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MATHEMATICAL PROBLEMS IN GEAR TRANSMISSTONS
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Abstract: Two problems are considered: 1. The exact construction of a
pair of cog-wheels, where the driving gear is circular and has
eccentric bearing with large eccentricity. The shape of the
output drive wheel is not known beforehand.

2. In gearboxes all components not being connected to transmit
torque may undergo clattering vibrations. A method is presentec
so that this type of oscillaticn can be resolved in a more or
less stochastic sequence of impacts taking place at the edges
of the gear or bearing tclerances. Some hints are given on why
such systems exhibit chaotic behaviour,

February 1987

Lots of mathematical problems - very different in nature and in degree of
difficulty - arise in cornection with gears:

= A method of construction which 1imits seem to have been reached may have
te be analyzed and given a new mathematical description. Relevant quanti-
ties may have to be computed in a new manner.

- Dirensions of gears may have to be optimized to obtain a desired behaviour.

- Mathematical considerations may be necessary so that a special gearing may
be constructed at all,

- The influence of unavoidable tolerances may have to be examined, Or hints
may have to be given in order to construct a gear transmission so that
it is as insensitive te tolerances as possible.

- New principles of construction for the tooth surfaces may have to be
developed so that the dissipation of energy during the transmission is
minimized.

This is only a short selection from the 1ist of problems. in this paper [
shall look at two extreme cases of gear transmissions:

1. Very slowly running gear transmissions; in this situation oﬁt-of—balance
fovces, and tolerances within reascnable 1imits, or noise from clattering
vibrations don't matter.

2. Fast running gear transmissions, where the phenomena just mentioned play
a nore and more important role. The clattering noise for example is not
only an additional burden to the environment or place of work but a
hezrable loss of energy.

I. _ECCENTRIC GEARING

The first example comes from the watch-and-clock-making industry. The
engineers wanted to construct a pair of gears with a special output torcue
(fi3. 1). This should be realized by a circular driving gear with eccentric
bearing and involute taoth system (fig. 2). The output drive whee] should
perform a single turn whenever the input wheel has rotated once.



Technical and mathematical PROBLEM:
What is the shape of the output drive wheel?

"" autput taraue

Essentially four problems have to be soived, which can be considered in
pairs:
(i} construction of the second pitch-curve (the first pitch-curve is
the circle),
{(i1) computation of the distance between the pivot points,
(i11) construction of the base curve on which the teeth are "standing",
(iv} construction of the tooth surfaces as involute system.

) . To {i) and (i%): When considering commen arcs of length s which rell one

WY npLt atigle

against the other, the condition of contact (fig. )

(s) + Lie-x(s))? + (v(snP1t? -

togetker with the condition that s shall measure arc length

- 2 . 2
(x{s))” + (y(s)) =1
lead to the following first order system of differential equations

c

Figure 1.- Graph of the desired output torque,

- (o) 1-00) (c-0)° - (c-x)°T)

¥y = xvl-x

K (The plus- or the minus-sign has to be chosen suitably, when solving the
system.)

- o Here (x{s).¥{s}) is the unknown parametrization of the second pitch curve
ray € and ¢ the unknown distance between the pivot points. The function o contains
all the information about the driving pitch curve, in this case:

p{s} = r[l+ " - 2¢cos F] with radius r of the driving wheel and
(VA eccentricity « of the pivot point. The distance ¢ will be determined by
the ccnditions

y(0} = y(er) = 0.

It turned out that the integral curves are closed curves for exactly one

Figure 2.- Circular driving gear with eccentric bearing
q

eccentricity o) and iy

radius r,

wotute tooth system.
’ c>0 if r and « are given. This ¢ has to be computed with high accuracy.



This means: The tooth surfaces are the involutes of the sg-called base
curve which is the envelape of all tangents to the pitch curve which have
oval pitch curve been rotated around the angle a.

¥

The base curve of a circle of radius r is a comcentric circle of radius
rCos a. In general: If {x{s).¥(s)) is the parametrization of the pitch
\ curve with respect to the arc lTength parameter s, then (X(5),¥{s)) with

B N ) - w(s) - g d)x(s) + dyy(s)
8} = x(s)-dy o S
X (s)9(s)-R(s)3(5)

T dox(s) = ¢, ¥(s)
Y(s):y(s)+d2 —

. k(s)y(s)-x(s)y(s)

L \\k‘ .
circular
pitch curve

is a parametrization of the base curve.

