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CHAPTER 1.

THE INTERFACE BETWEEN FRESH AND SALT GROUNDWATER

A NUMERICAL STUDY.

by

* L 23]

* . *
J.R.Chan Hong , C.J,van Duyn , D.Hilhorst , J.van Kester .

ABSTRACT. In this paper the two dimensicnal flow of fresh and salt

water through a homogeneous aquifer is considercd. The two fluids

are assumed to be separated by a sharp interface, They differ only

in their specific weight. This difference induces a flow in the

aquifer which in turn causes a motion of the interface.

We present a mathematical formulation of this problem which consists

of a Poisson equation for the stream function coupled to a time

evolution equation for the moving interface. The equation for the

streamfunction is solved by means of a finite element method while a

predictor-corrector method {(the Sm'B scheme) is used for the dis-

cretization of the equation for the interface.

Department of Mathematics, Delft University of Technology, Delft

The Netherlands. (The first author is on leave from the Fcecle Centrale
de Lyon, France},

CNRS et Laboratoire d'Analyse Numérique, Université de Paris-sud

91405 Orsay, France.

*$* Delft Hydraulics Laboratory, Delft, The Netherlands.

1. Introduction,

In this paper we prescnt a model which describes the two-dimensional
metion of fresh and salt water through a horizontal aquifer. The
fresh and salt water have different specific weights, denoted by

yf and ys (Tf < YSJ, respectively., As is common in hydrology

(e.g.see Bear [1], and De Josselin de Jong [9]) it is assumed here
that the fluids do not mix and are separated by an abrupt interface.
The difference in specific weight induces a flow and thus a dis-
placement of the fluids and the corresponding interface. Our interest
here is in the evolution in time of this interface. Mathematically,
this leads to the following rescaled problem:

-4 = :—x [Hiu(x, t)-2)] in gaxr*
¢ =0 on 32 x R'+
P u, = Tlyt,uix,t), 0] in Txgr'
t dx r L] ’
ui{x,0}) = uO(x) x € I
where

I=(-L,DorI=R, %=1{(x,2) eI x (0,1},
H is the Heaviside function : H{s) = | when s > 0 and H{s) = 0 when
s <0, uoisa sufficiently smooth function such that 0 < ug 1 and,
if1 =R, u - H has compact support.
The function ¢ denotes the streamfunction of the flow and u represents
the height of the fresh-salt water interface, 0 S u £ 1. At points
where u = 0 (bottom of aquifer) only fresh water is present and at
points where u = 1 (top of aquifer} only salt water is present. A full
derivation of Problem P is given in Section 2.
In Section 3, we recall some results of Van Duyn & Hilhorst [6]
about a simplified model which arises when a Dupult assumption with
respect to the flow is being made. Then the helghtu of the ilnterface
satisfies a parabolic degenerate equation, Its generalised solutiors
u(t} have the following convergence property. When I = (-1,1), ult)
converges to the constant & uo(x)deZ as t + = and when I = R, u(t}
converges to a simllarity solution as t + «; one of the purposes of
this work is to show numerically similar results for solutions of

Problem P.



We describe the numerical method in Section 4. The equation for
the streamfunction is solved by means of a finite element method.
The equation for the interface, when considered apart, is hyper-

bolic; the s%'B

scheme introduced by Lerat & Peyret [11] is used
for its discretization, An essential problem is to calculate as
precisely as possible the x-cuordinates Sllt) and Sztt) of the
points where the interface rcaches the bottom z = 0 and the top

2z = 1 of the aquifer. We do so by discretizing as well the differen-
tial equations for s1 and S2 and calculating v only between s1 and
52. Similar techniques have been used by DiBenedetto & Hoff [3}
and Hoff [B] for the discretization of the porous media equation.
The numerical results are presented in Section 5. Part of the
computations shown there are obtained by using a fixed triangle
distribution throughout the entire flow domain. Tests are performed

with and without using the extra equations for S, and S_. The

results are virtually the same. l :

A number of calculations are carried out with using a triangula-
rization of the flow domain which varies in time, This is done with
the help of an automatic mesh generator, allowing the mesh to vary
at each time step in such a way that the discretised interface
coincides with sides of triangles. In this way only values of the
streamfunction ¢ at mesh points are necessary in the computations.
Therefore larger triangles can be used in this case.

The numerical results clearly exhibit the asymptotic behavior as
described in Section 1.

Certain one phase problems are treated by related methods; in
particular, Rasmussen and Salhani [13] use a Crank-Nicolson proce-
dure to solve the interface equation in a case where it is coupled
with the Laplace equation.

Duchon and Robert [4], [5] consider Problem P in [ = liz and obtain
existence and uniqueness resultsin a scale of Banach spaces.

Chan-Hong and Hilhorst {2] prove the local existence and uniqueness of
the solutionof problem P in the case that R ia the scrip R x (0,1}
and 0 < u, < 1.

In the engineering literature, Several authors propose finite
element models for interface problems in groundwater flow, e.g.
Wilson and ba Costa [$81] and Verruijt [15). However their work is
based on the Dupuit approximation with respect to the flow, This

leads to a different set of differential equations.

Acknowledgement: The authors acknowledge a number of constructive
discussions with Ph.Clément about the formulation of the problem.
They also wish to thank Ch.H.Bruneau and P.Wilders for pointing cut
the hyperbolic character of the problem and for suggesting the use
of the Sn'B method. They are indebted to J.Laminie for his technical
help and patient explanations. J.R.Chan Hong and D.Hilhorst also
wish to thank C.M. Brauner and C.Schmidt-Lainé for useful dis-

cussions when this work started.



2. The madel.

In this section a derivation of the interface motion problem P

is5 given, We consider first the problem of finding an equation
for the streamfunction which describes the flow induced by a given
variable density distribution of a fluid in a porous medium.
Thereafter thecase of a sharp interface is treated and an equatjon

for the interface motiocn is given.

Throughout this paper, Q¢ R 2 denotes either the rectangle (-1,1) x (0,1

{bounded case} or the strip R * (0,1) f{unbounded case}.

2.1. The streamfunction equation.

Consider the 2-dimensional flow of an incompressible fluid of variable
specific weight y and constant viscosity u through a homogeneocus porous
medium with permeability x. As an example may serve the flow of fresh
and salt gréundwater near coastal aquifers, see Bear [1], de Josselin
de Jong and Van Duyn [10}. Let {1 denote the flow domain of the fluid,
The movement of the fluid is governed by the momentum balance equation

(Darcy law)
Lq+gradp+y e =0 in R 2.1}

and the continuity equation (expressing the incompressibility of the
fluid)

divg =0 12.2)

In these equations, q and p denote the velocity field and the pres-
sure, respectively, and ez denotes the unit vector in the vertical
positive z-direction. Since we are interested in a description of

the density induced flow only, we consider at the boundary 3 the
no flow condition

g.v=20 on 3 2.0

where v denotes the outward normal unit vector on afl.

5=

With respect to the prescribed specific weight distribution v we
make the following hypothesis :

2
HY oy £ LRk + {(Ys-yf) "x + yf},

where H o+ {0,1}1ssuchthatnx= 1 when x > Oande ={

when x < 0.

When I is bounded y € LZ(Q) and one can immediately deduce from
Temam [14, Thm.1.4, p.15] that there exists a unique vector

qe (t?)? and a function pe Hllﬂl. unique up to an additive con-
stant, such that equations (2.1}, (2.2) and {(2.3) are satisfied.
When I is unbounded y ¢ Lz(ﬂ) and we cannot immediately deduce the
existence of g and p. However hypothesis HY ensures that %& € H-l(n].
In both the cases where 2 is bounded and unbounded, the following

result holds,

Lemma 2.1

Let q € {thm}2 satisfy {2.2) and {2.3). Then there exists a function
Ve H;(ﬂl such that q = curl ¥,

Proof. Let {q } ¢ C-(m satisfy div = 0 and lim || -q” = 0.
% 0 o o (202
We denote by Do and qmz the x and the z components of t:;,ﬂ1 and we set

Zz
wm(x,z) = - % U (x,r)dr.

‘Then one can check that curl *m =g Obviously wm = () for z = Q,
Using the fact that div q. = 0 and Q. " 0 on 3! one can also verify
that b, = 0 for z = 1 and that, in the case whare I = (-1,1), b= 0
for x = 11. Finally, since, by Poincaré's inequality {see for instance
(14,p.4 1, this yields

[ s¢ gl s¢
m né(n) % [chﬂ;F'

1
there extsts ¢ ¢ H_(N) and a subsequence {¥ } of ¢ such that ¢ -
Q L% m my

weakly in "é(“) as m -+ = and q = curl ¥,

%
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2 2 1 | Lemma 2,2,
Thus if some functions q ¢ {L°(2)}° and p € H (R) (or p ¢ Hloc(m ———
if 7 is unbounded} satisfy the equations (2.1)-(2.3} and if Let ¥, be the solution of Problem P, on the domain 9 and let ER
v e Hétm is such that q = curl §, then it follows from (2.1) that be the extension of Y on @ with VYo =0on ﬂ\ﬁR. Then
¢ satisfies 1
WR L weakly in Hofm Aas R + m
l:-curl o+ ye, = - grad p a.e. in Q [2.4)
where y is the solution of Problem PIP with 1 unbounded.
In turn (2.4} implies that
Proof. By construction, upn € Hé(m . It satisfies
I(E curly+ ye } curl ¢ = O for all ¢ ¢« Cm(ﬂ) {Z.5)
R = 0 ~ .2 2 K Ay
Jtgrad 4 )° = [ (grag y )% < - K [y -2
q R Q R ug 3x
or equivalently R . R
g
x 3 -1
R in 07 () RIS EIE L el
p¢ i H " {11} H, ()
v =0 on 30 (2,61

This yields || lpR” L % C. The result of Lemma 2.2 then easily follows,
It follows from standard theory (see for instance Vo Khac Khoan [16, HO n
1
p.201,202) that Problem Py has & unique solution y ¢ Hy (@) .

Next suppose that there is an abrupt change in specific weight, say
Next we show that the solution ¥ of Problem P“, in both the bounded

from fresh water with Y. to salt water with Y . and that the heighy
and unbounded case, defines a flow field which satisfies the equations L 5

A 2 2 of the interface [ separating the fluids can be parametrized in
(2,1)=(2.3}). Since ¢ € HO!Q). q = curl ¢ € {L°(Q}]}° and satisfies the u

the form z = u{x}, where u is a continuous functien such that uix) = 0
no-flow condition (2.3). Then from (2.5) we have

for x small enough and that u{x) = 1 for x large encugh (see Fig. 2.1

u L below) . .
fizq+ Ye,) curl¢ =0 for all ¢ ¢ CO(ﬂ).
i

Lz VAN A S S S S 4

fresh water

This implies by Temam [14, Prop. 1.1 and 1.2, p.14] that there exists

1 1 salt water
a function p ¢ H (1) lor p ¢ H ((-N,N} x (0,1)} for all N > 0 if & is

Y Y
unbounded) such that q and p satisfy Darcy's law almost everywhere in £ s
1, Note that p is uniquely defined up to a constant. Also, since
q = curl ¥, it follows by direct computatlion that <q, grad ¢> = 0 for x_._.
all ¢ ¢ c;(m - Thus div q=0 in the sense of distributions. Fig 2/10 Th,e/ intiface/betw;n fish ;:d s.-:r, 4 .
Before we proceed to the particular case of an abrupt change in density I ) groundwater in a
we note the following. In order to solve numerically problem Pw when @ horizontal aquifer.

is unbounded, we shall solve in fact the boundary value problem on

9 = QR i= (-R,R} * {0,1) with R large enough. This procedure is justi-
fied by the next lemma.
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Then the specific weight throughout the flow domain is given by
yix,z) = ITS-Yf) Hiulx)-2z) + \ for (x,z) € @ (2.7

where H denotes the Heaviside function.

With this expression, the equation for the streamfunction becomes

-ty =l g;— H{u{x) -2} in Q 12.8)
h =5ty -y,
where [ = u Ys TE .

Remark. Since by (2.7), v € Lm(ﬂ) ; it follows from Lions & Magehes

[12, Theorem B.1] that if 9 is bounded, ¢ ¢ 0 (M) for all a € (0,1);
furthermore one can show that if 1 is unbounded ¢ ¢ Co'u(ﬁnl for all

R > 0 and all a ¢ {(0,1).

Let Rf denote the domain occupied by the fresh water, ﬂs the domaln
occuplied by the salt water, s the tangential unit vector to Fu, n

the normal unit vector directed towards the outside of ﬂ’ and a the
angle between the positive x-axis and s, see Fig, 2.1. In the case
that the function u is smooth in the neighborhood of each point x
where 0 < u{x} < 1, we show below that the problems for q and y can

be written as problems on the two subdomains ﬂs and Q_, with matching

f
conditions on the interface.

Lemma 2.3.

Let q € [thﬂ)}z satisfy (2.1), (2.2} and (2.3) and be such that the
restrictions q, (i = f,5)} of q to @, are such that q € [Hllel}z for
every open bounded set 8 © ﬁi’ Then q and a, satisfy

div qi-O, curl qi-D in 9, 4 = f,s
1

-0 =g ..n,q..8~q .5= I sina = 2 on T,
+ux

q.n =20 on 3N

Corollary 2.4.

1
Let ¢ € Ho(ﬂ) satisfy Problem Pw and suppose that the restrictions
wi (1= f,8) of ¢ to ﬂi are such that wi € H2(Ci for every open
bounded set B c ﬁi' Then tf and ws satisfy

~Ap, =0 in i i1i=#f,s
1 i
Bwf g ux
Wf - WE- mo " 3n - ~Tgin a = -T on Fu

vy =0 on 3f}

Proof. Corcllary 2.4 follows from Lemma 2.3 by substituting q = curl y.

]
We remark that 3% is discontinuous acrossl 6 at each point wheref‘u has

a non zero slope. This will appear clearly in the pumerical results.

Proof of Lemma 2.3. Form <div q, §>= —J'q grad ¢ = O for all ¢ € Cg(ﬂl

it follows that div q = Ca.e. in R {1 =f,s) and thus that

rf tq-a,} . n ¢ ds =0 for all ¢ € Cln)
u
which implies that qg-n=q_non m. Similarly, since curl gq = E %i in the

sense of distributions in I, we deduce that curl q1 = 0 a.e. jn
Ql (1L =f,s) and that
Ju L
rI (g,-q) . s ¢ds=T { 35 txoulxhldx for all ¢ ¢ c ia)
u

which implies that

u
X
qf.s—qs.s=rsinu-l‘— .

14u
x

2.2. The interface motion equation; the equations for 5  and SZL
4

Let u = u(x,t) denote the height of the fresh-salt interface at a
certain time t > 0. Then the corresponding velocity field can- in
principle-be found by solving equation (2.B) with boundary conditions
{2.6). From this the displacement of the interface is calculated with
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the kinematic condition, which says that the normal displacement
velocity of an interface point is equal to the projection on the
normal of its vertical displacement velocity Uy time the poro-

sity of the medium, see Bear [1]:

e

q.N = €u_COS a = € —3 (2.9)
t Vi+u
x
where the subscripts x and t denote differentiation with respect
to these variables. Using q = curl ¥, equation (2.9) becomes
fu, = {phulx.ther} ieu?
t 8 X
or
= L pixoutx.t),0 ) (2.10)
cut an ylx,ulx.t), .

in the region (x,t) € 1 x ]i+. where either I = (-1,1}) or I = R,
Note that the derivation of {2.10)} is only formal because we have
not encugh information about the regularity of u and q.n . Properly
rescaled, equations (2.8) and (2.10) together with boundary and
initial conditions give problem P.

We remark that in the case I = {-1,1) boundary conditions for u are
not needed; this comes from the fact that ¢ =0 for x = %] which

implies that the lines x = tl are characteritics for equation (2.10).

Based on the nature of the problem, we conjecture that the speed of
propagation of the points Sltt) and Sztt). where the interface u(s,t)
reaches respectively the bottom and the top of the aquifer (see Fi;.2.1),

is finite. Below we give definitions and differential equations for S1

and P
For simplicity we suppose that I = R. For any t 2 0, we define Sllt)
and Sztt) by
51{t) = sup [ x ¢ R| wuls,t} = O for all s s x},
anpd

Sy(t) =inf [ x ¢ R | uis,t) =1 for all s 2 x}.

-11-

The differential equation for S, is found by observing that the

1
speed at which S] travels in the (x,t) plane must be equal to
the velocity of the saltwater in the saltwater toe.

We have the formula

r_sltt) = lim q (x,0,t) = - lim %"zi (x,0,t)
x45, (¢) x x+s (€

Sim.larly we have for S

3y

esz(t) = lim qx(x,],t) = - lim 3z (x,1,t}.

xts, {t) xisztt)
Again by a rescaling one can drop the factor € in these equations.
Finally we observe that equatlons (2.11) and {2.12) are not a part
of the original problem. However they will be used in the numerical
algorithm.

(2.11)

(2.12)
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3. The Dupuit opproximation and some consequences.

In this section we consider a simplified form of Problem P which
arises when a Dupuit approximation with respect to the flow is made.
In this approximation one assumes that the horizontal component of
the velocity field is constant in each fluid and has a jump at the

interface. z

h
fres yf

e
b
tow "-l’

Fig., 2.2 : The Dupuit approximation of the Flow.

? ulx,t}

salt
e

0,0 X

In hydrology one often uses this simplificatlion, which is assumed to

hold when the interface is not toc steep . The particular form considered
here is due to De Josselin de Jong [9]. It leads to a nonlinear diffusion
equation for the function u. We also recall some results of Van Duyn &
Hilhorst [6] about the asymptotic behaviour as t + » of solutions of

this equation . The numerical simulation of solutions of Problem P

shows a simjilar asymptotic behaviour.

3.1. The =implified problem.

Our starting point 1s the rescaled interface motion equation of Problem >
=L fpixoutxe) ) 3
u = = {pixuix,t),t {3.1)

and the observation that

yix,u,t)

u
- [ a txz,t)dz (3.2)
0

or
1

+ q,(x,z,t)dz. (3.3}
u

vix,u,t)

Using the s._mplifying assumption on the flow, see Fig.2.2, these

equations beconme

vix,ut) = —uqs(x.u.t) = (1-u) q

X

Further, it follows from Lemma 2.3
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£

as

-(qf g ) sin a + (qf -4 ) cos a =0
x

X

and

(qf -q ) cos a + (g
X X

-9
fz 5

z

z

Eliminating (qf -9, ) gives
z

z

tan o

9: 49 = -
fx s

> 1+tan20

u
X

1+u2
X

z

{x,u,t)

¢, with T = 1, that

on T
u

) sin o = sina on [ ,
u

Combining (.4) and (3.7) gives

u
X

q =t
fx 1+u2
x

and finally

Vi) = u(t-u) —%5

1+u
x

We deduce from (3.1), (2.9} and the fact that ¢ = 0 on JRthat u

satisfies the Neumann problem

( u
u, = Jutl-u) X
t 1+u
X
u
N ull-u) =0
1+u
X

u{x 0} = u,tx)

7).

in I = n'*

+
ondI «x R
x €1

(3.4)

{3.5)

(3.6)

(3.7}

[3.8)

(3.9)

(3.10)
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1f I = {(-1,1) and the Cauchy problem 4. The numerical method.
P
{ % +
u, = \u{l-u) in I » m In this section we describe a numerical algorithm for solving Problem P,
14u
x It is based on an explicit time integration scheme for the initial
c
value problem
uix,0) = ug (%) x €I
d
v, = o [wix,uix,cd,t)) int xmrY
if I =R,
(4.1)
uix,0) = uotx} inI

3.2, asymptotic behavior of the solution.

where 1 = (-1,1) or I = {-R,R} with R large enough. In practice we have
It follows from [6] that if u_ satisfies the hypothesis ,
0 in turn to solve the problem for the streamfunction ¢ and to proceed

with the integration in time.

u € W T, OSug =1, -1 Suys1 ae. inI andif1enr

0

H

o] { 4.1. Discretization of the problem for g,
o " H has compact support

: a )
Let u (x} be the interface at time t™, In order to determine the stream-
then Problems N and C have a unique generalized solution u which ig

ra—— function ¢ , we have to salve the problem
continuous in I x R™ and has the following asymptotic behaviour as

t + w, n I =AYy = g; ‘H(un(x)-zﬂ x,z) ¢ R
Py 1
v =0 on aft

where {1 = I = (0,1}, In the case that I = (~R,R} it follows from Lemma 2.2
The solution u(t,un) of Problem N converges to I uotx)dxlz uniformly

- I that if R is large enough, this problem is a good approximation for the
inI as t -+ o

problem in the strip R = (0,1},

Theorem 3.2. With the purpose of solving Problem PJ by means of the finite element
method, we rewrite it under the form

The solution of Problem C satisfies

1
{ Find ¢ ¢ Hoiﬂ) such that 4.2)

{ grad y grad v = —f Hu"(x)-z) 2 for all v ¢ Hl(m
) b4 H] 0

”u(t.uol - El/gten ]| < C/git)
L Q2

({R)
for all t > 0 where C is a positive constant, g{t) = ¢-1(2t+¢(g033

2 Let Th be a triangularization of R. Using the finite element method
with ¢{s) = s°/2 + 1ng = 1/2 and 9 2 1 and

with plecewise linear basis functions, we obtain the following dis-

o) if s < =1/2 cretized probiem
f(s)={ s+1/2 if -1/2 £ 5 < 1/2
1 if s > 172, { Find ¥, ¢ V,, satisfying . 3"h (4.3)
é grad wh grad vy = —g H(uh(x)-z) ™ for all v, € Vh
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where

v, = {Vh e cify| v e Th v, s linear on K and v, = 0 on an}

and where
u: is a piecewise linear approximation of un.
Let {¢i} « 1 =1,...,N be the piecewise linear basis functions (they

take value one at one node and vanish at all other nodes). Then Problem

(4.3) is equivalent to the linear system

N
L ¥, [ grad ¢ grad 65 = -f H(uy (x) ~2) ;;1 {4.4)
i=} 4] Y]
for all 3 = 1,...,N where the constants *i' i1 »1,...,N are defined by
N
b, (x.2) = 151 Wi ¢1[x,21 X,z €

Two variants of the method have been used, with two different triangu—

larizations of {l.

4. The fixed mesh method.

For some of the numerjical tests, we have used a fixed uniform mesh, as

shown in Figure 4.1 below

Figure 4.1,
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The intervals [-R,R) and [0,1] are reqularly sulxiivided, the mesh
peints having the coordinates

{(x1 =-R + th, z, = jk), L = 0,...,N, § =0,...,M}

3
with h = 2R/N and k = 1/M. To avoid the technical difficulties induced
by the jump of the Heaviside function at the interface we discretize
in fact the following problem

{ -4y = %; (1% ™ty -21 } (x,2) € Q
E.N

PW vy =0 on 3
where

¥ (s) = ¢{s/c) anddcC{R) , ¢ is nondecreasing,

Lim é(s) = 0, 1im ¢(s) = 1.
grmen gt

€
In particular, H tends to H uniformly in compact subsets of R\ (0} as
¢ + 0. FPurthermore one can show that as ¢ ¢ 0 the solution w of Problem
Pi'n converges in H () to the solution ¢ of Problem Pw

The computation of the right-hand side of equation (4.4} requires the

evaluation of integrals of the form
S -z 22
X h x

where p is one of the three shape functions associated with K. In order
to calculate these integrals with sufficient precision, we use the

seven polnts numerical integration formula
[ £ =2 meast){i=(fa) + £(a,) + £la )] + = fla )
X 40 1 2 3 40 123

1
+ Tg(ftaiz) + f[azll + ftal]’)}

mmemewmsﬂ'sueﬁwnminﬂwmddbﬂw

Figure 4.2
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Finally the linear system (4.4) is sclved by means of the: SSOR-
preconditionned conjugate gradient method.

L2
The numerical tests have been performed with h = ¥ = 160 “ | and

the relaxation parameter w = 2/(1*sin2(nh)). We have chosen to tabie

10
#E(s) = 1/2(;;?:T- +1) with ¢ = 10719,

However, a difficulty is that we have to calculate wh at points o}
the discretized interface in order to solve the interfare  equatiorn
and that these points arenot in general pesh peints. Therefore it
1s necessary to use very small discretization steps h ard k. This
has motivated us to construct an adaptive mesh in such a way that
the discretized interface coincides with sides of triangles of Th'

b. The adaptive mesh method.

