procedure, at stage k we start with a mapping
= k-1 -
Fo: (s ,c}l...!(si_:,c)x(o,c] + N

k 1 o
(Yge sty 40t ) = etk.. ...ot1 x)
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= = k k
and we find a polint x = Fk(sl""'sk) of its image M, and a vector

m
k+1 =
= . mak t
field 8, 4 = £ + iglgiui such that 0, . ix) g T;Mk This es 1

R = k k-1
possible to define the next mapping Fk+1' Note that sy >8] for

Lt =1,...,k-1 and s: > 0.
The procedure clearly stops at the stage r, when a mapping FI is
defined

F o (sg",c)x...x(sgj},s)x(o,c} - N

r 1 )
(tl""'tr—T'tr, — Ot n...u°t1(x )
r
{v) Observe that a point x = ﬁr (tl""'tr) in the image Mr of the
embedding Fr can be reached, starting from the state x% at time t=0,
under the action of the plecewise constant control defined by

k
u, (£) = uy for t € 1t1+...+tk_1.t1+t2+...+tk)

Thus, we know from our previous discussions that Hr must be contained
in the slice of v

- . = o
Sxo = {x € y; Ei(x) £1(x Yo £+l < 4 < n}

The images under F_ of the open sets of

r-1 r-1
U, = (=] ,e)x...x(sr_1,cjx(0.cl
are open in the topology of M_ as a subset of U {because Er is an embed-
ding} and therefore they are also open in the topology of M, as a sub-

set of S o (because s ° is an embedded submanifold of U). Therefore we
X x
have that M_is an emebedded submanifold of s o 3nd a dimensionality
X

argument tell us that M. is actually an open submanifold of § o * a
X

(6.20) Theorem. Suppose the distributions P (i.e. the smallest distri-
bution invariant under f.g1....,gm which contains qi....,gm}and P+spl{f)
. are nonsingular, Let p denote the dimension of P. Then, for each x® €M
it is possible to find a nelghborhood U of x° and a coordinate trans-
formation £ = £(x) defined on U with the following properties:

{a) the set R(xo,T) of states reachable at time t = T starting from x°

»
at t = 0, along trajectories entirely contained {n U and under the
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action of pilecewise constant input functions, is a subset of the
slice

= . = f 0 . -
sxo’T—{x CUE 1=Ep g (g ix Milpata=e 6%, g, (x)=, (x%) }

(b} the set R(x°,T) contains an open subset of § o *

x,T .
roof. We know from Lemma (6.9) that R ig nonsingular. Therefore one
can repeat the construction used to prove the part (b} of Theorem
(6.15). Moreover, from Corollary (6.10) it follows that r, the di-
mension of R, is equal either to p+l or to p.

Suppose the first situation happens. Given any real number
T € (0,e}, consider the set

T
u, = l(t1,...,tr) = u_ :t1+...+tr = T}

where U, is as defined at the step (v) in the proof of Theorem (6.15),
From the last remark at the step (iil) we know that there exists al-
ways a sultable choice of sf",...,s::: after which this set is not
empty.

Clearly the image Fr(uz) consists of points reachable at time T
and therefore is contalned in R(xo,TJ. Moreover, using the same
arguments as in (v) , we deduce that the set Er(UE) is an open subset

of §
x,T
If p=1r, i.e. if p = R, the proof can be carried out by simply

adding an extra state variable satisfying the equation
En+1

and showing that this reduces the problem to the previous one. The
details are left to the reader, [}

7. Local Observability

.
We have seen in section 5 that if there is a nonsingular distri-
bution A of dimension d with the properties that

(i) 4 is involutive
{if) & is contained in the distribution sp(cih1,...,r.lhﬂl}'L

(iil) a 1s invariant under the vector fields f,g.l,....gm

then, at each point % € N 1t ig possible to find a coordinate trans-
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formation defined in a neighberhood U of X and a partition of U into
slices of dimension d, such that points on each slice produce the
ecame output under any input u which keeps the state trajectory evolv-
ing on U. We want now to find condltions under which points belong-
ing to different slices of U produce different outputs, i.e. are
distinguishable.

In this case we see from the decomposition (5.7) that the right
object to loock for is now the "largest®™ distribution which satisfies
(ii),{1ii). Since the existence of a nonsingular distribution A
which satisfies (i), {i1),(iii) implies and is implied by the ex-
istence of a codistribution Q {namely AL) with the properties that

") i is spanned, locally arcund each point p € N, by n-d exact
covector flields

[ait") 7 contains the codistribution sp{dhl....,dht}

(i1i') 0 is invariant under the vector flelds f,gy,... /9,

we may as well look for the "smallest® codistribution which satisfies

(1i*), (iti').
Like in the previous section, we need some background material.

However, most of the results stated below require proofs which is are

similar to those of the corresponding results stated before and, for
this reason, will be omitted.

{(7.1) Lemma. Let I be a given smooth codistribution and T1"""q a
given set of vector flelds. The family of all codistributions which
are invariant under t,,...,T and contain @ has a minimal element,

which is a smooth codistribution. O

We shall use the symbol (11,...,Tq|ﬂ } to denote the smallest
codistribution which contains f and is invariant under 11""'Tq'
Given a codistribution f1 and a set of vector fields 11,...,tq
one can consider the following dual version of the algorithm {6.2)

{7.2a) A, =
(7.2b) R =yt

and have the following result.

(7.3} Lemma. The codistributions f15,8,.... generated with the algo-
rithm {7.2) are such that

R, C (11,....th9)

k

49

for all k. If there exists an Iinteger K such that o then

« =fyepq o
*
Ny = (11,....rqiﬂ ) 8]

The dual version of Lemma (6.4) 1s the following one

(7.4} Lemma. There exists an open and dense subset N* of N with the
property that at each point p € N.

(TT,...,rqlﬂ Yo=a _,p)

(7.5) Remark. 1f the codistribution f§ is spanned by a set dA1,...,d15
of exact covector fields, then there exists an open and dense sub-
manifold N. of N with the following property. For each p € N‘ there
exists a nelghborhood U of p and d exact covector fields (with

d= dim(T1,...,tq|ﬂ Y (p}) wy,...,uq which have the form

w, = d(Lv eunly, AL)

r 13

where r < n-1 is an integer which may depend on 1, Vyre--,¥ are
vector flelds in the set [t1,....rq} and Aj is a function in the set

{A1,...,Asl. such that
(11.....quﬂ Y g} = spluyta),...,wqlq}}

for all g € U,

This may easily be proved by induction as for the corresponding
statement in Remark (6.5).

(7.6) Lemma., Suppose R 1s spannhed by a set dli,...,dx of exact co-
vector fields and that (11,...,1 [ ) 1is nonsingular.
Then {t1,...,1 |2 yl is involutive.

Proof. From the previous Remark, it is seen that in a neighborhood of
»

each peint p in an open and dense submanifold N , the codistribution

(11....,1 |8 ) is spanned by exact covector fields.

Therefoxe, the Lie bracket of any two vector fields t1.12 tn
(11....,tq|n 'L is such that [14.7,0(p) € (11,...,1 la (p) (see
Remark {3.9}).

From this result, using again Lemma (2.11) as in the proof of
Lemma (6.6), one deduces that (r1,...,1q|n 3t ts involutive, O

(7.7} Remark. From Lemmas (7.4),(7.6) and (2.11) one may also deduce

that if Q is spanned by a set dA1,...,dAs of exact covector fields
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and ﬂn_1 is nonsingular, then
‘11,...,1q|ﬂ Y =@

and (11,...,1q|ﬂ 'L is tnvolutive, O

In the study of the state-output interactions in a control s¥stam
of the form (5.1), we consider the distribution

L
Q = (f.91-4--:quSP{dh1-°-"dth

From Lemma {4.8) we deduce that this distribution is invariant under
f,q1.....gm and we also see that, by definition, it is contained -n
sp[dh1....,dhl}L. If nonsingular, then, according to Lemma (7.6} -s
also involutive, i

Invoking Proposition (5.6}, this distribution may be used in order
to find locally around each x € N an open neighborhood U of X and a
coordinate transformation yielding a decomposition of the form (5.7).
Let s denote the dimension of Q. Since QL is the smallest codistribu-
tion invariant under f.gq....,qm which contains dh1....,dhl , then in
this case the decomposition we find is maximal, 1n the sense that 1t
is not possible to find another set of local coordinates

&1,....£m.€ ,...,£ with & strictly larger than s, with the pro-

5 s+1
perty that only the last n-% coordinates influence the output. We show

now that this corresponds to the fact that points belonging to dif-
ferent slices of the neighborhood U are distinguishable,

(7.8) Theorem. Suppose the distribution Q (i.e. the annlhilator of
the smallest codistribution invariant under f.g1,...,gm and which eon-
tains dh1....,dh£j is nonsinqular. Let s denote the dimension of Q.
Then, for each x € N it is possible to find a neighborhood U of x and
a coordinate transformation £ = £(x}) defined on U with the following

properties

{a) Any two initial states x? and xP of U such that
a, _ b -
£ fx 1= Ei(x ) 1 =85 +1,...,n

produce identical output functions under any input which keeps the
state trajectories evolving on U

{b) Any initial state x of U which cannot be distinguished from %
under piecewise constart input functions belongs to the slice

Ml e AT S pmmites w13 -

e S,
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={x €U, (x) = ¢ {x}, s+1 < i < n},
* i i - -
froof. We need only to prove (b}. For simplicity, we break up the
proof in various steps.

(1) consider a’ piecewise-constant input function

_ .k
u(t) = u/ for t € Leg+. Hapetptaatty)

Define the vector field

8, =+ [ g.u
k i=1 i
and let ¢k d t h
t denote the corresponding flow. Then, the state reached at
: o
time tk starting from x at time t = under this input may be ex-—
pressed as

_ .k 1 o
x(tk) = 0tk.....¢t1(x }

and the corresponding output y as
yiig) = hy txte 1)

Note that this output may be regarded as the value of a mapping

o]
Ff : (-e,e) — R

k 1
(Bpreeant) mhyasl o0l (x0)

k

If two initial states x? and xb are such that they produce two

identical outputs for any possible piecewise constant input, we must
have

a b

X X

Fi (t1t---'tk) = Fl (t1;...ptk)

for all possible (t t ) i .
1eeseety)e With 0 <ty <6 for 1 < i £ k. From this

we deduce that

a b

X

i ) aF]

Te——-), PR T (S S

TE B £y = et =0 3t1...atk}t1=...=tk=0

3F
(

An easy calculation shows that
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and, therefore, we must have

(Ly -- Ly hyix))

= (L, ...L, h (%))
1 X x2 Uy L

3 Iy and
(ii) Now, remember that Gj , 3 =1,...,k, depends on (u1,....um)_a

that the above equality must hold for all possible cgoices ?f
] ) ne
{u%....,u%) e " By appropriately selecting these (u1,...,um) o

easily arrives at an equality of the form

; = {L, ...% h)}
(7.9} (Lv1"'kah1)xa vy v " xb

where v,,...,v, are vector fields belonging to the set {f,q1....,qT}.
ty (L, v,} _=(L, ¥
For, set y, = Lez...Lokh. From the equality | 81 2 2 )1 2 2
we obtain

m 1
3 1 ) L4
) ou, = ALoy,) p 4 L (L ¥y) puy
(Lszixa +1£1(LqiY2 x2 1 £72 xb i=t 9 X

1

1 t
This, due to the arbitrariness of the PRI W implies tha

(vaz)xa = (LVYZ)xb

nre can ke
where v is any vector in the set {E.q1.....gml. This proced

h. From the above equality one gets

{terated, by setting Yy = L83"‘L8k

2

“y

Yq)
3 xb

m
T 2
Yy uf= (L Lc.yq) o+ L {L.L
(LvaY3)xa'+1£1(LquiT3 e viETIT b Ly TV

and, therefore,

L ) = (L, L Y,}
‘Lv1 V2Y3 <2 vy vy 3 xb
11y, one arris.es
for all v,,v, belonging to the set (E.g1....,gm}. Finally
at (7.9).
(1i1) Let U be a neighborhocd of % on which a coordinate transformation

£{(x) ts defined which makes the condition

3
(7.10) a{x) = span{(gg;)x R

o P A s Pl - Y3 i L R b

"

|

i
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satisfied for all x € U, From Remark (7.5), we know that there exists
x
an open subset U of U, dense in U , with the property that, around
*
each x' € U it is possible to find a set of n-s real-valued functions

Xi....,l which have the form

n-s

(7.1m) A, =L ...L h.

with Viree.ov, vector fields in lf.q1,...,gm‘ and 1 < } < &, such that

ot ix) = spanidh (x'),...,dx __(x')}
Since QL(x'} has dimension n-s5,it follows that the tangent covectors
d\,(x‘),....dhn_s(x') are linearly independent.

In the local coordinates which satisfy (7.10}, A1,...,An_5 are
functions only of Es+1""'5n (see {(5.7)}. Therefore, we may deduce
that the mapping

A :(55+1""'En)hW“ {11(CS+1-----5n);-...l £

n-g'fgeqreereb))
has a jacoblan matrix which is square and nonsingular at
(55*1(x',r---rgn(x'),o

The mapping A is thus locally injective. We may use this pro-
perty to deduce that, for some suitable neighborhood U*' of x', any
other point x” of U*' such that

M tx') = Ay k")
for 1 < 1 < n-s, must be such that

Eapy (X" = £_, (x")

for 1 < { < n-5, i.e. must belong to the slice of U passing through
x'. This, in view of the results proved in (il} completes the proof

- *
in the case where x € U

{iv) Suppose x ¢ U.. Let x{x,T,u} denote the state reached at tide t=t
under the acticn of the piecewise constant input function u. If T is
sufficiently small, x(x,T.u) is still in U. Suppose x(x,T,u) € U’ .Then,
using the conclusions of (iii), we deduce that in some neighborheod U°*
of x' = x(x,T,u), the states indistinguishable from x' lie on the
slice of U passing through x'.

Now, recall that the mapping
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¢ 22— o (x%,T,W)

is a local diffeomorphism. Thus, there exists a neighbarhood U of x
whose {diffeomorphic) image under ¢ is a neighborhood U" C U' of x'.

Let x denote a point of 0 indistinguishable from x under piece-
wise constant inputs. Then, clearly, also x" = x(;,T.uJ‘is indistin-
guishable from x{x,T,u) = x'. From the previous discussion we know that
x" and x' belong to the same slice of U. But this implies also that x
and % belong to the same slice of U. Thus the proof is completed, pro-
vided that

(7.12) x(%,T,u) € u*

{v) All we have to show now is that (7.12) can be satisfied. For,
suppose R(X), the set of states reachable from % under piecewise con-
stant control along trajectories entirely contained in U is such that

(7.13) Rix) nu' =g

If this is true, we know from Theorem (6.15) that it is possible to

find an r-dimensicnal embedded submanifold V of U entirely contained
- *

in R{x} and therefore such that v N U = @, For any choice of func-

tions 11,...,A of the form (7.11), at any peoint x € V the covectors

n-s
dA1(x),...,dAn_s(x) are linearly dependent. Thus, without loss of ge-
nerality, we may assume that there exist d < n-s functions y,,....¥vy

still of the form (7.11}) such that, for some open subset V' of V,

- Span{dh1(x),...,dhi(x)] C spanidy,{x},...,dr ()} for all x € V'
- drvyix),...,dy4{x) are linearly independent covectors at all x € v',
- 4L, Yj(x) € span[dy1(x)....,dvd(x)l for all x € v' and vE{f,qy,....q.}.

Now, we define a codistribution en N as follows

a(x) = o-(x) for x £ V'

[

Qx) = span{dyI(x).....dyd(x)} for x € v'
3

Using the fact that £,94.....9, are tangent to V', it is not difficult
to verify that this codistribution is invariant under f,g1,....gm f
contains sp{dh1.....dhn} and is smaller than (f,qv_,_,gm]spka,.",dhﬂ).
This is a contradiction and therefore (7.13) must be false. (1



CHAPTER IV
DISTURBANCE DECOUPLING AND NON INTERACTING CONTROL

1. Nonlinear Feedback and Controlled Invariant Distributlons

In this and in the following chapters, we assume that in the con-

trol system
m

{1.1) x = £(x) + [1qi(xlu1
§=

it is possible to assign the values of the inputs Ugrasosu at each
time t as functions of the value at t of the state x and, possibly, of
some other real-valued functions ViesaosVp. This control mode is cal-
led a static state-feedback control, In order to preserve the struc-
ture of (1.1), we let uy depend on x and Vie-s-evy in the following

form

(1.2} w o= a,(x) +jg1ﬂij(x)vj
where ni(x) and Bij(x) P | < 4,3 < m, are r:al-valued smooth func-
tions defined on the same open subset N of R" on which (1.1} is de-
fined.

In doing this we modify the original dynamics (1.1) and obtain
the control system

m

(1.3 % = ¥ix) +i£131(x)vi
in which

A, m
(1.4a) £(x) = £{x) + } gy (x)a, {x)

i=t

a m

(1.4b) gL(X) =j£1gj(X)Bji(X)

For reasons of notational simplicity, most of the times we con-
sider uitx) as the i-th entry of an m-dimensional wvector alx),
Bij(x) as the (i,j)~th entry of an mrz-dimensional matrix B(x) and we
consider the vector fields g, {x) and qj(x) as j-th columns of

-
nxm-dimensional matrices g(x} and g{x).

125

In this way we may replace (1.4) with the shorter expressions
N
(1.5a) f(x) = £ix) + g(x)aix)
b1
{1.5h) gix) = gix)B(x)

We also systematically assume that the m*m matrix B(x) is in-
vertible for all x. This makes it possible to invert the transforma-
tion (1.5), and to obtain

(1.6a) £(x) = Fx} -gx18” N ix)aix)

(1.6b) gix) = et

(x}

{t.8) Remark. Strictly speaking, only (t.5a) may be reqgarded as a
"feedback”, while (1.5b) should be regarded as a change of coordinates
in the space of input values, depending on x. D)

The purpose for which feedback is introduced is to obtain a dy-
namics with some nice properties that the original dynamics does not
have. As we shall see later on, a typical situation 1s the cne in
which a modification is required in order to obtain the Llnvariance of

_a given distribution A under the vector flelds which characterize the

new dynamics., This kind of problem is usually dealt with In the fol-
lowing way.

A distribution A 18 said to be econtroilled invariant on N 1f there
exists a feedback pair (a,8) defined on N with the property that A is
invariant under the vector fields }'31""'Em (see (1.4}), i.e. if

(1.9a) 1£,8) (x) € atx)
(1.9b) [§,.81(x) CA(x) for 1<1<m

for all x €N,

A distribution A is said to be locally controlled invariant if
for each x € N there exists a neighborhood U of % with the properfy
that A is controlled invariant on U. In view of the previous defini-
tion, this requires the existence of a feedback pair (a,B) defined on
U such that (1.9} is true for all x € u.

The notion of local controlled invariance lends itself to a simple
Jeometric test. If we set
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G = sp{g1....,gm}

we may express the test in question In the following terms.

