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ABSTRACT

The paper is concerned with dynamic control of robot arm
with non n=gligible joint elasticity. In this case nonlinear

control techniques-based-on decounling and nonlinearity com-

AN APPLICATION OF NONLINEAR MODEL MATCHING TO THE DYNAMIC CONTROL pensation via statie state-feedback cannot be applied for the

OF ROBOT ARM WITH ELASTIC JOINTS , nost common robot structures. This is because the mathematical
: model associated with these structures is such that the nec-
essary and sufficient conditions for the existence of the de-
coupling czntrol laws fail to hold. Motivated by these facts,
the problemn of using a dynamic state-feedback is considered.
The main purpose of the paper is to show that one can design

a dynamic state-feedback compensator, which makes the external
behavior «f the contreolled robot identical to the one of a
prescribed decoupied linear model. The particular example con-

sidered is a planar robot arm with two elastic joints.
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1. INTRODUCTION

The problem of decoupling the dynamics of robot arms via
static state-feedback has received large attention in the
last vears and is an appealing approach for achieving a com-
plete control of the external behavior of an anthropomorphic
manipulator.

For robotswith rigid joints this control technique has
been labeled in a number of different ways in the past [1]
and it has been shown that the resulting control is robust
[2]; moreover the nonlinear decoupling has the nice property
that it completely linearizes the state dynamics [3].

For robots with elastic transmission between actuators
and arms, as belts or harmonic drives, the effect of joint
elasticities 1s such that the decoupling technigque cannot be
applied for the most common robot mechanical structures. This
is because the mathematical model associated with these struc-
tures is such that the necessary and sufficient conditions for
the existence of a decoupling law fail to hold in most cases. |
There are special mechanical structures for which such cbndi—
tions hold [4]: however, in these cases, the computation of
the relevant contrel laws is quite éumbersome. In alternative,
an approximate decoupling may be obtained using a controller
based on singular perturbation theory [5].

In this paper-we show that exact deccupling can be achiev-
ed for robot with elastic joints via the nonlinear model match-
ing theory [6]. In this case the resulting control law is a
dynamic state-feedback which makes the external behavior of
the controlled robot identical to the one of a prescribed de-
coupled linear model. Moreover we show that the system araph



representation [7] gives a fruitful insight into the model
structure, thus allowing reduction of the dynamic order of
the controller and complete linearization of the state dy-
namics.

2, MATHEMATICAL MODEL OF ELASTIC ROBOTS AND STATIC DECOUPLING
TECHNIQUE

The mechanical structure of a rcobot is constituted by N-1
bodies interconnected through N joints. The body between two
joints is called a link. The joints are activated by motors
with transmission gears or belts; when the links and the trans-
missions are assumed to be rigid the dynamical behavior is that

of a chain of N rigid bodies. In thils case the equation of mo-
tion in matrix form is

g =B(@ ) [m(t) + el@ + clq.d)] (11

where q is the N-vector of joint variables giving the relative
displacement between two adjacent links, B(q) is the N x N in-
ertial matrix, m(t) is the N-vector of generalized forces de-
livered by the motors, e(g) is the N-vector of conservative

forces and c{q,§) is the N-vector collecting centrifugal and
Coriolis forces.

When the transmissions are not rigid the N actuating bodies
of the motors are elastically coupled to the driven links; there-
fore the dynamical behavior is that of 2N rigid bodies with 2N
constraints, N of which include elasticity; this is the case
of interest here. The equation of motion in matrix form is still
eg. {1}, but with the following peculiarities:

- the number of second order eguations is 2N;

- g is a 2N—wvector in which Qyq denotes the displacement of
link i w.r.t. link i-1 and Dy;-1 denotes the displacement
of the driving body of joint i w.r.t. link i-1, for i=1,...,N;

- Blg) is the 2N x 2N inertial matrix of the 2N rigid bodies;

~ e(g) and c{q,§) are 2N-vectors and e(g) includes the effects
of elasticity;

- m{t) is a 2N-vector with the even components equal to zero.

Startirg from mechanical parameters, the model (1) is
given automztically by the DYMIR code [8] both for rigid and
elastic robots. Eg. (1} may be rewritten in the standard form

®

fi{x) + gi{x) u
g {2}
hi=}

b

with state = = x: xﬂT = E;T qTTre X = R", input ueR" and
output y € R, In the elastic case n = 4N, m = £ = N. The
vector £ and the m columns EPERRRNL- of the matrix g are swooth
vector fields defined on an open subset of R"; the expressions
for f and g are given by:

B 0

. gix)=

.4
£x)e v

_B(x?)-1[c(xp,xv)+e(xp)] B(xp)”diag{[;]}

'
Moreover, in (2} h is a smooth vector-valued function; in our
case the output y may be defined as the vector of link dis-
placements X535 = dyy ({ =1,...,N). The input u collects only

the nonzero components of m(t).

An attractive approach to the control of nonlinear sys-
tems is the one hased on decoupling state-feedback laws. The



static state feedback decoupling problem is defined as follows;
given a system in the form (2}, find a feedback ofx) and a
state dependent change of coordinates g(x} in the input space

such that the closed-loop system formed by the composition of
(2) with

u = afx) + p(x) v (3}

has the i-th output devendent only on the i-th component of
the new input.

The problem is now well understood [9], [10], [11]; the
basic concepts of decoupling theory are summarized in what
follows. Given a vector field f on X and smooth function h,
recall that the Lie derivative of h in the direction of the
field f is the function

_ . 3h ah
Leh = (———ax1 ..... =) f.

The k-th order Lie derivative is Lfkh = Lf(Lfk-1h) whileIT°h=h.

bDeftnition !. The characteristic number pj associated with the
output yj is the largest integer such that for all k <pj

L L. "h. =0 , vie{1,...,m} . u
In the nondegenerate case (oj#w, Vj) we have:

Definition 2. The decoupling matrix A(x) associated with the
system (2), with m=f, is the £xf matrix with smooth entries

- b
aji(x) = Lgi Lf hj . n

The main result of static state~feedback decoupling theory
is given by:

Theorem 1. [9] A necessarv and sufficient condition for
the existence of (a,8) which solves the decoupling problem
is that the decoupling matrix A(x) is nonsingular. o

When Theorem 1 applies, a possible decoupling control is given
by {3) with:

(p,+1) (o1+1)

_1 1
=A{x) col{Lf h1,...,Lf

a{x) h,l

1

{4}

-1
A(x)

B{x)

It has been shown [3], [7] that for the rigid robot the
corresponding matrix A{x) is nonsingular so that (4} provides
a solution to the decoupling preblem. On the contrary, in the
elastic case considered here the matrix A{x) is in general
singular [4], except for particular mechanical structures. We
will see in Section 5 that the condition of Theorem 1 fails
to hold for the most common robot structures. As a consequence,
static state-feedback is no longer’sufficient in order to solve
the decoupling problem when joint elasticity is taken into ac-
count.



3. MODEL MATCHING VIA DYNAMIC STATE FEEDBACK

In this section we summarize some recent results con-
cerned with the use of dynamic feedback compensation in order
to match a prescribed input-output bhehavicor and we find, as

a byproduct, a sufficient condition for decoupling via dynamic
feedback.

A dynamic state-feedback is a control mode in which the
inputs Ugreesstp are related to the state x of the process
{2) and to other input variables v1,...,vu by means of equa-
tions of the form

ol
[

a{x,t£) + b(x,£) v
(51

=1
I

cix,£) + dix,g) v.

These equations characterize a dynamical system - the state-
feedback compensator -~ whose state £ evolves on an open sub-
set of R°. The vwx1 vector al{x,c), the vxpy matrix bix,f), the
mx1 vector c(x,f) and the mxy matrix d(x,£} have entries which
are smooth functions defined on an open subset of R™xr".

The composition of (2) with (5) defines a new dvnamical
system with inputs v1,...,vu, outnuts y1....,y£ and state
x={x,t) given by equations of the form

$=E060 + 400 v

(6)
y = h{x)

with

fix.£)

alx,£) ~ bi{x,¢)
q(X:E) =
f{x)+gi{x}cix, ) gi{x)d{x,£)

h(x}

f\(x: £}

We shall see that dynamic compensation enables us to match,
if some conditions are verified, a prescribed behavior between
inputs and outputs 1in the composed (closed-loop) system (6}.
In particular, we will be able to obtaln a response of the fomm

t
yi{t) = Q{t, {x°,£%)) + J W, lt=1) vir) ar {7)

o

where HM(t) is the impulse-response of a fixed linear model

z

Az + Bv

Cz

L]
It

On the first term Qft,{(x°,£°)) of the right-hand-side of (7),
which corresponds to the zero-input response (and clearly de—
pardds - possibly in a nonlinear manner - on the initial state),
we do not impose at this point any particular constraint.

