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1. InrropbucTION
This note is concerned with & fairly persvasive problem in modeling and identification. Namely the
general problem: What is a “good” parametrization for a given model class? Where “good" of course
has 10 be specified and may depend on other factors than just the model class in question. In some
of ils aspects it is a very old problem and has been with us ever since it was noted that there are
several compeling cartographic prejections which can be used to map the earth and that none of them
is porfect (or besy) for all purposes.

I shall try to address this question in the context of modeling by means of linear dynamica) input-
output sysicras of a priori known state-space dimension (MacMitlan degree). That is, we shall assume
that cur input-output observations are 10 be modeied by means of a system

X = Ax+Bu, y = Cr, xeR weR" yel (3) (1.1)

where A, B, C are constant (unknown) matrices of the gppropriate sizes, and where it is assumed that
(1.1) is completcly reachable (cr} and completely observable (co). (For algebraic criteria for these two
conditions ¢.f. below). A system like (1.1) induces an input-output map ¥y, which, assuming that the
machine (i.c. the sysiem, or the model) starts a1 x =0 at time ¢ =0, is given by

Ve iuldy() 30 = fCel' ™M Bu(rydr 0.2)
[

The coly data we have available are input-outpul data. So all that is knowable (identifiable) aboul
(1.1} is the information about £ = (4, #,C) which is encoded in V3. However ¥y does not determine
(4. 8,C) uniquely, i.c. the map (4, B,CVy is not injective on the space L:-:; of all er and co matrix
wriples (A,B,C) of the indicaied dimensions. Indeed ler S€GL(R), ic. S is an inveriible real n X n

mainx. Consider
%5 = (A,B,CF = (545, SB.CS ™) 13

1t is totally elementary 1o observe that ¥z = V1. The ransformation (1.3) corresponds 1o a base
change x'=Sx in slate space. It is also a fact tha: this is the only redundaney in the description
(A4,8,C) = I with respect to Fy. (le. if ZEelgw, and Vy = V', then IS €Gl(R) such that
Z' = E%). The relation
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E~Z'e=IS e Gi,(R) such that I = 35 (14

is of course an equivalence relation. The import of the remark above is thus that all we can ideoufy
on lhe basis of input-output daia is the squivalence class of a system under this equivalence relation.
Or, in other words, what can be identified is a poiot of the quotient space

M0 = L3, /~ = L22, /Gl Ry (1.5)

It sow ums out that MY, is in fact quite pice. It is a differentiable wanifold {of dimension
mn +np), cf, below. That is, it is locally ke R™** and can be described by am +np coordinates
((coordinaic) charts) locally, together with comrespoadence rules, (o yield an atlas, very much like an
allas of the world. Cf. below for an explicit atlas of this kind, It also turns cut that if m>1 and
P>l niant poniblelomkcdowithonepanimdumn(SimHMyitilml possible 10 have one
global coordinate system for the whole sarth (the sphere 57) giving a unique correspondence (continu-
ous both ways) berween & part UCR? and 57),
Nwhasincthpye’menygedinlrmﬁﬁidmﬁﬁulknpmmdm&llﬁmcl % have
("best”) estimates A,,8,,C,) for A,8,C (and x_for the state x at time ). New information comes in
and we want (o update our estimates. (4,,5,,C,) determines a point in M2'T, and we are looking for
an optimal nearby point mpruenﬁngwupdamdslimte.ﬁinmbedmcuﬁn;awmdimu:hm
valid at (4,.5,,C,), calculating the relevant numerical coordinates, and calculsting the updated ver-
ionsofthscooordimtsmdin;tosomccﬁmiumhmcﬁmuapuumdinlhsenmemordi-
ngtes. Proceeding in this gives a sequence of points m m . m, .o,..... i M7, (represented by, say,
4,.8,,C), A+ 1,8,41.C +1)-) and there may come a time when it becomes Decessary 10 switch
tnanolherdan.b«:aule,say.m,ﬂisnolonserinl.hedomljnwhﬂ'elh:dlmwueuﬁngil
defincd, or, in any case, is g=iting 0o near the “edge” of this chart to make these chart coordinates
very reliable. Think again of using aa ordinary street atlas, say, and changing charts when needed. [n
this framework one can make the general par; ization problem more precise; for instance as fol-
lows. Given a differential equation (or class of them), what are good atlases and good switching rules
between coordinste charts in order to be able to follow this differential equaticn well numerically,