(1.10} Lemma. Let A be an involutive distribution. Suppose 4, G and
4+G are nonsingular on N, Then A is locally controlled invariant if
and only Lf

{1.11a) [€£,4) €A+
(1.11b) lgy,81 C4 +G for 1 <ic<m
Proof. Necessity. Suppose A s locally controlled invariant. Let x € N,

U a neighborhood of x and (a,8) a feedback pair defined on U which
makes (1.9) satisfied on U, Let 1 be any vector field of A. Then we

have
" m
[£.1] =[f+ga,1] =[£, 1] + { lg .Tla + 7 (LTaj)qj
i=1 i=1
,\. m m m
= = ., S .
tg, Jz LY j£1lgj By j£1(L1831)q

for 1 < i < m.
Since B is invertible, cne may solve the last m equalities for
Igj.Tf, obtaining

m 4"
[gj.tl €} lgi.a] +¢
=1

for 1 < j < m. Therefore, from (1.9b} we deduce (1.11b). Moreover,

since
A\ m
[£,1] €1£,a] + ] tg;.al + g
i=1
again from (1.9) and (1.11b) we deduce (1.11a}. O

In order to prove the sufficiency, we first need the following in~-

teresting result, which is a consequence of Frobenius Theorem.

{(1.12) Theorem. Let U and V be open sets in R™ and R" respectively. Let
x1,....xm denote coordinates of a point x in R™ and ¥yre+«r¥, coordina-
tes of a point y in ", Let r',...,rm be smooth functions

ri ;g gmn .
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Consicer the set of partial differential equations

(1.13) 2 gy 1<1i<m
i

where y derotes a function

y : Uu-—»vy

Given a point lx Y ) € U~V there exist a neighborhood U of x in U

and a anique smooth function

which satisfies the equatxons (. 13) and is such that y(x°) = y© ir
and on’y if the functions r PP satisfy the conditions

i k
(1.14) A AT pipk ket g 1<,k <m
F3% Bxi - -

for all x € uy.

Proof. Necessity. Suppose that for all (x° 'Y ®) there is a function y
which satisZies (1.13). Then from the property

T a?

L SN
axiaxk axkaxi
one hasg
3,k _ 8 i
5;;(? (x)y(x)}) = g;I{F (x)y(x))

Expanding the derivatives on both sides and evaluating them at x =x°
one cobtains

k i
ar k;, 0, .1, 0 o) aT i, o, k, 0 Q
L) o * T ey® = 2y #1459t (x}
3xi xo Bxk x° Y

which, due t»> arbitrariness of xo,yo, yields the condition (1.14):
Sufficiency. The proof of this part consists of the following
steps.

(i) It is zhown that the fulfillment of (1.14) enables us to define
on UxV a certain involutive distribution A, of dimension m,

{ii) Using Frobenius Theorem, one can find a neighborhood U*'x v' of
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(x°,y°) and a local coordinates tranformation

F : {x,y) /™ F

defined on U'x V', with the property that

2 }

Alx,y) = span[(a’ ) “'(5T_)(x,y)

(x,¥)°

for all (x,y) € U'x V!
(iii) From the transformation F one constructs a solution of (1.13).

As for the step (i), the distribution A is defined, at each
(x,¥) € UxV, by

n
a : i I
Alx,y) = span[lﬁgz) +h£0 kzorhk(X)yk(5§;" 1 <4< m

In other words, A(x,y) is spanned by m tanqent vectors whOse

coordlnates with respect to the canonical basis {(ax ).....(5——).

(ay ).....( )} of the tangent space to Uxv at (x,y] have the form
1 0
0 1
ol e |
[} 0 1
rixy r2(x)y ™)y

These m vectors are linearly independent at all (x,y) and so the
distribution A is nonsingular and of dimension m. Moreover, it is an
easy computation to check that if the "integrability"™ condition (1.14)
1s satisfied, then A is involutive, -

The possibility of constructing the coordinate transformation

described in (i1) is a stratghtforward consequence of Frobenius theorem.
The function F thus defined is such that if visa vector in 4, the last
N components of F,v are vanlishing. Since, moreover, the tangent vectora

(;;E—)....,(By } span a subspace which is complementary to A{x,y) at

all (x,y) and F is nonsingular, one may easily conclude that the func-

tion
£ = Fix,y}

is such that the jacobian matrix
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Iy ) ¥n
{1.15}) P
s omin
4 ) ¥n

is nongingular at all (x,y) € U'x vy,
Without loss of generallty we may assume that

o 0O, _
Lilx",y7) =0

for all m#1 < { < m+n. As a consequence, the integral submanifold of
! passing through (xo,yo) is defined by the set of equations

£m+i(x,y) =0 1<4i=n

Since the matrix {1.15) is nonsingular, thanks to the implicit
function theorem the above equations may be solved for y, vielding a
set of functions

(1.18) Yy = ni(x) 1 <iz<n

defined in a neighborhcod Uo C u* of x®. Moreover

n; (x% = yf 1<i<n

The functlons {1.16) satisfy the differential equations {1,13)
and therefore, are the required solutions. As a matter of fact, the
Eunctions

pylxey) =y - ny(x) 1<1ic<n

are constant on the integral submanifold of A passing through (xo.yol
and, therefore, if v is a vector in 4,

doiv =0 1 <i<n

at all pairs. (%,n{x}). These equations, taking for v each one of the
n vectors used to define &, yteld exactly
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an
T -(1ch)n(x)) V'<i<n, 1<j<m0
b|
Provf. (of Lemma 1.10). Sufficiency. Recall that, by assumption, 4,G
and A+G are nonsingular; let d denote the dimension of A and let

p=dim G - dim A N g
Given any x € N it is possible to find a neighborhood U of x2 and an

mxm nonsingular matrix B, whose (i,j)l-th element b is a smooth real-

valued function defined on U, such that, for

m
g. = b, 1 <
91 jzlg] ji = m
the following jis true
Sp{§p+1""'am} Ca
(1.17) (4+G) = A ® sp[§1.-..;§p}

The tangent vectors 91(x),...,g (x} are clearly linearly inde-
pendent at all x € U,

Now, observe that if the assumption (1.11b) is satisfied, then
also

{(1.18) lai,ar CA+c

and let 11,...,1 be a set of vector fields which locally span a
around x%. From {1.17) and (1,18} we deduce the existence of a unique
set of smooth real- valued functions c§1 » defined locally around xo,
and a vector field Gi € A defined locally around x° such that

p
' = . X - k
{(1.11b") la, ) —j£1cjigj + 8

for all 1 < i < m and 1 < k < d. Using the same arguments and setting

9y = £

from (1.11a) and {1.18) we deduce the existence of a unigue set of

k

real-valued smooth functions c§0 and a vector field 60 € 4, defined

locally around xo, such that

(1.11a')

Now,
(i,j)-th element b 15

I§0‘1kl = 2]c

in

X
.
JOgJ %o

suppose there exists a nonsingular m<m matrix B whose

around x, such that

(1.19)

+

% hi

1s a smooth real-valued function defined locally

m
- k -
_g chjbji =0

for 1 <k <d, 1 <n 2PV < i< m Then, it ig easy to see that

(1.20)

2 9h Byye 1yl

for 1 fi<m 1 < k < d. For,

(756 §
g b ] o= -
hil h hi’ 'k h£1
P - m
= - (L_b .13 + 7§ b,
h£1 Ty hi'9n j£1 ji
2k
where 61

p

!

h=1

€ A

m

L_b .iq + Y b, (g, 7]
T hi'“h 521 i itk

K- ek =k
“hidn *&; = &}

is a vector field in a. Since Tyr-v.e 1y, locally span A, (1.20)
implies that

Therefore, the matrix

B

Z gh hl'A, ca

BB

is such that (1.9n) is satisfied,

Using similar arguments,

vector a,

fined locally around x® '

{1.21)

(1.22)

whose i-th element a

one can see that if there existgs an mxq

is a smooth real-valued function de-

such that
m
- k - k
-L +le.a, vef, =0
. *h 559 h3% ho
for t < k <4, 1 2 h < p, then
- m -~ -
T9g + § dpdyemd € a
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for 1 < k < d. For,

m ¢ - ™. E K - 5 ks .2k _ zk
T g, 4, . == (L_ & )g, + W c,.q, + C g+ =&
190 L e il nky B n) o jll 3 Ly n3% L oo

where Sk is a vector field in A. From this one deduces that the vector

is such that {1.9a) is satisfied. )
Thus, we have seen that the possibility of finding B and a which
satisfy (1.19} and (1.21) enables us to construct a pair of feedback
functions that makes ({1,9) satisfied. In order to complete the proof,
we have to show that {1.19) and (1.21) can be solved for B and a.
Since A is nonsingular and involutive, we may assume, wlithout loss

of generality, that our choice of local coordinates is such that

S
" 'axk —

The equations (1,19} and (1.2t} may be rewritten as a set of part-
ial differential equations of the form (1.13) by simply setting

( Kk k ko
11 4 €10
K [ k k K 4
r* = €pt "+ Cpm €0 12k 2
0 ... 0 0
0 ... 0 0
J

As a matter of fact, for each fixed i, the eguations (1.13) correspond
to an equation for the i-th column of B, of the form

b b
(1.23) 3%—[ 01] - rk[ 01] 1<ke<d
k

{where 51 stands for the i-th column of B) and the equations {(1,21)

correspond to

9 a k a
(1.24) 3;; 1 =T 1 1 <k <ad
Both these equations have exactly the form .
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(1.25) CRL ok 1<k<d
X, - " -

the unknown vector y being m+1 dimensional. Since now the functions Fk
depend also on the coordinates Rgaqroe-eXpy (with respect to which no
derivative of y is constidered), in order to achieve uniqueness, the
value of y must be specified, for a given x?,...,xg. at each L SPTRPRTE
For consistency, the last component of the initial value of the solu-
tion sought for the equations {1.23} must be set equal to zera, whereas
the last component of the initial value of the solution sought for the
equation {1,24) must be set equal to 1., In addition, the first m com-
ponents of the initial values of the solutions sought for each of the
equations (1.23) must be columns of a nonsingular mxm matrix, in order
to let B be nonsingular,

The solvability of an equation of the form (1.25) depends, as we
have seen, on the fulfillment of the integrability conditions (1.14).
This, in turn, is implied by {1.11). Consider the Jacobi identity

-Hél'rkl 'Thl+|[§i'rhl .Tk' =lf;1,[ Th,'l.'k!l

for any 0 < 1 < m. Using for [éi,rkl and lél,thl the expressions given
T

by {1.11a") or (1.1th*) and taking 1, = F%_ Ty = = one easily ob-
k h

ax
tains
P P
k - k 2 - 3
b ]el g +85, 551 -1 J Mg +ef, 3y 2y
j= ji7j i axh j=1 3175 1’3xk
This ylelds
k
P ac) P p
i - k h - h k 3
-1 3—1— g. + )i (¥ elg, +8M 21K, 2
1=1 7%, 73 g1 1 ;21 1j 3 i §xh
ach p [+]

-7 oh T N
j51 % 93 j=1cj1(1£1c‘jgl MY (61'5§;| 0

Now, recall that 5%; and 5%— are both vector fields of A, whigh is
k
k 3
involutive, Therefore, also [6i f 5;;! and [6?,3%;1 are in A. Since A

and 59{61,....9 } are direct summands and §1,...,§p are linearly in-
dependent, the previocus equality implies

k h
3c, dc, p |34
i i h k k h
= + g—l— + c,.cC - c..c = 0
axy x, g£1 jeted 121 it
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for 1 < j <p, 0 ¢ i <m 1 < h,k <d, which is easily seen to be
identical to the condition (1.14}. 0O

We see from this Lemma that, under reasonable assumptions (na-
mely, the nonsinqularity of A, G and A+G) an involutive distribution
is locally controlled invariant if and only if the conditions (1.11}
are satisfied. These conditions are of special interest because they
don't invoke the existence of feedback functions a and B, as the de-
finition does., but are expressed only in terms of the vector fields
f.q1....,gm which characterize the given control system and of the
distribution itself. The fulfillment of conditions {1.11) implies the
existence of a pair of feedback functions which make & invariant under
the new dynamics but the actual construction of such a feedback pair
generally involves the solution of a set of partial differential equa-
tions, as we have seen in the proof of Lemma (1.10). There are cases,
however, in which the solution of partial differential equations may
be avoided and these, luckyly enough, include some situations of great
importance in control theory. These will be examined later on in this

chapter.

2. The Disturbance Decoupling Problem

The notion of locally controlled invariance will now be used in
order to solve the following control problem. Consider a control system

m
(2.1a) X = £(x) + ) 9; (KJuy + plx)w
i=1

{2.1b) hix)

e
It

where the additional input w represents an undesired perturbation,wkich
influences the behavior of the system through the vector field p. The
system is to be modified, via static state-feedback control on the in-
puts u1,....um, in such a way that the disturbance w has po influence
on the output y.

In view of some earlier results {Theorem IIT.{(3.12) and Remark
1I1.(3.13)) this problem consists in finding a feedback pair (a,R) and
a distribution A which is invariant under ? = f+ga and Ei = (gB)1 '

' £ i < m, contains the vector field p and is contained in (sp{dhj})i
for all 1 < j < ¢.

According to the terminology 1ntroduc$d in the previous section,

a distribution A which is invariant under f = f+ga and Ei = (gB)i B
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1 <1 <= for some feedback (a,8} is caitrolled {nvariant. If we set

]

u
I 2Jm
L

L 1
; (sp[dhjl) —(sp[dh1,...,dth

we may ezpress the problem in question in the following terms.
Disturbarce decoupling problem. Find a distribution A which

(1) is controlled invariant
{il} is such that p € A C 4. D

As we have seen in the pPrevious section, the notion of loeal con-
trolled invariance ig sometimes easier to deal with than (global) con-
trolled invariance. Thig motivates the consideration of the following
problem.

Local digturbanece decoupling problem. Find a distribution A which

{i) is locally controlled invariant
(1i} 1is such that p €48 CH,

(2.2) Remark. Note that the distribution A is not required to be non-
singular, neither involutive, However, nonsingularity and involutivity
may be needed in order to construct the pair of feedback functions
(a,8) which make {t possible to implement the disturbance—decouplinq
control mcde, This typically happens when one has found a distribution
4 which setisfies (ii) and, tnstead of (i), satisfies the condition

i*) [£,8] €A +g
lgi,8) €4 +q 1<ic<m

In this case, we know from Lemma (1.10) that nonsingularity of A,G
and 4+G helps in finding at least locally a pair of feedback functions
(a,8) with the desired properties,

If & _s nonsingular and involutive, invariant under ; and 51 .
1< X m, and satisfies (ii), then it is known from the analysis de-
veloped in chapter I that there exist local coordinate trangformations
which put the closed-loop system into the form

~ [N
Xy = £5(xy,x,) +1£1g“(x1,x2)ui * P Xy exy)w
. W L
(2.3) %, = £,(x,) +i£1g12(x2)ui

y = h(le
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Here, once again, one sees that the disturbance w has no influence on we have
the vutput y. O
A systematic way to deal with the Disturbance Decoupling Problem (Lg w, T} =@
is to examine first whether or not the family of all controlled inva-
riant distributions contained in H has a "maximal® element (an element because Lg w € Qk‘ and
which contains all other members of the Family). For, L1f this is true, t
then +he problem is solved 1f and only if this maximal element contains {w,7) =0
the vector field p.
If, rather than controlled invariant distributions, we look at because 1 € ﬁi‘ + G. Thus
loeally controlled invariant distributions, then the existence of such
a maximal element may be shown under rather mild assumptions, To this (w’lqi,rl) =0
end, we introduce a notation and an algorithm. Let I(f,q;K) denote the
collection of all smooth distributions which are contained in a given Since GL N ﬂk, is smooth by assumption, [gl,rl annihilates every co-
distributjon ¥ and satisfy the conditions (1.11). In view of Lemma ' vector in Gl n g
{(1.10), the maximal element of I(f,g:K) is the natural candidate for
the maximal locally controlled invariant distribution in K. As a mat- Igi'Tl € nt. + G
ter of fact, the maximal element of T(f,q;K) may be found by means of
the following algorithm. for ¢ <1 < m. Thus, ﬂ;, is a member of E{f.g:K). Let & be any oather
element of this collection. We will prove that 3 C ﬂt,. First of all,

note that if w is a one-form in i° n gt and 1 a vector field in & we

i have
QU = K

ke + L.

(2.4) Lemma (Controlled Invariant Distribution Algorithm). Let

(2.5)
_ Jpus ¥ L (L w,t) =9
Y = g+ LG N ) +i£1Lgi(G ne ) 9,

. -
Suppose there exists an integer k such that Qe = feyq- Then 2, =04 S0 that (recall that & is a smooth distribution)

for all k > k_.

=L -1
It ., N G1 and Qi. are smooth, then ﬂi. is the maximal element Lgi“'I n Gl’ Ca
of I(f,q;:K)}.
Suppose

Proof. The first part of the statement is a trivial consequence of
the definitions, As for the other, note first that from the equal ity EL 5 q

= k
ﬂk:+ 1 ﬂk, we deduce

for some X > 0. Then
L tctnn, ca., =
91 k k m
=L 1 =L i3 =l *
2 Cl +L a3 ngr+J1 Ztng ca
for 1 < i < m and also for i = 0 1f we set f = qh s as sometimes we k+1 k £ 121 95 )
L
d . - n ] -
di before. Let w be a one-form in G ﬂk, + and 1 a vector field in Thus, since 2,=xr"C AL, we deduce that
nk. . In the expression '
= 1
& C Qe

(Lgim.T) =Lqi(m,t> —\'w.lqi.Tl) .
1
and @), is the maximal element of E(f,q;K), O
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For convenience, we introduce a terminology which is useful to
remind both the convergence of the sequence (2.5) in a finite number
of stages and the dependence of its final element on the distribution

K. We set

(2.6) JK) = AngHige et

and we say that J(K) is finctely computable if there exists an integer
k‘ such that, in the sequence (2.5}, ﬂk, = ﬁk' +4° If this is the
case, then obviously J(K} = ﬁt,.

In the Lemma (2.4) we have seen that if J(K) is finitely
computable and if J(K)'L n GL and l(K) are smooth, then J(K) is the
maximal element of E(f,g;K}. In order to let this distribution be
locally contreolled invariant all we need are the assumptions of Lemma

(1.10), as stated below.

{(2.7) Lemma. Suppose J{K) is finitely computable. Suppose K is an in-
volutive distribution and G, J(K), J(K}+G are nonsingular. Then J{K:
is involutive and is the largest locally controlled invarjant dis-

stribution contained in K.

Proof. First, observe that the assumption of nonsingularity on G,J(K},
J(K)+G indeed implies the smoothness of J(K)L n gt and J(X). So, in
view of Lemma (1.10) we need only to show that J{K) is involutive.
For, let d denote the dimension of J(K). At any point x° one may
find a neighborhood U of x° and vector fields TyreeasTy such that

J(K} = sp{11,...,rd}
on U. Consider the distribution
D =splt;: 1 <i<dl +sp[[T1,le: 1 <i,j<dl
and suppose, for the moment, that D is nonsingular on U. Then, every
vector field t in D can be expressed as the sum of a vector field 1°'
in J{K) and a vector fileld 1" of the form
13
™ =) e, lt,.1.]
i=1 g=1 103

where cij ¢ 1 ¢ 1,3 £ d, are smooth real-valued functions defined on U.