The idea is to generate a new triangulari{zation of {l at each time

step. Let
n
R7 = ltxzh e, z> up tx1 }
and
n_ n
e = {ix,2) ¢ 7, 2 < uh[x)}.

n n n n )
We construct triangularizations Thf and Ths of @ . and §_in sucha
way that the discretized interface colncides with sides of 1 trianglecs
Tn Tn 1] n . -
of he and hs' In practice the meshes in nhf and in ﬂhs‘azg gene
rated by the mesh generator of the SEPRAN package of thelDelft
University of Technology. An example is shown in Figure 4.3, we

choose a fine mesh in the neighborhood of the numerical interface

Figure 4.3,
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and in particular near the endpoints of F: and a coarse mesh
n
further away from Fh. We remark that if unls smooth enough,
the right-hand-side of the variational equality in {4.2) may
n J
= u T

h k=1 k

where the rk's are sides of triangles. Then another form for

be rewritten as | (un)'(x)vtx,un(x))dx. We set T
1

the right-hand-side of (4.4) is given by
M Y
(uh)

Jwhtm o tultxiax = £ ¢, dy
1 M I k=1 rk\?u{cu:)'lE i

Here,the linear system (4.4) is solved by means of the

LU decomposition.

It will be useful in section 4.2 to be able to calculate as well
an approximation of the discharge rate q = curl . We set qh = curl wh'
Since wh is piecewise linear, qh is constant on each triangle.

On a mesh point outside F:, qh is taken as a weighted average of
the discharge rates in the triangles around that point,

However, we know from Lemma 2,3 that q is discontinuous accross
the interface; thus we must define two approximated discharge rates
at mesh points on r: corresponding to the discretized fresh water
reglon and to the discretized saltwater region. On a mesh point

on F: f qg (resp. q§ } is taken as a weighted average of the
discharge rates on the triangles around that poeint which lie in

n).

n
nhf {resp. nhs

1.2. Discretization of the interface equation,

Motivated by the fact that, if y is known, the partial differential
equation in (4.1) is hyperbolic, we use the s*'B explicit scheme

of Lerat & Peyret [11] with a,8 "cptimal® for its discretization.
There are two possibilities : either compute u on the whole inter-

val I or use the extra equations (2.11} , 12.12) for Sl and S2 and
calculate u only between sl and 52. Whaen programming on a fixed mesh,
we can perform numerical tests in both ways and compare the
results. On the other hand we always use the equations for 5, and

1

32 when calculating with an adaptive mesh,
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a. The 5P scheme with a,B optimal.

The SG'B scheme is a second order explicit scheme. We present it

in the case that an adaptive mesh is used. Let u: be the approximation
of utx?. tn). The function u: that we have introduced above is
cbtained by linear intcrpolation; for more details we refer to

subsection 4.2.d. below. Further we use the notation
n+1 a, .
h: = xiil - x? and at" = ¢ - t". Then the s 8 scheme is given

by (see [11] or [ 17,p.6.8])

n
~0 n n At n n n nh n.n
= - —_— - 5
g (1 Blu, + Bu, , +a= {*h‘*1+|' Ui £ wh(xi'ul't 1h (4.5
i
n+1 n at” n n n n n _n
ui - ui = m {{a~B) whﬂxi+1,uj+l,t b o+ (ZB-l)wh(xi.ul,t )
SRR e
(4.€
n n n ~ ~m ~n *~h ~ e ~n o~
+ {l-a=B) oy (xg geup L) e W (kLU - b txy_gauat)]
o~ ~ 1 ]
where a? = x: + Bh:, tn =t" 4 u(tn+ - tn) ; the predictor term u:
is an approximation of u(;i,zn) and wh € vh' GL € G; are respectively
the solutions of
- n, n ’
£ grad ¥ grad v, { up' ) v updddx for all v ¢ v, (4.7
and of
~ ~ ~n, ~ ~n ~ ~
£ grad ¥, grad v, { up' () V) Gcpu (x))dx for all v, e ¥ 4.9

where ;: and Gh are the analogs of u: and Vh. Our choice of the
parameters a = 1+V5/2 , B < 1/2 is called “optimal® [11]. The
choice B = 1/2 ensures that the scheme {4.5), (4.6) is space centered;
furthermore, when applied to Burger's equation, this choice of the

parameters minimizes the dissipative effect or the scheme.

_21-

It fellows from (4.7), (4.B) that two new meshes must be genera-
ted at each time step : one for the calculatlon of wh at time

tn, the other for the computation of Eh at time £, wWe remark

that also in the case of the fixed mesh, the discretized version
of Eroblem P; is solved on a different grid for the calculation

of w;; the z-coordinates of the mesh points remain unchanged while

their x-coordinates become {(-R+ih/2), & = 0,1,3,...,2k+1,...,2N-1,2N]).

In order to insure the stability of the Su'B scheme, we choose

at™ such that it satisfies the Courant-Friedrichs-Lewy (CFL) condition
ae”sn " < (4.9)
max

where hm:x = Tax [h?} and where C” 1is an approximation of the maximum

¥ n ¥ n
of|5;~| on both sides on rh . Since S e calculate C as
c" a max L max{lq:x (x:-UTll-lq:x(x;-U:3|’]-
Guly e rp
177 h

In the case of the fixed mesh, we calculate Cn as

[ [
Wh(xi.zjﬂl_vh(xi.z ) |

n h|

cC = max
DsisN k
0sjsm-1

b. Boundary conditions.

We have already remarked that since the lines x = *R are characteristics
of the differential equation {4.1), no boundary conditions are
necessary to define the analytical problem. However, we need numerical
boundary conditions; we obtain them by approximating the equations

on the characteristics

u {tR,t) = ¢ (+R,u{tR,t),t) {4.10)
t x

In aorder to find a suitable scheme, close encugh to the Su'B scheme

used to approximate u in the interior of the domain we rewrite (4.6) as
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iy Y1 ¥ TVt
" Je 2z —2—A-— + Bax 3
At X Ax
“n ~n
13 _¢1—1 . vy -wl 1
- Ax Ax

in which we formally let ax and At tend to zero. We obtain the
equation

1 ., 3y

= — = +
“t * Za [(20 h Ix Bx]

which is completely formal but motivates us to discretize (4.10:

by means of the following analog of the second - order Runge - tutta

scheme (see for instance Hildebrand [7,p.146]) .

n n.n
~ n n ¥ X th)

Q n
h0
n . n._n ~ ~noepoen
url+1 =" Atnr(l— l_, Wh(xl.ul,t ) N 1 wh(xl'“l't }
0 0 [ 20 K" 2a T .
s} 0
in the point x0 = =R and similar formulas in the peint xN = F,

These boundary conditions are necessary as sooh as r: intersects
the lines x = #R. In the case of the fixed mesh and when F: irter-
sects the lines z = 0 and 2 = 1, we either use them or calculate
u: only between the approximated values of S1 and Sz; in the casce

of the adaptive grid, we always compute o

h only between the

approximated values of S1 and sz.

€. Computation of s1 and 52.

Let s:' and S be the approximated values of s,(t") ana sz(tn)
n

We assume that s'l1 > «R and that s; < R and define k|

and k; by

23~

k" = min {i,x" > &™) ana K" = max{i, »x" < 5"}
1 i 1 2 i 2

The second order Runge-Kutta method that we also use to

compute u at the boundaries yields

'l'r'h(xnn ' U:n ' th
s =57 - aa” L L
1 1
n
u n
Ky
n
¢h(x:" e U )
50 = s” 4 qar” 2 2
2 n
1-u
kn
2
and
whlxnn. unn.tn) Eh(;En-GEann?
st e -’ o - L b WP .
|| 20 un Za ~n
n on
kl k1
v x" 0", e votxm L WP e
n+1 n n 1 bk 2 1 PR R
s, =5, +at" -1y 2 + — 22
2 2 2q 20
n ~n
1-u n 1‘U~n
k2 k
where
? = min{i| ;: > E?} and E; = max {i|;f < E; ).

We do not impose any linearized stabjility condition on Atn since

it would be less constraining than the CFL condition {4.9).

n
d. Some practical details about the computation of N
In the case of the fixed mesh we set

n+1 1

+
uy (x) =0 for all x < S?

n+l

L. o]
u, (x) =1 for all x 2 S2

{4.11}
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+1
and use formulas {4.5), (4.6) to calculate un for 5. Numerical results.
i n+l n+l n+l n+l
™, k™ we then defi on (s 1 b
Lelky ky We then define u, | v 5.1. The finite time results

linear interpolation. An example is shown in Figure 4.1.

n+1 As a test case we have chosen the solution of Problem P with the initial
In the case of the adaptive mesh, we define u by (4.11) out-

—n+l condition
side of ts?*l,s;+1) and calculate values u?+ in previously
computed mesh points by using formulas (4.6}, (4.7). This ylelds
n+1 o -R < x < =1/2
a first discretised interface at time t .
2x+1 -1/2 ¢ x < I/6
i+l n -n+l n _n+t " oAl g a":l v, ™ upix) =4 -x+1/2 -1/6 € x < 1/6
(£ JONIS )y ) e e a5 um )L (S, 2x 176 < x < 1/2
kl-l k1 L ko kz 2
1 1/2 Sx § R
4.12)
n+t n+l _n+l Figures 5.1 and 5.2 represent. the streamfunction for several values of the height
Then we make a new distribution {x } of the interval (s .S }
i 1 2 z and the velocity field in the fresh water region, corresponding to the

based on a new distribution of coordinates p along the interface

initial interface uolx). We observe jumps in %% at u_; this corresponds to

1]
the matching conditicns stated in Corcllary 2.4 and the shear flow described

and use linear fnterpolation to compute {u:+1}.
in [9]. Moreover the interface is a line of local extrema of ¥{.,z} for all
z ¢ [0,1) and of ¢{x,.) for all x ¢ [-1,1). Due to this behaviour the space
steps must be taken small (at least in a neighborhood of the interface) in
order to obtain a reasonable approximation of the stream function alcng ru.
When using the fixed mesh, we take h = 1/50, k = 1/50. With the adaptive
mesh, the triangles generated near the interface are smaller than these in

the far field (see Figure 4.3).

The computations of Figures 5.3 and 5.4 have been performed in the domain

- 1= (~1,1} * {0,1) with the fixed mesh procedure. The solution u with initial
condition Uy is computed by means of the S“B scheme with a, B optimal while
use is made of the discretized equations for Slit) and Sz(t). We have taken
the time step

n n n n n
At = 1/2 At =
/ cFL  “here ntCFL hmax/c
Computations were also done with ﬁtn = AtgFL. Then one observes small jumps

in the velocities of the toe él and the top §, which seem to occur at
+* 1
values of t where the difference !Slttn lJ - Sl(tn)lor lszttn+ Y- Szttn)l

is equal to h; this difference then has the maximum value allowed by the
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CFL condition. This has motivated us to perform the numerical computations
with ae™ = ac? /2.

CFL
As stated in section 4.2.b, the interface can also be computed withou: uze
of the differential equations for 5l and S2' The resulting curves differ

very little form those shown in Figure 5.4.

when the automatic mesh generator is used, fewer grid points are necessary.
Consequently larger time steps are allowed and the program requires less
computing time. When comparing the results with those obtained by means
of the fixed mesh {Figures 5.3, 5.4} we find that the differences in the
position of the free boundaries sltt) and Sz(t) are less than 0.02,

Finally we observe that the discrete analog of the conservation of mass

equation Iu(t) = qu is satisfied by the numerical solution.
1 I

5.2 The large time bchaviour

In order to verify the convergence to a constant for large t we perfcrmed

a numerical test with the following initial condition
= - 4
uON(x) 1/2{tanhi{x) + 1} 1 5 x 1.

The interface curves drawn in Figure 5.5 have been obtained with the fixed

mesh. In this case the values of AtgF are much larger than the space step

L
h which leads us to choose Atn = h.

we remark that the Dupuit approximation is verified when the slop2
of the interface is sufficiently small. Figure 5.6 shows the streamfunction
at different cross sections perpendicular to the x-axis, for the interface
Yo We observe the ¢ is linear in 2z on each subdomain which means that

the component qd, of the velocity is constant in each fluid.

Figure 5.7 shows the long time behaviour of the solution u of problem P
with initialconditionuo in the case of a strip. The computations were p=r-
formed in the domain ﬂR = {-3,3) x (0,1) with the adaptive mesh. One ob-

serves that for large t the interface behaves as a rotating line,

Next, we& compare the computed solution with a similarity solution u_ of
the simplified problem C of Section 3, namely the similarity solutizn
with iritial value us(0) = f; then qo = 1, The points SI(D) and 52(0) are
the same for both initial conditions uo and f; moreover , we have that
flu -fl1dx = 0.

1 0

It foldows from [6] that the curves sls(t) and 52 (t) corresponding to
s

the similarity solution are given by

__ gt _altt}
Slslt) 5 and stttl =

where g is the function defined in Theorem 3.2. In Figure 5.8, the values

of S2 ayd st are given at several times.

t szth) {compured values) st(t)
1.428 1.26 1.13
2.770 1.69 1.56
4.570 2.14 2.03

Figure 5.8
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Figure 5.7 Convergence to a similarity soluticn. The interface is
computed at t=0.24, t=0,6, t=1.43, £=2.77, t=4,57

with the mesh generator.
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1. Introduction,

In this paper we consider the nonlinear partial differential equation

{1.1) u, = (D[u)Nuxl)x

where the functions D and 4 satisfy the hypotheses

R e -1,10 0 2=1,1)1, #(0) = 0, ' (-1) = $°¢1) = 0,
' > ODon (~1,1}.

and

Hy : D e c'tfo,11) n c?(10,1)), D > 0 on (0,1), D(O) = B{I) = O,

5" < 0 on (0,1).

The main difficulty in studying equation (1.1} 1s that it has two kinds
of degeneracles, namely one in points where u = 0 or 1 and one in pointa
where u, = 1 or ~1. An equation of type (1.1) arises in the theory of

hydrology, with D(s) = s{i-3) and #{s) = s/(l+92). We glve its deriva-
tion in section 2.

* This author's research was supported in part by funds of the Delft
University of Technology, The Netherlands.
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We are interested In the following three problems related to equation

(1.1) 1 the Neumann problem on {-1,1) with the natural boundary con-

ditions D(u]ﬁ(ux)(il.t) =0 for ¢t >0, the Cauchy problem and a

related Cauchy Dirichlet problem on (0,=} with the boundary condition

u{0,t) = A for t >0, A e (0,1). For each problem we assume that the
lnitial function Yo is Lipschitz continucus and such that 0 s uy s 1

and -1 s u6 S 1 a.e. in the corresponding domain. For the precise assumptions

we refer to section 3.

In section 4, we show that solutions of the three problems satisfy a
contraction property in Ll. It then follows immediately that each

problem has at most one solution.

Considering related uniformly parabolic problems and using the monotony
of the function ¢ , we prove that there exists a solution of each
problem (for the Cauchy-Dirlchlet problem under some extra assumptions
on the data). This is done in section 5.

In sectjon 6 we study the large time behaviour. In the case of the

Neumann problem, we show with the help of a suitably chosen Lyapunov
functional that the solution converges to a constant as t + « . Fer

the Cauchy problem, we give conditlons on the initial function under
which the solution converges to a similarity solutlon as t + « in the
case that Dlu) = u(l-u). Finally, we show by means of a method based
on the comparison principle that the solution of the Cauchy-Dirichlet

problem converges to the unique stationary solution as t + = ,

Other doubly degenerate problems, with differential equations of the
form

(1.2) u, -(w((ﬁtuhx))x

have been considered by several authors : in the case of the Cauchy
problem, Kalashnikov [15,16] glves a method far studying the existence
of a solution and proves some properties related to the support of u.
Bamberger [4] constructs a solution of the Dirichlet problem and remarks
that it has at most one solution such that u, € Ll. For the study of the

semi-group solution we refer to Benilan & Crandall [6] and Cortazar [7].
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Atkingon & Bouillet [2,3] study similarity solutions for the Ceuchy-

Pirichlet problem and give a comparison principle for solutions sa=ig—
1

fying u ¢ L . We remark that the methods used in thig paper tc study

the large time behaviour of solutions could also be applied to solu-

tions of the differential equation {1.2),

Acknowledgerent. The authors are very grateful to M.Bertsch far the
many discussions which have been at the origin of this paper. They
wish to thank Ph. Clément for pointing out the contraction property,

R.Kersner for showing the articles of Kalashnikov and L.A.Peletier
for many inspiring comments.

2. The physical derivation of the problem,

Consider the two-dimensional flow of fresh and salt groundwater in a
homogenecus coastal aquifer, which is vertically confined (with height
H} and horizontally extended. The fresh and salt groudwater have a
different specific weight, Tf and Ys respectively. In addition to external
factors, the difference in specific welight induces a flow and thus a
movement of both fluids.

It is common practice in hydrology to assume that the fluids are separated
by a sharp interface, e.g. see Bear [s]. Adopting thia assumption, it
is then sufficient to know the evolution of this fresh-salt interface in
order to determine the movement of the fluids.

In this gection, a derivation of a differential equation is given which
describes the fresh-salt interface as a function of position and time.
The analysis is based on the work of de Josselin de Jong [14], further

references are given thera.

4
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Fig.l.The distribution of fresh and salt water in an aquifer.

Let the flow take place in the xz-plane, The height of the interface is

Qencted by {(x,t) : when 0 5 z < Lix.t)only salt water jg Present, when

£{x,t}) < z < H only fresh water is present. Here t denotesthe time.
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(2.2)
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(2.4)

(2.5)

(2.6)
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Further, let a denote the angle of the tangent at the interface
with the horizontal and letn ands I denote the local orthogonal
coordinates, normal and tangential to the interface (see flg.1}.
In both fluids, the specific discharge q , the pressure p and
specific welght y are related through Darcy's law as :

L} =
4y toradp, + ye =0, 1=1,s,

where u is the dynamic viscosity of the fluids (which 1s assumed
here to be the same for both fluids), k is the Lntrinsic per-
meability of the porous medium and e, is the unit vector in the
positive z-direction.

If the flulds are incompressibla, the following continuity condition
1s required at the interface :

qf - q5 =0 atz =g,
n n

At the interface, the fluids must also be in equilibriwm. This means
that the pressure on either side of the interface must be equal :

Pg-p, = 0 along the fnterface. This implies that

i S
i N at z .

Equations (2.2) and (2.3}, written out in x and z coordinates
become

tqf - ) sina - (qf - q, Ycosa = 0
x x z z
and

ap Ip ) ( p ip )
f N ) . f 5
(_ax Tox /€058 " \gg ~ gy Juine =0

Substituting Darcv's law in {2.5) vields

u u
@ -4q_ ) =cose + {q, -qg_ ) = sina = sina {y_ -~ Y.,
£y Sk X t. %2 x 8 f

2.8)

{2.9)

{2.10}

—6—

Then from (2.4) and {2.6), the unknown (qf -aq, ) can be solved:
x x

tana
9 -9, = [e—
x x 1+tan" a

at z = E,

whera T = E (Ys =Ygl Here (2.7} represents the x-component of
the discontinuity which occurs in the tangential component of
qp - 9, at the interface : this is the shear flow cbserved by de

Josgselin de Jong.

The total fresh water discharge through the aquifer in the positive x-
direction 1is given by

g, .ty = q, (x,z,tldz
x Elx,t) “x

The corresponding expression for the saltwater is

§ix,t}
stlx,t) - I q, {x,z.t)dz,
0 x
When the aquifer is confined in the sense that 9¢ =g, = 0 when
z z
z =0 or z = H then the following continuity equations hold:

a0
£, o
ax 3t
and
Ele;
S 3

x 0 "ot

where n denotes the porosity of the medium. Consequently, the total
discharge

Q=0 +o, .
X X

does not depend on x : 1t is considered here as a given constant.



(2,11}

(2.12}

{2.13)

(2.14)

(2.15)

e

Next a gimplification is being made which is related to the Dupugt-
approrimation in hydrology : it ls assumed here that the horizontal

components of the specific discharges qf and qs are constant ower
x x
the height of the aquifer. Thus

9 (x,2,t) = 9 (x,E,t) forf <z s H
X

and

qs (x,z,t) = qa (x,£,t)
X x

for 0szs g ,

Strictly speaking, this simplification is only valid when the inter-
face is rather flat : thus for large angles a we expact this model
to break down.

The total discharge can now be written as

2o vQ, Tap GO -G v g, E0E

From equations (2.7) and ({2.13)the unknowns q (x,8,t) and 9, (x.£,t)
x

x
can be solved : for qf one finds,

x

a; (x,§,t) = gergtARA
x

I+tan"a

Finally, ewpression (2.14) is substituted into equation (2.8} and the
result into equation (2.9), This gives the partial differential
equation

£)(
nt:t=(m-s)q+!‘m—£)£| 3 lx '
+Cx

{2.16)

where the subscripts t and x denote differentiation with respect
to these variables and tane = Ex is used.

Settingnew H=T e |, 0w~ ) and Elx,t) = ulx,t), (2.15) becomes

u
X
ug {u{l-u) 2)x+l u,ooo.

14u
x

Observe that i{n the case of the Cauchy problem, the term Aux can
be eliminated. We set x = x + At and ul(x,t) = uix,t). Then since
u, o=+ lux + u,, we have that
- ey
ut-(u(l-u) — ) .
1+u
x
x

In this paper, we study the following problems : the Cauchy problem

Yy +
u_ = (u(l-ul ) for (x,t) ¢ R x R
t 2
1+u
X x

uix,0) = uO(x) for x ¢ R,

the Neumann problem which is interesting {n its own right and which
is usefu} for understanding Problem C

u
u_ = (u(l-u) X ) for (x,t) € (-1,1) = gp'
t ]
t+u
x
u
) 4 +
N uli-uj 5 =0 for (x,t) € {-1,1}) x m
1+ux

uix,0) = uotx) x e (-1,1),

and the Cauchy Dirichlet problem
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u, = (u(1-w 2 + 2y for (x,t) ¢ ' x g'
t 2 x
1+u
X x
+
cD u(D,t) = A te R

+

uix,0) = uo(x) XeR N

with A 2 0 and A ¢ (0,1},

Instead of studying these three problems with this specific Aif-
ferential equation, we consider the more general cape where the
nonlinear term has been replaced by (Dtu)tb(uxllx. where D and ¢
are glven real functlons such that D defined on the interval [0,1]

and ¢ on [-1,1] satisfy the hypotheses H, and HO'

-10-

3, Defini-ions.

Let us firs- give a definition of a solution of the three problems and
astate for each of these problems the precise hypotheses on the initial

t4
function uo

The NHeumann problem
u, = O ) x,t) € (=1, < B*
N D(a) #lu) =0 (x,t) € {-1,1) x B

ui«,0} = uoixl x e {=1,1} ,

where uo satisfies the hypothesis

L1,
. - - ' g e,
HON.chﬂ (1,1),05u051, 1Su0 1 a,e

Definition 3.1. wWe say that u is a weak solution of Problem N if
it satisfies for every T > 0

W w et W 7L, Ll with g e (-1,0% (0,1
{i1) CSuSI.,—ISuxSla.e.i.an,,
(118) =2t.,0) -uo(.):

tv) M lu, v+ Dtuletu) ¥ ) =0 for all ¥ e v20,7 0t -1, 1),

Qe

The Cauchy problem

u, = (D(uélu_}) x,t) ¢ R * K
c { 1 Xy
ux,0 = uo(x) x ¢ R N
where up s:tisfies
], -1
Hootug e W (R) , 0% uy 1, -1 s “6 51| a.e. and uy - H €L (W

where H denotes the Heaviside function: H(x) =1 when x>0 and

H(x) = 0 when x50,
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Definition 3.2. We say that u is a weak solution of Proslem C
if it satisfies for every T > O

(1) uELmuLT;w“"(m)),utELzu-mR)x(mT))fora11R>0=

(i1} 0susi, -1g u St a.e. in QCT where QCT = R ¥ (0,1T);

(141} wu(.,0) = uol.! i

Uv) Jf (u ¥+ Dawetuy ¥} =0 for a1l ve 20,7 ; ulim

Cer

such that § vanishes for large |x| .
The Cauchy-Dirichlet problem

u, = (n(u)uux))x +du {x,t) ¢ B* « 5

CD § uf0,t) = A tent

uix,0) = uo(x) xe¢ mt >

where the constants A and A are such that A 2 0 and 0 < A < 1 and
whare ¥y satisfies the hypothesis
1

HDD Pug e '.(0.") n Ll(O,-) , 0% uy 51, -1 ua <1 a.e., uDIO} = A,

Definition 3.3. we say that u is a weak solution of Problem CD -f
it satisfies for every T > Q

(1) v - A& LT(0,T 1 V) where v = (v ¢ W RY), vi0) = o) ard
u, € L2((0,R) x(0,1)) for all R > 0,

+
(i1 O0sus) , -1 g u $1 a.e. In r where QD'r = R x{0,7);

{i14) ui,,0) =ugla; (4, 1)

W ) fu v G + vJ=0 foraliy ¢ L2(0.T;l:](0,-ll
Q
DT

such that ¢ vanishes for larqge x.

We remark that if y ig a solution of any of the three problems then (4.2)
1

-
ult) e W' () for all t » 0, where 91 denotes either {=1,1) or

+
R or R . This is a congsequence of a result given by Temam [19,

Lemma 1.4 p.263].