To illustrate the point consider the following siluation
chert 1 —> chart 2 ©

(chart change errors

disregarded)
follow
equation
in chart 2
. Cchertchange | —> 2 "‘,fvi\'l'lﬁﬁ'l"i"'
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We start in chart 1 with a point knows up (o a small uncertaimy as indicated. At this poit chan 2 is
also applicable. Changing coordinates st this point changes the uncertainty circle imo an eilipse.™-
{Uncertainty less in y-direction, more in x-direction). Following, the equation in charl 2 introduces
some additional uncertainty fattening up the ellipse (and even if it did not the difficulties would
remain). It now becomes necessary (o transfer back to chart 1 again. But now at this point in space
the distortion faciors may have changed totally. (In the picture a transformation 21 at the first point
compresses in the x-direction and magnifies in the y-direction; at the second point it magnifies in the
x-direction and compresses in the y-direction). The result is a very elongated cllipse of uncertainty in
chart 1 coordinates. Suppose we could also have worked with the coordinates of a chart 3 which as it
happeoed had the following chart change distortion behaviour.

O /-c-h:rl change 1 -—)_‘3\3

>

e

follow DE
inchart 3

chart change 3 —> |
(similar distortion)

< —

Obviously in this case having chart 3 available was advaniageous cven though the whole manifold
could perhaps have been described in terms of charts | and 2 oaly. (It is by the way very easy 10 con-
struct examples where this bappens).

As described the good-atlases-and-parametrizations-problem seems paruculazly relevant in the case
of recursive identification procedures. The problem however does not go away in the non-recursive
case. There remains selecting a best {or good) chart from the several which may be available {and
discarding one which tumns out 10 be unsuitable in favour of a new one). And even if onc could make
do with ane charl (on the basis of prior (structural) information concerning, the class of models (e.g.
in case p=1 of m=1 this is always possible) this may not be a particularly good one to use for a
given problem. (Think of using a map of the earth covering all except the North-pole with in fact the
region of interest very near the North-pole but not including it). Algorithms for identification based
an overlapping coordinate charts, i.e. atlases, have in fact been developed, c.f. {2,7].

Related to the fact that as a rule it is inpossible to use one chart 1o describe all of Mo, is the
fact that it is impossible 10 select a complele distinguishable class of models in LX%, which 15 con-
tinous with respect to the data. (Nonexistence of contipuous canonical forms (3,5)). Al this means
the following for a class C C Lo,

(i) Compleie: for every input-output operator ¥ {of the type coming from a £ as in (1.1)} there is in
fact a ZeC such that ¥y = V.

(i) Distinguishable: £;,Z,€C and &y % I; = Vg, # Vi,

(i1} Continuous: Let ¥ 1+ I be the map determined by (i). Then this map is continuous.

S0, roughly speaking it is not possible to select in a nice way one representant of each equivalence

class of systems so as to remove the (statistical} indeterminacy of identifying A,B,C on the basis of

input-output data alone.

This note which contains maierial presented at a most stimulating conference in the Pfalz academy

D
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in Lambrecht last March, is meant as an introduction to the problem and as an opportunity 10 intro-
duce 1o the more applied community the sometimes advantageous possibility (and occasionally the
necessity) ol using several coordinate charts, and whole atlases. | hope and plan 10 write a much fufler
version: in the future. 1t is a pleasure (o thank the organizer of the conference, Prof. H. Neunzert, for
bringing this unusual group of scientists together.

2. DESCRIPTION OF THE SPACES OF ALL LINEAR SYSTEMS OF A GIVEN DEGREE

As in § 1 abave, let L, ., be the space of all triples (A,B,C) of matsices of sizes n Xn,nXm and pXn
respectively. The triple (A,B,€) (in fact the pair (4.B)} is called completely reachable if the
(n + 1)m X r reachability matrix

R(A,B) = (BlABIA’Bl <+~ |A"B) = R{A,B,C) = R(Z) [rA)]
has rank ». Dually the triple (4,8,C) (in fact the pair (4,C)) is called completely observable il the
n X (n +1)p obscrvability matrix

C
CA

2(4.C) = = Q(4,5.C) = &) 22

CA L]
has rank n. The spaces of cr, vesp. co, resp. ¢r and co triples are denoted LS., Loy Ly All
three are oaen dense subspaces of L, ., (in the patural topology).