We want to show that
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lg.0l Cp+ag

for all 0 < k < m. In view of the above decomposition of any vector
field v In D, this amounts to show that

[gkanlﬁTj’I CD+gG

The expression of the vector field on the left-hand-side via Jacobi
identity yields

[gk,lti.rjll = Iri.lqk-lel “lrgdg i

The vector field igk,rjl is in J(K) + G and therefore, because of the
nonsingularity of J(K) and J(K) + G, it can be written as the sum of
a vector field t in J(K) and a vector field g in G. Since,

[Ti,gl € J(K) + G for any g € G, we have

[Ti.lgk.lel =lt,,t4+gl €D+ J(K} + G=D+ g
and we conclude that D is such that

{g..0l CD+ g

for all © <k <m.

Now, recall that K 1s involutive by assumption, and therefore that
D CK

From this and from the previous inclusions we deduce that D is an
element of X(f,g;K}). Since D D J(K) by construction and J{X) is the
maximal element of X(f,q;K), we see that

b = JiK)

Thus, any Lie bracket of vector fields of J{(K), which is in‘*D by
construction, is still in J(K) and the latter is an involutive distri-
bution.

If we drop the assumption that D has constant dimension on U, we
can still conclude that D coincides with J(K} on the subset O C U con-
sisting of all regular points of D. Then, using Lemma I.(2.11), we can
as well prove that D = J{X) on the whole of U. O
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In the Local Disturbance Decoupling Problem one 1s Interested in
the largest locally controlled invariant distribution contained in H.
Since this latter is involutive (see chapter 1}, in order to be able
to use the previous Lemma, we need to assume that the distribution
J(H) is finitcly computable and that G, J(H)}, J(H) + G are nonsin-
gular. I¥If this is the case, then, as we said before, the Local Dis-

turbance Decoupling Problem is solvable if and only Lf
p € J{H)

We conclude the section with a remark about the Lnvarlance of
the algorithm {2.5) under feedback transformation.

(2.8) Lemma. Let %,31,....$m be any set of vector fields deduced from
f.91;-...gm by setting ? = f + ga, Ei = (gB)i « 1 <1 < m; then each
codistribution 1, of the sequence (2.5} is such that

Q= Wy _, +L }

1 m L
(6" N _,) +1I1Lm - nay

2 3,

Proef. Recall that, given a covector field w, a vector Field 1 and a

scalar function vy,
L(ry)w = (Ltw)y-+(m,1 Y dy
1f w is a covector field in 6¢- M Qk41 . then

m m
Low = Lew ¢} (L we, + ] (o,g, }da
¥ T T R

m
, ¢
1(ngmsJ1 + £1 wogy YaBy,

But (m,qj } = 0 because v € G and therefore

L m L T 1
n : n N
Lo (6% 0 0y _p) 121L3 ("N ) CLete Qk_1);z‘Lgi(G R _q)
= N =
. =1
Since B is invertible, one may also write f = ?-—98 a and
9; = (38_1)1 and, using the same arguments, prove the reverse inclu-

sion. The two sides of inclusion are thus equal and the Lemma is
proved. O
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3. Some Useful Algorithms

In this section we describe a practical implementation of the algo-
rithm yielding the largest locally controlled invarfant distribution
contained in H. Moreover, we show that in some particular cases the
construction of this distribution may be obtained with simpler methods.

We begin with the easiest situation, first. For each output func-
tion hi(X} we define an integer ay e called the characteriatic_numbcr
of ¥; » a@s the integer identified by the conditions

. ) K B
(3.1a) Lg_LEhi{x) =0

]

for all k < Py » all 1 <3 <m all x € N and

Py
(3.1b) quLf

hi(x) ¥ o

for some j and x.

Note that if for some output Y, the characteristic number is not
defined {(i.e. (3.%a) holds for all %, all j and all x}, then the out-
put yj is in no way affected by any of the inputs Ugreeertl. The ex-
panslons described in chapter III show that if this is the case

k
k o, & _ f. . 0
Leh,; (x )ET = hi(°t(x )}

=
|| ~~ 3
=]

yi(t} =

Thus, it seems reasonable to assume that our control system 1is
such that the characteristic numbers are defined for each output.

Once the characteristic numbers are known, we may define an txm
natrix A{x) whose element aij(x) on the i-th row and j-th column is

2 b1 (aLd }
[3.2) aij(x) = quLf hitx) = de hlix).qj(x}
and an t-vector b(x) whose element bi(x' on the i-th row is

+1

pyHl Py
13.3) by(x) = Lg" hy(x) = (AL "h, (x), £(x)

£

We point out first of all an interesting property of the objects
Zefined so far

(3.4) Lemma. Let {a,B) be any pair of feedback fynctions and let
t=f+gqu g = (46}, . Then




142

k ok
L%hl(x) = Lgh, (x)

"
for all k < Py and all x € N, Moreover, let A{x) be the f£xm matrix
whose (i,j)-th element aij‘is

"
aij{xl = L hi(x)

Py
4" L'E
9

a
and b(x) the t-vector whose i-th clement bi is

" pi+1

b, (x) = L? h, (x)
Then

Ax) = A(x)B(x)

B(x) = A(x)a(x)+b(x)

froof. The first equality is easily proved by induction. It is true
for k = 0 and, 1f true for some { < k < By . yields

k+1

¥

The other equalities are straightforward consequences of the first

_ k _ k1 n k _ k1
h{x) = L}L h,{x) =L h, (x} +_£1ngth1(x)aj(x) = Lg hy(x)

L
¥ £ j

one,

(3.5) Remark. Note that the invertibility of B implies the invartance
of the integers p1....,p£ as well as that of rank of A{x) under feed-
back transformations. DJ

From this one can deduce the following interesting result.
(3.6) Lemma. Every locally controlled invariant distribution contained

in H is also contained in the distribution Asup defined by

Eoopy k L
. = N n
(3.7 Asup - k=0(sp[dehi])

Suppose Asup is a smooth distribution, a pair of feedback functions
(2, 8) is such that

(3.8a) tf + gu,Asup] C Asup

(3.8b) [tgely,a 1 © 3 gup 1

Ia
-
ta
3
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if and only if the differentials of each entry of the column vector
Alx)a{x) + b{x)} and those of each entry of the matrix A(x}B(x) belong
to the codistribution Al B

sup

I'roof. Let A be a locally controlled invariant distribution contained
‘o H. Then, by definition, & C (spldh, )" for all 1 < i < 2.
Moreover, for some local feedback o, 1t,a] ca. Suppose AC(sphﬂéhLHL
for some k < py7 then using Lemma {3.4) we have for any vector field
T €A

k+1

¢ b

0 = (aLkn I8, =1 (dL:hi,T )-(dL, L f1)

3 ¥
k+1

£ hi})L. This proves that

k
fhi'T Y = {dL i

t.e. A C (splaL

k

L opy 1
AC N n (sp{dehl}’_

i=t k=0
and therefore the distribution {3.7) contains every locally controlled
invariant distribution,
Now, suppose there exists a pair of feedback functions that makes
(3.8) satisfied. Let 1 be a vector field in 8. up- Then

p
(3.9a) (at*n, 1) =0
. E 1'
(3.9b) <dL§h1,[¥,rl)= 0
k Ny
(3.9¢) (dehi,lth])= 0

for all 1 <i<ie, 0 <k < [P 1 <3 < m. From (3.9b) written for
k = Py« we deduce, using Lemma (3.4),

Py Py ai+1
0 = L {dL . h,, 1 ¥ -dL,L hiot) = (aL

¥ I ¥

Similarly , for (3.9c) written for k = py we deduce that

hi,1)=(dgi,r>

A
0= (daij'r)

Therefore, the differentials of gi and gij belong to the codi-

L
stribution Asup' Conversely, if the differentials of gi and ;ij belong

to the codistribution A;up + we have that (3,9b} and (3.9c) hold for
k = p;. For values k < Py (3.9b) and (3.9c) hold for any feedback
{a,8) because of Lemma (3.4} and, therefore, we deduce that As is

" up
invariant under ¥ and g9;. 0
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From this result we see that there are cases in which the computa-
tion of the largest controlled invariant distributton contained in Y
is not terribly difficult. An interesting special case is the one in
which the matrix A(x} has a rank equal to the number of its rows (i.e.
the number of the output channels); this is explatned in the following
results.

(3.10) Lemma. Suppose that the matrix A(x) has rank £ at x°. Then the

covectors

0

p
o}
¢ D) a0, Lt )

dh, (x%), ..., dL

are linearly independent. As a consequence, the distribution bsup is

nonsingular in a neighborhood U of x© and

L
(3.11) dim Asup(x] =ppt... *tpp,t e <
I'roof. Suppose that the differentials are linearly dependent at x°.
Then there exist real numbers Cik ¢ 1 < i e, 0 <k < £y such that

3 Di
(3.12) 5 I

. Lk, (x°) = 0
121 K=o

Cik

Now consider the function
L 91 K
Alx) =1£0 kEU cikahi(x)

According to the definition of Pyrevasdy o this function is such that

P ]
i -
clpidef hi,qj Y {x) -1£1ci°1aij(x)

I} ot

hn,gj Y(x) =

i=1

But, on the other hand, (3,12) shows that ar(x®) = 0 and therefore
the above equality implies the linear dependence of the rows of the
o
matrix A(x }),i.e. a contradiction. Therefore we conclude that if (3.12)

holds t h = ,,. = = 0.
+ WE mus ave c.l01 cmE ]
Now consider the function
2 91_1 X
yix) =1£0 k£0 Siilghy (x)
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(with the understanding that the above sum is exendend over all non-
*
negative k's) and cbserve that, if 0 <k < 91-1, then( )

k _ k+1
—(dehi.[E,gjl) = <de hi,gjl

Now, by the definition of Pyres-vd, and from this formula, we have

¢ fy-1

.-
(dy.lf.gjl)(x) =-1 1 ¢
i=0 k=0

[

k+1
tan y=-7Je 2y, (0
ity i.p1 1983

itk ShE 19y

But since in the (3.12) the coefficients 010 ,...,c'_p have already
1 L
been proved being equal to 0, the function y(x) is such that dv(x°)=0
and the above equality implies again the linear dependence of the rows
of the matrix A(x"), i.e. a contradiction. Therefore Sy,00-1 =
e
_q defined, i.e. such that Py 2 1),

E oaee =

CL-DE-1 = 0 {for all €0

By repeating the procedure one completes the proof.
{3.13) Remark. As a consequence of this Lemma, If the matrix A(x°) has
rank £, the functions L:hitx), t<i <8, 0<kzx< p; are part of a
coordinate gsystem in a neighborhood U of x°. This fact will be ex-
tensively used in the sequel. [

The assumption on the rank of A(x) identifies a special case in
which the computation of the largest controlled invariant distribution
contained in H is particularly simple.

(3,14) Corollary. Suppose the matrix A(x} has rank L at x%. ‘rhen tn
a neighborhood U of x° the distribution ﬁsup coincides with the
largest locally controlled invariant distrijbution contained in H.

Proof. If A(x) has rank t at x% in a neighborhood U' of xC the distri-~
bution dsup is nonsingular and therefore smooth. Moreover, in a neigh-
borhood U C ' of x° the equations

{3.15a) Alxjaix) + bix} = y{x)

{3.15b) A(x)B(x) = 5{x)

where y(x} and é(x) are an arbitrary &-vector and respectively an

(*)
k ksl k
=(dL h,,[f,g.]) = ¢ )~ dl. )
dleh, | .ng di, hi,gj L Lih; g,

and the last term is zero because k < pi-l.
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arbitrary f=m matrix, have smooth solutions. If the entries of Yy amd

6 are such that their differentials belong to A;up + then the feedback
ta,B) is such that {3.8) are satisfied on U. In particular this is
true if the entries of a and B are constants, Note that the matrix 4

must have rank t in order to let 8 be nonsingular,

(3.16) Remarx. Recall that any pair of feedback functions a and B

which makes Asup invariant is a solution of {3.15), provided that vy
1

and 4 have entries with differentials in Asup {see Lemma (3.6)}, O

The procedures outlined so far are not always usable, because A(x)
may fail to have rank t oI, more in general, Asup may not be a locally
controlled invariant distribution. In this case one may still use the
general algorithm (2.4}, A practical implementation of this algorithm
can be obtained in the following way,

(3.17) Algorithm (Construction of the largest locally controlled in-
variant distribution contained in H).

Suppose that jin a neighborhood of the point x° the codistributlon
sp{dh1,...,dh£} has constant dimension, say s;. Let A, (x) be an
s,~vector whose entries A01""'A050 are entries of h, with the pro-

perty that dAD1,...,dAOS are linearly independent at all x in a ne_gh-
0

borhood of x°.

The algorithm consists of a finite number of iterations, each one
defined as follows.

Iteration (k). Consider the S, ¥m matrix Ay (x) whose (i,ji-th
entry is (d)kitx),gj(x)) - Suppose that in a neighborhood U, of the
point x° the rank of A, (x} 1s constant and equal to £, . Then it ig
pessible to find X, rows of Ak(xj which, for all x in a ne ighhorhocd
Ui C U, of %2, are linearly independent. Let

P

ka

be a Sk *sk permutation matrix, chosen in such a way that the I, rows
of P4 (%) are linearly independent at all x € Ué. Let ak(x} be an

Sy~vector whose i-th element ig (dlki.f)(x). As a consequence of pre-
vious postitions, the equations

(3.18a) P (Xlad(x) = kaIBk(x)

147

(3.18b) Praby (B (x) = K

(where K is a matrix of real numbers, of rank r) may be solved for a
ard 8, an m-vector and an m*m invertible matrix whose entries are
real-valued smooth functions defined in a nelghborhood Ug of x%.

Set 30 = f + gu and 31 = (gﬂ)i et <4 am,

Consider the set of functions

nk ={x=1rL2 . :1 <3< S, + 0 <1 <m}

and the codistributions
Sk
By =j£1 sp[dkkj]

f,, = spldA: ) € Al

Suppose the codistribution Qk1 + ﬂkz has constant dimension,

Sa¥ Sp4q r in a neighborhood U;'C Ug of x°. This integer S) 4

cessarily larger than or equal to r, because the I, entries of Praiy
have linearly independent differentials at all x € Uﬂ + otherwise

Ak(x) would not have rank Iy . Let e A

is ne-

P be entries of
k+1,1 k+1,sk+T

Ak and/or elements of Ak with the property that the differentials

dAk+1,1"°"dhk+1,sk+1 are linearly independent at all X in neighbor-

hood U™ C Ur* of x°. Thus

sk+1
Qg+ R, = j£1 sp{dAk+1‘j}

Define the S, 4q~vector lk+1 whose i-th entry is the function

Mevr, i

This concludes the description of the algorithm. [I

As a matter of Fact, it is possible to show that the operations
thus described are exactly the ones required in order to compute the
codistribution #, from codistribution 2, _, and therefore that,under
suitable assumptions, the algorithm ends at a certain stage, yielding
the required distribution, Since the possibility of completing the
operations defined at the k-th stage depends on assumptions on the
rank of A, and on the dimension of ﬂki + nkz + we set for convenience
all these assumptions in a4 suitable definition. we say that x© is a
regular point for the algorithm (3.17) if, for all k > 0, the matrix
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9 and the codistribution

Heq * B has constant dimension in a neighborhood of x.

Ak has constant rank in a neighborhood of x

In this case re the rank of Ak' and Sy e the dimension of
g t 1, are well-defined quantities %n a neighborhgod of x°. note,
however, that around a regular point x other than x°, L and Sy-q
might be different.

The following statement shows that the algorithm in qguestionm
provides the largest locally contrelled invariant distribution con-
tatned in H.

{3.19}) Proposition. Suppose 2 is a regular point for the algorithm
(3.17). Then, there exists an integer Kk with the property that
Sp¥pq T Sye and, therefore, the algorithm terminates at the (k‘)—th
iteration. Suppose alsoc G is nonsingular. Then onh a suitable neigh-
borhood U of x° distribution

. k
8" = 0 tsplad
i=0

L
o

colncides with the largest locally controlled invariant distribution
contalned in H. The pair of feedback functions that solve (3.18) for
k = k* is such that

* *
[£ + gu,a ] Ca

(1g8), 0" ) ca’ 1<i<m

Proof. We shall prove by induction that the assumptions of Lemma
{2.7) are satisfied and that

9 = j£1 sp[dlkj}
This is true for k = 0, by definition.

Suppose 1t is true for some k. To compute nk+1 we need to ccm-
pute first 2, n G . Note that Q is nonsingular around x° because
the differentlials dl 1 <3 < sy , are linearly independent at
all x € U"'. The intersection f NG at x is defined as the set of
all linear combinations of the form

5
£ cidlkj(x)

i=t
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which annihilatesg 91(XI....,9 (%), Therefore, it is easily seen that

the coefficients c1,...,c5 ¢f this combination must be solutions of
the equation k.

(c1...csk)Ak(x) =0

Since A (x} has constant rank r, in a necighborhood of x°, nk ﬂ.GL is
nonsingular around x°, has dimension CIT and is spanned by covector
fields which may be expressed as

(3.20) W = (71(x)Pk2 + Yz(x)Pk1ldAk

Y1tx) being an arbitrary (sk—rk)-row vector of smooth functions. With
di, we denote an Sp~column whose i-th entry is the covector field
dxki.

In computing 9k+1 + we make also use of the fact that, If (n, B}
is any feedback pair, then (see Lemma (2. 81)

? n m I
0, + L R NG =0+ L. R, Ng7)
k209 K k 1£o &i k
Now, take the Lle derivative of (3.20) along §
solutions of (3.18). As a result one obtains

i with o and 8

Ly = (L yy)e, MALEN PR P T L F 4Pl Ay * v,PgdL, Ay
9 9 g

94 i 94
But the way the 31 are defined is such that
Pyeelydy = B y(ar, 5= 0
kilaAg = Pyl G0 = constant

for all 1 £ % < m. Thus, in the above expression we may replace 72

with any arbitrary I ~row vector YZ of smooth functions. This makes
it possible to express L L@ 1n the form
9
i

13.21) L w = yadlk + yddLmA

k
93 94
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where Ty is some S, ~row vector and Y4 1s an arbitrary s ~row vector of
smooth functions. The first term of this sum is already an element of
nk , by assumption, while the second, due to the arbitrariness of Yq ¢
spans the codistribution ﬂkz (see above}. Thus, we may conclude that
Sk+1

1 .
L, ) NG ) =0, MR ¥ sp(dlk+1'j]

Y =, +
¥ iz g, 3=1

k+t

(Rt |

i

By assumption, the codistributions nk +» k > 0, are nonsingular

- .

around x° (their dimension is sk}. Thus, there exists an integer k
such that

ﬁk.=ﬁ

x*+1

&
This clearly implies the termination of the algorithm at thek -th step.
We have also assumed that Qk n GL are nonsingular arcund x° (their
dimension is r,}. So in particular n:. +G is nonsingular. If G is
also nonsingular all the assumptions of Lemma (2.7) are satisfied
and th is the required distribution.