If the process (2) and the compensator (5) were linear,
then a well known necessary and sufficient condition for the
existence of solutions to this problem would be the one based
c¢n the comparison of the behavior of the transfer functions of
the process and of the model as s+« [12]. We recall that the
retavior of a strictly proper transfer function W(s) for s+«
is fully described by the so-called Smith-McMillan factoriza-
tion at the infinity [13]

W(s) = Q(s) A(s) P(s)




10.

in which Q{(s) and P(s) are biproper rational matrices (i.e.
proper rational matrices with an inverse which is also proper)
and

— 41 1 A
h(s) = dlag{I6 o 1. 52.---. s q’

1 2

The sequence [61, 5 .} 1s said to characterize the

2'°°
structure at infinity of the given linear system. Sometimes,

instead of the sequence {61, 8 ..} one considers a sequence

2"
[ro, r1,...) related to the former in this way

ro = 61

(8)
ry = 61+1 - 61 i1
and whose computation is rather easy on a realization (A,B,C)

of the transfer function W(s).

If the process to be compensated is nonlinear, one may
still establish a sufficient condition for the existence of
solutions to a model matching problem by means of a suitable
extension of the notion of structure at infinity [14]. This
extension, which is based upon the consideration of the so-
callied maximal controlled invariant subspace algorithm [9} and
is described in full in the Appendix 1, associates with any
nonlinear system of the form (2), i.e. with any triplet (f,qg,h},
a string of integers {ro.r1,...} which shares much of the prop-
erties of the sequence defined bv means of (8).

A (sufficient) condition for the solvabilitv of the probh-
lem of matching the external behavior of a prescribed linear
model can be found in the following way. With the given process
(2), i.e. with the triplet (f,g,h), we associate its structure

at the infinity {rg,r1....). Moreover, from the trimlet (f,g,h)

1.

and from the triplet (A,B,C) which characterizes the model
to be mazched, we define an enlarged system as follows

b4 fix) + g{x) u

z

Az + Bv
e = h(x) - Cz.

These equations may be written in more condensed form as
B
X = fE(xE) + gE(xE) uf

9
hE(xE) 9

e

letting «<E = (x,z), B = {u,v) and

1£{x) g(x) V]
fE(x.z) = [% } gE(X.Z) = [: - }
Az 0 B

hE(x,z) = h(x) ~ Cz.

With the triplet (fE,gE,hE) we associate the structure at

infinity, denoted {rg, rf,...}.

The coincidence between the structure at infinity of the
triplet (f,g,h) and that of the triplet (f%,g%,hE) is exactly
the condition we were loocking for.-As a matter of fact, the
following result has been shown to hold.

Theorem 2, Let (f,g9,h) and (A,B,C) be given. If
rk = (10)

for all x>0, then there exists a dynamic feedback compensator
under which the input-output behavior of (2} becomes

t
Y{t) = Q(t, (x*,£%)) + J C exp Alt=1) B v(1) a7 . o
O
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The proof of this Theorem, which is constructive, may be
found in [6]. It may be worth observing that the compensator
thus determined has the structure

t = AL + Bv

(1

u = alx,£) + yv(x,8) v
i.e. incorporates the dynamics of the model to be followed.

In particular, its dimension v is egual to that of the linear
model.

The conditions provided by this Theorem may be used, in
particular, in order to check the possibility of matching the
external behavior of a linear model with transfer function

- -
-3 0 . 0 1] . 0
8
1
0 -5 .. 0 [¥] .o 0
s {12}
Wn(s) =
1
LO 0 - s 0 - 0
s —

where 6§ i5 a suitable integer.

The external behavior of a linear system with transfer
function (12) is clearly decoupled. Thus, the dynamic state-
feedback compensator which enables us to match this model is
such as to impose a decoupnled behavior between inputs and
outputs. As a matter of fact, in the closed-loop system, each
component of the output is influenced only by the correspond-
ing component of the input. Note that this is independent of
the specific form of the zero-innut resmonse Q(t,{(x",£)). In
the next section we will consider the applicatibn of these

results to a given class of robot arms.

13.

4. APPLICATION OF THE MODEL MATCHING THEORY TO THE ROBOT ARM

In this section we describe the application of the pre-
vious theoretical results to the nroblem of contreolling a
rebot arm with elastic joints; in particular we will consider
as an example the two links planar robot arm.

By means of the Algorithm of the Appendix 1 we will com-
rute the sequence {ry.rq...}and see that it is possible tomatcha
linear model with transfer function of the form (12}, with
4=k*+1. This is done by imposing the same structure at infin-
ity of the original system on the system (%) which includes
the model to be matched.

The ccmplete mathematical model of the two links robot
arm with joint elasticity is described in the Apvendix 2. Note
that we consider as system outputs the joint posltion vari-
ables; thus, we are looking for decoupling strategies in the
joint space, Since the relationship between joint and task
space variables, expressed by the robot kinematics, is a con-
tinuous mapping almost everywhere invertible, this choice is
by no means restrictive.

We begin with the computation of the sequence {ro,r1,...}
for our example. In order to do this we have to perform the

Algorithm on the triplet {f,g,h) which describes the robot amm
system.

In the initial step we make use of the output functions

h1=x2,h2=x4; we have

Do=sp{dh1,dh2}=sp{°1000000}
00010000

s0 that so=d1mﬁo=2.
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To start the 0-th iteration we need to find T, i.e. we
just have to compute the rank of the matrix

Since r0=0, the equations (A1) in Appendix 1 are trivial. To

construct 2, we have to pick up functions from the following
set

A= {Lf h

o jr Ly hy o d=1,2 5 3=1,2)

J i
such that their differentials are linear independent with

respect to each other and to the set of differentials which
span . Since we have

Le hy = x¢ Le h2 =Xy , L h=0,
we obtain directly
_ _ 0Oooo0oo0too
2y = @ espldL;h,,dLch,} = e @sp | }

0C00CO00CO0O0 1

and hence 51-dim91—4. Thus, we set 11—[51,h2,th1,thé] .

In the 1-st iteration, r, is given by the rank of the
matrix

dh, o 0
an, o 0
M7l [91 92J= 8 g — nT
"4 62
aL b

15.

At this point consider the following 4 by 4 permutation matrix

0010
L LI B e
17| e 13000
12
001
which is such that P11A1 selects r1 linearly independent rows
from A1. In this case r1=1 and the third row of A1 is chosen.

JDefine further

ahy *g
X
By= d:hﬁ o= fa
f1 [ S
dbgh, 8

and solve for an m-vector o and an m *xm invertible matrix B
{m=2) the equations
a B 8
P, A Tle-p B , P A M 12l- k= (o 1]
11 1 B B -
21 "22
where for K we can choose any matrix of real numbers of rank

equal to r1. We obtain:

Ay = 0s @y = mEe/Gear Byy T T By T 1/Ggps By, = By =0
from which we can construct a static feedback law
U= alx} + B{x) w (13}

that gives the new vector fields ?=f+qu ,aiz(gﬂ)i whoseexplicit

expressions are given in the Appendix 2. The algorithm proceeds
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by vicking up a maximal number of functions from the set

hy o= [L}(thj) . Lgi(thj) ; 1=1,2 : j=1,2}
with linearly independent differentials. Notingthatxkh =I@h,
we have

tefn, =0, 1y, = £, , Lo Lh = 0

f " M ) 8 ' £ !
= v P

ngL%h1 1, Laszh2 9as

so that the only candidate is nghz since 582 depends on only.

We cbtain in fact

n
of
ax

8
3

2
n, = ﬂ1$sp{dL¥ hz] = 91959{0 . 0« 0 0}

N
where (afs/ax3)=K2/N2A2#0 assures the linear independencv of the

new row w.r.t. the previous ones (+ denotes non relevant terms).
2 T

= = = 4 un W
So Sy dimﬂ2 5 and 12 [%1,h2,th1,th2,Lf hé] .

Next, for the 2-nd iteration compute

oy
"

T T ay T T A2, TT
2 Eih1 dh, deh1 dL}h,” dLg hZ] E;.‘ 92]

= 10 0 0 0 ¢ Tv*% r, =1
0 0 g . 2 )
Zg2 982

Again we need to find (a,8) as a solution of a matrix equation
similar to the one considered in the previous step. However,
as long as rk=1 we obtain the same (a,R) i.e. the same E,& and
s0 we will bypass this part of the computations; thus, the new
searching set is:

2 2 2
= " W a,
Ay {Lf(Lf h2)' L§1(Lf hZ)' L§2(L¥ hZ)}'

17.

We have

La L”zh =0, L~ LWZh

Wy
1 ¥h, g, ¥ 2=afa/ax6= -2(A3/A2)x6 sin x

4 I
3 a A vk
L} hz—(afalaxz)x6+(af8/ax3)x7 (afB/ax4)xB

and then

of

3
- L = -
03—onsp{de hz} nzasp{o 0+ 0 ax3

so that s3=dim93=6.
The 3-rd step of the algorithm starts computing

N T 7 T T 2. 7T .3 T|T
Ay={ah,” dh," dLyh,” dLph,” ALph,” AL} hz:] [é1 gé]

6 0o 0 0o o o7}7F
= c 0 * . . . —r I3=1.
Furthermore
f, = {L¥(L% R}, Ly (L¥3h), Lo (L3°h,)}
A S M T S P

3 g

3 = 3
where L81L} h2 9, Lang h2 is a gunction of Xy oXgoXeoXg only,
while

4 _ L by
L% h, = {BfB/axa) f7 + ¢(x2,x3,x4,x6,x7,x8).
Notice that (BE /ax, )=K,/N,JRZ_ #0; thus, we obtain
7 1 1771 2 "
‘ af g 3?7
= y = —— — .