“ b 4
A D - fs the rotation matrix of «. The denominator of the second
) d
f ) 2 1
' : eptee - Lo Vi summanc of X and Y is the curvature in (x,y) and produced numerical and
technical difficulties. The base curve of the oval piteh curve, the points
of which were given in numerical form, has been computed by this procedure.
Figure 3.- The oval pitch curve for the "right" ¢ {above) and for
a "false" ¢ The results were SUrprising: pressure angle « and eccentricity . may not
be choszn arbitrarily, if tooth surfaces shall be constructed as involutes.
The sensitive dependence of all further constructions of this c was not If < inzreases or « increases,the base curve is no longer simple closed;
known to the engineers. They used without commert ("for small eccerzricities") there a-e self-intersections; it is no ionger smooth and runs intg the

. . exterior of the pitch curve (fig. 4).
an approximation formula:

Coore (m)[l-i;‘j? 5

where v is the gear ratio (originally published by L. Burmester, _errbuch
der Kinematik, 1888).

»

Figure 3 shows the two pitch-curves for . =0.75 and the "right” ¢ . and the ‘ /,”' | \\\\
second pitch curve when ¢ is chosen arbitrarily. ; 7 \ \
] I 3
To (iii}) and {iv): The involute tooth system for a cog-wheel is uniguely /f\\\‘ f
determined by the following condition: }L'L:;vﬂ : /
At any position of the wheels there is the constant angle = betwean
the commen normai in the point of contact of the two tooth surfacas "
and the tangent in the pitch point. « is called the pressure argln.
or the angle of mesh. Figure 4.- The base curve for , - 0.627 and . = 22° {left} and an

entargement of the critical part for « - 28° {right)
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greater maximum 1S needed, the pressure angle has to be decreased. Figure 4

(fig. 1) may not be made as |

shows for an eccentricity « = 0.627 the base Curve for u= 220, the beginning
of the wcatastrophe”, and for u =< 28% the enlargenent of the critical part
of the corresponding base curve.

If the base curve has been computed - by decreasing ¢ ov o if necessary -
the construction of the tooth surfaces as pieces of involutes of the base
curve is no longer @ problem.

The final result is chown in figure 5.
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Figure 5.- The final design of the eccentric gearing.

In gearboxes of motor vehicles as well 2s in gear spansmissions of a’l

fast running machines (for exarple sewing machines in industry ov household )
clattering vibrations arise. [t is clear that it is impossible to buid

such systems without allowing tolerances between the teeth of the coq-wheels
and in the various bearings. The vibrations are caused by a sejuence of
impacts which occur when the components hit the edges of the telerance
intervals.

To be able to optimize the cnsential parameters, cuch as tolerances. damping,
friction, excitation Form, it s first necessary to give a mathemat ca’

description of clattering vibrations. F. Kilglikay and F. pfeifer, Mnich.

developed a wpeneralized Impulsive Motion Theory®” ([141, [26]) which
snahles a purely deterministic description while the results look as if
they griginated n 2 S nOrasTAL Totian.

The most simple mechanical model is shown in figure 5 ([141).
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Figure 6.- The most simple mechanical model to examine clattering yibrations:
v, resp. v, maximal tolerances in radial resp. axial directionss

v, play of teeth; p the angle of helical gearing.

The criven gear allows axial and radial bearing tolerances v, and v and
the piay v, petween the teeth. Within these tolerances the wheel with mass
m and moment of inertia O moves as 2 "Flying" body. Thus the equations of
motion are

0= TLD - ddQ
LE S d X (1)
mr =1 -d r.
r r
TL,T..7 model the drag due to the oil and d_, d s d are the coefficients
@ %7 or @' X
of damping. The equations (1) are valid as long as

-y -x0,
X

-y T r
v 0

ana the relative distance 5, of the teeth surfaces satisfies



v

The edges of the tolerance interval for s, depend on time t per-odicall-
and from purely geometric considerations 5, is given by

s, = e({t)-[(R cos plo{t) + (sin g)x(t) - {cos gler{t)i,
where e(t} is the excitation function (for example: e(t) = Avsir{wt));
e acts in the direction of the normal of the tooth angagement.

Wren %, r or s, reach one edge of their tolerance intervals at tira ty en
impact occurs and the initial conditions for solving {1) for t> tys have
to be recalculated. The impact is modelled iy

L - -
X = -s‘.xx »
.t .- |
r = _frr . \2)
I

z 'z

The minus-sign means the state before the impact and the olus-sign the
state after the impact. SRR .ze {0,1] are the impact coefficients.
There are three different sityations for impacts

{1} an impact in only one play,
(1i1) an impact in two plays,
{117} an dimpact of all three plays at the same time.

In the Tast case the initial conditions for the motion after the impact ire
known by (2). Interesting are {i} and (ii). For example if there ic only
an impact between the teeth, the initial conditions also change for xanc r.