The group of invertible n>Xn real matrices GL(R) acts on Lypw, by the formula given in (1.3)
above. The subspaces of cr, co, cr and co systems are stable under this action. Indeed

RUA.B.C)*) = R(SAS™',SB.C5™") = 5R(4,8.C) 2.3

so that rk R(Z)=r iff rk R(E°}=n And Q((4,B,C)) = 571Q(4.8,0).

The quotient spaces of Ln.,. LY., and LO7, by this action of GL(R) are denoted
MEny = Loy / GhRWMEny = L0y / GnRUMES, = LT3, / Gl(R). All these quotient spaces
are nop-compact, smooth manifolds of dimension mn + np.

Below in this section we shall give one detailed description of MY, in terms of (coordinate) charis
and gluing (= chart correspondence) rules, ie in terms of an atl’n To do this we need a few
definitions. Consider an array J,,, of nX(n + 1)m dots as indicated below

Jme = if): i€(0,on}, jE(1am}) 24

51 =: : : : @5

The first row of J,,, represents the columns of the matrix B, the second one the columns of AB, ctc.
Thus (i, j)€Jn, TEpresents the vector A'b; if B =(by. " 1bm) A subset a of size nof S, i5 called a



L

nice selccrfon lf Gea, iml = —1lj)ea. Pictonially, if  is depicted as & set of crowses in the
array as visualized by (2.5), this means that if a cross appears anywhere then in the columen above i°
there are only crosses, Thus c.g the left subset of J 1,7 in (2.6} below is nice, the middle one s oot

X " X x X X X X = X x +
X - x | S X - = x
X - x - - x - L L 'Y
X X x
»

For a nice selection o and J€L...m ket 1(a,j)} be the elemeny (k. j)el, . determined by (k.f)ea and
(.)€ for i <k — 1. This one is called the j-th successor index. In (2.6} above the successr indices
of the nice selection on the left are indicated by * in the rightmost disgram. Given an axX(m+1jm

matrix R and a subset o of Jun bt R, denote the matrix obtained from R by removing al columns
whose index is not i a.

LEmma 2.7 Ler (A,B,C)EL:.’_ then there is a nice selection a such that the n Xn matrix R(AB,C), is
invertible,

This follows from the special structure of R{4,8,C) given thai R(A,B,C) has rank »n because (4,B.C)

is cr.

Let L, = {(A..B,C)EL,;',.,,‘,: R{4,B), is invertible}. Note that el if Zel,, for all SeGi(R).
Then by the lemma above

aile = Loay (2.83)

LEMMA 29 Ler B¢ L., a a nice selection. Then there is Precisely ane S € GI{R) such thar R(Z%), = I
the n X n identity mawix fand eL, of course).
This follows immediately from the observation that

R(Z), = S(R(Z)) allacCl,, .10y

Lemma 2.10 Ler a be a nice selection. Let = 1 Yund) De an element of R™*™ writwn a5 a
sequence  of m n-vectors Yiv-¥m and a pXa matrix r Then there is precisely  one
L5} = (UL (3)Bu(x).C(x) €L, CLE,, such that

RElN = Ly, R(E)yia = ¥ Cal)=2, (2.12)

The matrices B,(x),4,.(x) are very easy 1o wnle down explicily. They always consist of columss ec-
tors which are either equal to one of the standard basis vectors of R" of (o one of the vealors ;.
Endeed in the case of the example of the nice selection a of (2.6) above we have, waiting e,... .- for
the standard basis of R?;

B = (e),y1,e1.83,504 = (fa.pr.e5.01,60.69,040)

€1 y: e ey yy
€4 Yy ey

21 €4
ey

pL
Le. label the crosses e,...,¢4, write in y; for the successor spots * and read of B and A directly from
the resulting pattern remembering that the first row represents the columns of B, the second one the
columns of A8, etc.. From these threc lemmas there follows immediately the following description of
M; ay in terms of local coordinate charts and correspondence rules between these charts.