94 QJQSp{de hz} ﬂ3°sp{(ax3 ) + = + D o o]
and 54=dimﬁ4=7.

In the 4-th step,

iy

T T T T 2. T 3.7 4 T
A, Eih1 dh2 dryh, dL"‘f'h2 dL; h, di} h, dLE hzv] g

o 0 0 o o o]T
— I, = 1.
0 0O L] - . - -

i

]
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We get finally

Ay = (L¥(L¥4h2). Ls1(L¥4h2). LEZ(L¥4h2)}
In A4 the only function which depends on x5 is L%%hz s this
has the form
L’%ash2 = (B%B/axa)(a¥7/ax1)x5+-w(x1,x2,x3,x4.x6.x7,x8).

At this step we have that

a?a o

3
3x3 x1

7 1

)« e w}

5
QS = ﬂ4esp{dL¥ hz} = 9405p{ L L

Thus, 55= dim 95= 8 = dim x and hence the algorithm stops at

k = 5. Last we have to compute the rank of the matrix

.. T T T T 2 T 3, T 4. T 5 T
= vh ,vh " Ly L adLv " h -
A th1 dh,” dL¥h,” aL}h, " dLy'h, aLy’h,” daLy'h, Lf 2 Jﬁg
- a?a 3%7 ne
0 0 0 [ 0 0 0 (§515;“ 5;“)
= 3 1
L © 0 94,9, * ¢ *

which gives L= 2.

Notice that, as a byproduct of the previous algorithm, we
have computed the static feedback law (13) which, in adéition,
is the same for each step of the algorithm; this feedback is
useful for the dynamic decoupling strategy proposed in Section 5,
Furthermore, for the particular example considered, we have

found that the set of functions whose differentials span @

X’
is obtained by taking the Lie derivatives of the system out-

v
puts only with respect to the vector field f; thus, these func-

19.

tions define a new set of local coordinates in terms of which
the system is described by much simpler expressions.

To conclude this section, we consider the problem of
finding what kind of linear and decoupled model it is pos-
sible to match. Let the linear model be expressed in a para-
metrized form

%2 = Az + Bv

y = Cz

with the condition that chkbi=0, Vk 1f i#j, i.e. having a

decounled structure of input-output channels. The model match-
ing problem is solvable if the enlarged system robot arm plus
model (see {9)) has the same structure at the infinity as the
original system (the robot arm alone).

The procedure is then the following: apply the Algorithm
E E.E

to (£7,97,h") and compute the matrices Ai of the enlarged sys-
tem; then, imposing the equality between rﬁ {rank of AE) and
r, for k=1,...,k*, derive conditions on the triplet (A,B,C).
The computation of Lie derivatives is greatly simplified being
the model to be matched a linear cne and will be omitted here.
After k*=5 steps of the algorithm, we have necessarely

C Ak B=0, for k=20,1,...,4.

This means that the input-output behavior of the considered
robot arm can be made equal via dynamic fesedback to that of
a decoupled linear system constituted by two chains of six
inteqrators each. In this case {12} becomes

— 0

i
3
s
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Then, a dynamic controller can be constructed just following
the arguments of the proof of Theorem 2. The obtained con-
troller will be of order E%k'+1)=12, with a dynamics inherit-
ed from the one of the matched model. However, the exolicit
derivation of this controller will be avdided here; using the
fact that such a controller exists, a more direct procedure
will be developed in the next sections.

5. ANALYSIS OF THE MODEL STRUCTURE VIA SYSTEM GRAPH

As an useful tool in order to explore the decoupling
proeblem and the possibility of reducing the dynamic order of
the controller we recall the notion cf graph representation
of a system, introduced in [15]. Moreover we will consider
here, in terms of system graph, the effect of the addition
of integrators to the inputs of the system.

The system graph of nonlinear system (2) is a weighted
oriented graph G(N,L}, where N is the set of nodes represent-
ing the input, state and output variables and L is the set of

welighted oriented arcs representing the influences among vari-
ables.

More precisely, the weight of an arc (ui,xk) is given by
Iy 4 where i is theak;th element of 947 the weight of an arc
(xk,xh) is given by T where f, 1is the gBFh element of £ ;
the weight of an arc (xh,yj) is given by 3;%, where hj is the
j-th element of h. L is constituted by the nonzero-weighted
arcs only. The system graph of the two links planar robot with

elastic joints is shown in Fig.1.

Let d(ui,yj) be the minimal number of arcs of G ferming
an oriented path from 9y te Yj and let dj=min d(ui,yj); define

21,

length of a path the number of its arcs. The minimal graph Gy
is the subgraph of G constituted by all input-output paths of
length dj ending in yj, for each j=1,...,¢.

Gy gives a complete information on the dynamic structure
with respect to the decoupling property. Call weight of a path
the product of the weights of the arcs forming the path. The
entries aji of the decoupling matrix are given by the sum of
the weights of the paths joining u; to Y5 in Gy, when for each
output there exists at least an input for which the above sum
is not zero. In Fig.1 the inspection of the minimal graph (bold
arcs) reveals that the decoupling matrix has only one nonzerc

column, being thus singular as claimed in Section 2.

Consider now the effects of adding chains of integrators
to the inputs of the system; without loss of generality we can
limit ourselves to the connection of one integrator to input
uy i.e. u, = £, £ = v. Modifications occur in the graph only
at arcs ending in state nodes directly connected with u, . More
precisely, in the new system graph the weigths of an arc(xk,xh),
with X, connected to u, . becomes afh/axk+ﬁagh1/3xk. New arcs
are created if afh/axk=0 but aghi/axk#O. The remaining parts
of the graph are not affected. Noﬁice that no changes occur
in the graph if aghi/axj=0 for all h,j. As a matter of fact,
the addition of an integrator modifies consistently the struc-
ture of the graph. Further additions of integrators to the
input uyg leave the graph unchanged.

For the two links arm Figure 1 shows that the singular-
ity of the decoupling matrix is due to the fact that both min-
imal paths start from input u,. Since we know that a dynamic
controller exists, we may try to extend the system graph with

properly connected integrators so as to build a nonsingular
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decoupling matrix A(X); the obtained extended system will then
be decoupable via static feedback from the extended state x.

Therefore to bring into play input u, we increase the
length of the paths starting from the second input. Adding two

cascaded integrators to input u the decoupling matrix becomes

full; unfortunately, it turns oit to be singular due to the

weichts on the minimal paths. Moreover, the cascaded addition
~0of further integrators does not change this situation because
it does not change the weights of the minimal paths; actually,
the addition of integrators to the first input leaves the graph

exactly the same (91 is constant).

At this point the only possibility in order to modify the
graph structure is to use a feedback transformation first and
then te work on the obtained graph with the above dynamic ex-
tension. However, the iterated application of this procedure
generates a trial and error search for a proper extension of
the system graph which becomes soon not practical. We can in-
stead make use of the results of the previous sections so as
to get a graph ﬁhich lends itself in a more sujtable form for
our purposes.

6. COMPUTATION OF THE DECOUPLING FEEDBACK AND STRUCTURE OF THE
DYNAMIC CONTROLLER

We saw in Section 4 that during each step of the Algo-
rithm a particular static feedback is computed. Whenever the
system is statically decoupable, the feedback obtained at
the last step is a decoupling one. In our case we found:

0 1 C
u=col(x) + a{x) w= + w, {14)

“f6/962 0 9, |
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The application of this feedback law to the system describing
the two links planar robot with elastic joints obviocusly does
not achieve a decoupled structure. However, in the system

b4

() + g(x) alx)] + [g(x) 60007 w = £(x) + $(x) w
y = hix) (15)

so obtained (see Appendix 2} the first output is decoupled
from input Wie as shown by the system graph representation
given in Fig.2. As a matter of fact, the north-east entry of
the decoupling matrix will always be zero; therefore, the new

system {and its associated graph) is suitable for the dynamic
extension procedure.

Since the weights of the arcs starting from input w, are
constant or devend cnly oL Xy addition of a cascade of integra-
tors to this input does not add new interactions among the
states; following the same reasoning as before {i.e. balanc-
ing the minimal paths lengths), it is then straightforward
to see that four integrators added to the second input give
a nonsingular decoupling matrix.