~]2=

4. Contraction property and unigueness of the solution.

In this section we ghow how solutions of each problem satisfy a contrac—
tion property in Li. The uniqueneas of the weak solution follows immedia-
tely,

Lemma 4.1, Let u be a solution of any of the three problems, Then
D(u)¢(ux)(r.) € C{) for a.e. £>0 where fl denotes either {-1,1) or R orR".

Proof. We prove Lemma 4.1 in the case of Problem N. By Definition 3.1
u, € Lz(-i.l) and u, = (D(u)¢(ux))x for a,e. t > 0. Thus

OWHa ) € 121, for ae. £ >0

and consequently

D(u)@(ux) € c(~1,1]) for a.e. t >0 . o

Remark 4.2. Let t be such that D(u)@(ux)(t) € C(I). Then ux(t) is

continuous as a function of x in every point x such that u{x,t) € (0,1).

Theorem 4.3. Let u and v be solutions of Problem N with initial
conditions Y and Y5 respectively. Then

Hutt) = vie)| 1 for all ¢t > 0 .
L(-

5 flug-v, |l
) 0 0% -1, )

Proof. Let W dencte either u or v. By Definition 3.1 W satisfies for
a.e, t >0
2
W oEL (-1,1) and LA (D(H)M"xnx
and

D(H)Mﬂx)(tl,t) =-=0.

Multiplying by sgn{u-v) the difference of the equations for u and v yields
1

1
J_1 (“"’): sgn(u-v} -J ' {D(u)'#(ux) - blvIglvy) }x sgn{u-v)

for a.e. t >0
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(4.4)
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where sgn 8 » =1 if 8 <O, 0 if s » 0 and 1 if 8 > O,

Next we use the following lemma, given for instance by Crandall & Pierze

[8].

Lemma 4.4. Let G : R+ R be a Lipschitz function. If w€w'*'(0,TiL (-1, 1)),

then 6() € 4" 0, 1L -1,1) and o) - ' & s

It follow from Lemma 4.4 that
(u*v)t agn{u-v) = ]u—vlt a.e.

g0 that (4,2) implies that

1
3t llo-vl) o - ]_1{v(u)¢(ux) - DWv O}, sgn(u—v)

-1,1)

for a.e. t >0,

We show below that the right hand side of (4.3) is nonpositive for a.e,
t > 0. This corresponds to the accretivity in 1.1(-1,1) of the operator
Au = —(D{u)¢(u')) "’ when defined on a suitable domain.

Let t be such that (4.1} holds ; since u(t) and v(t) are Lipachitz comti-
nuous the open interval (-1,1)~{x|u{x,t) - v(x,t} = 0} is the union f
open intervals vhere either u-v >0 or u~v < 0 . Since the proofs for
both kinds of intervalk are similar, we only consider the intervals where

u=v > 0. In order to simplify the notations, we omit the variable t in
what follows.

(i) if [a,b] = (~1,1) is such that u-v > 0 on (a,b) and u = v in
a and in b then

b
I (@()du ) ~ D(vI$(v D) sn (u=v)

= (D) (¢Cu) = ¢(v, I}(b) - (D) (dlu) = ¢(v )I}(a) .

=14

Then if u(b) = 0 or 1 the first term on the right-hand side of (4.4)
is equal to zero and Lf 0 < ulb} < 1 it follows from Remark 4.2
that ux(b) and vx(b) are well defined; then ux(b) = vx(b) and this
term is nonpositive; similarly one can see that the second term on

the right-hand-side of (4.4) is also nonpositive.

(41) Lf (-1,c] € (-1,1) 18 such that u -~ v > 0 in {-1,Cc)} and
u{c) = v{c]} then, in view of the boundary condition,

c
-Il (D(uN(u_“) - D(\J'N»(vx))x sgniu - v) = {D(u)“(ux) - vin} (c)

which, similarly as in the case (i).1is nonpositive.
Finally, one finds that

d
E”“'V“ 1 s 0 for a.e. t > 0.

and thus

Nutey - vie) || g lu, - vl
L-1,1 e e

1 for all t » 0. o
L {~1,1)

Corollary 4.5. The solution of Problem N is unique.

In what follows, we prove similar properties for the problems € and
Ccn.

Lemma 4.6. Let u be a solution of Problem C.

Then uft) - H EL' (R} for all t»0.
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0 +n
Proof. wWe show below that [ utt)<m, The proof that [ (1-uft)) < =

- 0 Proof. corollary 4.7 follows from Lemma 4.6 together with the
is similar. Tt fo)lows from Definition 3.2 {iv) that u satisfies fact that u(t) s Lipschitz continuous for all ¢t » g, o

Juteyp = ugd +
R R

O = rr

W)
{R(DU)¢ux, xw

We are now in a position to show that the solution u of Problem c

1 defines a contraction in Ll(nl .
for all ¥ ¢ H {R) with Compact support and all t > 0. Let R > ¢
be arbitrary. The characteristic function x[_n 0] of the interval

2 Theorem 4.8. Let u and v be solutions of Problem ¢ with initial
[-R,0) can be constructed as the limit in L°(R) of H functionsg

functions u, and vy respectively. Then
with compact support, Thus

ety ~ wier)) ' 5 ”uo - vl for all t > 0.

t
{!u(t)x{_n‘ol a f U X[-gr,0] * g J (Dtuw(ux))xx[_mo] m L w
R R

Corollary 4.9. The solution of Problem ¢ is unique,
which implies that

0 t x=Q Proof of Theorem 4.8, Let R > I be arbitrary, Then, for a.e. t > O
Iu(t)x[-a,o] s J uy + f D(u)ﬂux)] .
R - 0

X = R
d R
I Hu-vl . = f (O(uléiu ) - D(v)ﬂ\rx})“l sgn (u - v) ,
Finally applying Lebesqgue's monotone convergence theorem cne findg L™ {-R,R} -R
Using the proof of Thecrem 4.3 we deduce that for all t

[#]

Juey s [ 4 ce. o

- -t 0

4= t

_I_Ium - v(t)lx[_R'R]S{; {(]n(umuxal + ID(v}vi)l)(R.t) +
4.5
Corollary 4.7. Lat u be a sclution of Problem €. Then, for all N
t>0, uix,t) + 0 ag x + "™ u{x,t) * 1| a5 x » 4=, + (lD(uM(uxH M ID(V)vi,IH"Rﬂ}dt * ”“0 - vO“

l:.1 [R)

Let us denote by fR the integrand in the first term at the eight~
hand-side of (4.5), Since by Corollary 4.7, fR tends to zero as

R+ = for a.e. T ¢ (0,t) and since e || $C, it follows
R 1
L {0,t)
from the dominated convergence theorem that T fR tends to zero
0

as R + = , ywhich completes the proof, a
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Similar results hold for the Cauchy-Dirichlet Problem CD,

namely that

(1) uter € LrY for a1l t > O ;

(i1} u(x,t) » 0 as x + += for all t > Q0 ;

({1i) If u and v are solutions of Problem CD with initial

functions u_ and vc, then

0

llutey - vied ] 5 Jlu, = v I for all ¢t > Q
LY S RNt ¥

Since the proof of properties (1) - {iii)is very similar to the

one given ahove, we omit it here.
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5. Existence of solution.

In this section, we adapt a proof of Xalashnikov [17] in order

to show that there exists a solution of each of the three problems
{in the case of Problem CD under an extra assumption relating D,¢,)
and A). We first consider the Cauchy and the Neumann problem; we
then show how one can modify the proof in order to obtain the
existence result for the Cauchy Dirichlet problem as well,

We consider the following problems, with n ¢ N large enough

u, - (Dﬂ(an(ux})x in Qn'r t= {=n,n} x {0,T)
Pn ux(-—n.t) a0 ux(n,t) =0 for t ¢ (0,T]
ulx,0} -uon(x) for x € (~a,n} ,

where

2 i 1
Dn € C (R) 1is such that ans) = D{s) for 5 ¢ [H f l--';]
andli.nf DsDnssupD on R,
thi-4 to.1)
n n
and
¢ € CZ(R) is such that ¢ {s) = ¢({s) for s ¢ [--l+l 1--’-]
n n n’ n
and 1 tnf $' S e <sup ¢ |
2 1] D11
[-14+—,1-=] '
n n
and where
H. tu_ eC (R) l5u S!--l— Iu’lsl--l- ul (x) =0
On On ''n On n' “on n’ “On

for |x| Zn, u,, converges unjformly to u, on all compact subsets
of R as n + =,

We show in the appendix that given ug satixfying the hypothesis HOC'

one can construct a sequence of functions IuOn} satlafying HOn'

First we prove a comparison principle.
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Lemma 5.1. Lat vy and u, € Cz'l(an,r) be two solutlions of Broblem

L with corresponding initial functions Ugy S Uga- Then ul(t) H uztt)

for every t 2 O,

Proof. The function z ;= uy, -y, satisfies the problem

z, = (Dntul)hn(x,t)zx)x + (Bn(x.t)¢n(uzx)z )x in QnT

z (-n.t) =0 zx(“'t) =0 for t ¢ (0,7]

z{x,0) = um(x) - umlx) for x¢ {-n,n)

where

1
A tx,t} = é #p(0u Ge,t) + (1 - ©) uy (x,t))a0

and

1 1
B (x,t} = é D (Guy(x,t) + (1 - ©) w,(x,e}}d0

Since z{0) s 0 , it 18 a consequence from the standard maximum
principle that z{t) < 0 for all t ¢ (0,T]. o

Lemma 5.2. Problem P has a unigue classical solution

u e sz (511'1'] for each a ¢ (0,1). Furthermore we have that
Leouw s1-L ang crslsy 511
n n n n nx n

in anT .

Proof. The existence and uniqueness of the solution of Problem
Pn follows from [18, ‘Theorem 7.4 p.491 and a remark at the end of
Section 7 p.492]. Also we remark that both :_.— and 1 - % satisfy
problem P which, by Lemma S.1 implies that % Su s - %, Next
we show that |unx] €1 - -:I We set w = u_ . Using the linear

2+
theory (see for instance in [12, p.72]) we deduce that w e C° °(Q

nt
Thus w € ctén,r) n cz'ltqm,l. Differentiating the differential

equation in L yields

-20-

w, = D(unM;\(w)wxx + (D(unNI'_'l(\f)wx + ZD'(un)Hdt'n(w)

r " 2
+ 0D (un)¢n(w))wx + D (un)¢n(w1w in Qr
wi-n,t} = 0 win,t) =0 for t ¢ (0,T]
wix,0) = u' {x) for x € (-n.,n)
On

In order to simplify the notation, we rewrite the equation above as
w, = 'u(a:,tlw)m + b(x,t)wx - clx,t)w

where a,b,c are continuous functions and a > 0, cz 0.

The function w ~ 1 + }11' satisfies

AGE W-1+3) 4 b (M-149 - et w-1+Y) - o144
LLIE"¥) Ny n n
in Qn’l‘
\
wi-n,t} - 1+% S0 wnt) -1+-s0 for t € (0,T)

wix,0} - 1 + i- <0 for x ¢ (-n,n)

Thus by the maximum principle w~=1 +I_ll- % 0, that is um‘ S 1-—

The bound u_ 2 -1+ 1 follows in the same way. a

Lemma 5.3.

o3

b 2

I u s C(R,T) for all R s n-2
nt

_R N

where the constant C({R,T) does not depend on n.

Proof. Let m,ne Wsuch that 0 <m<n, Set

1 X sm-1

m - x m-1%<x <$m
;m(xh X 2m

(m(-xl x <0 .
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We multiply the differential equation for u, by l;uz to obtain

u
nt
the equality

[102, 62 = 1 (otetu)) vy <

m
nT nT

that is, after integration by parts

”unt m - ‘”Nun)’(unx) unxt

2
t, -2 [Iot et du g oon
nT nT Qn'I'

nt 'm'm

Thus

2 7
Hunt "m -

a 2
[Jote ) 55 Flu de - 2[fotu )dtu du &Lt
nT nT Qn’l‘

nt 'm m

' H
where the positive function F 1s defined by F(s} = Jétrar,
Thus 0

72
J!u ot Imu (T)}F(u_ m)c;
-n

] _
I,

s f o(u, IF{u )C2+{2 sup D sup O( /I !;'2 ) + sup D' F

o 0 E 0,10 f-1,1] m fo.1) r.f‘f?n]

(2 Ny
2 )

which we rewrite as

2 2
H LIV Y < clm + cz\fﬁf‘(ﬁ” u2
Qn'l‘
nt

Finally, we find that

T m-1

[ ] wh

0-m+1

S Ci{m,T)

which concludes the proof of Lemma 5,3. a
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Theorem %“.4. There exists a solution of pProblem C.

(5.1}

{5.2)

1

Proof. Fix R > 0, Since 1/n s u < 1 -1/n and since

u los1-1/n.at follows fromGilding [13] that

b
|un(-l,t‘) - un(x,tn scle -t
for all r » R and for all (x,t), (x,t') e Em, .=+ [-r,R] = [0,T].
Hers the constant C depends on R but does not depend on n. The
gset {u_}

nr>R
exists a continuous function UR and a subseguence {u

is bounded and equicontinuous in Qur+ Thus there

nk}' with n > R

such that u__ converges uniformly to up in ﬁm, as n . Then by a

nk
diagonal process there exista a function u e C(Q ) and a converging
subsequence (uj]such that uj converges to u as j + » , polntwise on

and aniformly on all bounded subsets of Q r Also 1t Eollows from

)

cT
the estinates above that “jx-) u, and ujt--b ue Heakly in L ‘%’ for
all R > Yas j -« . Thus u satisfieu conditions (1), €41, (ii1) of
Definitisn 3.2, In what follows we check that u also satisfies (lv}.

The funczion uj satisfies for 4 sufficiently large:
C{I{"jt" * Dlugelug) *x} -0
CT

for all ¢ ¢ V := {v € Lz(O,T 1 Hltn}) such that v = 0 for large [xl}-

since || ¢(u il - s sup |¢|, there exists X ¢ L7y ) and
ey [-1,11 %t

a subseguence of [ujl, that we denote again by (uj }such that

“‘jx] ->y weakly in L2 (Qm,) .

for any R>0 as j+= ., Letting now j+= in {5.1) yields

fftu v+ pwx 9.} =0 forall b eV
%r

Next we show that .
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(5.3) fiowo - $lu)) ¥ =0 for all y eV
QCT

We first write an inequality which is based on the monotonicity of the
function ¢ and which involves the functions uj. This was also done by

Kalashnikov [17]), for example,

t.at us extend ¢ on R such that ¢{8) = ¢$(1) for 8 > 1 and

¢(3) = ¢{-1) for a < -1 and let vbe suchthatv - u ¢ V. We have, w-th

m<n, Q. := (-mm x (O,T}and § ¢ (0,1]

mT

2 2 :
Jf D) (bt - w,n(‘n‘“j - "')x = Sl vy - sy -v
O Ot

+ 2 H;m & D(uHNujx) - Hvxlliuj -v)
o

z ffc2 Dlud (¢lug ) = $(v ) fay, - v )
Qm'l‘

~6ff ¢ D (dtu, ) - v )2 - Lifpt e, - w?
m hE x [ i
Cur Cor

. 2 1
2 1 - deup ¢ Jft piw ($luy ) = dlv hitu, - vx)-?{{n(“(“}-v’

f-1,11 Qo

Setting 6 = 1/sup ¢' yields
(-1,1] :

(5.4} z

i_;'Ilzom)(uuj“) - ¢tvxl)(5:(uj - v))x z ¢ ffow ll.lj -,

Wt Curr

Since u satisfies the differential equation in Problem Pn, wer also heve

i

~24-

(5.5 2
} ”"‘"”‘“;x”‘m ugd,
mT

= ffmw - 2 - ?
fo u n(ujnomj,g(cm uj)x Ijujt Cm uy
T Qurr

Letting j + = while keeping m fixed in (5.4) and (5.5) ylelds

. 2 _ 2
Q”“:“ c, Q”DM o

'mT 'mT
_ 2 2
(5.6) Q[ID{u)Q(vxl U Gavr)z-c [fotww - w?,
mT Qm’I‘

Replacing ¢ by C: u in (5.2) yields

(5.7 H(utﬂ:: u + b x 2w ) =
Qm,r m X

Next we add {5,6) and (5.7) to cbtain

- 2 o2
ffotu) ¢x VIR W, - BTN 2 ¢ [l - w?

Sur

We set v = u ~ UL with >0, £¢ Lz(O.‘I‘ 1 H‘(R)) with £i(x) = ¢
for |x} 2 m - 1. Then

2
QIJ'D(u)(x—Nux - ue )y e 22’ ffor 62
T QD’I‘

Dividing by u ang letting u 4 ¢ yields

Qﬂmuux S dlune 20
CT
which in turn implies (5.3).
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Next we define the monotone function ¢(s) := [¢(1)7 dr. It follows
¢

In section 4 we proved that u(t)—HcL‘ ({IR) . We show below from (5.8} that

some axtra invariance properties of Problem C, namely that if

u' € thlﬂl o u_{t) € LZ(R) for all t > 0 and that u_ ¢ L2{Q 1. n n
0 X t (o 2 y 2 < II ' a { ¥
we suppose that the approximating functions Uy, are such that _I “nx(t) - I Yon -2 b (un) ¥x ¢ Ynx
n n ht
2
limsupIHU6n 5 f u62 {it follows from the appendix that the construct:or
nee -0 R s 2 [fortu )t du s 0.
of such functions {s possible) Rt
Thus
Lemma 5.5. Let ul ¢ L2(R). Then [ ul(t)s | uw? for all t>0.
® R ! nooa
-:{ u () < J’n u © o
Proof. We multiply the differential equation
u - (m‘_1 Yelo ) Eince the L2-nom is w.l.s.c., this implies that
nxt n nx
by w__ and integrate on Q = (=-n,n) % (0,t} to obtain R 2
nx nt ' ' Jultey s J w'? for all R>0
R " 0
R
‘U“nxt u= i} (D{un"(unx))m‘ Ut 2
nt Qo and finally that Jju®(t) || S fhu W2, .. o
® 2 0 "L°({R)
L (R)
that is
2 2
L]
Lemma 5.6. Let uj € L°(R) . Then u ¢ L (ch).
"2 % .2
t) - )
PRI R (| RTINS
Qo x Proof. The proof is close to that of Lemma 5.3, Here one multiplies
(5.8 the equation for u by U 0
- _ 2
2 é! Dty Jé(u Ju b -2 Ijn(un)’.(unx, U - Remark 5.7. If one assumes that uj ¢ t2(®) , 1t 1s not necessary
nt nt

to use the cut-off Eunctionc'n in the proof of Theorem 5.4,
Theorem S.8.There exista a solution of Problem N,

Proof. The proof is very similar to that of Theorem 5.4. It uses

the same auxiliary problem Pn, but now on the fixed domaln Qm“ o
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We ghall now study the existence of a solution of Problem CO, Ar

essentlal problem hera 1a to find a lower bound on ux(O,t}, which

is obtained by considering a suitable lower solution for the preblem,

Therefore, we first study the corresponding stationary problem

s

Definition 5.9, a function Y,

by

{(n(yu{y-l)' +Ay' =0

YO} =A ; y (=) =0 4ifi > g

Problem SA 1f it satisfies

(1)

(il

Y, € HI(D.R) for all R > 0O

) OSyA

(114) yA(OD

liv)

#uch that ¥ vanishes for large x .

Remark 5.10.
satisfies the differential equation a.e.

Lemma 5.11,

$1,-13%

= Ay yA(“J

If ¥, 1s a weak solution of Problem SA' then =

in R

yi 1 a.e, in (0,

=0 4if X >0

On the set where Y, is positive, it satigfieg:

{1) yi is continuous, (if) Y,

convex

Proof

%

. If L2 1s a weak solution of SA for A >0,

n(yA)¢(yi)

Y, (0) = a

+ lyA =

yA(“J =0

in R+

+

is saild to be a weak solution of

LI 1 +
1{+ :ncy,‘lﬂyi) + Ay, b 0 for all ¢ ¢ Hy(R)

A

Let Yy be a weak soiution of Problem S, for A>pD,

is stricely decreasing, (111) ¥, is

then it sazigfies

(5.9)
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Thus

at points where 0 < ¥, <1, which implies that y; 18 continucus

and strictly negative in those points.

convex in a neighborhood of each point where
define d(x) = - %) on i0,1). Since d*(x) = -

D

Next, we show that ¥y is

D{

x} - xD'{x)

1t is positive, we

thx)

it follows from the concavity of D that 4 is nonincreasing on (0,t).
Let 0 « x, < x, be such that Yx(xli. yA(xz) € (0,A). Then

Ya‘*z’ < YA(“I’
and thus

V) -y ()
D(ya(xz)) 2 D(yl(xl))

which yields

O(yi(xz)) 2 ¢(yi(xl))
and finally

yi(le 2 Yi‘xl"

Lemma 5.12. Suppoge A > 0. Problem S

;m DAY
and only if A s } max ‘= R -9 (~1))

3 has a uni

qU€ weak solution if



(5.10)

{5.11)

~20~

proof. It follows from (5.9} that SA has no solution Lif the con-

dition A < P-:(\A)

this condition holds and construct a sclution Y which will turn out

(-¢(-1)) is not matisfied. Next we supppose that

te be the unique scolutlon of Problem SA'
We deduce from Lemna 5.11 that if 2 is a solution, there exists

L;\ ¢ {0,») such that ¥ is positive and strictly decreasing on

(O'Ll\) and that ¥a "").) = 0. In order to calculate L, and y, on

the Interval (O’Ll, we take as new unknown on that interval the inverse

function x 1= a(yl). It comes to solve

D(yll 1
a.-_¢(-_..._-.. ) on (0,A}
Yy o tyl)
o{A) = O
Thus
A
u{y;\) - - I __.i_......_.._di_
v, ¢ (-)a/Dis))
and
A
d
Ly, = o(0) =~ - [ —=2

0 o"(-u/o(an

so that "’A ~hich by (5.11) has a finite value, and the function

Y, on the interval (O.Ll) are uniquely determined. Note that yhtx) - 0
for a11~x > LA aince Stherwise there would be a polnt X such that

0 < yxlx) <1 and yi(x) > 0 which contradicts (5.9). a

Corollary 5.13. Let § ¢ [0,L,] be such that y' > -1 on (E,Lx).
Then y, « czc("s'.:,ln.

Proof. Corollary 5.13 follows from the fact that the €lliptic equatlon
in Problem s, is non degenerate in IE,LA). o
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2
' -
We remark that if 1 <« xmax' then yh(U) > -1 and Y, € C ([0,]..))).

Lemma 5.14., If 4 = 0, the unique solution of Problem 5, b8 yo = A.

Proof. Integrating the differential equation in §

s yields

Diyglélyy) = C in B

YolOJ -h .

If ¢ = Q, then Yo ™ A. We clalm that Clmust be equal to zero.
Suppose not and let C > 0. Then y, ¢ € ([0,+=1), 0 < yq <1 and
y6 > 0. Since Yo is increasing and bounded from above, it tends
to a constant as z + = . Hence there exists a subsequence (xn}
asuch that yb(xn} + 0 as xn + o, This is in contradiction with
the differentlal equation. Similarly, one can show that C cannot
be negative. o

Lemma 5.15, (1) ¥, is decreasing in ) .
(il) Let Jtn - Amx -1/n; asn+ o, y;‘n
Y:\ uniformly on compact subsets of r" .
max

converges to

Proof. Property (i) follows from (5.10). As n + = , Y, decreases
to a limit ;, which satisfies Properties (1), (il) and (1i{} of

Definition 5.9. In order to show that ; L , one also has to

Y,
h-max
show that y satisfies the integral relation (iv]) in Definition 5.9.

This is done in a similar way as in the proof of Theorem 5.4. D

We are now in a position to prove that there exists a solutlon of

Problem CD, however with some extra assumptions on A, A and Ug+



.

6sa1sa =28
ma.

+
x - A (-M-ll):uOSA on R

HCD if A =0, A 5B := sup {s € (0,1) such that D' (s} = G}
+

it’)«>0,u02yl on R
max

Next we congider the reqularized problems, with n ¢ N large enough

-~ n
u, - (Dnm”n tux))x + Anux in Q‘I‘ 1= (O,n) * (0,7)
co Qui0,t) = A u (n,t) =0 for t ¢ (0,T]

ui{x,0) = uon(x) for x € (0,n)

where 'i.n 1= min (l,)«n) and where uy satisfies

n - 4
HO H u0n e C (R, uon(x) = A for x in a neighborhood of zera, u < A.

On
* -
uon{x) G for x 2 n, Uy, converges uniformly to Uy on compact

subsets of R' as n + = If A > 0, then Yoo z maxf A(Hyin(ﬂ)).

yln]and |u6n| S -y) {0); Lf A = 0, then ug, ¥ 1/n and i“t')nl s 1-1/n.

n
We show in the appendix that, given an initial function u, which satis-
fies Hon and Hoy one can construct a sequence [uon} which

satisfies the above properties,

As in the case of Problem Pn' one can show that a comparison principle

holds and that Problem CDn has a unique soluticn u which is such that
' S s 5 -y!