In this situation the kinetic transition equations for the impac: cive

(o » {mRcos &
Rl I Il . esin | [e-07],
R}*) o L Gcos s
where (3)

1+.
z

[T

!)+mR2c092H
and

Q = {Rcos p)-@ +{sin 35).& + (cos ¢)r .

- 10 -

Thus the description of that simplest case is complete. If one wWrites

(w R cos p
q = Lx , W o= sin af, and M = diag(o,m,m), then (1) may be written as

r cos ¢
M- = F(g,q,t), (4)
and the constraint {3} as
Z-= zo-dU Zl-{q'+22 = 0 (5)
with 2, - w7y =T, Zy - -&(14s ).

The results can be applied immediately to gear transmissions with several
gears. Then q has n coordinates wl,xl,rl,mz,xg,rg,... » where n s Lhe
number of degrees of freedom which may be involved in impacts. M is a
symmetric (nxn)-matrix; ZO,Z1 are (mxn)-matrices, 22 the "excitation vector”
with m coordinates; m is the number of constraints, i.e. the number of
degrees of freedom involved in the actual impact. With (5) and the general
form of the transition eguaticns

T
M(ﬁ+"ﬁk) t (;é%) A= 0

follows the general form of {3}):

1 -1
17 - LT 1T
L) (Z,+2018 - M IIMZ) . (6)

i [E-M_lzg(ZOM'

distarce

IR \f
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Figure 7.- The axial aszillatiens of the bearing.



) ) B Th ough the description of the motion is purely deterministic, the results
Figures 7, 8 and 9 from [14]show the run of the relativadistance 5, of =he

show an almost chaetic behaviour. Such phenomena are well known. How can
they be explained in this context?

second gear of a gearbox with five-gearshifting and the axial ard -adia’
oscillations of the same wheel (vx=o.1 mn, vr-—().os mm, e{t)="C.13 simet).

age pl f teeth-0.1 om, « =0.87). ‘ _ . .
e plar e B ) Let us again consider the most simple equations (1), (2), (3}, and additionall

_a i (as in {8]}:
10 QJ_ Y S . . I ] . - ‘
", ‘l \ ‘ { J l ’ }1 ' {1} B=0 , which means: no impact in the axial direction;
L | | \ \ F ; L ! ?‘ ii) only impacts between teeth.
S (W e | |
; [
il |{| r{.
2 - 20 ‘\ }‘H ”ll “ 'I# \ ’ H ‘ Then we have q:(q}). Let t1< t,< ... be the ordered time-series where t,
: : Ui . -
K ’ | |\‘|| ;H‘l ‘!Ll‘l | { ( ‘ ‘ stands for the time at which the k-th impact occurs, and let t.')k:LD( tk) and
J 3G |i\ ‘I | ! Hm \ IJ‘ |HJ 1 I | f-k: ff(tk) Just before the impact, then (3) takes the simpler form
' oy i
LT ol e e et
o 1 lf\ i A | A | (i, By [Ré(e,)
Y i \IH | ‘ | el e , (7)
<+ .
461 1' { 1188 | try T/ noelt)
e e o P where
54 b ‘ t t b
THIW ~— == (O’z ZmRZ ‘
———-2— -nmR
Figure 50— The vdoal o2t Tal vone ol Fhe twar e - 0+ mR
mRz—g 8]
o b — e | -n0R 2"'2—
rim ' ‘r-\ o \ mR”+0
i T
0 ~ . A
t ! - A Solving the system (1) and using (7} successively, the sequence (t, ) can
; f ; rjk‘s - [ + k
g oor [ H . 3T be calculated. In the special case R=m=0=1, hence n=-.2. d =d =4d
g e R
i ,‘ H ’ # f \\ b I / and 0,7 Vv, one gets the recursive equation
o a |.
AR l il [i\ ‘ | § ! J | J it t
N Vi L T Y, Tty
el f Pk ) ’ I \ 1 / i "kl S “k*ﬁ'(tkq"tk)+(;?"'&4[e - {8)
" [ i |
g S Jj | [
H ‘ . .
SoEnkdll J 1 I If v‘\/ \) P l{ ’ where T« T(D+ Tpo J 2@+ r.» and = has to be chosen "suitably" from
N I | ‘ J'lﬂ,,'_ y L i (e(tk) - vz(tk),e(tk) + Vz(tk)]. Moreover
a ~ i ; ~
\\} H L ~ Jpgq = ZJR+Am cos(wtk), {9}
S S E— e A N
L5254 S SE L0 ki B4 BRELE 70 if e is chosen as menticned at the beginning.
iNE —- =
Fiqure 9.~ The relative distance 5, and the edges of tolerance Vs and s

The equations (8} and (9) define a discrete mapping

(tedid = {gadiy) (10
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