In fact the following dynamic extension

W = v
1 {16}

w2=E1IE1=£21'52_£3IE3=£4'E4=V2

applied to system (15) leads to the new system

X

F(x) + g(x} v
17)
h

y=5(;() =

where the extended state x is defined as

X = [?1 Xy eee Xg Eg . 54]T
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and the vector fields f,&iare given respectively by:
- - L A LT n T
Fix) = [x5 xg X7 xg £g £y (Fpbdpty) (Fghag,ly) € &y 54{]
- . AT T
g1(x) 0000 954 0 ... 00

a(i) = N N e
3,607 00 0 1

In Fig.3 the dashed arcs represent the added integrators and
the crossbarred arcs are those whose weights are modified by

the dynamic extension. The decoupling matrix A(x) for system
{17) is:

s 5
R ; Lg1Lf h1 ngLf h1 0 1
= = n
() 5 . a¥7 2, .,
L— - — - —— ———
g,k M ngLf h, 951 %, Ix, 982

We can compute now the decoupling feedback for the extended
system:

v = a(x) + B(X) v. 18)

Applying {4) and using the explicit expressions of the terms
involved (see Appendix 2} we obtain:

N A b
9gq (2f,/0%) (aFg/ax,) g, (af,/ax,) (afg/a%,)

L 1 0
- D (A3c05 X4 * Az) D AZ
1 0

25.

where D=N1N2JRZ1JR22/K1K2. Since LEGh1=0. we have further
6 6
L= h - DA, Lch
o (%) =-R (%) 178 ™ - 2 Vf 2
6,
LE h2 0

In E(i) the Lie derivative LEGhz has a rather long and complex

expression composed by trigcnometric polynomials. The use of

symbolicrand algebraic manipulation systems such as MACSYMA or
REDUCE is indicated for the easy derivation and simplification

of this term.

In any case, combining {14}, (16) and {(18) we obtain the
desired dynamic controller which is of the form (11).

For the reader's convenience we summarize the description

of the decoupling feedback. The controller we obtained 1s a

dynamical system with inputs Vyrvae outputs LPRL Y and 4-dimen-

sional state £=({,£.,E.£,), described by equation of the form
1=273~4

178
8, = By
E3 = 54 - {(19)
be =V
u1 = 31(xa£) + 811(xr5) V1 + 512(X,E) V2
U, = - fG(X) + L 13
2 gGZ(X) g62(X) 1
- 6 - _ - _
with a, = -DA2(L§ hz)' Beq = -D(A3cos Xy ¥ _::.2), Bip = DA, .

The order of the controller has been reduced from twelve
to four by the joint application of static feedback given by
the Algorithm of Appendix 1, dynamic extension and static de-
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coupling feedback from the extended state. Notice however
that this may still not be the minimal order. Nevertheless

the proposed dynamic controller exhibits a further nice
property.

It is known [9] that the static feedback decdupling
creates a closed-loop system which has an unobservable part
with a possibly nenlinear dynamics of dimension ﬁ'=ﬁ-(j=15j+1);
the remaining part of the system is equivalent to a linear con-
trollable and cobservable representation. In our case we have
B1=5225, i.e. two chains of six integrators, n=dim %=12 and
hence n*=0, so that the decoupling law is also a linearizing
one for the extended system. This is closely related to the
fact that the minimal paths on the system graph visit all the
state nodes. Thus, the composition of the contrel law (19) with
the robot arm equaticons (2) yield a dynamical system whose ex-
ternal behavior is deccupled and which is diffeomorphic to a

linear and controllable system. As a matter of fact, in the
coordinates

= E - = _2 = _3 = -—4 = --5
z1 = h1,z2 = th1'23 = Lf h,l'z4 = Lf h1,25 = Lf h1'26 Lf h1,
- = L— = 1.2 = 1_3 = 1-14 = 1.2
z7 h2'28 B th2-29 - Lf h2'210 £ h2'z11— Lf h2'212 Lf h2

the closed loop system is described by the equations

27,

with
010 . .0 | o]
0010 .¢g .
0 .0100 .
Ag*lo . .010 By=1.
0 .. .01 0
0 - + .« .0 1
— - -
c,=fto...0] i=1,2.

We conclude that in the examined elastic robot we obtain,
as a byproduct of the decoupling, the full state linearization

This allows to assign all the dypamic behavior by standard tech-
niques,

7. CONCLUSIONS

In this paper we have shown how nonlinear model matching
theory can be applied for the dynqmic decoupling control of
industrial robots with joint elasticity. The existence of a
deccoupling controller is guaranteed for the planar two links
robot with elastic joints. The model matching approach leads
to a twelve-order dynamic controller; the resulting closed-
loop system matches the input-output behavior of a prescribed
decoupled linear system but includes an uncbservable part with
a possibly nonlinear dynamics. However, the analysis of the
robot model structure allows both to reduce the order of the

controller down to four and to fully linearize the closed-loop
state dynamics.
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The above results can be extended to a three links robot
arm {with waist, shoulder and elbow revolute elastic joints),
which allows the most general positioning for the robot hand,

and to task-oriented decoupling strategies, by considering the
robot direct kinematics as system output.

29,
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APPENDIX 1

In this Appendix we describe the Algorithm for the com~
putation of the structure at the infinity of a nonlinear sys-—
tem [16]. We recall that if »: R + R is a smooth function,
its differential di is the 1 xn row vector

_ 84 3A
da(x) = G -+ —axn)

From the components h1,...,h£ of the map h one construct

first of all the (x-dependent) subspace (of row vectors)
ﬂo(x) = span {dh1(x)....,dh£(x)]

Suppose no(x) has dimension Sg € £ in a neighborhood of a point
x®, Then there exists an Sq x 1 column vector Ao, whose entries
101,...,135 are entries of h, with the properties that the

o]
differentijals dA01,...,dAOS are linearly independent at all
o

x in a neighborhood of x°.

The algorithm consists of a finite number of iterations,
each one defined as follows.

Iteration (k). consider the ék *x m matrix Ak(x) whose
(i,j)~entry is dlki(x)gj(x). Suppose that in a neighborhood
of x° the rank of A, () is constant and egual to ry. Then it
is possible to find r, rows of Ak(x) which, for all x in a
neighborhood of x°, are linearly independent. Let

b = |k
kT E,
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be an s. x s, permutation matrix, such that the r_ rows of

k k k

PklAk(X) are linearly independent. Let Bk(x) be an s, ~vector

k
whose i-th element is dxki(x)f(x). As a consecuence of the

assumptions on Pyye the equations

Pk1Ak(x)u(X) = - Pk1Bk(x)
(a1}
Pl txdBix)

“{where K is a matrix of real numbers, of rank rk) may be solved

K

for a and 8, an m~vector and an mxm invertible matrix whose

entries are real-valued smooth functions defined in a neigh-
u

borhood of x°. Set f=§0=f+ga and §i=(gﬁ)i, 1gigm.

Consider the set of functions

Ak={1= Lal .ot 1sj$5k, 0cigm}

&
1
and the two {(x-dependent) subspaces (of row vectors)

Qk(x) = span {dkk1(x),...,dkksk(x)}
Qi(x) = span {da{x) : »re Ak]
Set q, 4 (x) = o (x) + ni(x).

Suppose @, . (x) has constant dimension S 4q(28) in a

neighborhood of x°. Let Ak+11"“'l be entries of 1
’

k+1,sk+1 k
and/or elements of nk such that the differentials dAk+1 qree
L

dx are linearly independent at all x in a neighborhood
k+1,sk+1

of x°.

Define the S 41 vector LI whose i-th entry is the func-

tion Mt it This concludes the k-th iteration.
Note that at each stage of the algorithm two integers are

considered

33,

5 = dim ﬂk(x)
r, = rank Ak(x).

Since S €8, ,440, a dimensjonality arqument shows that there
exists an integer k* such that

s

k T Skt Ty T Tkt
for all k z k", The seqguence {ro,r1,...] provides the so-called
structure at the infinity associated with the triplet (f,g9,h}.

APPENDIX 2

We report here the dynamic model of a two links robot arm
with joint elasticity, whose possible configurations lie in a
vertical plane. Starting from the model in the form (1), ob-
tained using the DYMIR code [B], the state-space representa-

tion has been computed via a symbolic manipulation system
(REDUCE) and- is of the type

2
A=f(x)+ § g.(x)u
1=1 i i
¥y = hix)
with
— T
fix}) = _fS Xe Xq Xg ES f6 f7 fé}
— T
T P T
44 (x} 0 0 0 O 9¢q 0 0 0
gix} = 7 =
52(X) fi 0 0 o0 0962972982
ET(x) '12
h(xl = =
20 4]
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where
95q = G4
9g2 = A,/DT,
949 = (A3zcoszx4—A1A2+A22)/JRZZDT1
9gy = ~DT,/DT4
_ _ 2
f5~ = (N,Ix2 x1)G1K1/N1
_ _ ‘ 2
£ = ([x, m,x, X4) 4N, A cosu, +N, DTN, “A,

+ [KzAz(Nzxq—XB)—(Kz(Nzxd—x3)+N2DT3)N2DT2]N1
2 2 . 2
- [x6 DR, +R,xg (2x+xg) IN N, Aysinx,}/N N, DT
~ 2 2 .
f, = {[xs DT2+A2xB(2x6+xB)]N1N2 AJJRZ sinx,

2
[K1(N1X2-x1)+N1A5cosx2+N1DT3]N2 A,JRZ,
22 2
- [Kz(A3 cos®x +A,"~A,A,) (x3—N2x4)+(K2(x3-N2x4)-N2171‘3)NZDI‘2JR22]N1}

/Nsznﬁanz

1

= 2 2_.

£, = ([x, (2DT, +A;~JRZ,=2R, ) +xg (2 +xp) DT, ] AN N, “sinx,
2

(K, (N x,=x, )41, A cosx,+N,DT . ]N, “DT

17°5 2

- [(K2(x3—N2x4)—NZDT3)N2(2DT2+A1—JR22~2A2)—K2(x3—N2xq)DT2]N1}
2
/N N “DT, .
172 1

We defined for compactness and hetter computing performances the
following terms:

DT, = A 2coszx

+ .
1 3 + AZ(JRZ F: A

4 2 2 1

DT2 = A3 CcOSs xq + A2

D'I‘3 = A, cos(x2 + x,).