A “ﬂ’*nw” u, S A and u yA“IO) if A>0O(resp. 1/n € u, 5 A and

"nxs 1-1/n 4f A = 0}, In order tc show that u z yi (0) 1f X > O (resp.
n

1
> - 2 - ;
U 1+ n if A 0} a lowerbound for unxto,.) is necessary.

Lemma 5.16.Suppose that A > 0. Then u 2 ¥y in Q,'; » which implies

2 n
that u_ (0,t) yinlo) for all t ¢ lo,r].

=32~

Proof. Assume that n ia large enough so that LA < n. Since

n
u 0 in Q;l. , we have that u Yln in {1, ., nl = {0,T), Also,

since ¥y satisfies n
n

Dy, Wiyl 1) +% yo = (A -2 )y 20 for % € {0,L, )
yln yln n An n n Yln An

yy, (0) w uw {(O,t) = A ¥y (L, } =0 <u (L ,t) for t ¢ (0,T)

An n An %n n ln'

yln S ug, for x « (0.L‘.~n)

it follows from a comparison principle argument that u z Y, on
n

[O,LA 1= [o,T]. o
n

Lemma 5.17.1f A = 0, w, zy i=max (A-(1-1/n)x, 0) in Q;.

Proof. Again suppose that n is large encugh so that n > A/{1 - 1/n}.
Obvicusly v, 2y for x € [A/(1-1/n),n). It remains to show that

(D{y)#({y'})*' 2 O for x < A/ (1 ~-1/n)
that is
D'{yi¢{l/n~1}(i/n-1) 2 0

which follows from the assumption that A < s. n
Theorem 5.18. There exists a solution of Problem €D,

Proof, From Lemma 5.16 (resp. Lemma 5.17 if A = 0), it follows that
Yox : yin(OJ (resp L 2 1/n-14f X = 0), In particular, Iunxi_'c 1
on Q‘I‘ + thus there exists a sequence [nk} and a function u ¢ C(Qm,)

such that uy tends to u as n, * = uniformly on compact subsets of
k

QD’I" It follows at once that u satisfies condition (1) -{iil}of the

definition of a solution of Problem CD (Pefinition 3.3). The proof
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that u also satisfies the integral condition (iv} of Definitien 3.3
is quite similar to that of Theorem 5.4. However it is convenient
to consider the function 0 :® u-= y, a8 the new unknown function, in

order to have a homogeneous boundary condition in the point x = 0. c
Note that the following results hold .

Theorem 5.19. Let u be the sclution of any of the three problems.
Then u e C{Q) whera Q denotes either (-1,1) x R+ or R x 11+ or
®x n"

Theorem 5.20. (Comparison principle).
(1) Let u, and u, be the solutions of any of the three problems with

initial functions LT E Ugg: Then u, (t) < v,(t) for all t > O.

{1i) Let X ¢ [Az.lll < o, Am] and let u be the solution of Prob_em
CD. Then if yll < Uy < let YA‘ < uft) < yxz for all t > O.

Finally we remark that the hypothesis D" $ 0 is necessary to obtaim

the uniform bounds on Uox in the proof of Lemma 5.2,
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6. The large time behavior

6.1. The case of the Neumann problem. Convergence to a constant.

In tkis subsection, we show that the solution of Problem N converges
to a constant as t + = ; we adapt a proof of Alikakos & Rostamian [1]
and Cafermos [9] based on the use of a suitable Lyapunov functional .
We first give a result in the case that u is bounded away from 0 and .

We denote by u(t,uo) the solution of Problem N with Initial function Uge

Theorem 6.1. Let & s Uy s 1-6 for some § € (0,1/2). Then there
exist constants X > 0 and ¢ » o(8) > 0 such that

1
luttug ~ 5 [ ugh o s ke o,
-1 L (-1,1)

Proof. we first consider the solution uy of the problem Nn

e (D(u)t(ux)) in QN'I‘

x

Nn L -1t =0 ux(l,t) =0 for t e (0,T)

ulx,0) = u_ (x}) for x ¢ {-1,1) ,

On

where u0n satisfiaes

-
uy, €€ (L-1,1D), & s gy S 18, |u6n| s1-1/n,
"Eln(-” = up {1} = 0, u,, converges to uj as n + =

uriformly in [-1,1],

o

Using the methods developped in section 5, one can show that the
solution u, of Problem Nn converges to the solution u of Problem N

uniformly in QN’I‘ .

Let v = u_ -
n n

——

1
3 uOn' Then vn satisfies the problem
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Ve = (D(un)¢[vx))x in QNT

vx(-l.t} =0 vxll,t) =0 for t ¢ (0,T]

1

{x) = u, {x) - 1 i ug

vix,0) = v On 2

for x ¢ (-1,i) ,

On n

1

and is such that [ v {t) = 0 for all t € [0,T). We multiply
-1

by v the equatjon for v, and integrate by parts. This yields

14
2 dt n x nxa

e Sy I

2 1
v - - -{ D(un)¢(vn v

Now since ¢' 2 O with ¢'(0) > O, there exists p > 0 such that
{6¢s)] 2 uls| for s € [-1,13}. Thus

i

1 1
%a"? [vl<s-uint b [v? s-% i b 42
-1 [6,1-8) -1 ™ {6,1-63 -1 "
which implies that
o
1 1 ~ + inf Dt
f v2 s ( I~ 2) e 2 [4:1-8]
n On
-1 -1
Letting n + = , we obtaln
(6.1) veer i, s ke "1t
L7(-1,1)
where o, = % inf D. Next, observe that since v({t) is Lipschitz
[6,1-81

continucus with respectto the space variable, it satisfies the inequality

~36=

1
sllvwll? < vl svzlvi)
L=, L{-1,1}

which combined with (6.1) yields

-g . t/2
veor || s 24w o
L {-1,1)

Theorem 6.2. Let § < Uy S 1 for some & > 0. When t + = , u(t.uo)

1
converges to the constant 3

s Ny

u, uniformly onl-1,11.

Proof. since {u(t), t = O} is precompact in ¢([-1,1]), there axists
a sequence (tn] and a functlon q € ¢([-1,1]) such that

u(tn) + q as tn + = uniformly on [-1,1]

In particular uttn) converges to q in th-l,l}. Defining the w-limit

set of ug by

m(uo) = {we Ll(-l.l) : there exists a sequence tn+ = such that
uf{t ) +w in Llf-l,l) ag t + @}
n n

we conclude that m(uol is not empty, Define V : Ll(-l,l) + R by

= e8s inf v{x) If - ess Inf v(x}) < 4w
Vv xe (-1,1) xe (-1,1)

+ o otherwise.

Since u{t ) 2 ess inf u{t ), we have that, for t > t ,
0 xe{-1,1) 0 0
r

ult) 2 egs inf u(to). This follows from the comparison principie
x (-1,1)

and the fact that constants are solutions of Problem N. Thus

Viule)} < v(u(to}) for all t,t, such that t 2 to



(6.2)
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which shows that ¥ is a Lyapunov functional for Problem M, Since
this functional i3 lower semi-continuous in th-l.l} and since the
orbits are Lyapunov stable (because u satisfies a contraction
property in Lll—l,l)) , it follows from DaFermos [9, Proposition
4.1] that Vv is constant on w(uol. say V = -W, Next, we show that

for any w,_ ¢ wluol

0
wo(x) - W for all x ¢ (~1,1}.

Since

and since L $ 1, it follows that W < |. Now suppose that (6.2) is

not true. Then for sufficiently small u ¢ (Q,1-W) the set

ﬂu ={xe (-1,1) : wolx) 2 W4 u}

has a positive measure, Define

w.(x} if w ix) <W + p
4] 0
Hbtx)={

W4+ if wotx) 2 W+

and let ¥ and w be the solutions of Problem N with intial values
LAY and ¥q respectively. Since 4 =< L 5¥W 4+ pu <1, we have that
§ 5w SW+ pe<l, Thus, by Theorem 6.1, w(t) converges to

(NI
——

¥y @8 t ~ =, uniformly on [-1,11.

~3A~

Hence for given n > 0, there exists T{(n,u) such that

1
1
wit) 2 {!o-nfortz'l'(n.ul.

Since ¥4 < vy the comparison principle implies that w < w.
Therefore for t 2 T{n,u)

Thus

For f

Then

which

Theorem 6.3. When t + = , u(t,uo) converges to the constant

wit) 2

M=

1
1 1
{ %"y I Wwt3 I ¥ = M
(-1,[)\ﬂu H

wit) =

(A1

ixed u , we choose n sufficiently small so that

wit) 2 W+ v for some v > 0.

Viw{t)) <« -W, for t sufficlently large,

is a contradiction,

uniformly on [-1,11.

Proof.

We now take as the Lyapunov functional

1 S L1 §
(2-!nu|1u+5|nu|(w+u1-n Woent sl

2

j
u
1 @
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esg sup  vix) if ess sup wv(x) < + =
xe€(-1,1) *e(=1,1)
Viv) =
+ = otherwise

Then V is constant on w[uo), say V = W. The reasoning then follows asg

in the proof of Theorem 6.2, The auxiliary functicn is now defined as

=1

{wotx) LF wolx) > W -

|

W-q if wo(x) SW-

with § ¢ (0,W). Then ;0 > O and by Theorem 6.2 the solution w of Prob_em

N with initial function ;0 converges to % ;0 as t + =, which in tarn

-1
implies the contradiction

Viw(t)) <

for t sufficiently large. o

Corollary 6.4. There exists th > 0, X>0 and ¢ = o(tol > 0 such that

- 0

1
||u(t,uol - % I ugll ske™ for all b 2 t..
-1 L (=1,1)

Proof. Corollary 6.4 follows from the uniform convergence of u{t)

1
to % I u, € {0,1) ags £t + = o
-1

6.2. The Cauchy Problem In the case that P{u) = u(1 - yj,
Convergence to similarity solutions.

In this section, we first construct a class of similarity solutions and

then give a convergence theorem.

(6.3)

(6.4)
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Fcllowing de Josselin de Jong [14] and van buyn [10] , we look for
a similarity solution of Problem C of the form

1
0 if < =
N3
u (x,t) = f{n) = 1 +n 1f - l = n s 1
| B 2 2 2
1 if n > 1
2

with n = x/g{t) where the function g is still unknown and has to be
determined. Substituting (6.3) in equation (1.§) with D{s) = s(1-s},
we formally deduce that ¢ must satisfy the differential equation

T(e) = 1
g'(t) =29 (g(tl )

wh_ch we solve below together with the initial conditien
g(0) =g, 21,

Note that l/g0 corresponds to the slope of the initial value ustx,O)
for x ((—g0/2,g0/2).

We set
f ds 1 du
¢l = | T = [ —=5 fort 2,
1 93 1/1 ¢lulu

Rerark that since $'{0) > 0, ¢ (42) = 4=, Thug the function ¢ , which

is strictly increasing, maps [1,%) on to [0,=), Integrating the differential
equation (6.4) yields

¢i(g(e)) = 2t + o[gol

and thus

gte) = o li2e + elayhl,
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The function u’ is such that

u {x,t) =0 for x % Sf(t)
s

0 < u.(x.t) <1 for Sftt) <x < Ss(t)
us(x.t) =1 for x 2 Ss{t}

where

sfu:) = -g(t)/2 and S.(t) = gi{t)/2

and the velocity of the two fronts is given by

] ____1_ ] - ...1‘_..
St.(t.) - - ’(q(t)) and Ss(t) ‘(q(t)) .

It remains to show that v, 1g a weak sclution of Problem C. It is
fmmediate that u_ satisfies properties (1) and (ii) of Definition

2
3.2. Since us(l—uslﬂusx) . € L lQCTJ and since uy patisfies equation

(1.1} a.e., it easily follows that u, satisfies the integral equation
[iv) of Definition 3.2.

Next, we give a convergence theorem which extends a result of van Duyn

[11] Ln the case that ¢(s) = 8.

Theorem 6.5. Suppose that D(u} = u{l-u).Let u, be such that uotx) =0
for x <« x, and uotx) = ] for x > xy with -« < * < x, < +=, Then there
exists C » 0 such that

luteug) = eC/geendl | s ¢/glt) for all t 2 0.
L (R)

Proof. We choose 95 = 1; then g(t) = O-l(Zt). In view of the hypothesis

on uo, there exists 4@ > 0 such that

fix~d) s uotx) s fi{x+d) for x € R.
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Then by the comparison theorem
flix-d)/glt)} s uix,t} s £l{x+d)/glt)) for all (x,t) e QCT'
which implies that

[utx,t} - £ix/g(t))| s [ECx+A)/g(t)) -~ E(Ix=-d)/g(t)}]| < 2d/g(t)

for all x ¢ R and 0 S t £ T < =, o

6.3 The Cauchy-Dirichlet problem : convergence to the stationary

solution,

In what fcllows, we show that the solution of Problem CD stabjljizes as t+=,

The idea of considering sets of the form l!+x(t,t+t) was suggested to us
by M.Bertsch,

Theorem 6.6i)If 2> Qanaif u, satisfies the hypothesis H. and is such
that uy s yi for some % ¢ {0,1], then the solution u(t,uoi of Problem CD
converges to the staticnary sclution Y, as t +o , uniformly on R .

{44 IE A = 0 and ug satlafies ch, u{t,uol converges to A as t + @ ,
uniformly on compact subsets of R .

Proof. {1} It follows from the comparison theorem 5.20 that

¥y g u(t,yk lSu(t.uO} S ul{t,y ) sy. for all t 2 0.
max max A A

The proof will ba completed 1f we show that u(t.yl ) and u(t,yil converge
to the stationary solution Y, a8t 4=, Since botITaI;(roofu are similar,

we only show the convergence result for u(t,yl )
max
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1 d that t) t t} )
Using agaln the comparison princlple we deduce tha - fT I+ {w( wt -lD(H( ] + YAHP("'(

{t
o <t yi) + Alw

+y, 0 }

ult,y, Jsult+t,y ) for all ¢, T 2 O

max max for all ¢ € L2(0,1;H(1](:n*)) such that ¢, ¢ irt x 0,1,

Note that
and thus that u(.,yk ) 1s nondecreasing. Since furthermore u(..y‘ }

max - -
S A, there exists a function q ¢ Co'ltll } such that max {1} w(t] +gas t + o, uniformly in "mY

(11) there exists a function )_( € L-I(D,-’) x (0,7)) and a sequence

{t } such that
u“’-.:fA ) *qas t+ = n

max “‘n' 2 2
$iw + y!) ~ yweakly in L°(0,1; L{0,=))
uniformly on compact subsets of R™ . It remains to show that g = Yy x A

Cbviously q(x) = 0 for large x and q satisfies properties (L}, (i1),{11i)

Letting t + = in (6.6) and setting ¢ = ¢(x) yields
of Definition (5.9). Next, we show that g also satisnfies the integral

relation (iv}. In order to have a homogenecus boundary condition i1 @,

it is convenient to make the change of functions

(6.7 [©/ O@+y) X+MI+y )9 =0 forall ¢ e Hé(n+ )
0w :

(4]

=u-y and g =q-y,.
We show below that

Then u satisfies the differential equation

{6.8) [ [ pig+ Y X = 6(q" +y3))¢' = 0 for all ¢ « H;(R*).
0 =t
{6.5) u, = (D{u+yA) L (ux+yil)x + A(ux+yi)

Let v ¢ LZ(O,T:H:’(R"')) . Since ¢ is monotone, we have that

for (x,t} ¢ R+ x R’ . Set

(t } t )

T - n oo ' -
© ) (6.9) g {#mq RIS IR TV M A v) 20
w o ix,8) = ulx,8+t).
(r) ()
(t) and since w satisfies (6.6), we alsoc have, putting ¢ =« w
Then w satisfles the differential equation (6.5) as well as the boundary
condition w(t) (0,.) = 0. Let t > 0 be given. Then
. ~ (tnl (tn) lth
(6.10) ] f b+ ¥,) ¢l + oy}l o+ Mw oy )lw =
0 rt * Voo

(6.6) I+w“’m¢m - w00 -

I
R ot
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r . (tnl t) (e )
- j* {Dlg + y,} - Dlw B ZULICMEE S LN
° R Dividing by u and letting u + 0, we obtain

it ) {t )

1 2.1 2
e fw Ttz [ Ton” .
2 R{» 2 RQ-

[T D@+ y)(X - 4@ + y})E* 2 0 for all £ ¢ B (R")
+ 4]
0 R
Letting tn tend to inflrity in (6.9) and (6.10) ylelds
which in turn implies (6.8}. Combining (6.7) and (5.8) we obtailn

T - - - -
6.11) -0 ] (pig+y) xv, +2rig+ylqg'l .- - _
5w R » JU T D@+ v, 08430 4 y]) + AT 4 y,) 08" = 0 for all ¥ € Hy(RY)
o m
- gr &* D(Ei + YAN(V:: + yi)(&' - vx) > 0. from which we deduce that g = a + ¥y satisfies the Integral relation

(iv) of Definition 5.9. Thus q = y, and q=0.

Replacing ¥ by q in (6.7) glves
{11) The proof of {ii) is quite similar to that of (i). However, since
we do not suppose here that u has compact support, one has to use cut-
off functions in several formulas. o

{6.12) [T] (0@ +y) ¥ @ + y )13 =0
o mrt

Next we add (6.11) and {6.12}) to obtain

T a v ] ot
g £+th+yh)(x-¢(vx+yx)l(q v 20,

We set v =q -y with u > 0 and £ ¢ H:J(ll") .
Then

J'f D@4y G- 9@ ¢ y] - uE) wET 2 0
o r*
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APPENDTIX

We prove below two approximation lemmas

Lemma Al. Let u, satisfies Hy.» Then there exists {an} satis-

2
1
fying By . If uy €L (R), {uon}satisfies in addition

n
F] 2
limsup I ubn < f u .

nto -n R 0
Proof. Set

Yoy ™ (1 - 2lnlu0 + t/n

and
1 1 ~
max(;, (1 —H) (x+n/4) + uon(—n/-ﬂ)

on(xl - uon(x)

1 1 ~
min(l aeyat SRl ix-n/4) + ug,, (n/4})

Using the function

IO

pix) = 1 2
c exp(1/{|x|% - 1

where C is a constant such that Jetxiax =1
R

ug x) = nnj'n(n(x - y))Gon(y)dy .

Then one can check that if n is large enough,un

Also Lf u6 € Lz(ln . then

-n On 0 2

+n n A
fuc',ff s | uwlslurl? + Ctn)
-n L (w)

where 1lim Cin) = 0,
n+=x

n satisfies the hypothasis H

1f x 5 -n/q ,

if |x| $r/4,

if x 2 n/4 .

if |x} 21,

if x| <1,

+ we define the sequence

A
: where we assume that n is large enough so that u

on *
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Lemma AZ. Let u, satisfy H

satisfying HB.

op 273 H.,. Then there exists fUOnl

Proof. (i) The case X = 0, Set

~

Yen = (1- 1/ (An)) tug ~A) + A

and

A if x < 1/n
Gmnx) = mex-a - tm e azm e, Eon(xn Lf 1/n < x < n/4
max{={1 - 1/n) {x=-n/4) +u0n(n/4), 1/n}) if x 2 n/4

—~

=y in an interval
On On
of positive measure. Let

A
uontx) = 2n Lp (Zn{x-y)} u n(y)dy for x 2 0

Q

Then one can check that u.:)n satisfies the hypothesis Hg for n sufficiently
large.

(11} The case A > 0. We first construct an approximation of ¥imax"
We set

-~

¥, = mx(yl B A(1+yi [{]B)]
n n

and

{h if x < 1/n

yn(x— 1f x 2 1/n.
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Let {cn} be such that € > 0 and L + 0 as n—+«and let

-1 x-z) 4 20
yn(x) c, L o( cn) ynlz)dz for x

Then one can check that for n large enough and for tn small enough

Y, satisfies the hypothesis H' in the case that u

0 0~ Yamax®

+
2
In the general case that “0 Ylmax on R , we get

- rrum(y:l (x), - y; (O (uo(x) -A) +A) if x S n/4
uOH(x) - n n

max(l(l-lyi (0}, vy {0} {x - n/4) +uon(n/4)l if x * /4

n n
and
A A if x < 1/n
Ugn (%) = { ~
- 2
uon(x 1/n) if x 2 1/n

Again one can check that the function Ug e defined by
u_  (x) = L [ » fow 4 3 {y}ady for x 2 O
On E € On

n R n

which is such that Yon S ¥y o satisfies the hypothesis Hg for n large

enough and :n small enough.
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CHAPTER 3

REGULARITY PROPIRTIES OF A DOUBLY DECENERATE
EQUATION IN HYDROLOGY

C.J. van Duijn Zhang Hongfei®
Department o Mathematics & Informatics

Delft University of Technology
Delft, The Netherlands

1. INTRODUCTION

In thia paper we study the regularity of sclutions of the ini-

tial value problem

fu, = (Do) in Q=R xm", (.
(©

u(+,0) = u,(+) onR, (1.2)

where t and x denote, respectively, a time and a space coordinate

*) This author is on leave from the Department of Applied Mathe-
matics, Tsinghua Univer:ity, Beijing, Feople's Republic of
China. His research was sponsored by funds of the Dutch Minis-
try of Education and Sciemces.



and where the subscripts t and x denote partial differentiation

with respect to these variables. Further

D: [0,1] - [0,) satisfies

D(s) > 0 for s € (0,1t} and  D(0) = p(i) = o (1.3)

and

p: [-1,1] - satiafies

$'(s) >0 for s € -1,n and  ¢4'(~1) = $'(+1) = g, (1.4)

Observe that equation (1.1) jg only of parabolic Lype at points

where the solution u€ (0,1) and its derivative u, € (-1,1). Since

D(s} vanishes at 5 = 0,1 and ¢'(s) at 8 = x|, the equation degenerates

at points where y = 0,1 or u_om gl

An example of a differential equation which has the form of
{(1.1) with D and ¢ satisfying (1.3) and (1.4}, respectively, ig
found in a wodel from hydrology, In thig wodel one studies the
evolution in rime of the interface berween fresh and galt ground-
water under certain simplifying assumptions on the flow field,
This model was first derived by de Josselin de Jong €151, In Sec-
tion 2 we give a brief description of jtg background and of its

main features. Here, ve mention that it leads to an equation with

B(s) = s(1 - s) and 8(s) = s/(1 « 42, (1.5)

Problem € was firse studied by Van Duijn & Hilhorse {91, They
introduced a class of solutions and they showed that if D¢ and

Yy satisfy the hypotheses:

HDI: (i) b€ ¢'fo,11 co,n);

(ii) p> 90, p" g ¢ on {0,1) and  D{(0) = p(i) = 0;

Hot: (i) ¢ € c't-1,10n 2oy,

(ii) ¢' > 0 on (=1,1) with ' (2l) = 0  4nd $(0) = o;

. leo
Huo.(l) g €W (R);

(ii) o < g €1 and -1 g "6 €1 a.e. anRR;

(iii) Uy - HE LklRJ,where H denotes the Heaviside func-

tion: H(s) = | when 8> 0 and H(s) = @ when 5 < @;
then Problem C has a unique solution u on qQ.

In Section 3 we recall some of their results for later use. In
Section 4 we introduce subsolution and supergolution for Problem ¢
and w= prove a comparison principle,

T3 prove regularity properties for solutions of Problem C, we
have -0 impose additional assumptions on the functions D and ¢,

These are



HD2: (i) There exiat c,d € r such that -d S D" € -c = supb"

o,
on (0,1);

(ii) D € ¢**(0,1) for some a € (0,1) and D"'< D' 3 0 on
{0,1}.
and
H$2: (i) s¢"(s) £ 0 and ¢(s) = -p(-s) for s € (-1,1);

Gi) ¢ € ¢ (=1,1) for some a € (0,1).

Observe that the functions D and ¢, given by (1.5}, satisfy all
the imposed conditions.

In Section 5 we use HD2 and H$2 to obtain a pointwise bound on
the derivative of u with respect to x, which is sharp in the case
where D{s} = s{1 - s). It follows from this bound that for all

t>0

ux(',t) € (~1,1) d.e, onR

which means that the degeneracy in the derivative vanishes instam—
taneously for t > D, This in turn implies that the solutions are
classical solutions in the region where u € (0,1),

The rest of the paper is devoted to the study of the free
boundaries induced by the degeneracy of the equation at u = 0 and
u = l. To avoid unnecessary complications we assume that there

exist real numbers -=m < a < a, < e such that

5
Uy " 0 on (ﬂn.all
uy € (0,0 on (a!,az) (1.6}
u =1 on [az,*n).
Let

M(u) = [(x,t) € @ |} uix.t} € (0.1},

In Section 6 we follow Knerr [16] to show that there exist

functions L ,0,: [0,@) +R such that the set M{u) can be uritten

M{u) = {{x,t) EQ]C](t)<x<£2(:), t > 0}. (.7

Further, we ghow that each function satisfies:
There exists t; € [0,m) such that l;i(t) - a, for ¢ € [O't‘i]'
(-l)lCi is nondecreasing on [0,®) with lim ('l)lCi(t) = 4= and

=0

5 € 't ).