In order to complete the proof, we have to show that the feedback
pair which solves (3.18) for k = k‘ is such as to make ﬂ:; invariart
under the new dynamics. To this end, consider again the expression
(3.2%} of the Lie derivative alogg ai of a covector field w of ﬂk ngt,
If the algorithm terminates at k + then

L
L, e« ngr) € 20
9
and, therefore, we see from (3.21) that every entry of dLmlk‘ {due

1
to the arbitraryness of Yd) is a covector fileld of ﬂkt . But, stince

the entries of di ¢ span ﬂkt . this implies

[
Lmﬂkt ﬂkt 0<ic<m
95
. nooA " ) 1
and thus ﬂkt is invariant under 90'91""'9m . nk‘ being nonsingular
and therefore smooth, we may conclude that Qttis invariant under tae

new dynamics. 0O

This result is very important because it shows that, under suit-
able regularity assumptions,it ig possible to¢ find the largest local-
ly controlled invariant distribution contained in H, and also a (local-
ly defined) feedback pair a and 8 which makes it invariant “under the
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new dynamics. The latter is particularly useful because we see that,
as far as one is concerned with the maximal locally controlled in-
variant distributton contained in H, the Computation of a such a
feedback palr does not require solving partial differential equa-
tions (like in the general case, as seen from Lemma (1.10)) but may
be carried out essentially solving x-dependent linear algebraic
equations,

We conclude the section with some additicnal consideratio;s
about the properties of the algorithm (3.17), It 1is observed that,
ig the algorithm may be carried out until jtg final stage (i.e. irf
x" 1s a regular point for the algorithm), as a by-product one ob-
tains, for all k 2 0, not only the dimension s, of each codistribu-

tion Qk of the sequence (2.5) but also the dimension 8p-r, of the

codistribution g n g,

Thus the rank r, of A, may be interpreted as

2

(3,22) . r,. = dim
k L
. ng

The integers rn,r1,...,rk¢ are rather important also for rea-
sens not directly related to the construction of the distribution
4 . We will see in the next chapter, for instance, that the se-~
quence of integers defined by setting

61 = Iy

62 = ry-ry
{31.23)

[

may be, in a special case, directly avaluated starting from the
coefficients of the functional expansion of the input-output behavior
and plays an essential role in the problem of matching linear models,

It is also possible to relate the integers v, 021 < k‘r to
the characteristic numbers ey v 1 < < L, as stated belowf

(3.24) Propoaition. Suppose that the outputs have been renumbered in
such a way that the sequence of the characteristic numbers Preee-opny
is increasing. Let x° be a reqgular point for the Algorithm (3.17) .

(o]
If rank A(x”) = %, then the integers 61.....6k.+1 defined by (3.23)
are such that §; is equal to the number of outputs whose character-
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istic number is {1-1) and, moreover, §;+...+8 .4 = L. a

The proof of this propesition is left as an exercise to the reader.

4, Noninteracting Control

Consider again a control system of the form

m
x = f(x) + E qi(x,ui
i=1
y; = h; 00 teiz<

and suppose & < m.
it is required to modify the system, via static state-feedback

control, in order to obtain a closed loop system
m
- a"
x = F(x) + g, (x)v,
1=1
¥y = h 00 Ted <t

in which, for some suitable partition of the inputs VyreeaaVy into
L disjoint sets, the i-th output is influenced only by the i-th set
of inputs.

This control problem may easily be dealt with on the basis of
the results discussed in chapter IIX (Theorem III.(3.12)} and its
solution has interesting connections with the analysis developed so
far in this chapter. In the present case, in order to ensure the in-

dependence of y, from a set of inputs vj ....,vj we have to find a
1 k

distribution A, which is invariant under ¥ and aj 1 €3 <m is

contained in (sp{dhi})l, and contains the vector fields Ej ""'Ej .
1 X

Since this is required to hold for each individual output, one has

to find R distributions 61....,61 all invariant with respect to the

o "
same set of vector fields L PEERRTL: S

A set of distributions 01,...,61 with the property that
{4.1a) (¥,8,1 s,
{4.1b) 1g..,6.1 Ca 1 <3 <m
: 9374 i =31z

for all 1 < i < L is called a set of compatiile controlled invariant

distributions.The feedback pair which makes (4.1) satisfied is called
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a compatible feedback, Obviously, in the very same way one can in-
troduce the notion of compatible local controlled invariance.

Thus, the problem we face is the following one.

(Lucal) ging.e-outputs noninteracting contrsl problem. Find a set of
distributions AT""'AE which:

(i) are compatibly (locally) controlled invariant

(iia) satisfy the conditions L; C (sp{dhi})L

i

(iib) for scme partition I, U12 Y... V1, of the index set {1,,.,,m!

and fcr some compatible feedback, satisfy the conditions
(qB)j € 8y

for all j & 1. ]}

The existence of a solution to this problem is characterized as
follows

{4.2) Theorem. The Local Single~-Outputs Noninteracting Control Problem
is solvable i€ and only if the matrix A(x) has rank % for all x.

Proof. (Necessity). Suppose there exists a pair of feedback functions
which solves <he Single-Qutputs Noninteracting Control Problem. Then,

we know from -he analysis of chapter III, section 3,that,in particular,
for all k and all 1 < { < ¢

L, L

k
h ix) =0
gj¥i

whenever j £ ~j+ Without loss of generality we may assume the inputs

¥yrev.yv, beirg renumbered in such a way that
Iy = (my_ 4+ Teveiom, ] 1 <4<

wit] = =
h my 1 ard T“ = m. The above condition, written for k = py shows
that the matrix A(x) has a block-diagonal structure: on the i-th row

only the elements whose indexes belong to the set 1, are nonzero. But
we have also that '

u
Alx) = A{x)B(x)

Thus, since thz matrix 8 is nonsingular and each row of A(X) is non-

2ero bykconstrjction (we assumed that all oi's are defined), each
N .
row of A(x) is nonzero. A{(x) being block-diagonal, this implies that
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the L rows of K(x) are linearly independent and so are the ¢t rews of
A{x).

(Sufficiency). It is known from the analysis given in the previous

section that If the i-th row of A{x) is nonzero for all x, the lfargest
L

locally controlled invariant distribution contained in (sp[dhi}} is

nonsingular and given by

. °i k L
= n
Al k=0(sp{dehii)

A pair of feedback functions (a,f) such that

.

L ]
(4.3a) [£ + qu.bil Ca

*

‘ .
(4.3b) l(gﬁaj,ail Cay ) 1<3iz<m

is a solution of equations of the form
(4.4a) Al(x)u(x) + bi(x) = vi(x)
(4.4b) AjIx)B(x) = &, (x)

where Ai(x) and bi(x) denote the i-th rows of Alx} and b(x). The
scalar yi(x) and the 1xm.rfw vector 61(x) are functions whose dif-
ferentials belong to (Ai) i in particular, real numbers.

Considering the equations {4.4) ail together, for all 1 < i < g,
one sees immediately that, thanks to the assumption on the rank of
A{x), there exists a pair of feedback functions {a,B} that makes
(4.3} satisfied simultaneously for all AI s L.e. that A.....,A:
compatible locally controlled invariant distributions. In particular
if the right-hand-side of (4.4b) is chosen to be the ji-th row of a
block diagonal matrix, one has that in the i-th row of A(x)B(x),1.e.

are

in the i-th row of g(x), the only elements whose indexes belong tc
the set 1, are nonzero. This proves that a compatible B exists with
the property that

for all j g I;. But this, in view of Lemma {3.4) is equivalent to

i.e., because by definition L L}Eh.1 =0 for 0 <k < oy

9

*

for all j & I.

This proves that the Local Single-Qutputs Noninteracting Control
Problem is solved. O

It may be interesting to look at the internal structure of the
decoupled system obtained in the proof of this theorem. Suppose again
that A(x} has rank % on some neighborhood U and let a and B be so-
lutions of the equations (4.4) on U, one knows from Lemma (3.10}) (see
also Remark (3.13)}) that the functions L:hi(x), <4 <k, 0D<k <Py .
are part of a local coordinate system. Without loss of generé]ié; we
may assume that they are coordinate functions exactly on the neigh-
borhood U. we want to examine the special structure of the control
system in the new coordinates, after the introduction of the decoupling
feedback,

To this end, we set the new coordinates in the following way.Let

%o hy ()
z.y thl(x)
Ei(x) = . = .
Py
zipi Lf hi(x)

for 1 <41 <, If £y +...+pg + 1L is strictly less than n, an extra
set of coordinates, say ££+1 ¢« is needed.

The computation of the form taken by the differential equations

describing the system in the new coordinates is rather easy. For
1 <1 £ R and k <« e

Az, m m
: ik )
z, = + -
ik = 5 jﬁ, I3V = Iy +j£1 By kY
(4.5) K m K k+1 %
=L, L h, + Lh.v, = tk* =
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Whereas, for k = o gplemma (3.4})

m
i.!"fi(x) +-,£1[5]'.j (X)Vj

- 8, is the j-th
where y,(x) is the riFhand-side of (4.4a) and Sij(xl j
clement of the rightd’d"51de of (4,4b). If this latter is chosen
tar bo as the i-th rowf @ block-diagonal matrix,as in the proof of

Theorem (4.2), then @above equation reduces to

(4.6) Bt Vit b 8y5Y5

Again from the proof JTheorem (4.2), it is seen that Ty and 61j
(%)

depend only on 219,0,4&01 - As a matter of fact, Yy and Gij may

be simply real numbers

Finally, by defisddon, for all 1 < i < ¢
ra.7) Y; = ziO

As a result, we g that in the new coordinates the closed loop
r

system may be descrim#in the form

fo= (5509, t<1<t
by = Bitg) + &:1,
{4.8) Je m —
Lrer = Bypqtey ambony) +j£1g1+1-j(51---~“1+1)vj
vy = hyte)
with
0
Zi.
f o g,.(6,) = .
£.060 . 913451 0
i
AT y4004)
hi(ﬁii =2,
—_—— e
{*) Ler v, (2) = Y ex(z), oM
[+
dz.
Y. ax ! is ax
i = c. - — =0
1z d"az z is ax 3z,
dz. - k
ik s=0 ] .

bovause | 4 i
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These equations clearly stress the decoupled structure of the
closed loop system,

(4.9) Hemark. The cholce of vi(ﬁi) linear in 51 , L.e, the choice

43
- i
Yi(x) = diohi(x) + ai1thi(X) + ... +aiplLf h. (%}
with 310""'a real numbers. is admissible, because dy (x) in this
sase belongs to Sp{dh ,...,dL h }. It is also possible to choose G
2onstant, provided that for some j € I1 , Gij is nonzero because this

is required for the solution B of the (4.4b) be nonsingular. The two
lacts show that a suitable choice of decoupling feedback makes linear
cthe first £ subsystems of (4.8).

*
4.10) Hemark. Note that Al » the largest locally controlled invariant
distribution contained in (sp(dhi})l, in the coordinates is expressed
es

*

4, = sp{s—g— : 3 #F L, D<k<p. ) +sp( 1<k <d]
zjk i - -

32=+1 "

where d denotes the dimension of ££+1 (see chapter I, section 3}, O

At the beginning of this section, we have formulated the Nonin-
teracting Control Problem locking at the existence of a set of com-
patible controlled invariant distributions, each one contained in
Gsp{dh H* and containing the vector fields EJ = (gB) for all j§ € I,

Gne can also consider a complementary formulation {n the following terms.

Local single-cuiputs noninteracting control precolem. Find a set of

distributions A1""'AE which

(1) are compatibly locally controlled invariant

{iia) satisfy the conditions &; ¢ (sp(dhj})L for all j # ¢

(Lib}) for some partition I, VI, V. VI, of the index set {1,...,m}
and for some compatible feedback, satisfy the conditions

3 €
for all j € 1,.0 '

Also in this case, in fact, the output ¥y of the closed-loop
srstem will be affected only by the inputs whose index belongs to the
set Ii.

Clearly the condition that the rank of Alx) is equal to f re-
m:ins necessary and sufficient for the existence of a solution to the
problem. If desired, one could directly prove the sufficlency in terms
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of the complementary formulation discussed above, As in Theorem (4.2),
it is casy to prove that the assumption on A(x) makes it possible

to express the largest locally controlled invartant distribution con-
tained in N (spldhj})L as

JAL
Py
L]
Ky = 0 0 splackn nt
i#i k=0 ¥

* L]
The distributions x1,...,Kl

.
i3 exactly the one that makes A1,...,A£ compatible.

are compatible and a compatible feedback

(4.11) Remark. Note that in the new coordinate system

* J 3
K. = spl P 0kt espla—:1 <k < d}
i §zik i az!+1,k

(4.12) Remark. Summarizing some of the above results, one may observe
that if A(x) has rank 2, there is a set of distributions D . eD
namely

17 Pggqr

=]
n
o
-7

N

-
| A
b
A
o
—

[
2
o~
L=}
—
1]
[=]

and span the tangent space, i.e. are such that

D1 + 02 LA l)“1 = TM
Moreover,

*
A, = @D

i L.

i#i J

*

K. =D, + Db
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t
gty = e, 1£2, %% + J Wy (E-T)v(T)dT
0

(5.22)

Let y‘ be any smooth R-vector-valued function, defined on R, such

that

My, L e 0,60,
dtk 0 dtk 0

{5.23) (

for 0 < k < &-1.
From the Remark (5.21) we easily deduce that there exists an inpu:

v under which the right-hand-side of (5.22) becomes exactly y‘. ‘Thus,
the composition of (1,1} with the dynamic state-feedback compensator
which solves the problem of matching the transfer function (5,20) is
a system that, In the initial state (r°,x%, can peproduce any output
function which satisfies the conditions (5.23).

Moreover, we note that in a linear system with transfer function
{5.20) each output component is influenced only by the corresponding
component of the input. Thus, we alsoc see that if the'condition I e =

holds, we can achieve non-intergction via dynamic state-feedback.

6. State~space linearization

In the first section of this chapter, we examined the problem of
achieving, via feedback, a linear imput-cutput response. The sub-
sequent analysis developed in the second section showed that, from
the point of view of a state-space description, in suitable local
coordinates, the system thus linearized assumes (at least in the

special case where rq_1 = L) the form

z = Fz + Gv

f{z,n} + glz,n)v

a
n

y = Hz

In other words , the input-output-wise linear system one obtains

by means of the techniques in question may be interpreted, at a

state-space level, as the interconnection of a (possibly} nonlinear

unobservable subsystem with a system that, in suitable local coordina-

tes, is state-gpace-wise linear. Moreover, the latter subsystem was

also shown being both reachable and observable {(Remark (2221)).

e
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In other words agaln, we may say that the techniques developed at
the beginning of this chapter modify the behavior of the original
system in a way such as to make a part of it [(i.e. the observable one)
locally diffeomorphic to a reachable linear system,

Motivated by thege considerations, we want to examine now the
problem of modifying, via feedback, a given nonlinear system in a wa
such that not simply a part, but the whole of jt, ig locally dlffeo—y
morphic to a reachable ljinear system. In formal terms, the probiem
thus introduced may be characterized as follows.

State-Space Linearizution Problem. Given a collection of vector fields
| Y P and a o
U. ;. S +9n n initial state x°, find (if possible) a neighborhood
of x, a pair of feedback functions a and B (with invertible 8}
defined on U, a coordinates transformation z = F{x) defined on U,a
matrix A € g"0 n :
and a set of vectors b1 € R ,...,bm € R" such that

6.1} Fy(f+ga)oF '(2) = Az
(6.2) Folg8) oF V(z) = b
#1198} . =By 1 £i im

for all z € F{U), and
(6.3 Ty k
. I I m@b) =gr°
k=0 i=1

(6.4) Remark. Let x{t) denote a state trajectory of the system

i m
X = (ftga)(x) + } {g8;) (x}u
1=1 1

and suppose x({t}) € U for all t € [0,T] for some T > 0. 1f (6.1) and
{6.2) hold, then for all t € [o,T]

z{t) = Flx{t))

is a state trajectory of the linear system

Moreover, if (6.3) also holds, the latter is a reachable linear
system. O

We shall describe first the solution of this problem in the
specilal case of a system with a single input, which is rather easy
Th ‘
en, we make some remarks about the usefulness of this linearization
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technique in problems of asymptotic stabilization. Finally, we con-
clude the section with the analysis of the (general) multi-input

systems,
For the sake of simplicity, we state some intermediate results

which may have their own indcpendent interest.

(6.5) Loemma., Suppose m = 1 and let g = gy. The State-Space Lineariza-
tion Problem is solvable if and only if there exists a neighborhcod
V of xo and a function ¢ : V ™ R such that

(6.6) Lg# ) = LoLge(x) = ... = LgL‘f‘“zm{x) =0
for all x € vV, and

n-1 o
{(6.7) LgLf p(x7) # 0
i’roof. Necessity. Let (A,b) a reachable pair. Then, it is well known
from the theory of linear system that there exist a nonsingular nxn

matrix T and a 1xn row vector k such that

0 1 0...0 0
a o 1 ., 4] 0
(6.8) Teatpk)T < | . . . ... Th=| .
o 0 0 ... 1 0
o 0o 0. 4] 1

Suppose (6.1) and (6.2) hold, and set

2 =~ Fix) = TFix)
@{x) = a(x) + A[x)kF(x)
B{x) = B(x)

Then, it is easily seen that

Fotghy iz = | .

Folf+ga) F 1 (3) =| . R B

From this, we deduce that there is no loss of generality in asg-
suming that the pair A,b which makes {6.1) and (6.2} satisfied has
directly the form specified in the right-hand-sides of {6,8).

Now, set

Z = F(x) = coltz1(x],...,zn(x))

If (6.1) holds {with a and 5 in the form of the right-hand-sides
of {6.8)). we have for all x € L,

Folf(x)+gix)aix)) = AP {x)

that is

321
3;—(f(x)+g(x)4(x)) = z,0x)

9z
-1
T E(x)4g(x)a(x)) = 2 (x)
azn
T Exi+g(x) . (x)) = b

If also (6.2) holds we have

Fogix):(x) = b

that js

821
Ix 9(xX)8I(x} = ¢

azn—1
TE 9ix)B(x)

n
o

Jz

j;ﬂ glx}Bix) =
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Since R(x) is nonzero for all x € U, the second set of comditions
imply
az

(6.9} ﬁii g{x) = ngi{x) =0 1 <4 < n-t
azn 1
{6.10) T 9x} = ngn(x) = i)

for ail x € U. These, in turn, together with the first set of condi-
tiong imply

(6.11) Lez,(x} = 2, 4{x) t <1 <n
alx)
(6.12) szn(x) el

for all x € u.

If one sets
(6.13a) olx} = z,(x)
the conditions (6.11) yield
6.13b) z, .00 = Ligtx) 0 <1 <n-1
(6. i+1 £° .

Thus, from (6.9) one obtains

Lgv(x) = LgLfle) = ... =L Ln“zw(x) =0

g £
for all x € U and, from (6.10),

Lng"o(x) #0
for all x € U, This completes the proof of the necessity.