4
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At joint {1, Ni is the transmission cocefficient of the
gear box, Ki is the elastic constant, JRZi is the inertia of
the rotor. The constants A1,A2....,A5 and G1 include all the
kinematic data of the robot (mass and inertia of links and

rotors, length and center of gravity of links).

Finally we collect here for convenience the expressions
of the vector fields derived in Section 4. With the same nota-
tion used therein the vector fields %,51 computed at the first
(and subsequent)} step of the algorithm are

"y n T
Eix} = f(x)+g(x)a(x) =[%5 Xg Xq Xg fS 0 f7 fé]
T

. 0 0 0 0 g51 0 0 0
g(x) = g{x) g(x) =

A X

? 0 0 0 o 1 97292
where

- _ 2 2 )
972 = 992/9g5 = [(A;°/a,)cos®x +a,-n,] /82,

9gy = 9gp{9g,; = ~(1+(A;/A, ) cosx )
= f-f.g..= (N,A,K,x,~N K.DT.x.}/A.N.N.JRZ
7 7 %6972 28R R T R X /AN NI RE
5 )
+{B,sinx, [x “DT,+A, %y (x+2%) ] 40T, [DT 34K, %, ]

h
fl

-, [pTy+A cosx, 4k x,]11/A, IRz,

" _ _ A - _ 2
fg = fg-feda,= -[A N, Sinx  +N DT 4K, (N X, -x,3) ] /N A, .

o L7
We note explicitly that f6=0 and that fa is a function of XyiXg
Xy and Xe only; this is reflected in the system graph of Fig.2.
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Fig.2 - System graph after the application of the static feedback {14)

Fig.1 - System graph asscciated with the two links planar reobot arm

with joint elasticity (bold arcs = minimal paths)
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Fig.3 - System graph associated with system {17} (dashed arcs

dynamic extension (16)}




TN $861 @ 007 IS 1L91-0000/58/6°SFETHD

£q JO3BITYIUUE S3T pue *p0 Toqufs astdute ayn Aq pagon
—9p SILTISWOS 2q TTIm *7g T0TINQLIISTPOD 2Y] -safels Jo
SBqUMU 23TUTT B UT X JO pooyloqudrsu ® Ut f‘uyyTaofty
su3 JO 20usBlaaucd 2uy soTTAWT STy} puw H+uxc = *xc
1BYY HINS U > 7 I5891UT UR SIETXS Sd8y] Ul ) muaTa
~03TY 844 407 jutod Je[NIaL ® ST oX IT 9vUl 3130Q

a . o< ¥ TR
J0I *4UR4SUOD ST (X Hwu V) IO UOTSUSWIP sy} ﬁﬂﬂﬂv
— ) o ' ) )
G<¥ TR 107 “qUB]SUOD ST ﬁxvxc JO UOTSUSWIp 313 AWHV
JUBISUOD ST (X)D JO UOTSUSWTP oYy (1)

‘X JO pooudoquSTau B UT X [T® J0) JT (£) mprIodTy
2%} J03 jutod asIndal ® ST oX autod 317 “uorriutfag

*swra} FUTMOTTOJ 843 UT pastosxd ST STYL

ToX 3S2I93UT Jo qutod 9y} PUNOJLE UOTSUSWIR JURISUOD SARY

Y3 TI0FTY STUF UT PAATOAUT SUSIINGTILSTPOD 2Yy 1By}
SIMEEE Y3I0JIdUY TTBYS oa ‘asodand teatiowvad aog

WF <t TR o7 ¥y = Yy uaug

¢ W emos Jog H+*Mc = *xc JT
*

‘pum SuTsELIOUT ATIRSTD

€1 2oudnbas sty .ﬁﬁﬁvﬂm,....ANVamwcmam = (X}9 sxayunm
T T=T
- T3, By
( vnﬁqw U ) T S
(€) 0o 0 Tt e 0T = ey

%nxva:jn....ﬁwuﬂzﬁwﬂﬁam = ﬁ#uoﬁ

rfes JutmoTTol oy
nese Lew
YITA 38U TTROIT oM
.Eﬂnpﬂuom;¢ uoTy
TRUTXRU PITTRI=NS AN} IO

UT pPOUTIOP UCTINQIIISTDON JO wolonbas kv ogwm

Aot () wioy am Jn wagshs Lug

—QTI}STP JUBTIBAUT PaTTOIZUOD
satessdoad uteiaes vodn Arax TITH S3TNE3T INo Jo | <om
fIenorgaed ug T JINOUX 2q 0] psumsse ST PISTI STUY UT

TETIsqem pumol2Eosq swos ¢ AIoal) ToJ3UCD WOBAPSSJ DTISW
083 [RIJUSISIITP JBSUITUOU MOGIJ SATNSST 0TSBQ SWOS
JO quajxe 33T B 07 3N 9WRW TTTM as os Furop ug
~ms1s£s aTqur
—TOI3U0D IBIUTT ® 03 DTYdIOWOSJJITP ATTEOOT SSmWODIq {(e)
PuE (1} Jo woijisodmoo sy moxg Fut3Insal wegsks dooT
—P2S0T2 23Ul 3By} LB ® Yons ul Joqesusduods oy udTsep
01 MOY #A0YS 07 ST UoT109s s1y3 Jo asodand asyj,
Nox W Jo
1osqns usdo U uo 0I3ATBUEB 2q 0] DPSWNSSE oI P XTJI3BW
8U%T JO SWmMTCS W SY) puB D 103054 2} ‘q XTIJeW aug
JO smmicod W ay3 ‘B 103094 SYg WM 30 N g3ssqns usdo ue
UG S3ATOAS Z 99B3S 350UM — Toqesusdwos YoBQpasy-3981S
® - m235A5 TRoTwBUAD ® SZTIS10BIBYUD suoT4wnba asu]

.bﬂm.Nv@ + (z¥)0 kel

—
ey
—

= Z

TIICJ 2Yl JO SUOT]

-enbhs yBnoayy A STARTIBA BOUDISISI B UO PUEB X 9381s syj
HO pusdap n T0IU0D 1Y 48T TITs 28 SMOTIOJ ABUM UT

"W uo oriLTeur

>AN.XVQ + nN.Mvd

74

2q 0y Jaded 211 jnoydnody; POUMSSE o0 1 JI07054 U1 puw
‘3 xTIqBW 2YY JO SWWMToD W 3uY “JZ d0303A BYL g 5 £

.EEwS ,mmH Jo il a9squs usdo we uo FUTATOAD X m.tmpw Y3TH
(x)y = £
(v NN+ (01 = ¥
PWIC 3Y} Jo suorjenba BT
—3USIIITP L9 pIqraossp wajefs ToIquod © paclengitilaly]
JOBAPOSJ-—5581G OTWRUA] BIA UCTITZI1EoUL] 30BXA
saaded

ay3 Jo qqed puonss ayy utr oTduexs uw Se PHISPIEUOS ST
UoTym fsquUTOl DTYSeTD UY3TA WIR 40qod NUTT-92IYq B JIOT
FSTISIZ®S 3q 01 N0 Wany SUCTITPUCY asay] -JIaded Rl
40 JTBU 218ITT 3yj UT PaqII0sSspP ‘PUNC) usag SeY WaTq
-oad sTyy jo £3TT1qRATOS 34T J0] SUOTATRUCD JUaTOTJIINS
J0 3198 ® ‘q0B] JO I994BE B SY “{ORAPIST-84E1S 219098
Jo sueasw fAg gFI2Uae pur quny Aq AT3uspuadaput pum
rxw@ﬁommwm P yAzognowp ALq psaTos ATInI pue ERteh colokeny
£q pasod ArTRUTZTI0 YBUY JO UOT3RZTIBISUAZ TBINIEU B
‘auo MU v Arqusaunddr 5T weTqoxd TOA3UCD STYJ, -jovqpas]
-9381S DUDURY BTA UOTQeZTIBSUIT TInJ Futyief Jo wsTq
~oad sul 04 passaIppe SUCTIBI 19S5AUT JSU2aN] pa1sag8ns
STUL "walshs dooT-pssols FuilTnssx syl J0J S2348UTPIOCD
TB3CT 3TYe3MS UT A3 TLB2UTT TY0J SONPUT 04 S8 UYINS SBA
PUNOZ SNyl I09®susdmeD STWBUAR AL -sjutol OTISEBTS UITM
10q0a JeURTd juULTI-0CAL ® SO 95®D oyl J0J waTqoid ToI3
—UCD FUTIFOBISGUTUOU DY) DIATOS .OAMOm:p Futyogewm Tepoum
Tesutiuou syj Butfydde ‘pur yomqpoal-sjEqs ATmRulp Jo
SEN ul} peuueddns sIoUAnNE DY v oded quedsa v ug
T LPTOU 03 TITI NOEGPIaL] padis
—¥0 29U} JU SDUSISTXS 33 J0J SUOTTPUOD AIBSSI00U 2yl
FEUL YOME ST TIpUW peuBBOSSe ayj 20UTS slomAus paiTd
-de aq 7owmes £Sagwans TOI4UOD STY? ‘SanTap DTUCWIBY
I0 =3754 5% CEWAT PUR SJ03TNN0R UssMIsS] UOTSSTUL Bk
OTROVER UITA S30Q0T Jud CAoeypeuf-37855 STIE}E BIA UOTH
-vouoduwod L3 TresurTUGh pug duipdnossp indine—gndut uo
P2SBG 9U0 8y} ST sjoqod PIBTL Jo TOIquod 3yl JoI pasod
-oad snblugosq paepusis y * PISODIN PUR CUTIe ¢ AUsg
puB UBuUTg .“mnm:po PUB UIET ,NGQﬁmpm IO SWIOM a1
*F+o ajond am sisyjo syy Fuomy -saaded JUIDAL IO SOTISS
B £ POSS3ULLA ST 2IN9BIILIT S0T30q0X 813 uT L1ooyj
TOIIOD JBIUTTUOU J0F 1853I91UT FUTSESIOUT 2ug,