In what follows we refer to l;| and l;2 ag the interfaces of
Problem C. They separate the regions where u = 0, w€E (0,1} and
u=|.

Next, let

Vyio= - D—(‘:'—)— $lu ) and  w,: o= ]—:-!-‘i)-; bCu ) on M{u). (1.8)



In terms of the hydrologicai model, V| represents the x component of

the salt water velocity and vy the x component of the fresh water

velocity, see (2.16) apd (2.17) after suitable rescaling. Based on

this model, we expect that the speed in the Xyt plane of the inter-

faces is equal to the velocity of the fluids in the corresponding
points, see also (2.18) and (2.19). Thus at the interfaces £; one

expects for t > 0 the differential equations

;{(t) = lim v {x,t) i=1,2, (1.9)
a5 ()
(x, L}EM{u)

In order to establish these equations, we first derive an
Aronson-Benilan (2] type estimate for (¢(ux))x, near the inter-
faces. As in the case of the porous medium equation and other re-
lated degenerate equations, this appears to be the crucial esti-
mate for the regularity theory, e.g. see Vazquez [207 or Esteban
& Vazquez [10],

For solutions of Problem C we prove in Section 7 first an
interior estimate on M(u). Let (xo,to) € M{u)} such that
u(xo.to) € (§,1-8) for some & € (0,1/2) and let [u6| €1 =~¢a.e,
onR for some € > 0 and g € Hfoc(al,az). Then there exists a con-

stant K > 0, depending on 6 and E, such that
=-1/2
[otu ), (x5t | < Key ' (t.10)

After that we prove one-sided bounds near the interfaces. For this

we need

o = sup {: € (o,nl z—s—i%%+ 31> 0 for all s € (O,r)} (a.an
and the sets

N] = {(x,t) € Q‘ o < x < C](t) + solk, t > G} (1.12)
and

N, = {(X.t) € Q]Qz(t) - (- $p0/4 < x <, ¢ > 0} (1.13)

where C is the zero of D', The result is the following. Let
2 .
|u6| €V <0 ae. onR and let U € Hloc(al'az)' Then there exist

constants Ki >0, i = 1,2, such that

@) >k e ey gy ACH) (1.18)
and

O O e IR TITRY (1.15)

In establishing the interior estimate we uge an energy type
inequality, also given by Hoff [14), combinedwith a Bernstein esti-
mate. The inequalities (1.14) and (1.15) follow from & waximum

principle argument.

. 2
We observe here that for the special case ¢(s) = g/(] + s }, the

conscant O from (I1.1i) is given by
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G = 0.505

From estimates (i.14} and {1.15) it follows that for every t > 0

-1 -
v 12

¢(ux)(x.t) * K (£ + y x

is nonincreasing when x + Ql(t) and
1 -1/2

$(u ) (x,0) - K, (" +¢ y x

is nonincreasing when x + Cz(t). Since both expressions are bound-

ed, this means that 1im ¢(ux)(x,t) exists and consequently,
x+, i (t)
(2, )EM{u)
lim - i
el (6) Ux(x.t) ux(ﬁi(t),t) exiatea,
(x,L)EM{u)

In Section 8, we then show that the interfaces are right dif-

ferentiable for each t > 0 and thac
D'C.(t) = -D'(i - 1
i a - )¢(ux(ci(t).:)). (1.16)

for i = 1,2 and for all t > Q, We alaoc show that (-I)ici(t} is
strictly increasing for t > tz.

The differentiability of the interfaces is much more involved, see
e.g. Caffarelli & Friedman [6] and Aronson, Caffarelli & Kamin [3].

We leave it for a future paper.
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2, THE MODEL

Consider the two-dimensional flow of a fluid of variable den-
sity and constant viscosity through a homogeneous porous medium.
Let the flow take place in the x,z plane, with x horizontal and z
vertical and pointing upwards. If the flow is incompressible, then

the underlying equations are, see Bear [5]:
Momentum balance (Darcy law)
Las grad p + ye_ =0 2.1)
k9 z *
and
div g = 0. (2.2)
Here q is the specific discharge, p the pressure, Y the specific
weight and U the dynamic viscosity of the fluid. Further, k denotes

the intrinsic permeability of the porous medium and e, is the unit

vector in positive z-direction. Introducing the stream function y:

q= curl ¢ = (‘ g%.%ﬁ).

x

and taking the curl of (2.1), one finds the equation
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K o
o = % 5%, 2.3

see also Chan-Hong et al. (7], where these manipulations are made
precise,

In our model we consider the specific case where the flow takes
place in a coastal aquifer which is vertically confined and hori-
zontally extended andwhere the fluid consists of fresh and salt
water, separated by an abrupt transition - an interface. Qur ob—
jeet is to derive an equation for this fresh-salt interface, which
has the form of equation (1.1). We follow the derivation given in

[7] and the original work of de Josselin de Jong L[15].

Suppose that for eéach time t the interface can be parametrized

by the horizontal space coordinate x, see Fig. 1, and that its

{10,b) {ay,0)

I‘rq.-lh:»,-r

%

lug
(n),0) (u,0)

L

>

Fig, 1. Frample of a fresh/salt distribution in a hori-
zontal aguifer,

11~

height with respect to the z = 0 plane is given by £ = £(x,c). In

terms of £, the specific weight becomes

Y(x,2,t}) = (Ys - YpHE(x,0) - 2) ¢ Vg (2.4)

where g and Yg are constants (Ys > Yf) denoting the specific
weight of the salt and the fresh water and where N is the Heaviside
function.

Inserting (2.4) into (2.3) results in the following jump conditions

at the interface (see [7]):

3y
Lq 1 = [SE] =0, (2.5)
fq ) = - [g%] = Teginy, T = E (v =Yg (2.6)

Here g and n are local orthogonal coordinates at the interface, s
tangential and n normal, and a denotes the angle of the tangent at
the interface with the horizontal.

From (2.5) and (2.6) we find for the jump in the x-component of the

specific discharge at the interface

tang
a1 = ap (x,£,8) ~q_ (x,E,6) =T . (2.7
x X | + tan'a
If the aquifer has a constant thickness R and if it is bounded
below and above by an impervious boundary, then the total fresh

and salt water discharge through the aquifer in the positive x-
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direction is given by

B
% (x,t) -] qg (x,2z,t)dz, (2.8)
x E{x,t) 'x
and
E{x,t)
Q (x,t) = ] q  (x,z,t}dz. {2.9)
sx sx

Also the following fresh and sait water continuity equations hold:

30,
e %, (2.10)
and
9Q
-] H
X %E" (z.11)

when £ denotes the porosity of the porous material.

Consequently, the total discharge

@=Qq +1Q, . (2.,12)
X X

is constant in space and is considered here as a given quantity.

Next we make an assumption with respect to the discharge field,

which in hydrology is called the Dupuit-upproximation, see also
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Bear [5]. We assume that the horizontal component of the specific

discharge is constant over the height in each fluid such that

g (x,2,8) ™ q (x,£,t), £ <z <8 2.1M
x X

and
q, (x,2,t) ™ q_ (x,6,t), 0<z<EL. (2.14)
x x
These assumptions are generally satisfied for sufficiently flat
interfaces, see [7], where numerical computations were carried out.

Substituting these simplificatioms into (2.8) and (2.9), gives for

(2.12)

Q=aq; (x,5,t)(B-E) +q_¢&. (2.15)
x sx

Next the unknowns 9 and q, are solved from {2.7) and (2.15).
x

x
This gives
Q.T tana
q, =3+L¢ (2.16)
fx B B 1+ tanzu
and
q «2-L - tam (24D
8 3 B 2
x I + tan"a

These equations give the discharges in both fluids in terms of the

interface. From (2.16) we find for the velocity of the fresh water
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particles in the top of the interface:

g
X r tann
Vi T T TEEtE 7 (2.18)
I + tan“a

Similarly, for the salt water particlegs in the toe we find

(2.19)

To obtain a differential equation for £, we combine (2,8),

(2,10} and {2.16) to obtain

3 3 { 3/ ax }
E b (B -£)Q+ (s - E) — L% | L
3 7 I+ (3E/3x)2

Finally we apply the rescaling
i t
X = (x “ I Q(s)ds) /B; t :m Te/e; u o= £/R,
4}
which results jn the equation

du 3 { Ju/dx }
e " 57 full - —_— ),
e Ix 1+ (au/ax)?
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3. PREVIOUS RESULTS

In this section we recall some results from (9] wich respect

to Problem C.

Definition 3.1, a function u: Q +R s called a solution of Problem

C, if it satisfies

W uwe L0, "m)), u, € L2CC-R,RI*(0,T)) for a1}
R, T > 0;

{i1) ue€ (o,11, u € [-1,1] a.e. in Q:

(iii) u(+,0) = u =)

(iv) u, - (D(u)ep(ux))x =0 a.e. inq.

Theorem 3.2, Suppose HD], H$! and Hu0 are satisfied. Then Problen
SEEMm J.e

C has a unique solution with the following properties:

W wt) - He LB for a1l & > 0,
Gi) e c@;
(iii) Let u, and u, be two solutions of Probieng C with initial
functions ug, and Ugge respectively, Then
bu, (e) - “2(”'1.'(1&) < liu01 - UOZ'LJ(R) for all t > g;
(iv) Let u, and u, be two solutions of Problem € with initial

functions u,. % upp- Then ul(t) < uz(t) Eor all ¢ > 0,

01
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The existence part of this thecrem is proved by parabolic
regularization: given a Yy which satisfies Huo, one constructs a
sequence {UO‘[‘I}I'I€|NC ¢™(R) such that for sufficiently large n €M

1 1
u E(H’I‘_ﬁ)’ u' € (-I+;,I-E) onR,

U (X = 0 for |x| 2 n,

and ugn ™ Yo uniformly on compact subsets of M.

Then for n €N (sufficiently large) and for any T > O consider the

problem
u, = (D(u)u)) in Q@ = (-n,)x(0,T1,
(S ux(-n.t) =u (n,t) =0 for 0<t&T ,
u(x,0) = "'On(x) for n < xSn.
240 -

Problem Cn has a unique classical sclution u, €C (QT)' for each

1 1 1 .
@€ (0,1), andu € (1, 1 =) andu_ € (-} 4= 0= %). A solution
u of Problem C is now obtained as the limit of a subsequence of
{un}. The convergence is uniform on compact subsets of Q. The
uniqueness part follows from the contraction property (iii), whien

in turn follows from the accretivity in LI(IR) of the operator

Au := =(D(uw${u’))' when defined on a suitable domain.

For the special case when D{s) = s{i ~ 8) a self-similar solu-

tion of Problem C can be constructed. It has the form
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us(x,t) = g{n} and n = xfit), (3.1

where the function s: R = [0,1] is given by

0 =< < -%,
s ={4+n -ps&n<y
1 g<n<e ,

and where the function f: [0,w} R is determined by the problenm

£ (E) = ~20(F(LEX(E) £ >0,
£(0) = t’o.

A solution £ of Problem S, with fo € [-1,1], induces a seolution u
of Problem C which has the form of a rotating line: this line
rotates clockwise when fo € (0,1] and counter clockwise when

fo € [-1,0)., The initial slope is given by fo.

It was shown that a solution of Problem C, with Y, gatisfying (1.6),
converges to a self-similar solution with Eo > 0, Alsc an estimate

for the rate of convergence was given.
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4, SUB~ AND SUPERSOLUTIONS

Definition 4.1. A function u is called a sub-(super)solution of
Problem C on a domain ST =Rx(0,T) if there exists a T € {0,=]

guch that

(i) u€ L7(0,m; wm);

(ii) u € £0,11, u, € [-1,1} a.e. in ST;

(iii) U, (D(u)¢(ux))x £ Lz((—R,R)l(O,T')) for all R > 0 and
for all finite 0 < T' £ T;

(iv) Du(-,eN € L(R) for all t € (0,T);

(v} U, - (D(l-l)tb(l-lx))x £ (2 0 a.e. in 5. and u(+,0) € ()

uo(‘) on K.

Remark 4.2. In [9] it was proven that if u is any solution of

1
Problem C with D and ¢ bounded functions and uy - H € L (R), then
ut) - H € LYR) for all t » 0. This implies D(u(~,t)) € L\W) for

all t # 0. Therefore under these conditions, a solution u is both

a subsolution and a supersolution of Problem C on q» = Q.

Theorem 4.3, (Comparison principle). Let D € cf0,1] sarisfy (1.3)
and let ¢ € €[-1,1] be strictly increasing. Further let u and u

be respectively a subsolution and a supersolution of Problem € on

ST for some T € (0,»]. Then u < 4 in ST.
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Procf. From (v) of Definition 4.) we have

(w- W, € (@) - (D)) a.e. in 5.

Multiplying both sides by H{u - u), where H is the Heaviside func-
tion, and integrating with respect to x over (-R,R) for every

R> 0 gives
R _ _ +R _ _ _
J-R (4 - w) H{u - u € ]—R Dweu) - HwWeu)l Hu - W

for a.e., t € (0,T).

Arguing exactly as in [9), we obtain from this inequality

R
J (u- B M- € {Udwewyl + [p@oG ) @0
R

+ {lpwe)| + [ptwota) ) (Rye) 41

for a.e. t € (D,T}).
Since (u - u) € HI"((O,T'); LI(-R,R)) for any finite T' € T we

have
H - @ 4 (w-0 = -0 o 0,0

with {s)" = max (s,0), see Crandall & Pierre {8, Lemma a.l].

Therefore integrating (4.1) in t and wsing (u(-,0) - G(-JJ))+ =0



=20~

pives

+R t
j w-u'm < J {t{R,s) + £(-R,s)}ds, for all £ € (0,T)
-R 0 (4.2

where f(2R,s) denote the expressions in the right hand side of
(4.1). Because D(u(t}), D(ue)) € Llﬂﬂ) for all t 2 0 and because
¢ is bounded, f(2R,s) tend to zero as R -+ = pointwise in 8 € (0,t).
Moreover F(#R,*} are bounded on {(0,t) because D and ¢ are bounded.

Thus we can use the dominated converpgence theorem to obtain

g -+
I (u-u) {t) €0, for all t € (0,T}

]

and consequently u € u in Sq

Remark 4.4, Let (xo.:o). (xo.tl) € Q with 0 < ty < t, < o and
consider in Q the regions $ = (-D,xo) " (tﬂ’t!) and

st = (xo,m) x (to,tl). On S and S+ we can also define subsoclutions
and supersolutions. This is done similar to Definition 4.1: one
replaces STby 5 or S‘,IR by (-w,xo) or (xu,w) and one adds the
condition E(“o't) < u(xo,t) or G(xo,t) 2 u(xo,t)) on (to,tl). For

S~ the comparison principle is now the following: Let D and ¢ satis-
fy the hypotheses of Theorem 4.2 and let u and u be respectively

a subsolution and a supersolution of Problem C on S, Then u % v

in 5. A similar result holds for 5*.

_21-

5. GRADTENT BOUND

Consider the auxiliary problem

_ o |er@ e ey e,
£(0) = fo,
where f0 € (0,11 and where ¢ > 0 is the constant defined in HD2.
For the case D(s} = s(l - 5s) we have ¢ = 2, which gives Problem S.
The solution f then denotes the slope of the self-similar solution.
By standard methods, Problem S has a salution f which is positive
and strictly decreasing such that £(t) %0 as t + . To obtain a

rate of convergence, observe that the assumptions on ¢ imply
as % ¢(s) € bs, s € [0,1] (5.1}

with a = ¢(!1) and b = sup B (s).

s€{0,1]
Therefore
t
-be & Eaiﬂl € -ac for t>0,

£7(t)
which gives

| 2 !

7 & 70 € 5 for t > 0. (5.2)

Zbet + llf0 2act + Ilf0
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lemaa 5.1, Let u be the solution of Problem C in which D, ¢ and Y,

are such that the hypotheses HDI-2, H$1-2 and Hu0 are satisfied, Then
|ux(-,|:)| € E(t) a.e. onR

for all t 2 0. Here f denotes the solution of Problem § with

£, = sup |u'l.
o} R 0

Proof. We prove here the upper bound. The proof for the lower bound
is similar since ¢ is odd. Let n € N, sufficiently large, and let
u, be the classical solution of Problem Cn. The smoothness of D

4,2, n

and ¢ implies uy € sz(ﬁ,[r‘) nc (QT), a € (0,1). Therefore the

function w = u satisfies

EGo) smhu 4 Bu ¢ D"(u 46w’ - w =0 in op (5.3)
witn,t) = 0 for0 <t <T
wix,0) = u['h (x) for -n < x < n

where

A= D(un)fb ' (um ),
and

B = D(u“)tt"'(ul_m)unxx + ZD'(un)unx‘#'(unx) + D'(un)‘t(unx).
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Let f be as in the lemma. Then
L = o el - g - (O"(u ) + OOE* <0 in Q.

The approximating sequence (uOn} can be constructed such that

iuc'hl % sup ]ué[ = ;. Therefore we have
r
w-£<0 on 0qq

where aQ,'; denotes the parabolic boundary of Q;.

A s:andard maximum principle argument [19] gives w - £ € 0 in 6;

Thuaz

U (%e8) € £(2) in 6T

for each n € IN, sufficiently large, which implies the desired

inecuality.

femcrk 5.2. Suppose D(s) = s(l - 8), Then Problem C has a self-

similar solution ug which satisfiea u (*,t) = £(¢}, t > 0, when

x
u € (0,1). Thus the gradient bound is sharp in this case,

Remark £.3. Lemma 5.1 shows that the fresh/salt interface totates

and secomes flatter in time. This corresponds to what we physical-

ly may expect of the flow problem, In particular the Dupuit-
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approximation {see (2.13) and (2.14)) holds when the interface is
sufficiently flat. Thus the mathematical model gives a good de-

scription of the physical problem when t increases,

Since f is a strictly decreasing function, we conclude from Lemma
5.1 that the degeneracy at points where uo" 1 vanishes instan-
tanecusly, Therefore we expect the solution to be classical at
pointswhere u € (0,1). We make this the content of the following

theorem.

Theorem 5.4. Let u be the solution of Problem C in which U, ¢ and
u, are such that the hypotheses HDI-2, Hpl-2 and Hu0 are satisfied.
Then

v € c i,
where M(u) = {(x,t) € Qlulx,t} € (0,1)}.

Proof. Let (xo,to) € M(u). Then there exists a & € (0,1), suffi-
ciently small, and a neighbourhood ND of (xu,tu) such that

u€ (6,1-6) on LY Since ‘the approximating sequence of classical
solutions, denoted again by (un}, converges uniformly to u on N,
we have uy € (6/2,1-5/2) on No for n € IN sufficiently large. By
the proﬁf of Lemma 5.I, we alsc have [u“x| R E< 1 -4 on Ny for
n € IN large and §' > 0 sufficiently small. Therefore there exists

a §" > 0 such that

~25=

&" < D(un)¢'(unx) < 1/6" on N0 (5.4)

for all n € N large encugh.
Now each function LA RC satisfies equation (5.3) which we

write here in the divergence form

dw
3
T {D(un)w(unx) Tﬁ? * D'(un)¢(unx)un} on Q?'

Then using (5.4), it follows from Ladyzenskaja et al. [17, Theorem
10.1]1 or Arcnson & Serrin [4] that there exists a neighbourhood

NI c NO of (xo,to) for which
u_ e dd) for some B € (0,1)
nx 1 *

where B and Hu I are estimated independent of n.
CB(NI)

Next we consider equation (1.1), written as
1 1 .
u, = D(u )¢ (unx)uxx +D (un)¢(unx)ux in N

The coefficients in this equation are Holder continuous on K,
uniformly with respect to n € IN. Then it follows from the linear
theory, Friedman [11], that there exists a neighbourhood Nz c N

1
of (xo.to) on which for all n € N, sufficiently large,
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v o
uy € C2+B (NI) for some B' € (0,1},

where Hu I . is bounded uniformly in n. Hence the limiting
n ey

L
8 (NZ)' Since D € C3+G(U,I) and

solution u belongs to
¢ € Cam(-l,l)l with a € (0,1), a standard bootstrap argument com

pletes the proof.

The gradient estimate can be used to construct sub= and super-
solutions for Problem C. Below we give a sub- and supersolution,
which reduce to a translated self-similar solution in the case

P(s) = s(l - s). For x € R, let

1 x 2 1
Ex]é- x 0<x<I. (5.5)
0 x%0

Propogition 5.5. Let HDI-2, H¢1-2, Hu0 and {1,6) be satisfied and
let F: [0,®) R denote the solution of Problem 5 with

sﬂt{p |u6| < 0 % |. Then s: Q - given by

|
_ . - D' (0) -
s{x,t;x) [f(t)(x X+ or )]D’ (x,t) € Q

- ]
is a supersolution of Problem C on Q for all x € a + DCEO).
o]

Similarly, a: Q-R given by
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. |
sOx, ;) - [Ht)(x -x+ EE—H-;}—“)]O (x,0) €

is a subsolution of Problem C on Q for all x 2 a, + Dlgl).
= ¢

Proof. We only show Definition 4.1 (v) for 5. Let & € (0,1). Then
L(s) 3= (D(3)9(s D) - 5, = D' (GI(ONE - 8.+ Using D" € ~c, which

implies D'(s) € D'(0) ~ cs for s € (0,1}, and writing

- £ - ' Do)
5t " T & F c °*
gives
- ' 5
L(s) (%’- - %)(c@(f)fz + ') =0

because f satisfies Problem S.

6. THE INTERFACES

In this section we charactetrize the set

M(w) = ((x,t) € Q|u(x,t) € (0,1), u a solution of Problem C}.

Throughout this section we assume that HDI~2, H$p1-2, Hu, and (1.6)

0
are satisfied,
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Proposition 6.1. The set M(u} PR = {t} is bounded, open and con-

nected for all t # 0.

Proof. The boundedness is a direct consequence of Proposition 5.5

and the comparisen principle. It follows that

D'(0) _ D'(0)

u(x,t) = 0 when xGal + cto IO t>0 (6.1)
and
- D'(1y _ DY)
ul(x,t) 1 when x 2 a, + CEO FIOL t > 0. {6.2}

The set M{u) is open because u £ C(Q)}. The connectedness follows

from a level curve argument from Knerr [16].
We are now in a position to define the interfaces.
Definition 6.2, The functions L, [0,=) =R (i = 1,2}, defined

according to

Lyle) = inf {x €R|u(x,t) > 0}, t>0

C,(t) = sup {x ER|u(x,t) < 1}, >0

are called the interfaces of Problem C.

The next proposition shows that 5 is nonincreasing and CZ is non-

decreasing.
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Propogition 6.2, Let (xo,to) € M(u). Then (xo,t) € M(u} for all

t?to.

Proof. We prove here that if u(xo.to) > 0, then u(xo,t) > ¢ for all
[ to and for convenience we take (xo.to) = {0,0),

Consider the function p: 6 + R defined by

+
plx,t) = (3}5I e (a? - xz)) (x,) €Q, (6.3)

where a and k are positive constants to be chosen later. Observe

that |px| % | a.e. on Q. We choose a sufficiently small so that
(i) p(+,0) < u(+*,0) on R, where we use the continuity of u,
{(ii) B'(p) > 0 on Q, where we use D'(0) > O.

Then L{p) = (D(PM)d(p. 1) =-p 2D{E¥$'(p Jp__ =~ p, when p > 0,
x"'x 7t ¥Tax Tt

Substituting (6.3) gives
L) 2 o (k- 2eL g ™) 30
ap x *
for k sufficiently large. Thus p is a subsolution on Q. Consequently

-kt

u(0,t) >%e >0 for all t > 0.

Proposition 6.3. ¢, € 100 ,0) and £, (0) = a, for i = 1,2.
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Proof, By the monctonicity of the functions Li we only have to con-
sider a lower bound for Ll(t) - Cl(to) and an upperbound for

g,(t) - Loley) for all e 2 ¢ > 0,

0
This we do with the functions 5 and s from Proposition 5.5.

Let ty #0and let Q. =g=* (¢ ,®). Choose
t0 0

= D' (0) D'(})
x =g (g + cElty) and x = Z,(r)) + cE(Ey)

As in Proposition 5.5

s(x,t3%) € u(x,£) € 5(x,t5X)  for all (x,t) € Q -

o
The upperbound implies
- - _D'(m
u{x,t) 0 for x% x o (] tg
and thus
z _ D'(0)
Cl(t) > x FETET for all t 2 to.
Therefore
. Do) 1 _ _
< {f(“Tt 'r'(tgf} <o) - gleg) <0, (64

To estimate the left hand side, consider F: {0,») - R defined by
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F(E) = s = (D t> 0.