Sufficiency. Suppose (6.6) and (6.,7) are true and let U C ¥ be a
nejghborhood of x° such that LqL¥-1o(x) ¥ 0 for all x € ., Use {6.%11)
in order to define a set of functions z.l....,zn on U, The functions
thus defined are clearly such that (6.9) and (6.11) hold., Moreower,
since ngn(x) is nonzero on U, one can define a nonzero function B(x)
and a function a(x) by means of (6.10) and {6.12). This pair of func-

tions o and 8 and the mapping .
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F: x col(z,(x),....zn(XJ)

are clearly such that
Fe(Elx) + glx)aix)) = AF(z)
Fe{f(x)B(x})) = b

with A and b in the form of the right-hand-sides of {6.8}. Thus, in
order to complete the proof, we only have to show that F qualifies as
a local coordinates transformation around %%, i.e. that its differ-
ential F, is nonsingular at x°,

For, observe that the vector fields f = f+gx and a = gf are such
that

F Y ix) = AF(x)

F,3(x)

]

b

b7
or, in other words, that f {5 F-related to the vector field f' de-
fined by

£'(2) = Az
and that 3 is F-related to the vector field g' defined by
g'{z}) = b
As a consequence, we have that the Lie bracket [?,3! is F-related

to the Lie bracket | £',9'|. Using this fact repeatedly, one may check
that

F*(ad;;)(x) = (ad,9"). Fix)
for all 0 < i < n-1, The special form of f' and g' 1is such that
tagg,g') = (-1)ialp
All together, these vield

A n-1.
F.{g ad g ... ad g) =
* ¥ ¥

= (b -Ab ... (-1 Ian=t 4,
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The matrix on the right-hand-side is nonsingular, because (A,b)
is a reachable pair, and so is TI'y. This completes the proof of the
sufficiency. I
{6.14) Lemm2. Let ¢ be a reai-valued function defined on an open set

¥. Then the conditions (6.6} and (6.7} hold if and only if

' =1, K} = ... = L _ glx}y = 0
(6.6") ng(x) (£, gl (ad? zq)

for all x € v, and

(6.7') Loy s6x7p#0
ladE g)

i'roof. We show, by induction, that the set of conditions

0. = = k‘ =0
[6.15a) LgLfv = ... L L.y

is equivalent to the set of conditions

(6.15b) L v = = K ¢ =0
(ad?q) tad¥q)
and both imply
. . 45
{6.16} L( n L%W = (—1)1LgLf I,
a g)
£

for all i,j such that i+j = k+1.
This is clearly true for k = 0. In this case {6.15a) and (6.15b)

reduces to ng = 0 and

= 9«L L.¢ = -L_L

suppose (6.15a) and (6.15b) true for some k and {6.16) true for
all i,j such that i+j = k+1. The latter yields, in particular,

]
b ey v 0L
(adf g)

k+1
so that Lqu @

= 0 if and only if L ke1 %< 0. Assume either one
of these conditions holds. Then ace

g)
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ladkt2) P T Ll g @ oL gy D=

fade “q) (ad;"'q) (ad*ly)
- 2 2
= {-1)L_L Lew + (-1}°L L
f k f B
tad,q) (adtg) £
= (—1)k+TLquL§+TU vent ol
(adfg)
= vl
(adfg)
= ('1}2LfL k-1 Liv + (‘1)3L - qu
(adf q) (ﬂdf_ g) f
= (- k+1 k+1 1 3
(-1) Lelglg @ + (=1L L}s
{ad g)
f
= (-1 3 3
(=1L k-1 LEW T e

(adf q)

We see in this way that for all ¢

| A

J o2 k2

0 = (-1 Llg = (o) k*2,  Kk+2
(ad§+29) (ad§+2“jg) £ )7Ll e

and therefore that {6.16) is true for all i,j such that i+) = k+2.

From (6.15) and {6.16) the statement follows immediately. 0
(6.%7) Remark. We have proved, by the way, that either one of the two
equivalent sets of conditions (6.15) imply

L ij = (“1)jL
i £ s .
(adfg) (ad}+3q)

for all 1,3 such that i+3

1A

k+1. This fact will be used in the sequel.Od

{6.18) Theorem. Suppose m = 1 and let g=gq

) 1+ The State-Space Lineariza-
tion Problem is solvable if ang only if:

; o ~
(i} dim{span{g(x )radfq(xo)....,ad? Ygx°) ) = n

(ii) the distribution

(6.19) 4 = SP[g.adfg,....adg—zq}

is lnvolutive in a neighborhood U of X%,
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(6.20) Remark. Note that the condition {1} implies that the tangent
n- 11
vectors g(x),adfq(x),....adf qéx) are linearly independent for a X
in a sultable neighborhood of x . Therefore the distribution {6.19) is
nonsingular around x° and has dimension (n-1).
f'woof. We know from the previous Lemmas that the problem is solvable
if and only if there exists a real-valued function g defined in a
neighborhood V of x° such that the conditions {6.6') and (6.7') hold.

These may he rewritten as

. ta adiq Yix) =0
{6.6 ] Pe £
for all 0 < i < n-2 and all x € v, and

16.7%) (dead} 'g ¥ (x%) £ 0

If both these conditions hold, then necessarily the tangent
vectors g(xO),adfq(xol....,ad2_1glx°) are linearly independent. For,
we sea from Remark (6,17) that (6.6") implies

J iy = Lie =
(dew. adfg Lladég) £°

i+]

= (-0l = (-1)3(do,aa; g

®
(adi+jq}
for all i+j < n-1, Therefore, using again (6.6") and (6.7") we have

(dLj@, adig Y(x) =0

f

for all i,j such that i+j < n-2 and all x € V and
(aLde,adfg ) (%) # 0

for all i,j such that i+j = n-1,
The above conditions, all together, show that the matrix

dyg (x%)

aL v ()
-1
(6.21} £ {q(x) adfq(xo)...ad? g1} =

n

-1 o
dLE 9lx )
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{dp, g ! (x°} (d@,adfg ) (x) . (dw,ad2-1g Y (x%)
= ‘de.'q ) (xo) (de@,adfg ) lxo) “ss (dev,adz-‘g ) ‘xo)

* ‘aw

n-1 -1 _ -
(de veq ) (x%) <dL? voad.g Y (x%) ... (dLg 1v.ad2 19)(x°)

\

has rank n and, therefore, that the vectors g(xoi.adfq(xch.."ad?qq(xol
are linearly independent.

This proves the necessity of (i). If (i) holds then the distribu-
tion (6.19) has dimension n-1 around x° and (6.6") tell us that the
exact covector field de spans AL around xo. So, because of Frobenius
theorem (see Remark 1.({3.7)) we conclude that A is completely in-
tegrable and thus involutive, i.e, the necessity of {ii}.

Conversely, suppose (i) holds. Then the distribution (6.19) 1is
nonsingular around x°. If also {ii) holds, A is completely integrable
around x° and there exlsts a real-valued function ¢, defined in a
neighborhood Vv of x®, such that ds spans at on V. i.e. such that
(6.6") are satisfied. Moreover, the covector field de 1g such that
(6.7") also is satisfied, because otherwise dy would be annihilated
by a set of n linearly independent vectors. This, in view of the pre-
vious Lemmas, completes the proof of the sufficiency. O

For the sake of convenience, we summarize now the procedure
leading to the construction of the feedback o and B which solves the
State-Space Linearization Problem in the case of a single input
channel.

Suppose (1} and (11} hold. Then, using Frobenius Theorem one

constructs a function g, defined in a neighborhood V of xo. such that
(6.6") and (6.7") hold. Then, one sets

(6.22a) B(x) = '
L L Vg (x)
g'f
and
n
=Legix}
(6.22b) alx) = fft
. Lolg  #lx)

for all x € V. This pair of feedback functions, together with the
local coordinates transformation defined by
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_ i
zi(x) = Lf pix)
for 1 = i < n, is such as to satisfy (6.1) and (6.2) with A and b1 =k
in the form of the right-hand-sides of (6.8).

(6.23) Remark. There i1s a surprising affinity between some results fde-
scribed in this section and the ones described in the sections IV.3
and IV.4. For ingtance one may rephrase Lemma (6.5) by saying that

the State-Space Linearization Problem is salvable if and only if onz

may define, for the system
x = fix) + gi{x)u
a (dummy) output function
y = oix)

whose characteristic number is exactly n-1. Of course, this will be
possible if and only if the condlitions (i} and (ii) are satisfied.

Once such a dummy output function has been found, then the solu-
tion of a State-Space Linearization Problem proceeds like a soluticn
of a (degenerate, because both £ and m are egual to 1) noninterazting
control problem. As a matter of fact, we have from Lemma IV.{(3.1D}
that the differentials dq,dLEq,...,dL?_1w are linearly independent at
x® and thus that the mapping

F:x k——'col(v(x).LfVIX)r‘--fL2-1¢(X))

qualifies as a local coordinates transformation. Then, from Corollary
IV.(3.14}) we learn that
. n—-1 ; L
a" = 0 (splanged) = 0

i=0

is the largest locally controlled invariant distribution contained {5
L

(spidel}}™.

The feedback (6.22) coincides with a solution of IV.{3.15) (with
yi{x) = 0 and &8(x) = 1}, Under this feedback the system becomes linear
in the new coordinates, as it is seen from the constructions given in

the section IV.4 (see Remark IV.(4.9)). O

We note that the formal statement of the State-Space Lineariza-

tion Problem, given at the beginning of the section, dolds not in-

P
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co
rporate any requirement aboyt the image F{U) of the coordinates

¢ ; .
ransformation that makes it possible (6.1) and (6.2) to hold.lowever

one may wish to impose the additional requirement th

” at the image F(U)
contains the origin of R". In this case,

the condition of Theorem
{6.18) must be strenghtened a little bit,

Suppose the coordinates transformation z = F(x) solving the
State-Space Lincarization Problem is such that

(6.24) 2% = P(x®) =9

Then, from (6.1) we deduce that necessarjly

(6.25) £x%) + g(x®a(x®) = o

1f % =
E(x) 0, then the construction already proposed for the

oluti
s etlén of the problem ®ay be adapted to make (6.24) and (6.25)
satisfied, As a matter of fact,

satisfying (6.6") and (6.7%

one may always choose a function .
} in such a way that a

w(x") = 0 (sea, o
. - r ©.9.,
he construction proposed along the praof of Theorem 1.{3.3))

is the case, then e

o
zyi(x} = ?ix®) = o
and also, for 2 < j < n,

o, _ . 1-1 L] -
2670 = LT o) = ALl 2, (0 £ (6% ) =

because © '
we have assumed f(x°) = 0. Thus the proposed coordinates trans-

formation satisfjes (6.24), Moreover,

n o -1
. ) Lgw (x) CaLg™ly (x%), £(x%) )
n-1 o ~ ° = =0
Lybe #(x°) Lghg Toix®)

and also (6.25) holds.
One may thus assert that if r(x%) = 0, i.e. if the initial staze

o .
X 15 an equilibrium state for the autonomous 5Ys

tem
X = F(x)

and i
if the State-Space Linearization Problem is solvable,

ways find a wolution such that a{xo) = 0 and F(xoi =

one may ai-
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1f £(x°) # 0, the condition (6.25) may be rewritten as
(6.26) f(xo) = cg(xo)

where c is a nonzerv real number. Again, if the State-Space Lineariza-
tion Problem is solvable one may find a function ¢ such that z1lx°) =
= .(xo) = 0. But also, for 2 < i < n, {6.26) ensures that

2¢(x°) = 0

n

o, _ i-2 o i1-
z ik} = (de o, E{x7)) chLf

and thus (6.24) still holds. Moreover, the proposed a is such that

{dh2_'o{xo).f(xo}’

alx") = = — = ~-C
LgL? T (x%)

as expected.
In this case, the initial state x° is not an equilibrium state
for the original system, but an o may be found such that x° is an

equilibrium state for the system
x = Flx) + gix)a(x}

In summary, we have the following result.

{(6.27) Corollary. Suppose m = 1 and let g = 94. Suppose the State-
Space Linearization Problem is solvable. Then, a scolution with
F(x”) = 0 exists if and only if

£(x®) € splgtx®)}) 8]

{6.28) Remark. When F(xoi = 0, one may use the seclution of the State-
Space Linearization Problem for local stabilization purposes, Indeed,
since (A,b) is a reachable pair, one may arbitrarily assign the eigen-
values to the matrix (A + bk), via suitable choice of the 1xn row
vector k. If this is the case, the feedback control law

u = alx) + Bi{x}IkFi(x) + Bix}v

makes the system locally diffeomorphic, on U, to the asymptotically
stable system

7z = (A +# bklz + by o
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We now describe the extension of the previous discussion to the
case of many inputs. This requires the introduction of some further
notations, but the substance of the procedure is essentlally the same
as the one examined so far,

Given a set of vector fields f

+9dq¢e--r9 we define a sequence of
distributions as follows

= sp[g1....,qm]

=
|

G G

+ [ £,6, I
i-

i 1

t-1

The Eolloying Lemma describes the possibility of computing all
Gis in a simple way,

(6.29) Lemma. Suppose all Gis are nonsingular. Then

k
(6.30) G, = sp{adfgj 20 <k <i, 1 <j<m}

r 2 = k., .

:oof Suppose G, - sp[adfgj .i <k i, 1 <3} < m}l. Suppuse that at
1

X~ some vectors adf [: 8 ,...,adfrgj are linearly independent angd

I r
=)
span Gi(x }. Then on a neighbgrhood U of x° any vector field Tt in G,
r
may be written as 1 = | ¢ adfuq. , with ¢, € C”(U). Then | £,1] =
a=1 ° Yy a )
E k_+1 ku k +1
= {c_ad +{L o
obq o gja { fcu)adf gju) . Therefore, on U, Gieq = sp{adf gju.
o
adf gju: 1<a < r}, Since, by construction, all ad';gj + 0 <k 2141
and 1 < j < m are in G1+1 + this proves that G1+1=sp(ad§gj:0_§k_§i+1.
'<3j<m.D

o Since G1 C Gi+1 by definition, L{f the Gis are nonsingular we have
at

Gi+1(x) ~

dim —EITET“ = independent of x

Thus we may define a sequence of integers Vgr¥ye .. by setting

{6.31a) vg = dim Gy
G
(6.31b) vy = dim EI%; i3>
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The integers thus defined have the following property

(6.32) L. . The following condition halds
VT Vi
for all i 0. Let v denote the last nonzere element in the sequence

fvg ot b 0t If

dim Glt =n
then
v +v+-,_+Uj¢=n
oyt Consider G, and Gi-1' By definition
dim G {x) = dim G;_,(x) + v,

From {6.30), we deduce that, given a point xo. there will be vi vectors
i

ad§9j1(xo).....adfgj {xO) linearly independent and with the property
N,
1
that all vector fields in Gi may be written as linea; combinations,with
smooth coefficients, of vectors of Gi—1 and of sp{ad;gjs:fisivi}. Thus

i+l
= Gi+sp[adf 9; * T2s 2wl

S

G

and

Visr T V5 - 0

*
From the seguence {vi 20 <4 <1} we define another sequence of

integers mo,m1,....m1¢ , setting

0 i
moﬂ'nT = Ve
(6.33) Mg tmytm, = Vit
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{6.34) Lemma. The following conditions hold

my 0

Moreover, if dim Gi‘ = n, then

. L _
{6,35) dim Gi‘—i = im0+...+2mi_2+m _

for 1 < i < i‘. [m]

There is a need for a third sequence of integers {mi:lfiiuol re~
lated to the previous ones by the following relations

L
Koo=oi#1 LE 1 <1

A
<

K. = | if m, >0 and v

(6.36) 3

oy
I
[
]
-

if m, > 0 and v

£y o= 1 if mos > 0 and v1+1 i< Yo
With the help of these notations 1t is rather simple to state the
necessary and sufficient conditions for the existence of a solution to

the State-Space Linearization Problem in the general case where m > 1.

{6.37) Theorem. The State-Space Linearization Problem is solvable if
and only if

(i} x° is a regular point of the distribution Gi’ for all i > 0
(ii) dim G, +(x°) = n
(ii1i) the distribution G, is involutive, for all { such that mi¢_1_1#0.

froof. We restrict ourselves to the proof of the sufficiency, which is
constructive. Without loss of generality, we may assume that

vp = m

For, if this is not the case, since Gy by assumption is nomsingular
around x°, we may always find a nonsingular mxm matrix B(x), defined
in a neighborhood U of xo. such that
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Go(xl = span{§1(x)._...auo(x)} Then, there exist real numbers Cyr..-eC,  such that
(1]

l'!lc| .

and { 1 =y
1£1cidh01,adqu)(x1 =0

li

n
(=}

(x) = ... = g (x)

9v0+1 m for all 1 < j < m. This, together with (6.38), implies
for all x € U, where Mg a -
(6.39) (i£1cidh0i.adfgj)(x) =0 .
ai(x) = (g(x)ﬂ(x))i .
for all 1 < j <m, 0 <a < i, and this in turn implies
for 1 < & < m. If a feedback (a,8) solves the State-Space Linearization my
Problem for the set f,§1.....§u , then it is easily seen that a feed- ) cidhOi(;"v) =0
back of the form 0 =1 m,
for all v € G «(X).Since dim G,s = n, then ] c,éh_, (x) must be a zero
C= BT Bro= Bt 5 0 . 1 gLy 104
a’ = 0 = 0 I covector, but since dh°1{§},...,dh0m {x) are independent, then
0
C, = ... =¢C =0,
solves the problem for the coriginal set L PERSITY: S ! My
For the sake of simplicity, we break up the construction in two Step (2}): Consider the distribution Git_z , which is such that
stages.
(1) Recursive construction of a coordinatestransformation arocund the dim Gtt_z = Zmﬂ +m,
point x°.
Step (1): By assumption We claim that dL h,,,...,dLch,  are such that
4]
a
dim Gy» = n {dehDL'adfgj)(x’ = 0
N ]
and dim Gt‘~1 = m; > 0. Moreover, G;+_, is assumed to be involutive, for all 1 < j<m 1 <4 ¢ myre @ <@ < 4 -2and all x € U,.
Then, by Frobenius theorem, we know that there exist a neighborhood This comes from the property
U, of x0 and m, functions h,.s...:h defined on U,, whose differ-
1 o, 01 Omﬂ 1 {4 a? y=( a+1 a
entials span Git_1lx) at all x € U,. In particular, - thoi'a f qj = dh01'adf gj) = Lf(dh01'adfgjl
16.38) (dhﬂi’ adgg. Y(x) =0 in which both the terms are zero on U, because a ¢ i.—2.
] We claim also that the 2m; differentials
L d
forall 1< j<m,1<1<my, 0<ac<it-1andallx € U,. Moreover,
the differentials dhy,(x),...,dh, (x)} are linearly independent at all {6.40} {dho1(xl-----dhOMD(xl.deho1(xJ--.'.dehOmD(x)}
x € uy. 0
We claim that the my*m matrix are linearly independent all x € U,. For, suppose this is false; then,
. for suitable reals c1i,021, we had
M, = m % (x)} = (Can,, ,adlqg, ¥ (x)} my, L
0 i o1 %9y (6.41) ) ahe ) + g -
. (L S11Po (0 1£1°2i Lghgy tx) = 0

has rank m, at all x € U;. For, suppose it is false at sgme x € uy.