UOTROMPOIGUT
ssqutol oIqs®TR
U3TA WIB 30Q0d NUTT 28443 B JO T9POW 841 03 uoTyeortd
-de uw quassad cq pusffgraesulT eavds-anugs [Ing uTEy
—4¢ 0% JSPIC T pesn o0 fBL uoTqwsusdwod WoBQDSSI-29B4S
STwBUAD MOU MOUS 07 ST Jaded sTyy Jo asodind sy,
THOBQDIII-218ES OTIRYS BTA
paTdnonsp 5q Uel IO0IABUSQ sndgno—ndut s1t zou ‘suc
IROUTT STABTICILUOD ® 0 juaTeatnbs YWoeaqpssg magsds aug
ST I9Y3T8U 3snwoeq afowiur »Talsnod q0u sT snbruysoq
TOI3UOT ® UOME Jo 28N 63 ‘es®Bd 3Yl ST STUs JT *8T1q1d
-IT8%U 10U ST SoX0q ABaS ul A3TOoTILEETE 22Ul fSUDTIRNGTS
Tes130eld AUBW UT ‘JIsAsmoy TS8TTIVBUITUOU 53U IO uoTh
~-esuadimnd ¥oBGpPadI-39e3s OT3BYS BIA PAASTIUDE 3q ATTSES
UBD WI' 40001 PIFTI B JO TOIIUOD FBUL UMOUH ST 47T

TowiTEqy

“ATwm fRUOY £OTO0 CgT BUBTSSOPRT BTA S BTISTERG BT
T®1I S nRlon g T ! n ! M
BUCYH TP BATSISATU] ‘BOIGSTEDISTS 5 BOTJBEUIOIUT 1D ojuamtyred g

QTOV1IN OPURUIA] PUR IOPTIS] O3I0GTY BONT &0 CIPUBSSSTY

AIVETZHAS JIWVNAT UVANITNCE ¥IA SLK

0E: LI - 6V4

Cl DILEVTE HLUIM WHV L0E0Y A0 TCHINGD

SB6L 48quiadeq . 14 *ajepapneq 1y
101Uo3 pue soistaeg uo
FSIUBIBIUON Uk7 1n cRinmmnnn. -



The Algorithm in guestion will be used in the seguel in
order to compute the distributicn D*. to check some
suitable structural conditions-stated in terms of pro-
perties of the codistributions £ — and also in order
to compute the sc-called structure at infinity" of the
system (1). We recall that the latter is defined in the
following terms. Set
r. = dim ||MWWIJﬂ , k >0
2, NG

and

i > 1.

§ =r L, & =rooroy s 12

1 o i+l or

Then the system {1) is said to have §; (formal) zeros
at infinity of multiplicity 1.

The ingredients summarized so for enable us to
give an answer to the problem of exact linearization
via dyneamic state feedback. The key tool in the pro—
cedure that follows is z nice canonical form under
feedback-equivalence’ which exists under the specific
conditions stated hereafter. For the sake of notational
simplicity we will restrict our considerations teo the
particular case of systems with three inputs and thres
outputs.

Theorem 1. Suppose £ = m = 3 in (1). Morecver let the
following assumptions be satisfied:

(AL} p* =0

m
L
(a2) HmpﬂrmwAQW|w NG =k Ca _ (x), k>1.

Then system (1) has exactly & = 3 {formal) zeros at
infinity, of multiplicity By € Hy £ Mg, and

My oy ¥ Hy =0
Morcover, lhere eaiots a feedback u=alx}B{x)w, with
o and 8 defined in a neighbnrhend of %%, such that

X

(f+ga)(x) + (gB){x)w
y = hix)
via the local 4iffeomarphicm

GﬁHvHAﬁFoMMo. .- uthuJHuJMu. - uJEVu ﬂ..—.»ﬁm.. . amtﬂv

where

and nuw.umuuwv is a permutation of (1,2,3), becomes

£ =&,
E . =&
Htho TH
£ =
WL

:H = Jm

o, =1
b -1 Hy
T e L SRR LS RPN o,

1 1 1 S 1 1
T IS VAN NN S R SN AP S 4
tH+H tw+m zy+w 1 s 1 tw+w 1 cwp
mﬂ |HJ +y \nm u..-uﬁ\: 371 u...uJ_{uﬂ -..um lvf«
By 1 My THy 1'71 By 1 by 1771 Ho 171
noo=w
ctm m
by 5L
L=z
bl My
m.- Hm +@ ﬁm U-.Iunm WJ. u--ug uﬁ.“ 0--uﬂ ufm‘
My TR L woL BpL SR
T 7 SN AU R s R S PO AN '
tw+w tH+m tH+H 1 Uy 1 tw+H 1 tH+H 1
T A RN (- OUUUN S RN NN SRR AR 1t
ﬂm 1 Bo Hg 17 My 1 u—1’71 [ 1771

2

Fal

=g +H+a

(£, 500,58
Ky sl Thg 1

,:H....,gcm,mw,...,nc vcp

Hy 2

+ £ e . ces
mtmﬁdyd.. TR R IS EERE LT

1 2 2

= +4§ e e e

+m:N+_hp4.....Fth.sg.....J:m.nw-....mtw+_vﬂu
thik-mtw+mtw-kﬁmp....,mfw,gw,....:cm.ﬂw.....ntw|9vzp
+mtw|wﬁmp....¢th,3H¢...w:tm.ﬁw....“Mtw|Hv£m
b=
wuw =&y
wbm =n
=z (5)
0

The proof of this Theorem may be found elsewhere'? .
Anyway, the interested reader may recover the funda-
mentzl steps of this proof from the application to the
robot equations discussed in the second half of the
paper.

The possibility of having exact linearization via
dynamic feedback is shown in the following Corollary,
whose proof is an easy consequence of the existence of
the canonical form {5).

Corcllary. Suppose £ = m = 3. Moreover, let the as-
sumptions (Al},{A2) be satisfied. Consider the fol-
lowing dynamic extension of system (4)

1672



£L9)

18313
~preTTnoad ButsolTCF 843 Y3Ta ng *(6) £q ULATR TTI3E
oI wWoTlom Jo suoTqenbo Syl -9I5U 959I93UT JO 25RO IYL
ST STUY {£3 10213882 3PNTAUT § IS0 aUY STTUM pajensy
—oe AT1094Tp 248 Y2TUn JO § ‘satpoq PIPTX NZ JO 3BUR
ST JOTARUIQ [BOTURUAD 3] *aI0JAJI9YL *SYUTT ULATID a4l
01 pa1dnon LTROTISBI® IR SI00W 3] JO S3Tpoy Jut
-381408 N FU3 PIITI 10U 24T SUOTSSTESUBRIY SY3 USYM
*$20J07
STTOTI0] DPUB TBSNITIIUSD BUTLO9TTOD JA0909A—N 9U3 ST
(B¢D)o puz £52I0F FATIBAIISUOD JO I03I9A-f 243 ST (b)a
‘sxoqow 3y} £g POISATTIP $20J0F Pz TIBISUST JO J0103A-N
a3 ST (3)W ‘XTI3eW TBIJISUL JeTnIuTsSuou MxN UY3 ST
{(b)g squty jusoelpe oAl URLALeq JUsMSRTASTP 2ATIRTSJI
2y FutaTd saTaeTIeAa quTcl JO J0108A-f SUYL ST D aI5Um

(6) (Mw = (B)s + (0°D)2 + B(b)u

IMIOJ 2YY UT UOT30m

Jo suotzenbs 01 speaT qUOTIBTIILION uwetdueade] oYU} 958D

STy} U "sstpoq pPIITI N JO UTBYD B JO 18Y]} ST JOTABY

~5q TeoTmeudp sYyj PTITI 99 07 PIUNSSB I8 SUOTSSTIWS

—ueI} 3Y] pPWe SHUIT 9Y) uaym fs173q J0 SIws3 UOTSSTWS

~weI} U3TIM sroqom £q PI1eATIOR aaw sjutrol oy -sjutol

TRUOTIFRTSUBIY/TRUOTIBIOL N YBnoIyiz pajosuuodI=jul

(STUTT) saTpoq T+N Jo uteyd> uado uw Aq psIngTisuod Jureq
SE 10401 B JO 2IM10NI1S T2 TURUDSE IUY ISPISUO)