Clearly F is differentiable and
Ll
Fr = - DU w0 o cteo) - p) <o
f(t)

Thus

F(t) € F(tGJ for all ¢t » tg-
Using this in (6.4} gives

DO - k) € £ (e) =g (rg) <0, (6.5)
In a similar way, we find for the second interface

G, () - Co{tg) & =D' (1} (1) (¢ - ) (6.6)

Finally, inequalities (6.5) and (6.6) imply ci(ﬂ) =a, i=1,2,

Next we show

Propogition 6.4. lim cl(t) = ~ and lim (z(t) = 4o,
[ 1

=0
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Proof. We prove here only the assertion for Z,. From Proposition 3 Proof of the claim. We only check here property {v) of Definition
3.5 it Follows that the interface near zero of the subsolution s ‘ 4.1. The others are trivially satisfied. To estimate L(a), L de-
is given by x(t) = x - (D'(1) + e}/cf(t), Thus if fined in the proof of Proposition 6.2, in points where « > 0 we

use D'(a) 2 D'(0) - du and

D1} + ¢ > 0O, (6.7)
;\l

Al
o = =(m+ 2) T <1+—v———m+|.
A

t

then x(t} decreases in t and lim x(t) = . Since Cl(t) < x(t},
Lo

the proof is completed for this case. If (6.7) is not satisfied*, ! This gives

we cannot use Proposition 5.5 to prove the result. Instead we uge

! ' _
L{o) 2 - ) D{a)$' () + (D'(0) - da)dla Ja, *

Claim .5, The function a: §Q =R defined by + (m+ 2) AA—. a - % (6.8)
A
I (x ~ 10)2 * -
u(x,t;xo) "= (' - —7—) ' (x,t) € Q Next we use (5.1), D{a) € D'(0)a and
2 AT(E)
with ' 2| "
Oy = gz (0 - 20)
] A
Ar) = (1 + k™2, 20
in (6.8) to find
and with m and k posgitive constants given by (6.10), is a sub- I al
L{w) » a{(m + 20™ " - pr@)b - 207 (0)a - ——} s
solution of Problem C on Q for X5 €TR large enough. ™y
f . _ : P a_ 1

If this ¢laim holds, then clearly, Cl(t) < x5 A(t), vhich im + {D'(O) Am+| A'} ]mﬂ. {6.9)
plies the degired result,
— The choice of ) implies
*) For example let D be given by D(s) = - —]I-f 884 + % as]' +

- % {c + %)92 + -;— (-]—Ii a+ c)s for s € [0,1], with a, ¢ em”*,

e 1 1 A2 1 and A™P A ak/(m+ D)
Then D satisfies HDI-2 and D'(1} + c = 7 ¢ - 3% a. Thus, when *

a> 12¢ (6.7) is not satisfied.
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-35.
Thus if we choose &
On ST we consider the function
k 2 001
- ' - - 2 - —
k=D'(0)b + 2D'(0}a + db  and m 7oy - 2 (6.10) Alx - a)" -——  for (x,t) € La,a + 61 x [0,1/21,
o{x,t) =
then we obtain L(a} > 0 a.e, on Q. a for (x.t) € (ﬂn.al) x £0,t/21.
As in the case of the porous medium equation, Problem C also has Cleaxly uy (') € p(+,0) on (-w,a] + 6).
waiting time solutions.
One z2asily verifies that if
Proposttion 6.6. Suppose there exist A,f > 0 such that
. 1 1
3 <8 € min {iVK' EK}' 6.,11)
uo(x) £ Alx - a|)2 for x & a + 2,
then 0 € p £ | and 0 g Py <1 on Sf.
Then there exists t} > 0 guch that (l(t) =a ford “ts tT.
Similarly if By the continuity of u and the first assumption of the proposition,
there exists a 9 > 0 such that
2
uo(x) 21~ Alx - az) for x 2 a, - £,
-(a! +8,7) < D(al + 48,4) on (0,70/2).

then there exists t; > 0 such that £,(e) = a, for 0 €t < t¥.

2 2

Next we estimate L{p) on Sg

Proof. Again we only give the proof for CI. We construct a local

supersolution in a neighbourhood of (a,0) which has a stagnant I{p) = D(D)¢'(Dx)ﬁA 7 E Tt D'(D)¢(px) Py P

interface. For § € (0,2) and v > 0, consider in Q the halfstrip T

T=1t

< D'(0)PD 4A + D'(O)boi =P,

8 T |
S. = (=, «8) x (0,1/2), <p I {,MJD.(O) - }_}_
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& . b
Therefore L(p) € 0 on 5_ it T e 1ZABD' (0)

Thus if we take & satisfying (6.11) and

0<1<mi ! T
ma 7IAbET )’ o

then p is a supersolution of Problem C on Si. The proposition now

follows from the comparison principle, see Remark 4.4,

7. BOUNDS FOR (¢(u_))

In this gecticn we derive bounds for w’(ux))x on G. Based on
the form of the self-similar golution (3.1) (the rotating line) we
expect only one-sided bounds across the interfaces, A lower bound
near f (where u = 0) and an upperbound near Z, {when u = 1},

At interior points of M(u) we construct a two-sided bound,

Throughout thig section K = K(#,...,%) is a positive constant depend-
ing only on the quantities appearing in the parentheses. However,
since nearly all constants in this section depend on the structure

of D and ¢, this dependence is not explicitly indicated.

7.1. Interior estimate

We first give some notation. Let == < a < a' < b' < b € and

0<T <1 <T<e and let R' © R © { denote the rectangles
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R = (a,b) = {1,T3 and R' = (a',b') x (7',T). Further let £ € CT(R)
such that 0 S £ €1 onR, £=1onR and £ =0 in a neighbourhood
of the parabolic boundary of R. Then IEx[ and |En| ate bounded in
terms of a' ~ a and b - b’ and |5:| is bounded in terms of t' - t1:

i.e. 'Etl € /{1’ - 1) for some K> O,

Lermma 7.1. L2t R, R' and £ be defined as above and let

wech @ L3, mm' b)) satisty
W o= Aw + B in R
mw

whete A E LG(R) such that Uy € A € u_l on R for some U > 0 and where

B € LZ(R). Tien

+ fw 10

max l+(m)| + wa(T)II LY

[a',b' (a',b")

i .
<K {IwiR Tt |B€|FR s e+ lula}

where I+l denotes the Lz-nom. If w(t) € H:Dc(a.b) and if we do not

truncate in time, then

+ w1

max I-r('l')' + '"x(T)'(a',b‘) xx R’

[a’,b']

<< {I(wﬁ)x('r)l + IBEIR + leln + IHIR}.

{a,b)

In both inegualities K= K(p, a'-a, b-b’),
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Proof. Since the proof is elementary it is omitted here, see [14],
To obtain the interior estimate we choose to work with the function
v = D(“)¢(ux)- (7.1}

The inequalities from Lemma 7.1 are the bagic tools in the proof of

the following result.

Lerma 7.2. Let u be a solution of Problem C in which B, ¢ and u,

satisfy the hypotheses imposed in Section 6. In addition suppose
2 ' -

that u, € U] (a ,a,) and |u0| £1-¢€ a.e. onR for some ¢ > 0.

Let tg, >0 and ler I © (cl(to),tz(to)) denote an interval on which

4 < u(',to) <] - & for some § > 0. Then

1/2
|v(x|,t0) - v(xz.to)i g K|xl - xzi

for all X%, € 1. Here K = K(E,é,uo).

Proof. la [91 it is shown that there exists a constant L > 0 such

that the solution u of Problem C satisfies
fulx 6 ) = wlx,,e )] S Ld|x - %} + |t, - ¢ IIIZ 7.2
[ | 2'72 | b 1 2 red

for all (xl,tl).(xz.tz) € Q.

Now let (a,b) denote the interval I. Then it follows from inequality

-19.

(7.2) that there exist real numbers a <a<hb< b‘ and 0 € 1 < ty

suct that 6/2 < uw <1 - §/2 in the rectangle R = (al,bl) x (r,tol.
In tact we choose 1 = (t0 - &) with A = 621I6L2. Inside R, we con-
struct the rectangle R2 = (az,bz) x (r,tol. with a, = (a: + g)/2

and b2 = (bI + b)/2, and the rectangle R = (a,b) x ({1 + tO)IZ.tO].

Ink, u satisfies
u, - D(u)tp'(ux)uxx + D'(u)¢(ux)ux.

Sinze D(u)f(ux) > win {D(5/2),D() - 6/2}} ¢'() - €}, an application

of .emma 7.1, without truncating £ in time, gives .uxx"R € K with
2
¥ = K(e,8).

In 3,, v satisfies
v, = DU (u v+ D'(u)¢(ux)[D(u)¢'(ux)uxx + D' (wé(u du ],

Again we apply Lemma 7.2. For ty > A, we truncate in time. This

givwes the bound
v (t)¥ < K(€,8). a.»

For t. % A we do not truncate in time. This gives the bound

o

Hvx(to)ﬂI < K(e,ﬁ,uu). (7.4)
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From the estimates (7.3) and (7.4) the desired inequality immediate-
ly follows,
Lemma 7.3. Let u be a solution of Problem C in which D, ¢ and uy

satisfy the hypotheses from Lemma 7.2. Let R © M(u) be a bounded

open rectangle on which § <u <1 - § for some § > 0. Then
1/2 1/4
|v(x1,:|) - v(xz,t9| <K {le - le + |tI - t2| }
for all (x,,t),(x;,t,) € R. Here K = K(e,8,u,).
Proof. Let the rectangle R be given by (a,b) x (EI'EZ) with
0< El < Ez <en, Since u € (6, 1 = §) on R and ]ux[ € 1, we have
that u € {§/2, 1| - §/2) on the larger rectangle
RL = {a - 6&/2, b + §/2) = (EI'EZ)' On RL' v satisfies the equation
- t 1
v, D{uw)d (ux)vxx +D (u)¢(ux)vx. (7.5)
From Lemma 7.2, v is Holder continucus in x with exponent 1/2 on RL'

Then we use a result of Gilding [12) to obtain the HSlder continuity

of v in t with exponent 1/4 on the smaller rectangle R.

We are now in & position to prove the interior estimate.
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Theorem 7.4. Let u be a solution of Problem C in which D, ¢ and ug

satisfy the hypotheses imposed in Section 6. Further let

u, € Hfoc(al,az) and |u6| €1 -¢€ae.onkR for some € > 0. If
(xo,tc) I M{u) such that § < u(xo,to) <1 =& for some & € (0,1/2),
then

/2

-1
|vx(xo.t0)| Skt '

Here K = K(ﬁ.ﬁ,uo).

Proof. The proof of this theorem comnsists of three steps.

Step 1: Construction of rectangle. Let (xo.to) € M{u) and
u(xo.to) € (6,1 = &), We construct a rectangle R = {a,b) x (T,tﬂ)
in M{1), with the point (xo,to) centered at the top, on which

u€ (£/2, 1 - §/2) and on which the difference between two values

of v ia bounded by a smazll given constant. We choose

b - a=min (6/2, (0/2€)%} (7.6)
and

6 = min {(6/41)2, (@/2)%) (7.7)

and let T = (to - A)+. Here L denctes the conatant from inequality
(7.2) wrich implies u € (§/2, 1 - §/2) on R, Further, K denotes the

constant from Lemma 7.3 applied to the rectangle with b - a = §/2
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2 2 P .
and A = §°/16L°. This implies that |v(x|,t1) - v(xz,tz)] < dg for
ali (xl,t]).(xz,tz) € R. Finally 0 is a positive constant which

satisfies the inequality

max "o < (0700 - e YL o2 i (ns/2),001 - 872))
[0,1-¢]
(7.8)
When max 1¢"| = 0, we take 0 sufficiently large so that

[0,1-€] 2. 2
b=-a=4§/2 and A = 8740,

Step 2: Bernstein technique (see also Aronson [1] and Herrero [}

Vazquez [13]}. First rewrite the equation for v as

v - D(u)¢‘(ux)vxx + Dty x in R. (7.9)

Then set v = g(w), where g is a smooth and strictly increasing func-

tion and let p = W For p we find the equation

_ k] 2
Py D(u)rb'(ux)pxx " CPP, * Cyp, +ocgpT ¢ cP * o (7.10)

Cz = D'd)'u - ':fr ¢D'ux + ? B;

c. = D¢' ( " . ¢ll "

3 8 F g3

<, = -p %r ¢ gru + D'’ B vt o &'
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D!
Cy ™ (7;) g u,.

In R we consider the smaller rectangle R' = (a',b') x (1',t0], with

o 1)/%. Let

£ €CR) such that 0 S E < 1 onR, £ = | on R' and £ = 0 in a

a' = {(a + x,0/2, b = (b + xﬂ)lZ and 1" = (¢t

neighbourhood of the lower and lateral boundary of R. Then

|€t| < K(EL'+ 1) for some K > 0. Finally set z = Czpz. At the point
0

where z attains its maximum we have

z =0 and 2, - D(u)¢'(ux)zxx = 0.

Combining this with equation (7.10) gives the inequality

-es6%p% € (e,6 - e £ ) £p” +

+ {é;Et + (2&:: - gzgxx)m' - o), + 2c5£2} pl. (7.1

Next we want to cheose a function g such that the coefficient ¢y

is bounded above by a negative constant.
Step 3: Choice of g. We distinguish two cases.

(i) u * 0 on R, Suppose u, > 0 on H. Consequently alse v> O on
R. We choose glw) = % wiw + 1) with N = max v. Then w € (0,11,
uy
g" = N> 0 and (%1) € - %. Since ¢" < 0 when u >0, we find

for cy
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ey € -3 DO (u) < - Fmin (D(5/2), DI - §/2)} $°(1 - €).
Using this inequality in (7.11) gives

lip] < K EL'* 1 on R, (7.12)
0

where K = K(e.é.uo). Then
3 1
va(xo,to)| < s:p |Eg' (w)p| € E'NK ?E + 1 (7.13)
where
N = max D(u)¢(ux)< max D ¢'(OYE(T). (7.,14)
R [o,1

To finish the proof, we substitute estimate (5.2) into (7.14)
and combine the resulting inequality with (7.13)}.
When u < 0 on R, we choose g{w) = % w(l - w) and use similar

arguments as above to obtain the desired inequality.

u = 0 at some point of R. Consequently, v = 0 at some point
of R and, by the choice of R, |v| € 0 on R, Here 6 is a posi-
tive constant which satisfies inequality (7.8). Now we choose
g(w)=2N erfe(w), where again N = max |v|. Clearly N € o.

T

wy 1 R—
Further (ET) = -2 and |g"| < é%L e 1’2. The choice of ¢ im—

plies
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Cq < -D(u)@'(ux) < -min {D(5/2), D1 - &/} ¢' (1 - €.

One then proceeds as in case (i) to complete the theorem.

Corollary 7.5. | (e(u))_ (xg,t)] < & t7'/?

, with K = K(e,§, uo)-
Proof, Use v D(u)(¢(ux))x + D'(u)ux¢(ux), Lemma 5.1 and in-

equality (5.2).

Remark 7.8, If ué 20 a.e. onR, then u, 20 a.e. on Q. In fact one
can prove that u_ > 0 on M(u)., Therefore in this case we do not

have to uge Lemma 7.3 to construct the rectangle R, A straightfor-
ward application of the Bernstein method, with the function g from

step 3 (i) in the proof of Theorem 7.4, suffices for our purpose.

7.2, Estimates near the interfaces

We start with a result concerning the positivity of 4 and | - u
in M(u). To make this clear, we first introduce some notation. Be-
low, u denotes a solution of Problem C.

For any t » 0 and pu € (0,1}, let
xu(t) = min {x € (Cl(t),cz(t)) | ulx,t) = u}, (7.15)

X, (6) = max {x € (£;(0),,(t)) | uix,t) = u}, (7.16)
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and

Eu(t) = min {u(x,t) | x € [Eu(t)'cz‘t)}}- (7.19)
H

(8} = max fulx,t) [x € cgl(c).iu(m]. (7.13)

Since u € C(Q), these expressions are well-defined,

Lemma 7.7. let u be a solution of Problem ¢ in which D, ¢ and Yg

satisfy the hypothesis imposed in Section 6., For any pu € {0,1)

+ . +
5“(-) is nondecreasing en R ,

and

- . . . +
t'u(-) 18 nonincreasing on M .

Here £ and E“ are defined by (7.47) and (7.18).

Proof. We prove here only the first assertion and we argue by
contradiction, Thus suppose there exist ty > £ 2 0 such that
Eu(tz) < !u(tl). Then by Sard's theorem [ 18], there exists

p' € (Eu(tzl,!“(tll) which is a noncritical value of u. Ler
x' = min {x € [lu(tzhgz(tz)]l u(x,t2) - fu(‘z)}'

Since u is continusus and since
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1] - L] -

u(x',t,) —f-u(LZ) < p <£u(tl) € u “(lu(‘z)"z"
there exists xé € (Ku(tz)'x') such that u(xi.tz) = ', Then we use
[16, Lemma 5.4 and Remark 5.6) to find that there exists a level
curve x = £'(t), &' € C[t!,tzl, on which u = p'.

: Wt ¢ "o v

Since u' < Eﬂ(tl)' 2 (tl) < Xu(t]). Next let x ¢4 (tl) + Xp(tl))lz
and let y* = max [u(x.t]) Ix e [c|(t|),x"]!. Clearly pu' € u* < p,
Then choose again a y" € (p*,p) which is a noncritical value of w.

" n -l . .
Let x; € (Cl(tz),xu(rz)) such that u(xz.tZJ W". Again there exists
a level curve x = £"(t), " € C[tl,tzl on which u = y*, Clearly
E"(t|) > x". Hence the curves £' and £" intersect. This gives a

contradiction. Therefore iu(tz) 2 Ep(ti)'

We are now in a position to prove the one-sided bounds for

(¢(ux))x across the interfaces.

Theorem 7.8, Let u be a solution of Problem C in which D, ¢ and u,
satisfy the hypotheses of Theorem 7.4, In additiom, let |u6| € v
a.e. on R for some v € (0,0}, where ¢ is the constant given by

{1.11). Then

-1/2

[

W, > K T i e

and

=1 -1/2 .
(¢lu)) < Kt et ) in DTNy
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where Ki = I{i(v,uO) and where NI,NZ < Q are neighbourhoods of the

interfaces given by (1.12) and (1.§3).

Proof. Again we only prove here the first assertion. It is conve-
nient to approximate the solution of Problem C by solutions of a
sequence of initial value problems. Let T be a fixed, but arbitrary

positive constant. Then, for each n € N, consider

u, = (D(u)ct.(u:'())x in ST =k x (0,T],
"
(Cn)
u(+,0) = ug {+) on R,
oo .
Here {uUn]nEIN < C (R}, is chosen such that each ug, has bounded

. . ] | '
derivatives of all orders, 4 € (- 1 ;) and iuonl & Vv onR and

Upg P Yg 38 0w uniformly on IR, Moreover, the functions v, satis-

On

fy: if 1 denotes an interval on which u, € (&, 1| - §) for some

On
§¢ € (0,1/2), then Hu,anllI is bounded uniformly in n € IN,

Problem C;‘ can be considered as nondegenerate. Therefore we

apply standard methods (see [17, Theorem 8,11) and find that there

Gioy 240 /2

exists a unique classical solution u, €C (ET) such that

| 1 =
u € 45 1 =) and Iunxl € v on 5. Moreover, each solution u_

algso satisfies the interior estimate: if (xU,to) € ST such that
unE {6, 1 - §) for some & € (0,1/2), then
~1/2
Lot gue <k 5" (7.19)
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where K = K(G,\J.uo), independent of n.

Finally, the sequence of solutions {"n] convergences pointwise
to the solution of Problem C on Q. This convergence is uniform on
compact subsets of ﬁ

Let
Xy = KSOIZ(U) where D'(so) =0,

Then u(x,,0) = 50/2 and by (7.2) there existg A = sgllﬁL2 such that

u{x,,t) € (sollc, 390/10) for t € [0,A. Let

s, = {(x,0) € Q< x < x,, 0 <t €A},

0’

Since u —-u uniformly on compact subsets of Q and since + u

“on

uniformly on IR, we have for sufficiently large n € [N that

0

u < TsOIB on 351, the parabolic boundary of Sl. A maximum principle

argument then gives
7
u (ﬁs on SI' (7.20)

for all n € W sufficiently large. Moreover for large n € IN and

for all £ € (0,Al, un(xo.t) € (50/8, i‘sOIB) and thus

~1/2
|(¢(unx)x(xc,t)f <x V2 (7.21)
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If we apply the proof of Theorem 7.4, without truncation in time,

to Problem C; we obtain (see also Corollary 7.5)
| @@ )| < Km) in 5, (7.22)

where K(n} are positive constants satisfying K(n) 5 as n -+ .

Define the comparison function
. | ~-1/2 =
z(x,t) = -min {K(n),K(t ' + ¢ ) {x,t) € ST' (7.23)

where n is chosen sufficiently large, so that (7.20)} and (7.21)
hold, and where K 2 K is a copstant to be chosen later {here K is

the constant from (7.21)). Then
(fp(unx))x 2z on BSI. (7.24)

Further intreduce the operator

u$" ()

L{w) := Auxx + Bux + D' (u) (2 e
x

+ 3) UZ

Wo- W,

¢"‘“x’¢‘“x’“i}
t

+ D"(u){2¢(ux)ux + ¢’(ux)ui + NS T
x

where A = D(u)¢'(ux)

B = D(u)¢“(ux)uxx + 3D'(u)¢'(ux)ux + D'(U)¢(ux)

and where in the coefficients u denotes u the subscript n is left
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ocut for convenience.
Then
3 .
- =yt
f((@(unx)}x) D (un)qJ(unx)unx ins,,
By (7.20), D'(un) >0 on 5. Since D™D’ > 0 and ¢(s)=s > O it

follows that
L(o(u ) ) <0 in 5.

Next we compute £(2) on 5,- First observe that |unx| &v<a and
that v < 73013 on §|. Therefore, by the choice of G, the coeffi-
cient of U2 ig strictly positive and the coefficient of w is strict-

ly negative. Let

¢ = D'(78,/8) wmin (z el 3).
s€lo,v) v (8
Clearly, ¢ is a positive lower bound for the coefficient of wz.

Then in (7.23) we choose K = max {K, 1/C}. An easy computation then
t-l/Z

shows that £(z) > O when z = -K(n) or when z = -E(t-] + ). The
maximum principle and the boundary estimate (7.24) give
(Murm))x> z in 5. (7.25)

for all sufficiently large n € IN.
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Next we continue for t € LA,2A). Let X, = ESOIZ(A) and let
§, = {(x,t) €Q|ﬂ=<x<xﬂ, A<t €28}

Again u(xa.t) € (50/&, JSOIQ) for A St € 27,
Suppose X, < X, Then by the above result (¢(unx))x 2z oot 382 and
by the maximum principle (Munx])x 2z in §2 for all sufficiently
large n € IN. Next suppose that %, > X We now use Lemma 7.7 to
show that u{x,A) has a positive lower bound on [xo,xA] which does
not depend on t = A. Consider the point (xs ,4(ﬁ),A). Since

0
u(xO,A) € (sOIQ.JQOI&),we have Z_SDH‘(A) < X Thus ufx,A) > -fﬂofﬁ(A)
2 anlﬁ(o) for x € [x 'xA] (from Lemma 7,7). By definition of X
also u(x,A) € sOIZ for x € [xo,xA]. Thus (¢(unx))x 7z on BSz for

n € IN large enough, where in z the constant K » max {K,|/c} is

chosen sufficiently large. By the maximum principle

[%:1)

i (7.26)
(¢(unx))x 2z in 5,
for all sufficiently large »n € IN. We can now repeat this argument
with the same constant X in the function z on half strips of the
form

5 = {({x,t}) €Eq: =< x<x (i-14 < t € 1A}

(i-1)a’

where i = 3,4,...,[T/a],
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Finally, let £ € C:(N|) and £ > 0. Then supp £ ST with T = kA and
k € IN sufficiently targe. Since u € (solb, Jsu/&) on the lateral

k
boundaties of Si.ue have Nl n ST < U S,, Thus

i=t

[ oy L - I min (K(n), B(e™' + 1)) < 0. (7.21
N N
I 1
for all n € IN large enough, From the existence proof in [9] it
follows that ¢(unx) - ¢(ux) in Lz(nupp £) when n -+ w, Passing to

the timit in (7.27) therefore gives

=, =1 -1/2
IH ¢(ux)£x - JN K(t "+ ¢t JE € 0.
1 1

This concludes the proof of the theorem.

Corallamy 7.9. There exists a positive constant K = K(u.uo) such

that
D' () (9w ), > k(e 4 7112 on M(u).