2.13 Description of the manifold MZ.,

The manifold MZ%, is the union of open neighborboods Ve, CJ, , running through all nice selec-
tions. Each V, is diffeomorphic 10 R™** vig a coordinate chart ¢: ¥, SR™*Y, Lg
XER™Y = y (V,), YcR™*® = ¥2(¥3). Ther x and &' correspond to the same element of
Moo e gty (x))=x) it

R(Zg(x) = (RE(g) T R(Zx)), 2=:R (Zalx)p 2149

where a5 above X =0 oY EhE =V (oo Yo ). Note that if xeh {(V)=R™¥ e the o-
coordinates of PEV.CM:'", then the S-coordinates of P are defined iff: R(Z (x))g is invertible, a
condition which is purely in terms of the a-coordinates of P. Note also that because
¥ = R(Zp(xN) tbe S-coordinates of P are then pven in terows of explicit rational expressions in
the a~coordinates,

Thus (abstractly)

MZ .= V)i~

a nice
where ¥,"=R™*¥ lor cach a« and x~x', xeV’, ¥ V' iff (2.14) holds.

The manifold MZT, is an open submanifold of M., obtained by gluing Logether in cxactly the
same way the open subsets V2 C ¥V, defined by

V2 = {xeV,=R™*¥: I,(x) is co) (2.i%)

Nole that this is an explicit {polynomial) condition in terms of the coordinates of x. For tnore details
and proofs of the above cf. [3,5).

3. MOy AS AN IMBEDDED MANIFOLD
It is perhaps more customary to view a manifold like 52, the sphere, as imbedded in some euclidean
space like R® and to view the distortions involved in laking local coordinates as measuring the
differences between the geometry of the chanis and the (truc) geomeury of the imbedded manifold
(with its notions of distance etc. coming from the ambient euclidean space). As il happens the space
MJws does come with & natural imbodding into & cuclidean space. This and the relation of this
imbedding with various atlases for M35, is the topic of this section.

Let % be the space of all sequences of p Xm matrices Ho,H,\,....Hy, with the normal Euclidean
topoiogy. Define a map

¥: Loy = W (4,8,C) vs (CB,CAB,....,CAB) (3.1)

It is elementary (o observe that v(Z)=v(Z%) for all 5eGl,(R) so that v induces a quotient map also
denoted v which can be restricted to M:,,‘:,

Vi M2, % (2

‘THEOREM 3.3 (Kalman). The map (3.2) is an injection. The image of (3.2) consists precisely of all
sequences of matrices Ho H ..., H 1, such that



He My, H,, Hy Hy - - H,

H H---H, Hy Hy - Hoy D
rk =n = rk|. f2.4)

Hooy Hy - - - My Hy Hewr - -+ Hn

In fact the map (3.2) is an imbedding of the diffcrentiable manifold M7, into K=RP*+Y 1t is
worth noting that the matrices occuring in v(Z) arc directly related to the input-output operator Fy

n‘;social.ed to 3. Indeed if y(t)=VZu(1) and Y{s),U(s) denote the Laplace transforms of y(e).u(t),
cn

Y(s)=Tz(s)U(s) 3.5
with

Ty(5)=CI—AY 'B=CBs~' +CABs 2+ CA?Bs ™2+ - - (3.6)
the socalled transferfunction of X.

It follows that if Hg,Hy, ... Mz is & scquence of pXm matrices such that condition (3.4) is

fulfilled then there must be a Z=(A,8,C)e LT, such that H, =C4'B. Ao algorithm for finding such
an A,B,C is called a realization algorithm. And (clearly) such algorithms arc not unrelated to the
matter of finding coordinate charts for My, Here is one ([6]). First observe that if H,=CA'B then
for the Hankel matrices of (Hy,...,H2,) and (A, B,C) we have

Ho Hy — H, CB CAB -~ CA"B
Hy Hy = Hey CAB CA'B — ca*'B
Hy Hyay = Hyp cA™B - CA™8

=Q{A,B,C)R(A,B,C)=H{4,B,C)

Now becausc (A,B,C) is ¢r there is a nice selection a, of the columns of R(A.B,C) such that
R(A,B,C), is invertible. Similary there is a nice selection ax of the rows of O{A,B,C) such thar
(A, B,C),, is invertible. Now observe that