240

at some x € U. This would imply

mn *
0
1*-1 -
L) = 0
(1£1‘°11d“01 tegdhehgyteade gy i)

for all 1 - j ~ m. This in turn implies (because of (6.38}))

™y . m, N
¢ ¥ ey dnohg,adt g MR =~ § e, dn,.adt g, M) = 0

ig1°21 Lehgyrade gy 1 £,%21%0sr 29 95
i.e. a contradiction, like in (6.39). Therefore Cyp = evn = c2m° =0
in (6.41), and also Cq = ... = Clmo = 0 because dhOI(X}""'dhOmu(x'

are linearly independent,

If my = 0, the ZmO covectors (6.40) span Gi:_z. 1f m, ~ 0, using
again Frobenius theorem (because Gi‘—z is involutive), we may find my
more functions h11(x).....h1m (x), defined in a neighborhood U, = Uy
of x°, such that the 2mg+m, dlfferentials

(6.43) (dh01(x).....dhOmD(x).dehOI(x),...,dethO(x).th1(x)....nﬂHnH(xJ}

are linearly independent and
x
(dh1i,adfgj)(x) =0

’
for all 1 S R . PR < i< My 0 <a<i1-2and all x € UZ‘

We claim that the (mg+mq)*m matrix

MO
]
where M0 is as before and M1 defined as
*

= {1 _ i -1
M, = [mij (x)} = {(dhu,adf gj)(x)]

has rank matmy at all x € U,.

For suppose for some reals cm,....comO.c”.....c‘m1 we had

Mo * my ' 4
% 1 x x - X)) =
(i£1c01dh0i[x),adE qj(x)) +(i£1c11dh1i(x).adf qj(x) 0

-

at some x € U,. Then {recall Remark {6,17))
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1 L]

= i
c1idh11(xl,adf

o
fit—: 3

(6.44) (7 Coiibehy, (X +

Ty G = 0
i=1 i ]

"
"0 .o ,

The covector i£1c01deh01‘X) + £1c1idh1i(x) annihilates, as we have
seen before, all ad;qj(;).alli*—Z, 1 <3 <m but (6.44) tells us
that it also annihilates adé‘_qu(;). Thus, this covector annihilates
all vectors in Gi*_

1-
From the previous discussion, we conclude that this covector must
belong to span:dh01(§),....dh0m {x)}, but this is a contradiction,

because the covectors (6.43} are linearly independent. Therefore, the
Cgy's and ©;;’s of (6.44) must be zera.

Eventually, with this procedure we end up with a set of functions

. *
1" it-1
h01,...,homo,thOI,....thomo,...,Lf Byqes- -l homo
h h Li‘_zh Lit-zh
| R Imiyc.., £ 11t -r £ 1m1

{6.45)

Ritoq qeeeihys )
i™-1

{of course, some of these lines may be missing {f some m; is zero}
with the following properties:
- the total number of functions is
» *
img+ (4 —1)m1+...+2m1¢_2 *Mie y = n-m
=~ the n-m differentials of these functions are independent at all
X € U, a neighborhood of x°,

- the Vy*m matrix

0
Mi.-1
where Mi is m, xm and
(1) 1.1
i _ -
mEj {x) = (dhil'adf gj)(x)

has rank vy at all x € ¢,
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1f me > 0, one may still find m, & more functions hi'1""'h1‘mi¢'

that, together with the functions (6.45) and with the additional func~
* +

i
tions Lf h01l---"-lf h '-I-lthi‘_1'1l-l-lthi‘_1'mi‘"1 .

give rise
Om0

o
to a set of n linearly independent differentials at x°.
For convenience, let us relabe}l the functions th and set

$y = h01 if LI B vy

" = h1,t~u1¢ if my >0 and Vel <4 < vie_y
= > + < < =

v hi‘.i—v1 if s > 0 and Y4 1 <1< Vo m

The previous constructions tell us that the mapping

Fix **'col(E'(x)....,Em{x)}, where
9, (x)

Ellx) = Lfvl{x)

nl-i

Lf oi(x)

qualifies as a local diffeomorphism around x°.
Moreover, by construction,

6.46) (dL;Qi.gj)(x) =0

for all 0 < a < ;-2 1 < 1,j < m, at all x around x°, and the mxm
matrix

:1—1
l\‘dLf '1'9j"X)}

(6.47) Afx) = [alj(x)}

is nonsingular at x = x°.

(ii) Construction of the ltnearizing feedback. From the conditions
(6.46) and (6.47), we see that the control system

m
{6.48a) X = fix) + g, (0)y;
i=1
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with (dummy) outputs

{6.48b) Yy = e} 1

1A
[
| A
a

is such that:

- the characteristic number #, associated with the i-th cutput channel
1
- thesingle-outputs noninteracting control problem is solvable around

o
x .

is exactly equal to x

Choose a feedback o and 8 as a solution of the equations

L ?q(x)

A{x)aix) - :

A{x)B(x)

It
]

(they correspond to the equations IV, (4,4a) with Yy = 0 and IV, (4.4b)
with 61 the i~th row of an mxm identity matrix). Under this feedback,
the system (6.48) splits intom noninteracting single-input single-
output channels, In particular, in the newcoordinates defined at the
previous stage, each subsystem is described by equations of the form
{see IV.{4,8))

[ 0 1 ¢ ... 0 0, 0
0 0 1 ... o 0 0
Ei = . = eee . El + <l
1} 0 0 ... 0 1 0
0 0 9 0 0 1

Yp=401 0 o ... 0 ox

This completes the proof. OJ



APPENDIX
BACKGROUNP MATERIAL IN DIFFERENTIAL GEOMETRY

1. Some facts from abanced calculus

Let A be an opem subset of R" and f: A ~R a functior. The vaiue
of f at x = (x',”,,&) is denoted fi(x) = f(x1“..,xn). Tre function f
is said to be a function of class c” {or, simply, C” or a_so, a smocli
function) if its paruial derivatives of any order with respect to
Ky,....%  exist and we continuous. A function f is said to be analytic

Ce s o o

{sometimes noted as €) if it is € and for each point x° € A there
exists a neighborhool U of x°, such that the Taylor series expansien
of E at x° convergesto f{ x) for all x € U,
ixample. A typical esample of a function which is c” but mot analytic

is the function f: R~ R defined by

i
o

£{x) if x < o

fix)

exp(- %) if x>0 8

A mapping F: A"Rm is amcollection (f1,...;fm) of fanctions
f,+ A *“R. The mappieg F is C if all f!s are C .

tet U CR™ ana Vv € R" be open sets. A mapping F: U~ V is a dif-
feomorphism if is bijective (i.e, one-to-one and onto) and both F ard

P"1 are of class C . The jacobian matriz of F at a point < is the

matrix
of, 3f1 3
3x1 5xn
oF
i . .
afn afn
3x1 an
aF . o a7
The value of = at a point x = x  is sometimes denocted ‘i?) o *
X

Theor:m, {Inverse function theorem). Let A be an open set of R" and
F: A ~R" ac” mapping. If (%g)xo is nonsingular at some «” € A, then
there exists an open neighborhood U of x® in A such that 7 = F{0} is
open in R" and the restriction of F to U is a diffeomorphism onto V.,
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Theorem, (Rank theorem). Let A € R" and B € R™ be open sets, F:A —+ B

a C mapping. Suppose (?x x has rank k for all x € A, For each point
x? € p there exist a neighborhood A, of x® in A and an open neighbor-
hood B of F(x%) in B, two open sets U €R"™ and v C Rm, and two dif-
feomorphisms G: U Ao and H: BO ™ V such that H«F.G{U) € V and such
that for all (x,,...,xn) €

(HnPoG)(x’,....xn) = (x,,...,xk,D,....Dj
Hemark. Let P, denote the mapping Py s I defined by
Pk(x1,....xn) = (x1,...,xk,0....,0)

Then, since § and G are invertible, one may restate the previous ex-
pression as

- _1 -
F=H .PknG

which holds at all points of A
o

P&eorem._(lmplicit function theorem). Let A CH™ and B C R" be open
sets. Let F: Axg - R" "

: R" be a C mapping. Let (x, y) (x1,...,x B CEEERYS A
enote a point of AxB. Suppose that for sonme (x°? 'y 9 € axB

Fix?,v%) =0
and that the matrix
df1 3f1 1
3y 4 '
F _ . .
dy
an afn
5Y1 ayn J

. . o o
is nonsingular at {(x",y }. Then, there exists open neighborhoods A,

of x© Q
. X  in A and B, of y° in B and a unique c” mapping G: A = B, such
that

Fix,CG{x}} = 0

for all €
a X AD

4 H
temark. As an application of the implicit function theorem, consider
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the followiny corollary. Let A be an open set in K", let M be a kxn

matrix whose entries are real-valued ¢ functions defined on A and b

a k-vector whose entries are also real-vatued € functions defined on

A. Suppose that for some x° €n
rank M(xo) =k

Then, there exist an open neighborhood U of x% and a ¢ mapping

G: U * Rn such that

Mix}G{x} = bi(x)

for all x € U,
In other words, the equation

Mi{x)y = b(x)

has at least a solution which is a ¢” function of x in a neighborhood

of x°. If k = n this solution is unigque,

2. Some elementary notions of topology

This section is a review of the most elementary topoleogical con-

cepts that will be encountered later on.
Let S be a set. A topological structure, or a topology, on § is

a collection of subsets of S, called open sets, satisfying the axioms
(1) the union of any number of open sets is open
(ii) the intersection of any finite number of open sets is open
(1ii) the set $ and the empty set @ are open

A set S with a topology 1is called a teopeological space.

A basia for a topology is a collection of open sets, called Dbasic
open sets, with the following properties
(i) 5 is the union of basic open sets
(ii) a nonempty intersection of two basic open sets is a union of

basic open sets.
A neighborhood of a point p of a topological space is any open

set which contains p.
Let 5, and S2 be topological spaces and F a mapping F: 51 - 52.
The mapping F is continuous if the inverse image of every open set of

5, is apn open set of 5. The mapping F is opcn if the lmaae of an open
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sot ofrs1 Is an open set of S4. The mapping F {s an homeomorphism {
is a bijection ang both continucus and aopen.

IfT F is an homeomorphism, the inverse mapping F_1 is also an
homeomorphism,

Two topological spaces 51.52 such that there is an homeomorphism
F‘:S1 T 5, are said to be LSRN P o

A subset U of a topological space is said to be eloned LE its
complement U in § is open. It is easy to see that the intersection of
any number oflclosod scts isclosed, the union of any finite number of
closed sets is closed, and both $ and # are closed,

If so is a subsect of a topological space S, there is a unigue
open t i 3 3

p set, noted 1nt{50) and called the interiop of So,uhich is con-
N .

ained in S0 and contains any other Open set contalined in So' As a
matt i

. er of fact, 1nt{50) is the union of all open sets contained inSO-
Likewise, there is a unigue closed set, noted cl(so) and called the
closure of So, which contains So and is contained in any other closed

1t i d
set which contains S, Actually, cl(so) is the intersection of all
closed sets which contain s .

[a]

A subset of 5 is said to be dense in 8 if its closure coincldes
with 5,

If 5, and S, are topological spaces, then the cartesian product
S1KS2 can be given a topology taking as a basis the collection of
all sub
o : sets of the form U1*U2 » with U; @ basic open set of S5yand U

sic o o i
pen set of 5,. This topology on S1x52 1s sometimes called

the product Lo 20y,

2

If 5 is a topological space and S, a subset of 5, then S, can
be given a topology taking as open sets the subsets of the folm
§y MU, with 0 any open set in S. This topology on ST is sometimes
called the gubge: topology.

Let F: s1 ind s2 be a continuous mapping of topologicat spaces,
and let F(S1) denote the image of F. Clearly, F(S1) with the subset
topology is a topological space . Since F ls continuous, the inverse
image of any open set of F(S,) is an open set of 5,. However, not all
open sets of S, are taken onto open gets ofF(s1). In other words, the
mapping F': s1 - F(S’) defined by F'(p) = F{p) is continuous but not
necessarily open. The set F(S,) can be given another topology, taking
as open sets in P(51) the images of open sets in 51. It is easily
seen that this new topology, sometimes called the tnduced topelogy,
contalns the subset topology (i.e. any set which is open in the subset
t?pology is open also in the induced topoloygy), and that the mapping
F' is now open, If r is an injection, then 8y and F(5,) endowed with
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the induced topology are homeomorphic.
A topological space S is said to satisfy the Yawsdorfi separatiou
axiom (or, briefly, to be an ilausdor{f space) if any two differert

points Py and Py have disjoint necighborhoods.

3. Smooth manifolds

Definition. A locally Fucli {can space X of dimension n is a topo-
logical space such that, for each p € X, there exists a homeomorphism
9 mapplng soma open neighborhcod of p onto an open set In r". O

Definition. A Manifold N of dimension n is a topeological space
which is locally Euclidcan of dimension n, is Hausdorff and has a
countable basis. O

It is not possible that an open subset U of " be homecomorphic
to an open subset V Of Rm, if n # m (Hrouwer's thecrem on invariance
of domain}. Therefore, the Jimcusion of a locally Euclidean gpace is
a well-defined object.

A coordinate chart on a manifold N is a pair (U,¢), where U is an
open set of N and ¢ a homeomorvhism of U onto an open set of R" . some-
times ¢ is represented as a set (w1,....9n), and v;t U R is called
the i-th eoordinate function. If p € U, the n-tuple of real numbers
(v1(p).....¢n(p)) is called the set of local coordinates of p in the
coordinate chart (U,¢}. A coordinate chart (U,s} is called a cubtfe
coordinate chart if ¢{(U) is an open cube about the origin in r". 1f
P € U and ¢{p) = 0, then the coordinate chart is said to be centered
at p.

Let (U,¢) and (V,¢) be two coordinate charts on a manifold N,
with U NV # g, Let (¢1,...,¢n) be the set of coordinate functions
associated with the mapping ¢. The homeomorphism

eev vy ~ywnwy

taking, for each p € U NV, the set of local coordinates
(w1(p).-...w“(p}) into the set of local coordinates (¢1{pl,....¢n(p}).
is called a ccordinates transioemutionon g Ny, Clearly, ¢.¢_1 gives
the inverse mapping, which expresses {¢1(p),....on(p)) in terms cf
(¢1(P”---.¢n(pll. o

Frequently, the set (61(9)----rwn(P))iS represented as an
n-veckor x = col(x1,...,xn), and the set (4;(p},...,¢,(p)) as an
n-vectogr y = col(y1,...,yn). Consistently, the coordinate‘transfcrma-
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-1
tion 4.9 can be represented in the form

Yy y1(x1,...,xn)
y = :_ = E = y{x}
Y yn(x1....,xn}

and the inverse transformation a,¢—f in the form

X = x(y)

Two coordinate charts (U,9)} and (V,4) are Cm—Campatible if, whe-~
never U NV # g, the coordinate transformation ¢.¢_1
phism, 1l.e. if y(x) and x{y) are both ¢~ maps.

Ac” atlae on a manifold N is a collection A = {(u

o
pairwise C -compatible coordinate charts,
Uy, =
i€l i
atlas,

is a diffeomor-

1+°3) lyeq of
with the property that
N. An atlas is complete Lif not properly contained in any other

De finition. A smooth or ¢~

i mant fold is a manifold equipped with
a complete C atlas. O

Remark. If A is any ¢ atlas on a manifold N, there exists a
. @ *
untque complete C atlas A containing A. The latter is defined as
th
e set of all coordinate charts (U,e} which are compatible with every

coordt i
: nate chart (Ui.wi) of A. This set contains A, is a c” atlas, and
15 complete by construction. O

Some elementary examples of smooth manifolds are the ones de-
scribed below.
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iaamplo, Any open set U of R" is a smooth manifold, of dimension n.

For, cunsider the atlas A consisting of the (single) coordinate chart
*

{U, identity map on U) and let A denote the unique complete atlas

containingy A, In particular, R" is a smooth manifold.

Rewmark. One may define different complete C" atlases on the same
manilold, as the following example shows. Let N = R, and consider the

coordinate charts {(R,¢) and (R,¢}, with

wix) = x
$lx) = x°
Since ¢ 'ix} = x and ¢ 'ix) = 273,

1/

ved T(x) = x

and the two charts are not compatible. Therefore the unique comdlete
atlas A; which includes (R,¢) and the unique complete atlas A: which
includes (R,¢} are different. This means that the same manifold N may
be considered as a substrate of two different objects (two :moolh
manifolds}), one arising with the atlas A: and the other with th2 atleas

Ao
v "
Frampic, Let U be an open set of R™ and let ’I"“'Am—n be real-valued

c” functions defined on U. Let N denote the (closed) subset of J on
which all functions x1""'Am-n vanish, i.e. let

N ={xEU 1A (x) = 0, 1 <1 < m-nl}

Suppose the rank of the jacobian matrix

\

3A1 aA1

3x1 axm

Ekm—n aAm—n
ax1 axm

is m-n at all x € N. Then N is a smooth manifold of dimension n.
The proof of this essentially depends on the Implicit Punction

Theorem, and uses the following arguments. Let xo=(x?,..axzn§+1“...xb

be a point of N and assume, without loss of generality, that the matrix
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I “
an+1 ”xm
3
m-n J\m—n
an,1 - Ix

o .
is nonsingular at x”. Then, there exist neighborhoods A_ of (x? x2)
o reser X

n o} o . m-n -
in R and Bo of (xn+1,...,xm) in R and a C mapping G: A_ —~ B_ such
that ° °

Ai(x1,....x“,g1(x1....,xn),....gm_n(x1.....xn)) =0

for all 1 < § = m-n. This makes it possible to describe points of N
around x° as n~tuples (x1....,xm) such that LI =gi(xf,...,x } for
1 <1 S mn. In this way one can construct a c;ordinate chart :round
each point x® of N and the cocrdinate charts thus defined form ac’
atlas.

A manifo.d of this type is sometimes called a smooth “yoersur-ize

; m
in R". An impertant example of hypersurface 1s the aphere sm-I,defined
by taking n = m-1 and

- 2 2
A1 = x1+-‘(2*.-. +Xm—1

m
The set of points ?f R" on which E1(x) = 0 consists of all the points
on a sphere of radius 1 centered at the oriqgin, Since

BAT

st X

QJ":.J
»] e
g N

never vanishes on this set, the required conditions are satisfied and
the set is a swooth manifold, of dimension m-1.

fxample. An open subset N' of a smooth manifold N is itself a smooth
manifold. The topology of N' is the subset topology. If (U,q) is a
coordinate chart of a complete ¢~ atlas of N, such that 0 N N' # g,
then the pair (U',;') defined as

Ut = gnny'

=
3

restriction of ¢ to U
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is a coordinate chart of N'. In this way, one may define a complete

¢” atlas of N'. The dimension of N' is the same as that of N,

Ergample. Let M and N be smooth manifolds, of dimension m and n. Then
the cartesian product MxN is a smooth manifold, The topology of M<N is
the product topolegy. If (U,¢} and (V,4) are coordinate charts of M
and N, the pair (UxV, (¢,4}} is a coordinate chart of MxN. The dimension
Oof MxN is clearly m+n.

An important example of this type of manifold is the toruw

T2 = S'XSI, the cartesian product of two circles., O

Let » be a real-valued function defined on a manifold M. If (U, 0}
is a coordinate chart on M, the composed function

o= a,¢'1 : (U R

taking, for each p € U, the set of local coordinates (x1,...,xn) of p
into the real number X(p), is called an .zpr. .. rfon of X in Loeal
cuordtnate: .

In practice, whenever no confusion arises, one often uses the
same symhol A to denote A.w_1, and write A(x1....,xn) to denote the
value of X at a point p of local coordinates (xt,...,xn).