Proof. Fix t € (0,o) and let (k - DA<t <A for some k € IN where
A = min [sgllﬁLz, (1 - ao)zllﬁLz). From the proof of the proceed-

ing theorem the estimate follows when C](t) <x< %o ((k = 1)4)

f2
0
and XSOIZ+ ]/2((k ~- 1} € x € Cz(t). On the intermediate interval
we use Lemma 7.7 and the interior estimate. Observe, by the choice

of &, that
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X (t) <x ((k ~ &)
—sol& —5012

and

(t) > x ((k - 1)a).

Xsolé +3/4 sgf2+ 1/2

Therefore Lemma 7.7 gives

o< £s014(0) £ ulx,t) & f8014+ 3/4(0) <

for x € (xsolz((k - 1)A}y, i50/2+ 1’2((1: - 1)}A)). Corollary 7.5 now

gives the desired estimate.

8, THE INTERFACE EQUATIONS

We prove in this section two theorems. In the first we derive
differential equations for the interfaces and in the second we prove

a monotonicity property.

Theorem 8.1. Let u be the solution of Problem C in which D, ¢ and
Uy satisfy the hypotheses of Theorem 7.8. Then, for every t > 0

and for i = 1,2

lim u (x,t) = u (7, {t),t)
x*ci(t) x 1

{x,tyeM(u}

and

55~
L.t +h) ~r, (c)
lim & ———— = D' (D)
ht0 t
exisr and

D'L (1) = - D' - Do le (D), 0).

Proof, i i i .
roof, Again we consider here only the case i = 1. Let ty > 0 be

fixed. It follows from the first estimate of Theorem 7.8 that

-1/2

$lu ) (x,60) + Kl(taI vty Ox

is monotone and bounded for x € (C!(LO),QI(tD) + 50/&). Therefore

lim ¢(ux)(x,t0) exists and this implies that lim ux(x.t ) =
x#cl(tn) x*;i(to)
- ux(c'(to).to) exists. Set B = ux(ql(tﬂ),to) and 0 = D' (0}¢{(B).
We shall prove below that for every e € (0,€0) (with €g chosen suf-

ficiently small), there exists a & > 0 such that for all

ty <t<«< tg * 4

£,(0) - g (kg
£+ € +E. (8.1)
t -t
0
B> 0. Let € > 0. Set K = £/20' (0)b and B = B £ K. If €, is chosen

sufficiently small, then 8 > 0 and B* < | for all € € (0,e,).

Clearly there exists &' > 0 such that for x € (cl(to),cltto) + §')

B” < u (x,¢)) < s*
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and
BT(x - 4, (gg)) < ulx,rg) < B x - T (k).

Next let u = £/2¢(B)c and choose 60 = min {y,8'}. Then consider
for — < x & al(to) + 60 and t 2 tg the functions

0t = BT - g (eg) + D' (@8BN (e - )",
and

ulx,t) = 87 (x - £ (tg) ¢ D'GNEEBI(E - tg))'
By continuity there exists § > 0, depending on £, such that
uls (g) + 65,8) < ulg, (g} + 85,00 < u(g (tg) + 8g.t)
for all t, <t < tg + &, Introduce the halfstrip
§7 = {(x,t) € Qlw < x < g (Ey) + By, £y <t gy + 8L

One easily verifies that u is a subsolution and u is a supersolu-

tion on § . Hence u{x,t) € ulx,t} € ulx,t) on E"and thus

c,(:)-c,(to)

N +*
-p*(@8(8") <

< =D (uIB(B7),

0

for all t € (to,t0 + &),

The desired estimate (B.1) follows now immediately from the choice

of 1 and B*.

B = 0. In this case we prove that for every smalt ¢ > 0, there

exists a 6 > 0 such that for all t, <t < ty + 4

c,(t) - c](to) <

- <
€ £ -t

Q.
V]

The upper bound follows from the monotonicity 4 (see Proposition
6.2). As in the preceeding case, the lower bound results from a

comparison function argument.

The following theorem tells us that the interfaces are strice-

ly monotonic after the waiting time.

Theorem 8.2. Suppose L. (i = 1 or 2) is constant on some interval

I cR’. Then inf I = O.

Proof. We prove the theorem for i = ). Suppose t* = inf 1> 0.
Then there exists ty € (0,t*) such that L, is strictly decreasing
on (to,t*). Using Proposition 6.3 and Thecrem 8.1 this implies

£y (e = -D'(O)rb(ux(r,,(t).t) <0 {8.2)

for almost every t € (to.t‘). By Theorem 7.8, there exists a con=
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gtant K > 0 such thac uxx(x't) ? K fort 2 ty and r,l(t) < x < r,l(t) qi('[) > -D*(0}af.

+ sollo. Now fix 1 € (to,t‘) such that (8.2} holds and set

B = u {£,(1),1) > 0. Then for sufficiently large X* > K This inequality, combined with (8.4) and the fact that

. AK*(t, - £*)) > | gives
p? | Y (8.3) l
u(x,r)?———-;(l—-—-—(x-t; T ——‘)), .
2K G/xm 2 t K
Lle*) S g (1) + % ¢}
for all x € .
or

Next consider the function a as given in Claim 6,5, We easily veri- (eCrcl(t‘))' < (eCTc;(T))‘

fy that the rescaled function

for some C > 0, Observe that this inequality holds for almost every
2.

vix,t) = palgx, pa’ti qx,) T € (t5,t%). Integration from t € (tg,t*) to t* gives () € & (%),
The monotonicity of the interface (Proposition 6.2) then implies

vith p € (0,1) and pg € (0,1) also satisfies Lv > 0 a.e. in Q. let) 'n',l(t") for all ¢ € (to,t'). This is a contradiction. There~

2
Now choose x, = L,{1) + B/K*, p = B/K* and q = K*/B. Then p € (0,1) fore t* = 0.

for K* gufficiently large and pq = B € (0,1}. This and (8.3) imply

that v{x,t - 1) is a subsolution. For the interface gy this gives REFERENCES
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ABSTRACT

De Josselin de Jong, G. and Van Duijn, C.J., 1986. Transve-se dispersion from an originally
sharp fresh—salt interface caused by shear flow. J. Hydrol., B4: 55-79.

In this paper the influence of transversal dispersion and molecular diffusion on the
distribution of salt in a plane flow throagh a homogeneous porous medium js studied,
Since the dispersion depends on the velceity and the velecity on the distribution of salt
(through the specific weight) this is & ncelinear phenomenon. In particular for the flow
situation considered, this leads to a differential exjustion which has the character of
nonlinear diffusion,

The initial situation (at £=0) is chosen such thet the fresh- and salt water are
separated by an interface, and each fluid has 2 constent specilic weight ¥, and 7;,
respectively. For this initial situation, the solution of the ronlinear diffusion equation has
the form of a similarity solution, depending only on j’f\/t_, where { denotes the local
coordinate normal to the original interface plane and ¢ denotes time.

Properties of this similarity solution ere discussed., Ir particular it is shown how to
obtain this solution numerically. The irterpretatian of these mathematical results in
terms of their hydrological significance is given for a sumber of worked out examples,
These examples describe the distribution of salt, as a function of { and t, for various flow
conditions at the boundariea { = 5o, Also examples are given where the molecular
diffusion can be disregarded with respect L the transversal dispersion,

INTRODUCTION

When fluids of different densities are present in an aquifer and the
density varies in horizontal directioms, the fluid motion contains rotation. In
the case of a sharp interface this rotation results in a shearflow, which is
proportional to the density difference and the interface inclination. Its
magnitude was established by Edelr.an (1940). The rotations and shearflows
resulting in the more general case of gradual density variations were treated
by De Josselin de Jong (1960),

Specific discharges in an aquifar a~e accompanied by dispersion. Therefore
it can be expected, that at an indined interface dispersion occurs, which
results in changing the abrupt transition from one density to the other, in a

0022-1694/86/3$03.50 © 1986 Elsevier Science Publishers B.V.
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gradual transition zone. Since dispersion can be described in terms of
differential equations (see Bear, 1975) it must be possible to express the
spreading from an abrupt interface mathematically in terms of the dispersion
parameters.

The governing relations form a coupled system, consisting of equations
describing the specific discharge rotations, due to the gradual density
variations, and the dispersion, caused by the specific discharge distribution.
Solving this system analytically in the general case of arbitrary density
distributions and additional superimposed specific discharge distributions
seems rather tedious. For practical purposes, therefore, Verruijt {1971)
proposed to introduce a new parameter to describe the spreading, without
specifying its relation to the dispersion parameters and the density variations.

The purpose of this paper is to show, that it is possible to describe the
spreading process analytically, when starting from an abrupt interface in
certain simple circumstances, such that the discharge remains parallel and a
plane flow situation occurs. For that simplified problem the coupled system
can be reduced to one ordinary differential equation of diffusion type. The
properties of solutions of this equation are known, because they have been
studied extensively from the mathematical standpoint, by Gilding and
Peletier (1977), Van Duijn and Peletier (1977) and Van Duijn (1986a).

How these solutions are applied to describe the spreading of density
variations from an abrupt interface is shown in this paper.

SIMPLIFIED PROBLEM

In this paper the case is considered of a dispersion zone developing from
an originally flat, inclined interface, that extends in all directions to infinity,
In order to simplify the analysis, the conditions at the boundaries of the
infinite aquifer are assumed to be such, that the flow is constant in planes
parallel to the original interface plane.

Let coordinates £, n be in the original interface with n horizontal and £
pointing upwards at an angle a with the horizontal, see Fig. 1. The co-
ordinate { is normal to the original interface plane and points upwards. Flow
conditions then are such, that the specific discharge components q;, q,,
q; satisfy:

n = qr = 0 g /o = dq¢/on = 0 (1)

indicating that only q; is nonzero and a function of only { and the time ¢,
ie. q; = qt(r, t).

At time t = 0 the interface is assumed to be sharp, such that the plane
§ = 0 separates the aquifer into two regions in which the density of the
fluids is a constant. Above it is freshwater with density p; and below it salt
water with density p,. In the description below the specific weight vy = pg is
used instead of density p. So in formula the situation is initially:
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i \
/ﬁ/ huriza}-l Flane

Fig. 1. Intesface plane at angle & with horizontal, separating freshwater above it from sait
water below it, at time ¢t = 0,

Y =171 for {>0,t =20

Y =7 for §<0,t =0
Under 'mf]uenceﬁ of this specific weight difference, initially an Edelman

{1940) shear flow g exists at the interface of magnitude:

q = (qq, —q,) = (K/p)y: — 7)) sina (3)

(see e.g. Pe Josselin de Jong, 1981). In this expression Qg,» ¢, are the
specific discharge components parallel to the interface in the fresh- and salt
waler regions, respectively. x is the intrinsic permeability of the aquifer,
considered to be a constant, and u is the dynamic viscosity of the fluids.
For fresh- and salt water the viscosity differs by an amount small enough to
disregard is influence on the results of the analysis below: for a justification
see e.g. Ve-ruijt (1980).

Superimposed on the shear flow an average specific discharge in ¥ direction
of magnitvde fq is considered to occur in this paper, with 8 a number, that
remains canstant in time. The initial flow conditions are then in accordance
with eqn. (3) given by:

q:, = B-1)q for ¢>0,t=0

q, = B—Hq for £<0,t =0

The following situations are to be distinguished, see Fig, 2:
B <=1 both fresh- and salt water flow downward
B = —1} the fresh water is stationary

-3 <g<; fresh flows up, salt flows down

(2)

I

(4)

B =1  the salt water is stationary
g>4 both fresh- and salt water flow upwards.

As time proceeds the transition from +, to 7,, which originally is sharp at
{ = 0, will ipread by hydraulic dispersion and molecular diffusion, Salt water



Fig. 2, Distribution of qg ot time ¢ = 0 for different values of f.

will mix with freshwater, and the specific weight will become a variable
function of position and time. Because of the plane character of the case
considered, v will be a function of { and ¢ only, i.e. v = y(t, t), which
implies that:

9Y/3f = dy/3n = O (6)

At infinity the specific weights will tend towards the original values vy,
at{ =+ +ooandy; at { = —oo,

The mathematical description of the spreading process is developed below
from basic equations, describing the changes in specific weight and specific
discharge g; in course of time. The boundary conditions at infinity are
assumed to be such, that the specific discharges remain constant there and
equal to the initial values eqn. (4). Thus; :

Y =7, = B+ 4)g for {->+too,t>0
Y= g = B—1q for (> —eat>0

The result of the analysis will be a distribution of specific discharge and
specific weight as functions of { and ¢t. An example is shown in Fig. 3 for the

(7)

Fig. 3. Distribution of specific discharge (a) and specific weight (b) for the case m = 0,
f = 1/4 at some time, ¢ > 0.
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case § =} at some later time, > 0. A more detailed description of this
figure is given in the sections below.

BASIS EQUATIONS
Flow rule

When an aquifer contains fluids of different specific weight, the flow rule
is obtained by considering equilibrium of forces. Let K, be the force
required to act on a unit volume of pore fluid in order to maintain the
specific discharge g through a porous medium. According to Darcy's experi-
ments this force equals K, = (u/k)q. Let K, be the force exerted on a unit
volume of pore fluid by the gradient in the pressure p and the influence of
gravity on the specific weight, . This force equals K, =—grad p + e,
where e is a unit vector in the direction of gravity, i.e. downward. Equating
K, and K, results in:

(w/k)q = —gradp + ve (8)
By taking the curl of this relation, the pressure p is eliminated. This leads

to:

{t/x) curlq = curl (ye) (9)

which, accounting for eqns. (1) and (6), reduces to:

{1/K)(3g/3F) = — (3y/3¢) sin & (10$)

Integration of eqn. (10) is possible, because { is the only independent
variable. This gives:

¢ = — (K/u) 7 sin & + constant

where the intpgration constant can be determined by use of egn. (7). This
gives, taking account of eqn. (3):

9 = (k/p)yy —y)sina+ (8 + §)g
or: (11)
q/g = B+ (v, + 1, = 27)/2(y2 — 7))

In this equation q¢ and 7 are the variables, which are both functions of
{ and ¢. It may be remarked here, that eqn. (11) is a linear relationship
between these two variables. This is reflected in Fig. 3, where the curves
for q; and 1y, respectively, are shown to be each others mirror image, when
drawn on appropriate scales,
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Continuity of fluids

When both fluid and porous medium can be considered to be incompress-
ible, continuity of fluid is satisfied, when div g is zero. Using eqn. (1) it can
be verified, that all terms of div q vanish and so continuity of fluid is
guaranteed, identically.

Continuity of sait

In stationary groundwater salt is spread by molecular diffusion. In
addition, this spreading is enhanced when the fluid moves, because inhomo-
geneities in the pore space scatter and recombine fluid elements, In the
periods of being adjacent, salt is transmitted by molecular diffusion to
neighbouring streamlines and carried off in directions deviating from the
average flow paths. This process is called mechanical dispersion (see eg.
Bear, 1975).

Averaged over the pore space a salt flux F occurs, which expressed as
weight transport per unit time and unit area of the aquifer is:

F=~Dgrady (12)

where D is a second rank tensor. It is the dispersion tensor consisting of
terms due to molecular diffusion and mechanical dispersion.

Continuity of salt is satisfied, when the divergence of the exchange flux
is balanced by the local rate of change of the specific weight dy/0t and its
convective rate of change div(gy). When n denotes the porosity of the
porous medium, this balance is expressed by:

n(dy/8t) + divigy) = —divF = div(D grad ~y)
Taking account of eqns, (1) and (6} this expression reduces to:
n(3y/3t) = 3[(nDpy, + arlqel) dy/at] /0t (13)

where D, . is the molecular diffusion coefficient and oy is the transverse
dispersion length in the direction of { (i.e. in the direction perpendicular
to g¢). A special feature of the dispersion is, that not the specific discharge
itself, but its absolute value has to be taken into account.

Equation (13) can be simplified by taking advantage of the linear relation-
ship (11) between 7 and q;. This permits to write it in terms of q; only as:

n(dq;/dt) = ey 3[(gm + tael) 8q,/0¢) /8¢ (14)

where m is a dimensionless parameter representative for the ratio between
the influence of molecular diffusion and mechanical dispersion. It is given by:

m = nD, . farq (15)

Expressed in these terms the salt flux vector F given by eqn. (12) has only
one component F, of magnitude:
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Fr = +ap(ys —v)lm + lqglig) dg,/8¢) (16)

Equation (14) has to be solved subject to the initial and boundary
conditions, eqns. (4) and (7). The mathematical implications of this system
of equations is treated in the next sections.

SIMILARITY TRANSFORMATION

The partial differential equation (14) can be converted into an ordinary
differential equation with simple boundary conditions, by subjecting it
to the Boltzmann (1894) similarity transformation. This means, that the
two variables { and ¢ are replaced by the independent similarity variable
r according to:

r = {Hapgtjn)? an

Introduction aof this variable implies that a/0¢ = (dr/dt)d/dr . . .ete., so

that eqn. (14) is transformed into the following ordinary differential
equation:

~ 4 r(dqy/dr) = d((m + |g,l/q) dqe/dr] /dr (18)

A solution of eqn. (18), which only depends on r is called a similarity
solution of the original equation (14). Let the new variable w = w(r) be
defined by:

w = qfq (19)
Then eqn, (18) reduces to: .
1 ridw/dr) + d[(m + lw|) dw/dr)/dr = 0 (20)

This is a nonlinear, ordinary differential equation in which the relevant
coefficient has the form (m + |wl). By its dependence on the absolute
value of w, this coefficient creates a special nonlinear character of the
problem.

The boundary conditions (4) and (7) reduce by introduction of eqgns. (17)
and (19} to:

= -+
w=fg+} for r++oo (21

w=8-—14 for r—-+—oo
Problem P(m, )

The problem, defined by the differential equation (20) with the boundary
conditions (21), will be referred to as P(m, B), indicating that m and g are
the essential parameters. Since these parameters are related to the molecular
diffusion (see eqn. 15} and to the specific discharge at infinity (see eqn. 7 h
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it is justified physically to assumne that they are real numbers, satisfying:
0<<m<oo and —oe < f§ < oo (22)

Using the substitutions (17) and (19) it is possible to write the salt flux
from eqn. (16) in the form:

Fy = (v2 —viXargn/t) " [(m + |wi)dw/dr] (23)

Application of similerity solution

A solution of P(m, ) is called a similarity solution of eqns. (14), (4)
and (7). In Fig. 4 it is shown, how such a solution w as a function of r
is related to the curves for g, as a function of { and ¢. The heavy curve in
Fig. 4a is the solution w(r) of P(0, }), determined in a manner that is
explained in example 3-ii in the section on practical application.

This curve intersects the axis r=0 in w, = 0.372. This means that
according to eqns. (17) and (19) q, = 0.372 q at { = 0 for every time, £ > 0.
Thus, all the curves in Fig. 4b, which represent the distribution of g over
the height { at different time ¢ >> 0, have the intersection with the axis t=0
in common.

The heavy curve in Fig. 4a intersects the axis w = 0 in ry = —0.503. This
means according to eqns. (17) and (19} that the plane where the discharge
g is zero, is located in {, = —0.503 (ayqt/n)'’?. As a consequence this
plane descends with time proportional to t!‘* as shown in Fig. 4c. The
curves in Fig. 4b all have the same shape as the heavy curve in Fig. 4a but are
stretched with a factor, that is proportional to #'/2,

Fig. 4. Relation between a solution w(r) in {(a) and the specific discharge q; (£, t)in (b).
The plane, where g = 0 descends in course of time according to \/t-, see (c). The curves
are for thecase m = 0,8 = 1/4,
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AUXILIARY PROBLEM @

The problem P(m, §8) is not explicitly solvable, because of its nonlinear
character, although much is known about its solutions. A special difficulty
mentioned already is the occurrence of the absolute value lwl, which causes
solutions to consist of combinations of parts, where w > 0 and w < 0.

This difficulty is solved by considering first the auxiliary problem @,
which is defined by the differential equation:

} s(du/ds) + dlu(du/ds))/ds = 0 {24)
with boundary condition:

u=1 for s-+oo ' (25)
and the additional condition:

O<u(s<1 for —oo<g < + oo (26)

In this section the solution set of this problem @ is considered. In
subsequent sections it is shown, that with these solutions it is possible to
produce the solutions of P(m, 8) for all m and p by application of an
appropriate rescaling procedure.

Solutions of @

The solutions required in this paper are given by the family of curves
represented in Fig. 5.

Solutions of equations similar to eqn. (24) were studied extensively by
Gilding and Peletier (1977), Van Duijn and Peletier (1977), Gilding (1980)
and Van Duijn (1986a). They gave rigorous mathematical preofs about
existence and uniqueness of solutions and they studied their behaviour. Using
ideas developed in these papers, the following basic facts about solutions of
@ can be established, see Appendix A.

All the curves from Fig. 5 are strictly increasing, with du/ds > 0, at points
where u > 0. Different curves cannot intersect. Further, all curves approach
the upper boundary 4 = 1 as a complementary error function such that:

1—u = Olerfc (+ 1)) for g + oo 2h

Expressions for the curves in Fig. 5 cannot be given in closed form. They
were constructed with a shooting method, which was executed by using a
finite difference approximation of eqn. (24), described in Appendix B.

The curves are indicated by type numbers I and 11, such that type 1 curves
are located above the heavy line in Fig. 5, and type I1 curves below that line,
The separation line is called separatrix. In the description below a few
remarks are inserted on the construction of the curves. These are included
for those readers who wish to dispose of more accurate values than can be
inferred from Fig. 5.
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-}

Fig. 6. Family of curves representing solutions of problem Q. Triangles are for examplz
- 3-i, where m = 1/4, § = 1/4. Dashed lines are for example 3-ii, where m = 0, § = 1/4.

Type I curves
These remain strictly positive in the entire interval for s, such that u tends
to a positive value ¢ as a lower boundary, i.e.:

u =¢ with 0<¢p<1 for §—>—o0 (28)

This lower boundary is also approached as a complementary error function,
in this case such that;

u—¢ = Olerfc (—s/¢p''?)] for §—+ —oo (29)

The numerical procedure for establishing the type I curves is to start from
different values u, on the vertical axis, 8 = 0. Next ug, the value of (du/ds),
in each starting point, is chosen in such a manner that constructing the curve
to the right, it reaches the value u = + 1 asymptotically as a complementary
error function according to eqn. (27). Subsequently starting with these
values u, and ug the curves are constructed to the left. The asymptotic value
¢ mentioned in eqn. (28) is established using again the complementary error
function approximation, now with eqn. (29),

For every value of ¢, the corresponding starting values are assembled in
Fig. 6, uy on the left-hand scale and u, on the right-hand scale, For example,
the value ¢ = 0.580 corresponds to ug = 0.8, ug = 0,132,

Type [T curves
These remain zero for all values of s below a value s,, specific for each
curve, i.e.:

u=20 for —owo g5, (30)

At sq the curves start on the base line, u = 0, with a vertical tangent u’ - + oo,
such that:
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Fig. 6. Startvalues ugy and u;, = (du/ds) in # = 0 corresponding to different endvalues ¢
for type-I curves.

2u(du/ds) = A u=20 in 5§ = 8 (31)

with A a value specific for each curve.

The numerical procedure for establishing the type II curves is to start
from different s, values on the base line, to choose a A and to use the series
expansion in terms of A mentioned in Appendix C for small values of (s — ;).
Subsequently, the curves are constructed towards the right, using the finite
difference scheme of Appendix B. The asymptotic end value of u is
established by use of the complementary error function approximation
{eqn. 27). The value of X is finally chosen in such a manner that the end
value equals u = 1, The A values corresponding to different start values s,
are assembled in Fig. 7.

A =zu(dusds)

EFL TR -5 0 -5 6 L

Fig. 7. Startvalues g5 and A = 2u(du/ds) on u =0 for type-1I curves endin‘z[ inu=1,
= + oa
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Separatrix

The separatrix is the limiting case between the two types of curves. It is
a type I curve with ¢ reduced to zero, and a type I curve with A reduced to
zero. The series expansion for small values of (5 —s,) of the separatrix
differs from the series applicable to the type 11 curves (see Appendix C).

PRACTICAL APPLICATION

In this section it is shown how curves of Fig. 5, representing the solutions
of problem @, can be used for solving problem P(m, 8) in practical situations.
It is assumed here, that the relevant hydraulic parameters m and g, defined
by eqns. (15), (4) and (7) are known. The situations where [3| >4 and
18] < { are distinguished,

When (3] > 4 the boundary conditions (eqn. 21) show that either w(ee) >0
and w(— 9} = 0 (case 1) or w(**) < 0 and w(— 0) < 0 (case 2). In both cases
the corresponding solution of P(m, 8) does not change sign on the entire
interval (— oo, o), It will be shown that in both cases a sclution of P(m, B)
can be obtained from a solution of problem Q (i.e. a curve from Fig. 5 for
that matter) by applying an elementary transformation involving rescaling
and displacing the curve in u-direction.