* 123176242y pOZ LIBmMS ATI9TIq ST wWIB

90Q0I JO PUTY STYY JO [9poW TeOIJBWSU}BW 2yj -~sjurol

DTASBYTS UYQIm WIB 040X B JO TOJqUOD 3] 01 3JI0Jaq paq
~TIDSaP s4TNsal aylz Ardde TTIM M UOTIDIS STUYF UT

SQUTIOL DI35B1A UILA Wiy 20408 29U} JO UOTIRZ LISSUL] 408Xg

*YovQpPIDT
—938B3S 2TI3ELS BTA S[qBATCS ST waTqoad Teijuoo Fuijoe
—JojuTuou 8y} JT ATUC pus IT angg Sursq garqrrenba
180 5 %0 1.9 T % 1= = Td sey auo €635 % 5 Tg
3

unumssy {0 # msﬂh; 1oqEyY) yons as3Baqur 4SBaT

-
ay1) m.ﬁa SISqUNU 2T1STIVFIRIRYD PITTBO-OS 33Ul pPUR
m_ﬂn a7 uasmiaq uUcTIrTaX aul Huriou uiliom aq few 2T
rxesuty ARy ST s, fu am Jo 9P osTe ang ﬂ_ﬂu Ty Jo
soTmeulp 2y} ATuc jou Cq = Ty ‘aouBleUT JI0F ‘IT cABM
SnCTAQe Ue UT SaztIeTnotjred (C¢) maIcy TBoTUOUED 3yl
‘Tenbs age Trl soxopul oyl JO 99JIYI JO On} JI 4 HJIDUBY

‘weqsfs dooy posors Furqrusad sy Jo

sanTeausfTa A+u ayz TTe =2eTd o1 JI3pJIo Ul .nﬂw S2TQBTI

-BA 93B3S 9U3 WOJJ orQPaST “IwSUTT A0U ‘IaYlany B UL
PagsataquT 2q uSm 3U0 suoTyRATITAd® =YY UT 4 NJoway

‘ws3sfs (partduod

—3p puwe) JRIUTT B 07 jusTeatnba-3oBapaal ST ‘3TqBATOS
ST waTqexd TOJIIUCD FUILORISJUTUOU SUY} JBYS yons Fuiaq
puBiQ = *q TI138 Futary “{g) UOYSUaIXS DTURUAP SUL UYita
(R) &o uoryrsodmon ayy Aym surerdxs STY] ( zmﬁw#mhm
IEIUTTUOU JI0J 958D 3YY SABATE 30U ST STU3) O = «V
uoT4TPHOD 213 A£oXq80p qou saap Tsuueyd gndur fue o3
SI03BrIFIUT JO UOTRTIPPE Y3 1®YL $T [§) WICJ TROIUOUBD
ayy Jo adangesl jumirodut jsow oyl *(gy) uolijdumsse
TEINIINIIS UG JO 2D2UaNDIsSUOD 325ITP ® ST S2)BUIPRIOOD
TBoOT 55U} WOIJ SITIGUS JII2U3} JO satouspuadsp ory1oads
23 puB I939E] Y3 JO 2INIONILS JeInIuetaq syl -syndur
syt ATdTITnW yoTUA SPIRTT J010384 3Y3 UT PIIBIJUSD

~U0D ST A3 TIPSUTTUOU SY] TTe PUL Je3dUTT ST PISL] J03034A
I TIP 8yUj () WIOF TROTUOUWRD 3yl UT 18U 340N " Habwsy

*IORQPIIT-99RLES ‘OTIVIS UBUT ISYIBI ‘oTweulp B MOU
JuTsn gng UOTASBIAJUTUCU pur 2437 208ds5-29B1S 29U} 1B
hpﬁhmmcﬂﬂ T 387 1TITs 3M (2V) uotydumsse Jaypan syl
£q waqoad Tolquod FUTIRISIUTIOU 3yl JO ALTTIUBATOS
JI0J papadu UoT3TRuoD 3yl s0eTdsd an jnq {(Ty) »98)

s} u*ﬂ uotrdumssw 243 dsay om 25l juasdad ayy uy *1JoT
ST qgud 3TQBAIZSQOUN JB3UITUOU Afqissod B jng £11I83U

—17 andgno-indut spToTA HOBAPSIF J40GR 9UF O # *q IT

'mwetshs STqRTTOL1U0d JesUull ® 01 oTudIiomesIITp wWeisAs
aUY SOYEW UOTFOBIUTUOU SpT2IL USTOM JOBAPIII Swes SU3
‘qoeJ JO JI29%BW B SY "Wa4sSLS STQBRTTICJIIUOD JIRSUTT © 0%
jusTeabs-YoBqpaag sT ‘¢ = *ﬁ FT “STqeATCS ST (I8
-poaJ-91838 273815 BYA) wWeTqoid ToXjuon BUT30BIS4UTLOU
ud yoTyus UL waysks v 3BY) | UMOUY T3 ST I ‘g DUy
‘Uoed sI03RIFsquT

En yo sureys paTdnonap 9siuy se siwadde soqBUTPICOD
TBOOT STqe1INs Ur pue m:m = A+U UQTSUIWIP SBY Wa3sis
dooT pasoTd 3y -Hnsmnlm:m = A UOISUSWYp $B8Y Joqmsuad

—wod oTuWRUAD UL el = UOTSUSITP 8y (T) WagsAs
181U} 30K ‘T *PId Ul UmoHS ST Jopmsuadmod sSIU3 JO aang
—onaqs oyl "wRTqodd UOTIBZTIJIRIUTT 20VXS 9YJ SSATOCS UDIHA
{2) wrog au3 Jo Toqesuadiod DTWEUAD B SSZTISIIRIRGD
>hmvm+AMUWHm HOBQPSIJ YUY PUBR (9) UCTSUIXS oTmrzusp 3L
fa(X)g+{X)}0 =T WorApsszl oY Jo ucTiTsodmos syl T yJoway

"ISpIO UT MOU SI¥ SYIPWSI JO S3TIas Y

a] *{l) mwroy su3 o3
(x)q = &

AXY(EF) + (X)(08+7) =

gk

m3qshs ay3 sTulag
T I CT
yotus ‘mstydaomosgrtp TE0OT B ST .AHV.EH nlq = "3 UM
: Ct

R e Rt RN CIL

Butddew agq

.mnm ST X JO UOTSUSWIP 211 SDUTS S IQACDION .sﬁuamsoUm@
puR IBSUTIT asTia-qndino-—qudutr (g) ss¥Em YdTYM bﬁmvm +

+ (X)0=A FOBQP2SF B 3SIXS 3Iamy “USY "IBTNIUTSUOU ST

J . 8
4o 7T = (X)Y
-
XTIBW Ex€ 23U 38U PUS
T =
e-Eree g = 3 fE4gfT=T fo-= .qunq
AR SMOS ﬁmv Mg pROTHOERG @t T pasr UGTY

—eqndwod 499ITP ¥ T{9) PUB (4) IO UCTRISOdmOD Ayl 230uUp

(= £
()
AE)E + (X)I =X
pUE {Z‘X} = X 327 ~fooag
T
iy _ fp
m L3
H> = n ww
€ £
e S
{L) ‘tfzfr =T ¢ Hm =T Hw
T
ey _ 10
wIoT

8yl Jo weisLs v 01 jusTeabs-_oBQPIa] ST Y2 1ys majsis
Teormeulp @ splaTL {9) DUR (4) JO UOT3TsodmoD ayj usuy

Fn s Fa e TR o8 0 T LT

e _ m:lmn.mm T . Hn-m:.ﬂu

(9} n.\.;\ml.mu i Tmzumn.mm. flmn.ﬂuualﬁfmn.ﬁ.
ez, _ ﬂ.N zT, _ T,



- the number of seccnd order equations 1s 2N,
- g is a PN~vector in which Aoy denotes the displacement

of link 1 w.r.t. link 1-1 and Qpiq denotes the dis-

placement of the driving body of joint 1 w.r.t. link
i-1, for i1 = 1,...,H;

- B{q) is the 2Nx2N inertial nonsingular matrix of the
2N rigid bodies;

- e(q) and c(q,3) are 2N-vectors and e(q)
effects of elasticity;

-~ m(t) is a 2N-vector with the even components equal to
Zero.

Starting from mechanical parameters, the model (9)
is given automatically by the DYMIR code both for rigid
and elastic robots™;
ard form

includes the

x = f£lx) + g{x)u

(10)
¥ = hix)

e

u € F* and output y € R'. In the elastic case n = = 4N;
moreover, the input u nowwmoﬁm only the nonzero com-
ponents of m{t) while the output y may be defined as
{i=1,...,N).

with state x A FW input

the vector of link displacements Xy T Gpy
Thus, m = £ = N. The expressions for [ and g are given
by:

~ x,
flx) = |H— N

-B clx ,x ) + elx

ﬁ aunﬁv A mUw <v Hu:

(11}
glx) = -1 B!
u?ﬁv Eptho@_

The equations ot a PUMA-like three-link robot arm with
elastic uouuﬁn (see Fig. mv are Hnﬁaﬁﬁmn in Pﬁ@bb@HH 1.