If N and M are manifolds, of dimension n and m, F : N~ M is a
mapping, (U,g) a coordinate chart on N and (V,;) a coordinate chart

on M, the composed mapping
- -1
F = ¢oFay

is called an expression of F in local coordinates. Note that this
definition make sense onlv if F(U) NV # @, If this is the case, then
F is well defined for all n-tuples (x,,....xn) whose image under
Foo~' is a point in V.
Here again, one often uses F to denote -uF.w”1, writes Yy =
fi(x1,....xn) to denote the value of the i-th coordinate of Fip),

p being a point of local coordinates lx1,...,xn). and also

Yy f1(x1,....xn)
y = : = : = F{x)
Yo fm(x1,...,xn)

Dezfinition, Let N and M be smooth manifolds. A mapping F: N * M ic a
smoot#s mapping if for each p € N there cxists coordinate charts (L,g.
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of N and (V,4) of M, with p € U and F(p) € ¥, such that the expression
of F in local coordinates is v,

Hoemark, Note that the property of being smooth is independent of the
choice of the coordinate charts on N and M. Different coordinate charts
{U'y¢') and (V',4') are by definition C” compatible with the former and

F'o= ¢.oFo"_1 =

T T e L

1}

-1. -1

= (¢.°¢—1}=£‘n(9'ow )

being a composition of €” functions is still ¢, O

Pefinition. Let N and M be smooth manifolds, both of dimension n,
A mapping F : N * M is a diffecmorphaim if F is bijective and both F
and ¥~ are smooth mappings., Two manifolds N and M are di ffeomorphi :
if there exists a diffeomorphism F : N » M, O

The rank of a mapping F : N * M at a point p € N is the rank of
the jacobian matrix

3f, if,
5;; Ut WX
n
Bfm afm
§x1 Tt Ix J
n

at X = ¢(p). It must be stressed that, although apparently dependent
on the choice of local coordinates, the notion of rank thus defined jis
actually coordinate-independent. The reader may easily verify that the
ranks of the jacobian matrices of two different expressions of F in
local coordinates are equal.

Theorem. Let N and M be smooth manifolds both of dimension n. A map-
pPing F : N * M is a diffeomorphism if and only if F is bijective, F
is smooth and rank(F) = n at all points of N,

femark. In some cases, the assumption that functions, mappings, etc.
are Cm, may be replaced by the stronger assumption that functions,
mappings.etc. are analytic.In this way one may define the notion of
analytic manifold, analytic mappings of manifolds, and so on. We shall



264

make this assumption explicitly whenever needed.

4. $ubmanifolg§

Sl et s N M be a smogth mapping of manifolds,

(1) F is an fepi sodoe iF rank(F) = dim{N) for all p € N.

(i} F is a wrdoalon: fmeovaion AL F is an {mmersion and is injectiwe.
(iti) ¥ is an =i ldvey Bf F is a univalent immorsion and the topology

induced on F{N} by the one of N coincides with the topology of
FIN) as a subset of M, (O

Auniark, The mapping F, being smooth, is in particular a continuous
mapping of topological spaces. Therecfore (see section 2} the topaology
induced on F{N} by the one of N may properly contain the topology of
F(N) as a subset of M, This motivates the definition fiii). IJ

The difference between (i), (1i) and (1ii) is clarified in the fol-
lowing cxamples,
2

Examples, Let N = R and M = R®. Let t denote a point in N and (x1,x2)

a point in M, The mapping F is defined by

x1(t) = at-sin t
xz(t) = gos t

and, then,

a - cos t
rank(F) = rank
- s5in t

If a = 1 this mapping is not an immersion because rank(F) = 0 at
t = 2k» (for any integer k).

If 0 <« a <1 the mapping is an immersion, because rank{F}) = 1 for
all t, but a9t a univalent immersion, because F(t1) = F(tZ) for all
t1,t2 such that t1 = 2km-T, t2 = 2kn+71 and sin 1t = ar.

As a second example we consider the so-called "figure-eight”, Let
N be the open interval (0,27) of the real line and M = R%. Let t
denote a point in N and (x1,x2) a point in M. The mapping F is defined
by

x,(t) = sin 2t

xz(t) sin t
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/
Vo

This mapping is an immersion because

dx1 ; 2cos 2t
ac
rank (F} = rank = =1
X
2
ot : cos t

for all 6 < t < 21, It is also univalent because

F(t1J = F(tzi = b, =t

1 2

However, the mapping is not an embedding. For, consider the image of F,.
The mapping F takes the open set
{7~r,n4c) of N onto a subset U' of F(N)
which is open =y definition in the to-
pology induced by the one of N, but is
not an open set in the topology of F(N)
25 a subset of M. This is because U'

X,

cannot be seen as the intersection of
1 F(M} with an open set of Rz.

As a third example one may consider

the mapping F : R - r? given by

xl(tj = cos 2Int

X,(t} = sin 2nt

i
m

x](tl

whose image 1s an "helix" winding on an infinite cylinder whose axis
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is the Xy axis. The reader may easily check that is an embedding, O
The following theorem shows that the every imwersion (vcally is an

embedding.

Theorem. Let F : N * M be an immersion. For each P € N there exis:ts a
neighborhood U of p with the property that the restriction of F to U
is an embedding.

frample. Consider again the "figure eight" discussed abowe. If U is
any interval of the type (§,21-8}), then the critical situation we had
before disappears and the image U' of (n-.,n+.) is now open also _n
the topology of F(N) as a subset of R°. O

The notions of unlvalent immersion and of embedding are used in

the following way.

Pefinition. The image F(N) of a univalent immersion is called an aim-
meraed swimani fold of M. The image F{N) of an embedding is called an
embedded submanifold of M,

Hemark. Conversely, one may say that a subset M' of M is an immer:ed
(respectively, embedded) submanifold of M if there is énother manifo_d
N and a univalent immersion (respectively, embedding) F: N = M such
that F(N) = M*, O

The use of the word "submanifold" in the above definition clearly
indicates the possibility of giving F(N} the structure of a smooth ma-
nifold, and this may actually be done in the following way. Let M =FiN)
and F': N ~ M*' denote the mapping defined by

F'(p) = F(p)
for ali p € N, Clearly, F' is a bijection. If the topology of M' is
the one induced by that of N (i.e. open sets of M' are the images
under F' of open sets of N}, F' is a homeomorphism, Conseguently, any
coordinate chart (U,9) of N induces a coordinate chart (V,¢) of M",
defined as

V=F () . 4 = galr) !

Cm—compatible charts of N induce Cm—compatible charts of M' and so
complete C -atlases induce complete Cm-atlases. This gives M' the
structure of a smooth manifold.

The smooth manifold M' thus defined is Ml feomorphi: to the
smooth manifold N. A diffeomorphism between M' and N is indeed f°'
itself, which is bijective, smooth, and has rank equal to the dimeasian
of N at each p € N. »
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Embedded submanifolds can also be characterized in a different
way, based on the following considerations.

Let M be a smooth manifold of dimension m and (U, ¢} a cublic
coordinate chart, Let n be an integer, 0 I n<m and p a point of U,
The subset of

Sp = la €U x (g = xUpre 4 = n+l, ..., ml
1s called an n-dimensional slicr 0f U passing through p, In other
words a slice of U is the locus of all points of U for which some
coordinates (e.g. the last m-n} are constant,

Theorem, Let M be a smooth manifold of dimension m. A subset M' of M
is an embedded submanifold of dimension n < m if and only if for each
P E M there exists a cubic coordinate chart (U,y) of M, with p € U,

such that U N M’ coincides with an n-dimensional slice of U passing
through p, O

This theorem provides a more "intrinsic" characterization of the
not}on of an embedded submanifold {of a manifold M), directly related
to the existence of special coordinate charts (of M}. Note that, if
{U,¢} is a coordinate chart of M such that U 3 M' jg an n-dimensiconal
slice of U, the pair (U',y') defined as

U =y nm
v'(p) = (x1(p).-...xn(p)1

is a coordinate chart of M'. This is illustrated in the following
figure {where M = R3 and n = 2),

Ferark. Note that an open
subset M' of M is indeed an
embedded submanifold of M,
of the same dimension m.
Thus, a submanifold M' of

M may be a proper subset of
M, although being a manifold
of the same dimension.

ftemark, It can be proven that any smooth hypersurface in R™ is an
embedded submanifold of B, Moreover it has also been shown that if N
is an n-dimensional smooth manifold, there exist an integer m > n and
a4 mapping F: N - " which is an embedding {Whitney's embedding theo-
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rem) . In other words, any manifold is diffeomorphic to an embedded
submanifotd of Rm. for a suitably large m.

Gprk. Let Vobe an n-dimensional subspace of r". Any subsct of " of

the form

R T x'+x%; x* € vi,
m . .
where x7 is some [ixed point of R, is indeed a smooth hypersurface
. n . N
and so an embedded submanifold of R™, of dimension n. This is some -~

times called a ;/u/ submanifold of ®",

3. Tangent vectors

Let N be a smooth manifold of dimension n. A real-valued func-
tion A is said to be an 0 oo Friboeio,, of p, Lf the domain of
4 includes an open set U of ¥ containing p and the restriction of
to U is a smooth function. The sct of all smooth functions in a neigh-
borhood of p is denoted Cm[p). Note that Cm(p) forms a vector space
over the field R, For, if %,y are functions in C”(p) and a,b are real

numbers, the function a'+by defined as
(ai+by) (g) = al(q)+byig)

for all g in a ncighborhood of p. is again a function in C"(p). Note
also that twe functions A,y € Cm(p) may be multiplied to give another
element of C (p}, written iy and defined as

(Ay) (g} = Mel-v(q)

for all q in a neighborhood of p.

Acfrnilion, A tangent sooalop v oat p is a map v: Cm(pl “* R with the

following properties:

(1) (linearity} : v(al+by) = av(i)+bviy) for all i,y € Cn(p) and
a,bCctm
{41) (Leibnitz ruleds v(iv) = ((plv (M) +A(pIv(y) for all *,¢ € c™(p).

Jefinttion. Let N be a smooth manifeld, The taugent space to N oat p,
writton TPN' is the sct of all tangent vectors at pP.
ftemark, A map which satisfies the properties {i) and (ii) is also

. . . »
called a o wivurion,
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Hemark., The set TpN forms a vector space over the field R under the

rules of scalar multiplication and addition defined in the following
way. IFf v1,v2 are tangent vectors and 4.0, real numbers, c1v1+c2v2
is a4 new tangent vector which takes the function ) € Cm(p) into the

real numbei
(c1v1+c2v2)1 ) = c101(A) + Cyv,th)

demark., We shall see later an that, if the manifold N is a smooth

hypersurface in Bm, the object previously defined may be naturally
identified with the intuitive notion of "tangent hyperplane® at a

point, O

Let (U,y} be a (fixed) coordinate chart around p. With this
coordinate chart one may associate n tangent vectors at p. denotecd

(3= v oo (=)

.np

defined in the following way

-1
3 - :(‘glp
o)) = TS

for 1 < i < n. The right-hand-side is the value taken at x =Xy aanx )=
= ¢{p) of the partiat derivative of the Ffunction A.m_T(x1,...,x ) with
respect to xy (recall that the function A,;_1 is an expression gf
in local coordinates).

Theorem. Let N be a smooth manifold of dimension n. Let p be any point
of N. The tangent space TpN to N at p is an n-dimensional vector space
over the field R, If {U,9) is a coordinate chart around p, then the
tangent vectors {33—) ¢evorlx=}  form a basis of T N. [
91 P C'-n P P
3 3
The basis {(ivw) rever{m=1} } 0F T N t5 sometimes called the
1P “n P p
natural basis induced by the coordinate chart (U,q).
Let v be a tangent vector at p. From the above theorem it is seen
that
th 3
v = v. [—)

where v1,....vn are real numbers. Onc may conmpute the vis explicitly

in the following way. Let #; be the i-th cocrdinate function. Clearly
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+ «© Cmtp), and then

n B(winwﬂh
v(ux. )_ v.l=—} (y¢.) '—‘_2 V.(max_ )X=J(p) 3\;‘.1
j=1 3“1 SR ES I i
_I(x X} o= % Thus the real number v, coincides with
because #pew PEEERE i i

the value of v at 9; » the i-th coordinate function.
A change of coordinates around p clearly induces a chanie of baaic
in T N. The computations involved are the following ones. Let (U,y)

L2 4 .
and (V,4) be coordinate charts around p. Let 1(31;,9'""'(33;)p} denotz

the natural basis of TpN induced by the coordinate chart (V,¢). Then

-1 -1 -1
3 I N P _ (3ley a0y H
(Gl pth) = (o ’)y%(p) (ot e
? (R(Auw B] a(wj.¢ )
21 axj x=g(p} dy y=.{p)
(¢ju¢ )
= 21{( (M) Y )Y=¢(P)

o
3(¢ ]
¢ )

“_______) _ (——
dy;  Ty=elp) deyp
Note that the quantity

-1
a(Wju¢ }

dy

1

is the element on the j-th row and i-th column of the juc::{un malriz

of the coordinate transformation

x = x{y)

50 the elements of the columns of the jacobian matrix of x = x{y1
are the coefficients which express the vectors of the "new" basis as

linear combinations of the vectors of the "old" basis.
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If v is a tangent vector, and (v1,....v ).(w1,...,wn) the n-tuples
of real numbers which express v in the form

n 2 n )
v s i See T . “i97p
then
%y Ix,
V1 ?T' + W‘; W1
v an 3xn w
’ §y1 Yn

Uefinition. Let N and M be smooth manifolds. Let F: N = M be a smooth
mapping. The Ji{;" . rsnttal of F at p € N is the map

Fa 8 T8 = Ty oM

defined as follows. For v © TpN and » € CW(F(pJ).
(Falv)(:) = v(i.F)

femark., Fo is a map of the tangent space of N at a point p Ilnto the
tangent space of M at the point F(p). If v € TPN, the value F,(v) of

F, at v is a tangent vector in TF( )M 50 one has to express the way

in which F_{v} maps the set ¢~ (P(p)), of all functions which are smooth
a neighborhood of F{p), into R. This is actwally what the definition
specifies, Note that there is one of such maps for each point p of N.

Theorem. The differential Fe is a linear map. O

Since F, is a linear map, given a basis for TPN and a basis for
TF(p)M one may wish to find its matrix representation. Let (U,¢) be a
coordinate chart around p, (V,.}) a coordinate chart around q = Fl(p),
{(5——) ,....(5——) } the natural basis of TPN and {(

) reentai)
'q g’y
the natural basxs of Ta M . In order to find a matrix representation
of Fy , one has simply to see how F, maps (53—) for each t < i < n.

71 P 4+

2 Lo _ 30GF.gTY
(Falgy)p) (M) = GoplplheF) = et e
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-1
- - - 3{4.Fe
B IT PPN A § - T ey e A o)
- Ixg x=9(p) 321 9Y; yv=b (g} N x=vlp
-1
" 3 3(¢jnPau )
= j£1((:‘—"'—j)q('\,)(T)x:m(p)
In other words
€9 13 0_1,
_— 3 )

m
3 _
Fatﬁ,i)p = jz1( Ix; x=;(p)(3¢j q

Now, recall that ¢.F.m_1 is an expression of F in local coordinates,

Then, the quantity

a(wjﬂruw"u

X,
%3

is the element on the j-th row and i~th column of the jacoshian matriz

of the mapping expressing F in local coordinates. Using again

\
P1(x1,...,xn)

F(x) = F(x1,...,xn) =

Fm(x1,....xn)

to denote 4.F.g9 |, one has simply

IF .
. a ) b
Falyor) o = 1 Gd) )
PP gl 0%y Déyg
If v € TpN and w = F, (v} € TF{p)M are expressed as
n m
3 3
= _— W = w ( )
Y 121"'1(“""1)p 121 IR
then aF, 23
w e — v
1 §x1 Dxn 1
BFm arm .
“m 3x1 - FES n .
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“omark. The matrix representation of F, is exactly the jacobian of its
expression in local coordinates. From this, it is seen that the ranpk
of a mapping coincides with the rank of the corresponding dlfferential.

dvmark (Chain rule). Tt is easily scen that, if F and G are smooth
mappings, then

(G.F), = G,F,

The following examples may clarify the notion of tangent space
and the one of differential.

saeple. The tangent wvectors on R”. Let BT be equipped with the "natur-
al" complete atlas already considered in previous examples ({.e. the
one including the chart (Rn, identity map on Rn]). Then, if v is a
tangent vector at a point x and A a smooth function

) T

v i P 0A) = (e

vir = 1 1T e

- } v,
JE. M 1
i

[ I peacd=1

i i=1

S0, v{}} is just the value of the derivativ. of ) along the direction
of the vector

col(v1,...,vn)

at the point x.

Admark, Let F:N = M be a univalent immersion. Let n =dim(N) and

m = dim{M). By definition, F, has rank n at each point. Therefore the
image F*(TPN} of F, , at each point p, is a subspace of TF(p)H isomor-
phic to TPN. The subspace F.(TPN) €an actually be identified with the
tangent space at F{p) to the submanifold M' = F{N). In order to un-

derstand this point, let F' denote the function F': N * M' defined as
F'{p} = F(p)

for all p € N. F' s a diffeomorphism and so Fy is an isomorphism.
Therefore the image P;(TPN] is exactly the tangent space at F'{p) to
M'., Any tangent vector in Tp(p)M' is the image F,(v} of a (unique)
vector v € T N and can be identified with the {unique} vector F,(v)
of F,(TPN).

in other words, the tangent space at p to a pubmanifold M' of M
can be identified with a subsrice of the tangent space at p to M,

The same congsiderations can be repeated in local coordinates, It
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is known that an immersion is locally an embedding. Therefore, arourd
every point p € M' it is possible to find a coordinate chart (U,s) cE
M, with thc property that the pair (U',9') defined by

u'

inUwiM)=¢“ph i=ntl,,...,m
et a0

is a courdinate chart of M'. According to this choice, the tangent
space to M' at p is identified with the n-dimensional subspace of
3 3
aaer .o
TPM spanned by the tangent vectors {(5;;)p' (ﬁF;)p}

fzample. The tangent vector to a smooth curve in RP. We define forst
the noticn of a smooth curve in Bn. Let N = (t1,t2) be an open imterval
on the real line. A smooth curve in R" is the image of a univalent
immersion & : N =+ R", Thus, a smooth curve is an immersed submanifold
of R, In & and R" one may choose natural local coordinates as usual
and, letting t denote an element of N, express u by means of an m-tuple
of scalar~-valued functions Tyreeesedy of - t.

A smooth curve is a 1-dimensional immersed submanifold of R™, AL
a peint u(tOJ, the tangent space to the curve is a t-dimensional wvector
space which, as we have seen, may be identified with a subspace cf the
tangent space to R” at this point. A basis of the tangent space to tne
curve at c(to) is given by the image under o, of (é%)t , 4 tangent

vector at t to N. This image is computed as follows

da

sty = 3 Sl 52
tdete, s, dET L X Talty)
]

Thinking of £t € N as time and ¢{t} as a point moving in R", we may in-
terpret the vector

du do

1 n
COI((T)‘:O Faeey 'W,to)

as the velocity along the curve, evaluated at the point a(to). 5c, wa
have that the velocity vector at a point of the curve spans the tangant
space to the curve at this point. From this point of view, we see that
the notion of tangent space to a 1-dimensional manifold may be identi=-
fied with the geometric notion of tangent line to a curve in a Ewclidean
space.