When |8 <} the boundary conditions (eqn. 21) have opposite sign such
that w(—o0) <0 and w(—o) >0 (case 3). Consequently, the solution w
changes sign on the interval {—eo, o). This introduces an additional
difficulty caused by the absolute value of w in the differential equation (20).
Let r, be the value of r where the sclution vanishes: i.e. wirg} = 0, then
w(r) <0 for r <ry and w(r} > 0 forr > ro. The solution thus consists of two
parts {w > 0 and w < 0). Each part is an appropriate transformed solution of
problem @. They are joined together at r, using the continuity of the
concentration (or velocity ¢;) and the continuity of the salt flux.

The treatment here is aimed to describe the required procedure of
rescaling and combining the curves appropriately, without too much mathe-
matical details. For more detailed information the reader is referred to Van
Duijn (1986b).

Case 1: §> }

When f is larger than }, both fresh- and salt water flow upwards. When i
equals 4, only the freshwater flows upwards while the salt water is stagnant,
Both situations are shown in Fig. 2. Now let u(s) be a solution of problem @
and consider for ¢ > 0 the transformation:

r = os (32)

w(r) = ou(rfo) —m (33)
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This transfermation consists of a rescaling (caused by o) and a displacement
(over m) of a relevant curve from Fig. 5. By the transformation the
differential equation (24) becomes:

{rdw/dr +d[(m + w) dw/dr]/dr = 0 {34)

because the g cancels.
Next let u(s) be a solution of problem Q of type I or the separatrix. Then
k(oe) = 1 ard u(—=°) = ¢ == 0. Using this in eqn. (33) gives:

w(=) = 02—m (35)
and:

w(—) = 0% —m (36)
Thus when :hoosing ¢ such that:

f+d =02—m or c=(@B+}+m'? (37)
and ¢ such that:

B=3 =0%~m or ¢=@—i+my@p+4i+m (38)

it follows that the function w(r) satisfies the boundary conditions (eqn.
21). Moreover w(r) 2 0 for all — oo <r <o, implies w(r) = lw(r)|. Therefore
eqn. (34) is identical to egn. (20). Thus the function w(r), defined according
to eqns. (32), (33) and (37), (38) is a solution of P(m, §).

Exemple 1-F m = 1 and f§ = 0.881

Then from eqns. (37) and (38) there results ¢ = 1,543 and ¢ = 0.580.
Using Fig. €, the value of ¢ indicates that the relevant curve is a type I curve
of Fig. 5 passing through the point u, = 0.8, s = 0 with inclination Uy =
0.132. Transformed with eqns. (32) and (33), the u, s values of this type I
curve produze the following w, r values:

w=0w—m= 2381uy—1
and:
r = 1548

These valies form the curve of Fig. 8, which is readily verified to satisfy
the boundary conditions (eqn. 21). The curve in Fig. 8 resembles a comple-
mentary error function. Indeed this kind of function is to be expected as a
solution of sroblem P(m, B) in the limit-case where m is large with respect
to one.

Example 1-iv m = Qand =}

Then the molecular diffusion can be disregarded with respect to the effect
of the lateral dispersion and the salt water is stagnant. This situation can be
considered as the limit of the case where §> 4 and m > 0. From eqns. (37)
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Fig. 8. Similarity solution for m = 1,8 =0.881.

and (38) it follows that:
=1 and ¢ =0 (39)

In Fig. 5 the separatrix is specified by the intersections with the co-
ordinate axes. These are:

8 =0 ug= 05873
8 = —1.23675 u =20

These values are reencountered in Fig. 9 in the following manner. Since the
scale factor in this case is g = 1, see egn. (39), the $, u values are directly the
r, w values, which are related to physical quantities by eqgns, (17) and (19).

Using these relations it follows that 5 = 0 corresponds to { = 0 for all time
t which is the original height of the fresh—salt interface. The first line of
eqn. (40) therefore indicates that the specific discharge at the original
interface height is constant for all ¢ and equal to 9; = 0.5873 g, see Fig. 9b,

The second line of eqn. (40) indicates that the depth §,, below which the
groundwater js stij]} stationary and the specific weight is not yet reduced,
equals —1.23675 (aggt/n)'/2. This means that this depth increases
proportional to root time, see Fig. Oc.

(40)

Case 2: < — 14

When § is smaller than —4, both fresh- and salt water move downwards,
When $ equals — 1, only the salt water flows downward while the freshwater
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Fig. 9. Example 1-ii, case m = 0,8=1y2 Development of brackish zone, when molecular
diffusion can be disregarded and the salt water is stationary.

is stagnant. Both situations are shown in Fig. 2. Now the appropriate trans.
formation is:

r = —os (41)
—w(r) = g*u(— rioy—m (42)
Applying this transformation, eqn. (24) becomes:

ir dw/dr + di(m —w)dw/dr]/dr = 0 (43)

Let again u(s) be of type I or the separatrix. Then eqns. (41) and (42)
imply that:

—w(—o) = gt —pp (44)
and:

—w(+ o) = g2¢p—pm (43)
Now ¢ must be chosen such that:

Bttt =d-m  or o= (=f+}tmpn (46)

and ¢ such that:
Bt =0%~-m o 4= (CB=t+my(—B+1+m)  (a7)

in order that w(r) satisfies eqn. (21). Moreover, w(r) <0, implies that
—w(r) = lw(r)|. Thus eqn. (43) is identical to eqn. (20), showing that w(r)
in this case is in fact a solution of P(m, §).

Summarizing, for this case the solution of P(m, g) again consists of a type
1 or separatrix curve from Fig. 5. Since both eqns. (41) and (42) contain a
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Case 3: — 4 << +1%

In this case fresh- and salt water flow in opposite directions (see Fig. 2)
and so q, and therefore also w from eqn. (19) change sign in the region of
integration. The positive part of the solution is denoted by w* and its
negative part by w™, Then w* resembles case 1 and w™ resembles case 2.

Before showing the practical elaboration of two examples in the sub-
section “use of Fig. 10" below, a few concepts required in the procedure are
mentioned here first. The positive part of w(r) is defined according to:

w*(r) = o*ut(rfo*)—m with ot = im+pg+4)12 (48)
and the negative part by:
—w(r) = 6 2u"(—rfe")~m with o0 = ~m—Ff+1H)'"?* (49)

In eqns. (48) and (49), u* and u~ are parts of two different curves from
Fig. 5. Because of the minus signs in eqn. (49), the part 4~ is rotated over
180° in the rescaling process. By choosing ¢ according to eqns. (48) and
(49), it follows that w*{ee) =B + 4 and w™(—oe) = — 4.

It remains to organize the solution in such a manner that the two parts
w* and w~ match together at the point where w = 0, More precisely, it
remains to select r, and curves u*(s) and u~(s) from Fig. 5 so that the
composite function:

w*(r) for r>ry
wir) = (50)
w(r) for r<rg

satisfies certain continuity properties.

In a study of the more general nonlinear partial differential equation
Oufot = 3% (lul* "' u)/dx? with k > 1, it is shown by Van Duijn {(1986a) how
to join the solutions on the base line, u = 0 in his case. He points out, that
the fitting conditions are to be déduced from additional physical considera-
tions. In the present problem the condition to be satisfied is that the salt
flux should be continuous. Using expression (23) this condition can be
written as:

2(m + wh)dw*/dr = 2(m —w )dw fdr = A for
w'*=w" =0 at r=r, (51)
Elaboration of this condition is rather involved, since the relation between
A and ro cannot be determined directly. In order, however, to provide a

first approximation of the solution, Fig. 10 is added here, in which A and ro
values are assembled for a relevant region of m, § values.
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Fig. 10. Values for ry and A for different m, § combinations,
Use of Figure 10

Example 3-i:m ={and g =}

The similarity solution in r, w coordinates is the dashed line in Fig. 11.
This curve is obtained as follows. From Fig. 10 the appropriate values for
this example are found to be A =0.292, r, = —0.699. The value of o
means that the dashed curve in Fig. 11 intersects the axis w = 0 in the point
r=ry =—0.699,

The value of A indicates with eqn. (51) that the inclination of the curve
is:
dw/dr = Af2m = 0.585 in w =0, ro = —0.699

This information is sufficient to construct the two parts of the curve with
the finite difference scheme of Appendix B, by extending them from the
starting point r = ry, w = 0 in both directions up to infinity.

It is also possible to obtain the curve by transforming two curves from
Fig. 5. From eqns. (48) and (49) it follows that the scale factors are g* = 1
for the positive part and 0~ = —(4)'? = —0.707 for the negative part,
respectively. Again from eqns. (48) and (49) it can be deduced that the
starting points of the corresponding curves in Fig. b are:

rolﬂ+ = —0.699

il

ut =4 and 8¢
and:
u =4 and 85 = rg/o” = + 0.989

The points are indicated by two triangles in Fig. 5. It is readily verified,
that the upper part of the dashed curve in Fig. 11 is identical to the unde-
formed curve starting in the left triangle in Fig. 5, undeformed because
0" = 1. The other one is rescaled by 0~ = — 0.707.
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Fig. 11. Similarity solutions for the example 3-i, case m = 174, B = 1/4 (dashed line) and
example 3-ii, case m = 0, § = 1/4 (full line).

Example 3-ii: m = Oand f = }

The solution in r, w coordinates is the full line in Fig. 11. This curve is
obtained as follows. From Fig. 10 the appropriate values for this example
are found to be A = 0.183 and r, = — 0.503. The value of ro indicates that
the full line in Fig. 11 intersects the w = 0 axis in the point r =ry = —0.503.

The value of A being nonzero, it follows from eqn. (51) in this case wherz
m = 0, that dw*/dr and dw™/dr are infinite. The two parts of the curve havz
a vertical tangent in the intersection point with the axis w = 0. They can bz
constructed, however, by starting on either side of the intersection point
with the series expansion of Appendix C because 2wrdw*{dr = — 2w(r)
dw™/dr = A is finite and known in this case. Using the finite difference
scheme of Appendix B the curve can be extended towards r — o,

It is also possible to obtain the curve by transforming two appropriata
curves of Fig. 5. From eqns. (48) and (49) it follows that the starting points
of the curves are:

ut = 0 and 85 = ro/o* = —0.603/(3/4)!? = — 0,581
and:
u" =0 and 8g = rofo” = —0.503/—(1/4)"* = +1.006

The corresponding curves are indicated by dashed lines in Fig. 5.

it may be remarked, that u* intersects the axis s =0 in u* = 0.498.
Rescaled with eqn. (48) this point becomes r = 0, wg = 0.372. This value and
ro = — 0.503 mentioned above are reencountered in Fig. 4, which was
dicussed in the subsection “Application of Similarity Solution™.

ANISOTROPY

From the practical standpoint the case of anisotropy is of importance
The results of the analysis presented here are still valid in that case. Only the
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coefficients « for the intrinsic permeability and o for the transverse
dispersion, have to be adjusted. It was shown (De Josselin de Jong, 1981)
that for the case of a soil with a horizontal permeability «,, deviating from «,
the vertical permeability, the relation (3) for the shear fiow, g, remains valid.
Only x has to be replaced by k,, the intrinsic permeability in the direction of
the interface, such that (1/x,) = {cos®a/k,) + (sina/x, ).

With respect to the transverse dispersion it may be remarked here, that the
custom to attribute oy a value of one tenth of the longitudinal dispersion
length oy, which is common in these days, is not justified in general, It is
certainly an overestimation in the case of anisotropy created by lenses of
more permeable material, that are elongated in horizontal direction.

The longitudinal dispersion length in the direction of the lenses may be
of the order of the lens lengths and/or their mutuat distance. The longitudinal
dispersion length perpendicular to the lenses, may be of the size of the lens
thickness and/or spacing. But the transverse dispersion may be much smaller
because that effect is due to the possibility for the groundwater to exchange
salt with fluid elements in neighbouring streamlines, Since the elaboration of
streamline patterns and the ensuing exchange possibilities is rather involved,
this point is not pursued in detail here. For practical use it may suifice to
mention, though, that it is more realistic to envisage a value much smaller
than one tenth for the ratio between ay and oy .

RECAPITULATION OF THE RESULTS

In the preceding sections, the mixing process of fresh- and salt ground-
water due to molecular diffusion and transverse dispersion was discussed.
This was done for plane flow under several different conditions, In all cases,
the initial distribution (at time ¢t = 0) of the specific weight is that the fresh
and salt fluids have constant specific weights, v, and vy, respectively, and are
separated by a sharp interface. The difference is in the specific discharges
q; of the two unmixed fluids. These are considered to have a constant value
in each of the two regions above and below the interface at t=0, and to
keep that same magnitude at infinity both above and below, ¢ = + oo, for all
later times ¢ 2> 0. For ¢ > 0 the fluids become more or less mixed and the
specific weight 7y becomes a function of the local height { and the time ¢,
The specific discharge ¢¢ changes accordingly because it depends linearly on
7, see eqn. (11).

Because of the plane flow and other simplifying assumptions, the system
of partial differential equations, that describes the spreading process can be
reduced to the single differential equation (20). This is achieved by
introducing the similarity variables w and r. From these, w is related to the
specific discharge q¢ by eqgn. (19) and to the specific weight -y by using eqn,
(11). The variable r is related to the height { and the time t by eqn. (17).

The governing equation (20) has as relevant solutions the family of curves
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shown in Fig. 5. By rescaling, displating and combining in various manners
the appropriately chosen curves of this family, it is possible to construct the
solution for various values of molecular diffusion and flow conditions at
infinity. Molecular diffusion in comparison to dispersion is described by the
parameter m, see eqn. (15), the flow conditions originally and at infinity by
the parameter §, see eqns. (4) and (7).

The differential equation (20) is a nonlinear diffusion equation with
(m + |lwl) as diffusion coefficient. The absolute value of w in this coefficient
is unusual and requires a special treatment when w changes sign in the
integration interval. By eqn. (19), this occurs when the fluids flow in
oppaosite directions.

In this paper three cases are considered that differ in the way the two
unmixed fluids flow. In the cases 1 and 2 both fluids flow initially and at
infinity in the same direction. In case 1, the choice f >4 guarantees that
both fluids flow upwards or only the freshwater flows upwards and the salt
water is stagnant (g;>0). In case 2 (8 <—4), both flow downwards or
only the salt water flows downwards and the freshwater is stagnant (q; < 0).
In case 3 (— 4 < < 4), the two fluids flow in opposite directions.

When >4 or f<—{, it follows from eqn. (21) that the function w is
nonnegative (w = 0) or nonpositive (w < 0), respectively. In these two cases
the solution consists of one rescaled and displaced curve of Fig. 5 from the
subfamily called type I curves. In the section “Practical Application” two
numerical examples (1-i and 1-i) are elaborated to demonstrate the
procedure,

Mathematically of more interest is case 3 where w changes sign according
to eqn. (21) and — } < <. The solution then consists of two rescaled and
displaced curves of Fig. 5. The procedure is now more involved because the
curves have to be selected in such a manner that they fit together correctly
in the point, where w = 0. The transition condition is derived from the
requirement of continuity of salt flux. In case 3 both curves of type I and
type II from Fig. 5 can be required to produce the end result. Examples 3-i
and 3-ii show these results explicitly.

In practical situations the flow conditions are in general not as simple as
assumed in this study. Plane flow is an exception, the interface is generally
not flat and flow is not necessarily parallel to the original interface,
However, being an exact solution of a simplified situation, the results of this
analysis may be useful for verifying numerical procedures that describe
variable density flow with dispersion of a more general purpose character,
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APPENDIX A

In this appendix, some elem?ntary properties of solutions of problem @ are discussed.
For convenience, the notation u’ = du/ds is being used here.

Unigueness

Congider eqn. (24). Suppose that at some point 8¢ the values:
u(sg) = C, and u'(se) = €, (A1)

are prescribed, where €; and C; are given constants, Taking Cy > 0, it was shown by
Atkinson and Peletier (1971) that for any —e < C; < oo, there exists a unique solution
of eqn. (24), which satisfies the conditions (A1) and which exists on the largest possible
interval, where it is positive. A consequence of the uniqueness is monotonicity of
solutions of @,

Monotonicity

Let u be a solution of problem Q and suppose that there exists a point g9 where:
u{sg) = Cy with 0<(, <1 and “'('0) = 0 (A2)

Now observe, that the constant function i(s) = €, for —o0 < § < % also gatisfies eqns,
(24) and (A2). Then the unigueness requires, that the solutions u and & must be identical,
which ‘implies that u(s)=C; for all —=<s<o This contradicts the boundary
condition (25}, Therefore the only solution of Q, which is not strictly increasing is the
constant u = 1. All other solutions with 0 <u <1 must satisfy u’ > 0 in order to satisfy
the boundary condition (25).

Intersection

Next it is shown, that two solutions of Q@ cannot intersect. Let uy and u; be two
solutions of @ and suppose, that there exists an intersection point 89, where u,(sg) =
u3(s0). By the unigueness, u',(ao}#u;(lo), because otherwise u; and u; would be
identical, Without loss of generality it is assumed here, that u)(sg) > u';(ao). Then two
situations can arise:

(1) There exists an other intersection point 8, such that:
ui(ey) = uy(ay) and u{e) > uq(s) for 1 <s<s
(2) uy(8) > ug(s) for all s > s, and both solutions satisfy eqn, (25).

Ad (1)
Integration of eqn. {24) with respect to s from sy to s gives for u; and u;, respectively:
L]

uy{e))u)(s)) — uy(so)u'y(s0) + 4'1“1(31)"‘410“1('0)“4 I":(l)d' =0 (A3)

and: .21

Ga(e1Juz(sy) — uz(e0)u3(ae) + 4oyus(n)) — Yoous(se) — § f uyls)ds = 0 (A4)

Subtracting these equations gives: " "0

waCea)luh =i be)=un oo Ny — w3 o) = | wst0)—uyie)lan = 0 (A5)
0

However, by the above assumptions [u} ~u})(s;}< 0, {u} —u3)(2)> 0 and
*,

! [us(2) —uy(2})de > 0. This contradicts the equal sign in eqn. (A5). Therefore case (1)
a

cannot arise.
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Ad (2)
A similar argument gives for this case also a contradiction. Thus both (1) and (2)
cannotl arise and thus no intersection point exists.

Asymptotic behaviour
Next an argument due to Peletier (1970) is used to ohtain eqns. (27) and (29), The

starting point is the following observation. AL points where u > 0, eqn. (24) can be
written as:

Yom)u®y + @?) = o (A€)
which can be integrated to give ;
@) @) = (1Y (s0) exp {— } flzfu(z)hu} (AT)

]
Here 3y is an arbitrary chosen point, where u(sg} > 0.
Since u(a) < 1, it follows from eqn. (A7), that:

(4Vte) < (7Y (ag) exp [— h(s? — o3)] for 524 (48)
Using u'(s) > 0 and thus u(s) > ulso) for s > 5 in eqn. (A8) gives:
0 <u'(s)< u'(ap) exp [—§(s* —s})) for PP (A9)

Integration of eqn. (A9) with respect to s from a point 12 a4 to = gives:
1= u@ < u'(s) exp (i-c’.)fﬁp (~de')ds = u'(sg) exp (Jad /T exte (1) (A10;
where erfe (x) = (2\/m) [ i.exp (~2%)dz.

From eqn. (A10), condition {(27) follows when & — %o, A gimilar argument gives eqn.
{29), whenever ¢ > 0.

APPENDIX B

A finite difference method to obtain the solutions of problem @ as shown in Fig. 5,
is discussed here,

The solutions of problem Q were distinguished in type-! curves, type-Il curves and a
separatrix. In all three cases, first a value of u and du/ds was chosen at a point where y
Is positive. For curves of type I this was done at ¢ = 0 and the appropriate values for

see Appendix C.

Thus for the finite-difference approximation one has to solve an initial value problem
of the form:

@) +s' =0 >3 (B1)
u(d) = g (B2)
W) = u' (B3)

where eqn. (B1) is a rewritten version of eqn. (24) and where %, & and &' are three given
numbers such that u > 0 and 4’ > 0.

1

Let & =1 + iAs, where As denotes the discretization interval, Integration of eqn. (B1)
from s; Lo 8, gives:

$i+
WYl e1) = () o) + I su'ta)de = 0 (B4)
]
Integrating the third term in eqn. (B4) by ‘parts and setting u' = p gives:
irl
U0 1Pivy = upg g~ g, I u(s)ds (B6)
L)

where u; = u(g) and p= u'(q).
A second esuntion Is needed to solve eqn. (B5) and this can be:
141

Yoy = u+ I Pls)ds (B6)
]

‘The integrals in eqns. (B5) and (B6) are approximated b)'r’ a third-degree Hermite poly-

nomial, see Ralaton {1965, p. 60). Using the notation u =g this leads to the finite-

difference scheme:

As As?
2y, Pryy = 2upy b oy ey, up ., + 'E'(“J'*‘ Hreg) + 'E(P:_Pn;) (B7)
and:
As 4s?
Uy = ut+ ?(PH‘P;...)*' E(qu“‘hn) (B8)

This scheme has a local truncation error of O(As%), see Raiston (1985, p. 212), and it is
therefore expected that the global accuracy is of O(As*),

The values of ¢ at & and &, ,, are obtained by using the differential equation (B1)at
¢ =s;and 8 = g;,,. For ¢, this gives:

2
Pi by
L (il T (B9)
u; 2"‘

Substituting this expression and the corresponding expression for q;,, into eqn. (B8)
yields:

(B10)
wo ¥ g,y “'ZWH

As as?  p? » o} Pisy
Waey =t ',;(P:"‘P:n)""l? R —

Thus for given values of %, ¢+, 4y and p,, the two nonlinear equations (B7) and (B10)
have to be solved to obtain u;,, and Pi+1- However, because of the nonlinearity this
cannot be done directly and the following iteration process was used to obtain approxi-
mate values for uy, | and py,;. Lot u D= uy. Substituting this value into eqn. (B7) and
solving the resulting linear equation for p;, ,, gives the approximate value p,‘f i

This value in turn is substituted into eqn. {B10). The resulting quadratic equation in
#(+) can be solved directly to obtain the value u}., a8 a next approximation for u,, .
Since this process canverges rapidly only a few of these iteration steps were needed at
each value of i = 0,1,2,...

APPENDIX C

In this appendix an approximation is considered of curves of type Il and the separatrix
from Fig. 5 for small values of . This approximation has the form of a series expansion
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which solves the initial value problem defined by the differential equation (24) for
8 >> 59 and the initial conditions (eqn. 31).

e

-
¥

Type-il curves

For type-1l curves, A > 0 and a series expansion of the form:
d(s) = [Ms—50)]"? +als —s0) + bls —80)** s —s0) ©(cy)

is chosen as sn approximation in a sufficiently small neighbourhood of #g. Clearly, any
approximation of the form (C1) satisfies eqn. (31). The values of th? constants z, b .and
¢ are obtained by substituting egn. {C1)} into the differential equation (24). This gives
the following set of equalions:

from the term with {a — 50) V*: 2ay/A = — §soVA

from the term with (s —¢)°: a? + 26vA = —lasg

from the term with (s —8g)''*: 2ab + 2c/A = i?\—-ibao—_Qﬁ

from the term with (s — so): b+ 20¢ = de—1a

from the term with (8 — 2¢)* % 2bc = — §b

from the term with (s — £0)*: et = —le
Thus for A > 0, the choice:
a= —1s b = s3/36VX ¢ = (s3/270X) = (1/15) (c2)
g‘uarantefes, that the approximation (C1) satisfies equation (24) up to terms with
(s—8e) "

The first point on the curve (u,, 5,) is chosen in such a manner, that (s; —#y) is a
sufficiently small number for approaching the value of u; by the series expansion. The
value of u, which represents (du/ds) in the [irst point, is taken from the derivative of the
series expansion. The values uy, u3, 8y are the starting values for establishing the rest of
the curve upwards and to the right by applying the finite-difference procedure of
Appendix B. The parameter to adjust in this case is A from eqn. {31).

Separatrix

For the separatrix, an approximation of the 'l';:)rm {C1) is chosen with A=0 and
85 < 0. Then the following two sets of values for a, b and ¢ occur:

a=0 b =0 e =0 (C3.
and: o
a = —1is b =0 ¢ = —agl(3sg+ 1) (Cds

The set of values (C3) leads to an approximation, which is identically zero. This solution:
corresponds to the part of the separatrix in the region s % 24. In the region & 2> 8, the zet
(C4) gives:

ii(s) = — bagls —s0) = s0(s —50)* /(389 + 1) . (C5)

and this approximation satisfies eqn. (24) up to terms with {5 _8013.'1_ To obtain
numerically the solution, that starts at this value of sy an identical procedure as for the
case of type-Il curves was used. The parameter to adjust in this case is 89. It is found, that
for 53 = — 1.23675 the corresponding solution reaches the value u = + 1 asymptotically,
when s = + 0,
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