1,115
It is well koown™#5 Lhal Lhe

decoupled and linearized vie mﬁmﬂwn mﬁmﬂm Wmmacwow
whereas this is no longer the case whenever joint
elasticity is not Dmmwwmwwwma. In view of this we con—
sider now the problem of achieving linearity via
dynamic state-feedback. To this end the first thing teo
do is to perform the maximal invariant distribution
Algorithm on the equations of the robot under conside—
raticn. All computations may be found with full details
in Appendix 2.

As 8 result of these computaticns we find that
assumptions (Al) and (A?) of Theorem 1 are satisfied.
Morecver, since

Houov HHHH. u.muu.n kumu H.:um. Hmuu.w* =3
we have
mwuo.wmuuumwuo.m:uw,amu ovam
and thus p, = 2, i, = L, My = 6. In addition we see
that the set of functions
=il = .
mu.. - AH..TWQU 1 Wumu
- |H R .
n, = AM+WQV 1 1= 3,...,k
i-1 .o
5 = bﬂw+mﬁvsu i=1,...,6

qualifies a new set of local coordinates in the state
space. The function a{x) is gilven by:

{9) may be rewritten in the stand-

ewﬁkuwponxv uwmﬁku
a7 b ey )
al(x) = o (12)

where all terms involved may be found in either Ap-—
pendices. The choice of this 0f{x) together with a B(x)
given by:

-1 -1
et || 0y 0 B0t
B{x)= rmbﬁw+mpuww = & IMMMJJ. 0 9, (x) (13}

5
Lglregn)™s #5tx) % 9slx)

in system (b) yields, in the local coordinates mwvjw.mw.

the canonical form (5). The dynamic exteusion (6) con-
sidered 1in the Corollary of Theorem 1 consists here of
the addition of Myl 4 integrators on the input Wy

and of twltm = 2 integrators on the input s i.e.
P117 Paze Fip T Ta3zr a3z T P1le Pin T M
z,. =z 2., = W (14)

21 e T2 ?

Y1 T P Vo T P V3 T Yy

The robot model (10) subject to a feedback u=oa(x)+8{x}w,
with o and B specified by (12) and (13}, together with
the dynamic extension {1k} is now a system which can be
decoupled and fully linearized by a static state-feed--
back of the form w = a(x) + B(x)v. ITn the notation of
the previous section (recull that (8) indicates the
composition ot (4) and (6}) the tunctions o and B are
now given by ’

%) _H W%W mc.n@-p

%) 12 R .

aix)

The resulting closed-loop system 1s locally diffeomor—
phic to three chains of tw = 6 integrators each.

Conclusions

In this paper we have shown how, under suitable
assumptions, dynamic state-feedback can be used in order
to make a given nonlinear system diffeomorphic to a
linear controllable (and decoupled) cne. The assumptions
in question are indeed weaker than the ones which gua-
rantee the achievement of the same result via static
state-feedback. In particular, the assumption of non-
singularity of the so-called decocupling matrix has been
replaced by the structural assumption (A2) which charac—
terizes a specific property of the sequence of codistri-
bution generated by means of the maximal controlled in-
variant distribution Algorithm. Intuitively speaking,
the structural assumption {A?)} simply means that, from
the point of view of its formal structure at infinity,
the system under consideration essentially behaves like
a linear one.

The technique of dynamic extension used here in
order to achieve decoupling is similar to the one pro-
posed by Descusse and Moog'’ . The replacement of their
conditions with the stronger assumptions (Al),(A2) pro-
vides the required state-space full linearization. Re-—
lated results based on Hirschorn's inversion algorithm
are due to Singh™.
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In the expressions above we defined for compactness the
terms: 2
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w,(x, ,x,)=H, cos" x, +H oowmﬁx +x, )+ _cosx, cos(x, +x. }+4
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W Awmv =

The nonmdmbdm mw...mwc and Dpuow,om depend on the robot
data which include length, mass, inertia tensor and
center of mass for each link, mass and inertia tensor
for each rotor; furthermore at joint w.zM is the re-—

duction ratioc of the gear box and m is its elastic
constant.

We collect in this Appendix alsoc the relevant
terms which are computed during the application of the
maximal controlled invariant distribution Algorithm to
the robot arm under consideration (see Appendix 2 and
formulas (12) and {13) in the text):
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.. \ \eeeu .
glving s, = 6 and yu. =1lh H._m.w | |mxm Xy, Xg Kg Ky xpmw.
This way of "translating" dependencies from the first

group of states Axcv to the second one ax<v reflects

the Hewtonian structure of the considered system.
In the 1l-st tteratton, the matrix

8] 0 Q
= dh rg = 0 0 0
>H Qyw g waw °
Bi10,3 Bin.3
has rank ry = 1; thus, we have to compute a feedback
pair {¢,B) from equation (15). Choosing mw such that
P,, =1000010}, since By =dk +f =
= ¢ - fon-
_xm %10 *12 T MHO me~ we have as a solution:
0p =@ =0, a5 = /8 5
mHH = mmm = Hu mww = H\WHOewu m“_..w =0 AH * .uu.

wu?m@u_xq Xg Xg X35 %1 Xpp | £, fg £50 £, £,
" g, 0 0 0 0 0 T
W
g=gB = O.wxm o 0 &g 0 o} Q
c 00 1 % 3
£11,3 f12,3 | -

The complete expression of the new terms involved is
wmvow&mw %n Appendix l; notice only that the new vector
fields Ey have much simpler forms than the original

cnes. Furthermore since Loh = Ldh, the set >d where
we have to lock for functions with linear independent

differentials is the following:

Ay = F,wmf. ﬁw Lgh.; 1,5 = 1,2,3%,
1

J
We get:
rWHEWH_ = HMMhMHu =0,
" T
n =
wabwwu fo 1 mwm.w i,
=z _ y

HW h = mwm 0 ﬁHm ].

" n .
From m.,_.m.w..mu.m.wﬂwrkmv we have at this step that

3

T In (g, n QI € @ (assumption (A2) for k = 2) holds.
i=1 &

Thus,

2 2
=0, @ mwﬁarwfﬁwfw
wwm\wxw O %0 lo! 0 % 0 % 0 %
ubw ® sp N
0 00 % 3f,/3x, #0 % 0% 00
12 5

where # denotes non relevant terms and w%m\mxHHmP\ZHEm%
N
£0, wwym\mxm = xw\zu:m # C (a conmstant). Note that w,

is always nonzero being the second diagonal element of
the inertia matrix mﬁxﬁv of the robot, which 1s positive

definite for all x . So s

> = ~w~ L w.._u . M V the hara -
1 v Q
.WW» H._W_. H;M.wuwu Moreo er, h c racter

= 8 everywhere and

istic numbers for the second and third outputs are
Py = Pg = 1 while Py 1.

1678

In the 2-nd {teration,
B 9] o] O G 0 T
= dA.*g = o] o @] =
By = dAyvs 33 T

0 Eg,3%2,3 * *

As leng as v, remains constant we do not need to re-

r
4
compute a feedback pair (c,f)}. The functions in the
set >m are the following:

2 n
bmﬂ,,fn_o 0 Ewm\wxwo+mwmvwmwm\m.ﬁm:

2 v
H.mr)mswumo 0 ::Mm\mxwo:

L

ey

h, = xqﬁwwm\wxpv + ewﬁxv

L

e

8
:wl NHHAwWHM\wva + emﬁxv
2 2
1 Y N\ E )
where hmwhw UH. bWwbm Uw. eH and em are all independent
-
from XX XoX, ;.
Again we have
;
v L
n
i=y 6 (8 MO <8

and
3 3

nw = mm ) ﬁ:&@ hy &Lw:ww

H * kO 4 % * wmm\mxp * 0 % 0 *
=, & sp

M
ﬁ x % 0 % 0 % 0 * O % wmpm\mxm %

wiving s, = 10 everywhere and Ay =

={nt ten® 1o R, 1wu,)"

_H. LH. 1 W £ .—.ur W... _.“w .

We can see that Py = 2; the rank of the decoupling

2
Lvi
k:

matrix A(x) - which is a feedback invariant - is

Lthus:
ALY *

Ry
bewwm

Al
waw3w

rank A{x) = rank

and we conclude that, as expected, the system is not
decoupable by static state-feedback. It is also worth
mentioning that this system does not satisfy the ne-
cessary and sufficient conditions™ for the existence
of a static state-feedback law which makes the input-
dependent part of the response of the closed loop
system linear in the input and independent from the
initial state, as shown by Marine and Nicosia®.

Coming back to the 3-rd {teration of the Algorithm
we have:

- T
0 0 0o (0 0 hmﬁwwm\?pv 0
>w|@.>w.ml ﬂwxm Q ] o 0 0 0 6]
0 10,3 812,31 ¥ ¢, {x) *
and Ty = 2. Choose the permutation matrix ww so that
MMH picks up rows S and 9 from bw. Then |Mww 3 =

= |wuH.ayu.w = lewo emﬁwiﬁ and a feedback peir AW.WU

is obtained solving the matrix equation (15} which
gives:
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