Lrgmple. Let h be a smooth function h :R2 “ R and F :R2 - R3 a mappLnj

defined by
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F(xl,xz} = (x1.x2,h(x1.x2))

This mapping is an embedding  and therefore Funzj. a surface in nz, is
an embedded submanifold of R’. At each point F(x) of this surface, the
tangent space,identified as a subspace of the tangent space to R3 at
this point, may be computed as

] ]
span{F (=—)_ , F,{=—) |
. Ixg'x * sz X

Now,
aE 3 ]

3
=7 1 d dh
= 1 g (o) = (g - (o
;1 D7 X TR x) (3x1 Foy t xt)(BXJ)F(x)

- 9 3h 2
AT P I el e P

This tangent space to F(R2) at some point (x?,xg,h(x?,xg)) is the set

of tangent vectors whose expressions in local coordinates are of the
form

v}
v = B

dh .. . »sh

(ax1)4+(j;;)ﬁ

a,f being real numbers and LN ,ﬂﬂﬁ

. _ Ix1 ' Ixg
Xy = Xy- From this point of view, we see that the notion of tangent
space to a 2-dimensional manifold may be identified with the geomesric
notion of tangent plane to a surface in a Euclidean space. O

One may define objects dual to the ones considered so far.

being evaluated at Xy = x? and

Definition. Let N be a smooth manifold. The :»:tangent space to N at P

» .
written TpN, is the dual space of TPN. Elements of the cotagent
space are called tangent coaver-sps

. *
Remark. Recall that a dual space V of a vector gpace V is the space

of all linear functions from Vv to R, If v‘ € V', then v.= V *R an:Z

the value of v‘ at € v j i * g
v is written as {v ,v ), ¥V forms avector space
over the field R, with rules of scalar multiplication and addition

x »
which define c1v1+c2v2 in the following terms
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*

. . +
= ) (vl )
(c1v1+c2v2,v } cl(v1,v + cyfv, v

2
) + ) *
It c1,...,e“ is a basis of V , the unique basis 91....,en of v which

satisfies
*
[ L= 5,
(ei.cJ 613
ig called a ‘el Dasifs,
It ¥V and W are vector spaces, F:V ~ W a lincar mapping and w €W,
. * *
v LV, the mapping F : W * V defined by

CE ™) v = B e

is called the Jual mapping (of 1. O
Let 1 be a smooth function % :N - R. There is a natural way of
*
identifying the differential ‘e of } at p with an element of TPN. For,

observe that }, is a linear mapping

El e
Ao 2 TN Ty (p)R

and that T“p)n is isomorphic to R. The natural isomorphism between R
and Tk‘p}n is the one in which the element c of R corresponds to the

d d i tial
tangent vector c!aﬁlt. If clyp), is the value at v of the differenti
\, at p, then c must depend linearly on v, i.e. there must exist a co-
vector, denoted (dA)p +» such that

d
Aelv) = ((dAJp.v e,

Given a basis of T N, the covector (dAr) {like any other covector),
3 ] L
may be represented in matrix form. Let {(5;;Jp""'(avn)p‘ be the

natural basis of TPN induced by the coordinate chart (U,g}. The image
under A, of a vector

? 3
v 1£1v1(m)i’
is the vector
T
Aplw) = ( 11 e Vil g
i= i

and this shows that
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Yy
AP A
C(dv) ,v )= £2_ - ol
o] 3x1 ﬁxn .
Vol
n

Acmark. Note also that the value at ) of a tangent vector v is equal t
the value at v of the tangent covector (dl)p . Lle,

viy) = ((d‘)p,v ) 1

The dual basis of ((—ih) .....(—2%} ! is computed as follows.
n‘?] P a‘Pn P
From the equality v(\} = <(d‘}p,v } we deduce that
‘ -1 .
( 3 ) 5 J{'piu. ) I;Xi )
(dwi,p'(?j;)p =(3T;)pf@1) = ——5;;——— = F;; = Aij
0 that the desired dual basis is exactly provided by the set of tan-
gent covectors 1(d:1)p,...,(d;“) 1.

M :
If v is any tangent covector, expressed as

‘T e
v = v @, r
i=y 1P
L ]

*
the real numbers v1,....vn are such that

Note also that, if v ig any tangent vecter expressed asg

th 3
v = v, {=—)
121 l‘3“’1 P

the real numbers v1,...,vn are such that

6. Vector fields

d2/initf{on, Let N be a smooth manifold, of dimension n. A vector Ll

f on N is a mapping assigning to each point p € N a tangent vector fip)
in TpN. A vector field F is smo-:-y §f for each p € N there exists a
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coordinate chart (U,y)} about p and n real-valued smooth functions

fl""'fn defined on U, such that, for all g € v,

figq}

o
[[Raart=1

3
1fi(q)(§$I)q

Hemark. Because of Cm—compatibility of coordinate charts, given anw
coordinate chart (V,4} about p other than (U,¢), one may find a re-gh-
borhood V' C vV of p and n real-valued smooth functions f'....,f; de-
fined on V', such that, for all g € V',

n
flgq) = ] f!

Thus, the notion of smooth vector field is independent of the cocrd-

inates used.

Remark. If {U,y) is a coordinate chart of N, on the cubmant fold U of
N one may define a special set of smooth vector fields, denoted

53—....,§§H, in the following way
vy L
J 3
( b: prris—)
3o, do;'p
It must be stressed, however,that such a set of vector fielés

is an object defined only on 4. O

For any fixed coordinate chart (U,¢}, the set of tangent vectcrs
{(3——) ""(Bw } is a basis of TqN at each q € U, and therefore

there is a .nique set of smaoth functions [f1,...,fn} that makes it
possible to express the value of a vector field f at q in the form

n
- ]
= f.
£ q) i£1 x(q)(§$;,q

Expressing each fi in local coordinates, as

provides an expression in local coordinates of the vector field £
itself. So, 1f p is a point of coordinates (x1,...,x } in the chart
(U,9),£(p) is a tangent vector of coefficients (f (x1,....xn),...
s (x1,...,x )) in the natural basis {(5——) ...,(§;;Jp} of TPN
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induced by (U,9). Most of the times, whenever possible, the symbol £,
replaces 'fl..np"‘I and the expression of f in local coordinates is given
a form of an n-vector f = coL(fi,....E“).

Acmark, L2t f be a smooth vector field, (U,¢) and (V,y)} twe coordinate
charts about p and f(x) = Elx, peeea X Yo £'yy) = £ (y1.....y ) the cor-
responding expressions of f in loral coordxnates Then

L) = ;‘:E
£ iy) [:x (x’)x=x(yl o
The aotion of vector Field makes it possible to introduce the
concept ©F a differentiul equizion on a mant:Id N. For, let f be a
smooth veetor field. A smooth curve a: (tl't } * N is an integral curve
of f if

0*(dt)t = fi{t))
for all t € (t1,t2). The left-hand-side is a2 tangent vector to the sub—
manifold L((tf,tz)) at the point s5(t); the right-hand-side is a tangent
vector to N at si{t). As usual, we identify the tangent space to a sub-
manifold ¢f N at a point with a subspace of the tangent space to N at
this point,

In lccal coordinates, J(t) is expressecd as an n-tuple
(01(t),...,on(t)), and flo(t)) as

floft)) = ( 1(t),....i (t))( )

Hi~m3
-

olt)

Moreover

[«3

dt '3

n a .

d i, =
¥ =
-t ¢ .'ijJ(t)

Therefore, the expression of u in local coordinates is such that

dr]i
= = fi(fi(tl,...,un(t)J

for all 1 Z 1 =< n. This shows that the notion of integral curve of a
vector fie.d corresponds to the notion of solution of a set of n
ordinary d.fferential equations of the first order.

For this reason, onc often uses the notation
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to indicate the image of lé%)t under the differential o, at t.
The following theorem contains all relevant informations about

the propertics of integral curves of vector ficlds,

o, Let f o be a smooth vector ficld on a manifold N, For ecach

p © N, there exist an open interval - depending on p and written Ip

of R such that D © Ip and a smooth mapping
¢ :¥ N
defined on the subsct W of RxN
W= [{t,p) ERxN: t € Ip}

with the following properties:

(i) $(0,p) = p,
(ii) for each p the mapping cp:Ip * N defined by

t) = $(t,
op( ) (t,p)

is an integral curve of f,

{1ii} if np :(tl,tz) “+ N is another integral curve of f satisfying the
condition ¢(0) = p, then (t1,t2) c Ip and the restriction of Up
to (t1,t2) coincides with yp,

f(iv} ¢(s,%(t,p)}) = ¢(s+t,p} whenaver both sides are defined,

(v) whenever ¢(t,p} is defined, there exists an open netighborhood U
of p such that the mapping @t: U * N defined by

¢, (q) = ¢{e,q)

is a diffeomorphism onte its image, and

femark, Properties (i) and (11) say that up is an integral curve of f
passing through p at t = 0, Property (1ii) says that this curve is
unique and that the domain Ip on which o_ defined is maximal. Property
liv) and (v} say that the family of mappings {Otl is a one:parameter
(namely, the parameter t) group of local diffeomorphisms, under the

operation of composition, O
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Feample, Let N = R and use x to denote a point in N. Consider the vector

field
o2 ]
[ix) = (x +1)(3;)x

An integral curve v of f must be such that

. o 4 N 2 3}
a{t) = (agl(T;)x = (o (t)+1)(3;)x

52

A solution of this equation has the form
_ -1, 0
vlt) = tgltrtg (x))

o
with x” being indeed the value of 5 at t = 0. Clearly, for each x° the
solution is defined for

m -1, o L]
-3 < t+tg T (x7) < 5

Thus W is the set

W= {(t,x") :¢ € (- %~tq'1(x°), %-tq'1lxo))}

which has the form indicated below. O
The mapping ¢ is called the Flow of
f. Often, for practical purposes, the
notation ¢t replaces ¢, with the under-
standing that t is a varjable. To stress

the dependence on f, sometimes is

written as ¢£. :
Definition. A vector field f is zomplete
if, for all p € N, the interval Ip
coincides with R, i.e. - in other
words -if the flow ¢ of f is defined on
the whole cartesian product Rxy. O

The integral curves of a complete
vector field are thusg defined, whatever

the initial point P is, for atl t € m.
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Definition. Let f be a smooth vector field on N and X a smooth real-
valued function on N, The /j. Aerdvative o7 A along £ is a function
N * R, written Lfk and dJdefined by

(LAY (p)Y = (E(p)) ()

{i.e. {LfA](p) is the value at A of the tangent vector f£(p) at pr. O

The function LEA is a smooth function. In local coordinates, Lf\

ls represented by

3

o, a 3 .

‘Lfki(xt,-..;xn) = ‘:T;?W) :
n

En

If f,,fz are vector fields and A a real-valued function, we de-
note

Le Ly A = L. (L. 2)
£ £,778,
The set of all smooth vector fields on a manifold N is denoted by
the symbol V(N). This set ls a wector space over R since if £, g are
vector fields and a,b are real numbers, their linear combination af+bq

is a vector field defined by
{af+hqg) (p) = af (p) +hg{p}

If a,b are smooth real-valued functions on N, one may still define a
linear combination af+bg by

taf+bg) (p) = alp) f(p}+bip)£(p)

and this gives V(N) the structure of a moduie over the ring, denoted
Cm(N), of all smooth real-valued functions defined on N, The set VIN)
can be given,however,a more interesting algebraic structure in this way.

Definition, A vector space V over R is a lLiv algebra 1f in addition to
its vector space structure it js possible to define a binary operation

VxV * v, called a product and written [+,-1, which has the following
properties

(i) it is skew commutative, i.e.

IV:“‘” = | v, vl
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{ii) it i3 bilinear over R, i.e.

lu1v1+u2v2,w| = a'IVI,w|+u2|V2,W]

(where 4.0, are real numbers)

(i11) it satisfies the so called dacoli [dev:Iidry, 1.e.
Lv.tw,zlt+ {w, iz, vli+ [z,lv,wil =0. O

The set V(N) forms a Lie algebra with the vector space structure
already d:scussed and a product [ +,+l defined in the following way.
It £ and ¢ are vector fields, [f,gl is a new vector field whose value
at p, a tzngent vector in TpN, maps Cm(p) into R according to the rule

((£,9l (py)(2) = (LngA)(p)-(Lqu:atp)

In other words, l£,9] {(p) takes % into the real number (Lngl)(p)-
+(LgLEA)(p). Note that one may write more simply

L[f'gll = Lngl'LgLfA

Theorem. V(M) with the product l£,9] thus defined is a Lie algebra. O

The product [ f,g]l is called the Lie orssiar of the two vector
fields f aid g.

Remark. 1If f,9 are smooth vector fields and -,y smooth real-valued
functions, then

LAf,ygl = x-yl £,g] + AeLey+g - y-ng-f

Note that 2,Y,Lfy,LgA are elements of C (N}, and g,f,l £,9] elements of
ViN). O

The reader may easily find that the expression of { f,q| in local
coordinates is given by the n-vector

%9, 3g, . at, 3
5x1 sxn 1 3;; R 9
. - . . - . n . ] 3f
: o S A X
3g, 3g, afn afn
F;; .. 5;; fn X . 5;; 9,
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1f, in particular, N = R" and
flx) = Ax , gix} = Bx
then
[ £,9l {x} = (BA-AB)x

The matrix [A,B]l = (BA-AB) is called the _ommutator of A,B,

The importance of the notion of Lie bracket of vector fields is
very much related to its applications in the study of nonlinear con-
trol systems. For the moment, we give hereafter two interesting pro-

perties,.

Civorem, Let N' be an embedded submanifold of N. Let U' be an open
set of N' and f,g two smooth vector fields of N such that for all
pev

€ ' € ‘.
fip} TN and g(p} TN

Then also

E L]
[£.9] (p) TPN

for all p € y'. O

In other words, the Lie bracket of two vector fields "tangent”
to a fixed submanifold is still tangent to that submanifold,

Theorem. Let f,g be two smooth vector fields on N. Let ¢£ denote the
flow of f, For each p € N,

Lin o) a0k pr-ge)) = 1£,91 (p)
Remark. The first term of the expression under bracket is a tangent
vector at p, obtained in the following way. With p, the mapping 0£
{always defined for sufficiently small t) associates a point q=0£(p).
The vector fleld g is evaluated at g, and the value glg) € TqN is
taken back to TPN via the differential (:ft)* {which maps the tangent
space at g onto the tangent space at p=%_,(q}). Thus, the mapping
p+— (¢ft).q(¢£lpl) defines a vector field, on the domain of 0£.

Remark. Let f be a smooth vector field on N, g a smooth vector field
-
on M and F: ¥ * M a smooth function, The vector fields f,g are said to
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be P-related if

Fef = g.F

Note that the vector field (¢ft

" ),g(@i(p)) considered In the above
Remark is ¢~t-related to g,

Hemapk, If  is F-related to f and g is F-related to g,

then [£,9]1 is
F-related to [ £,ql. :

Definition. Let f,q be two smooth vector fields on N. The Lie derivative

of g along f is a vector field on N, written qu and defined by
_ 1 £ £
(qul(PJ = t{TO E[(O_t).g(ot(p))-g(pil. a
Thus, by definition, the Lie de:Lvatlvq.Lfg of g along f cofneci-

des with the Lie bracket lt,gl. There is also a third notation often
used, which expreses the Lie derivative of q along f as

qu = adfg
Both notations may be uged recurrently, taking
0 k k-1
Leg = g and Leg = Lf(Lf q)

or

0o _ Kk k-1
adfq =g and adfg = adf(adf g}

Remark. The Lie derivative of g9 along f may be interpreted as the

value at t = 0 of the derivative with respect to t of a function de-
fined as

£ f
W(t) = (e_t),g(ot(pli
Moreover, it is easily seen that for any k > 0
e
dtk t=0

k
= Leglp) = ad: aip)

If Wit) Is analytic in a nelghborhood of t = 0, then W(t) can be ex-
panded in the form '

bt 13
wit) = | adfq(mi
WLy 2dg9tP)py
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known as Canpell-Baker-ltausdovfy formula, O

One may define an object which dualizes the notion of a vector
field.

Pefinition. Let N be a smooth manifold of dimension n. A cowveetor fictd
{also called one-form) w on N is a mapping assignlng to each point

p € N a tangent covector w(p) in T;N. A covector field f is amooth if
for cach p € N there exists a coordinate chart {U,9) about p and n
real-valued smooth functions Wyraes defined on U, such that, Ffor

all q € v

n
= ) ]
w{q) i£1“1(q)(d'i,q

The notion of smooth covector field is clearly independent of the
coordinate used. The expression of a covector field in local coord-
inates is often given the form of a COW VeCtor w = rowtw’,...,m } in
which the .! 5 are real-valued functions of LS TRRRTE J

If w is a covector field and f is a vector field, {w,f) denotes
the smooth real-valued function defined by

Cw, £ {p) = {ulp),£(p)

With any smooth function A:N * R cne may assoclate a covector
field by taking at each p the cotangent vector (dX) P The covector
field thus defined is usually still repregsented by the symbol dAi.

However, the converse is not always true.

Definition. A covector field w is exact if there exists a smooth real
valued function A:N * R such that

The set of ali smooth covector fields on a manifold N is denoted
by the symbol V {N).

Cne may also define the notion of Lie derivative of a covector
field w along a vector field f. In order to do this, one has to in-
troduce first the notion of a covector field ¢£-re£ated to a given
covector field w. Let p be a point of the domain of Of Recall that

(4{),, :TON T . N is a linear mapping and let (o, )‘--r § N™ T'N
e ¢ (p) ¢ (p) P

denote the dual mapping, With w and @E we associate a new covector
field, whose value at a point p in the domain of ¢£ is defined by
»
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o) el )

The covector field thus defined is said to be ¢£—related to w.

Theorem, Let f be a smooth vector field and . a smooth covector field
on N. For each p € N the Limit

1, E.*  f
ii_:no # (e} wit (p))-u(p)]

existsg,

Definition. The Lie derivative of w along £ is a covector field on N,
written Lew, whose value at p is set equal to the value of the limit

1 LE* f
‘1;1"1::0 RO w(¢ (p))-wip}l o

The expression of Lew in local coordinates is given by the (row)
n-vector

du Jw af of
1
£.... _1 n 1 1
{ 1 fn] 3)(1 e T"T (w.l.-.tun) ¥, Tt 3
1 n
T
dw T, 3f
. . . + . . . o
ax f) +w-3—)-(-
awT amn afn 3fn
5xn * Ix Ix X
n 1 n

where the Superscript "T" denctes “transpose”,

Remark. The three types of Lie derivatives [ £he qu,Lfm defined above
are related by the following Leibnitz-type relation

Lf(m,g )= (Lfm,g )+ (m,Lfg }
Remark. If w is an exact covector field, l.e, {f w = di for some X,

(AA, £} = L_x

£

and
Lfdk = d(LfA)

Remark. If w is a covector field, f a vector field, A and y real-valued
functions, then
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Ly gYw = AeyeLgw + AeLoyw +Y Cw, f Y dhr

AE

Note that A,V.Lfy,(m,f } are elements of c”(N) and m,LEw,d\ eloements
*
of V (N}).