H(A,B,C), o ={Q(A,B,C), XR{4.8,C)ex) QAT

where of course #,, . means the matrix obtained from H by retaining only those columns whose
index is in g and only those rows whose index is in a;. The first step of the realization algorithm is
hence 1o find a nice ay and a, such that S=H,_ , is invertible. These given (3.4) exist. We aow alsa
know that among all the (4, B,C) with this given Hankel matrix there is precisely one with R, =1,.
This is the one we are going to comstruct. Then of covrse Qg =5 which is new known. Alsa
H™ =0, R so that we kaow R(A.B)-tQ.'.'H,. from which A and B can be recovered (Lemma 2.1}
Jn lact A and B consist of column vectors which are cither standard basis vectors or the vectors
labelled by the succes indices s{a,.j) of Qg H,,. Tinally if ; denotes the lables of the first p rows of
H we have C=H,, . -

) 1;his particular vealization algorithm is clearly rouch related to the coordinate charts described in §

above.

The reader may wonder what the role is of the 1wo rank conditions (3.4) in this algorithm. The fira
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condition in fact ensures that there are nice ag and a, such that H, o is invertible, The second one
sees 10 it that the construction in fact yicids an A,B,C such that H;=CA'B for all i.

4. CAN THE DISTORTIONS TNVOLVED IN THE COORDINATE CHANGES BE KEFT UNDER CONTROL?
As a'start and for the purpose of this note. | shail interpret this question 2 follows. Consider M7,

as imbedded in 9 Consider a set of coordinate charts M=M",‘.’_‘,‘,’,DU.—»R"'+". Give M7, the
{Riemanian) metrnic induced by the imbedding. (This is not the only natural metric on M,of.[4] for
another important one). Is it true that one can ind an atlas (U,,9,)a such that for all PeM there is
lgoodchmi.nlhuforacuuinpredeumimdnhe]mbhnoff.;tPandiuinverumbothal
least ¢ away from the subser of singular matrices in the of all square matrices of size
dimM X dimM?7 This would for example be the case of we could find 2 finite atlss (L/,,¢.)s (Lt OnE
with finitely many charts) such that for cach g there is & compact set D, Cg(U,) such that for each
PeM tbere is an g such that ¢,(P)eD,. This, however, woukd imply that M is compact (as image of
TE-D.) which is never the case.

Th:qudlionisopmbuli:obviouslyo(putzdevmlnrmummiul(mmive)
identification problems. :

The foliowing observation of BOsGRA and VAN DER WEIDEN (1] is probably going to be of impor-
tance here, Consider again the realization algorithm described in § 3 above. Because of the Hankel
structure of H there are indentical ones among the entries of H which are actually used in construct-
ing (4,B,C). It wurns out that in fact precisely nm+np entries of the matrices Hy, . .., Hy, are used,
This means that to each pair of nice selections (ag,u) there is associated 2 subset of size am+np of
the mp(2n + 1) coordinates of X such that projection anto these nm -+np coordinates is in fact a local
coordinate chart, And of course the coordinate neighborhoods thus obisined cover all of M. This cer-
tainly does not yet give a positive answer 10 the question asked above but it is a positive indicator in
that it is so particularly simple to indicals for a particular P€M which subscts of the coordinates of
% of the type determined by a pair of nice selections (ax.ac) may be used as local coordinate charts
around P eM. O coursc in iself, abstractly, the fact that for an imbedded manifold dimension r, say
MCRY the r-element sct projections RY S R” restricted 10 M may be used as coordinate charts means
nothing. Indeed let PeMCRY. Locally around P the manifold M is then the image of 2
differentiable map i:R —R¥, 0P, of rank r near 0. That means that the Jacobian matrix JUX0) of §
at 0 has rank r and so there is a subset a of size r of N such that J(I)0k is invertible. Let
w :RY R’ be the projection corresponding to a. Then R'~R* R’ is & diffeomorphism near 0 so
that =, is a pood coordinate chart for M near P.
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On the (Internal) Symmetry Groups of Linear Dynamical
Systems
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".I ntroduction and statement of the main definitions and results

A time invariant linear dynamical system is a set of equations

x=Fx + Gu xf{t + 1) = Fx(1) + Gu(t)
(11) y = Hx (Y) yo=mo
{continous time) (discrete time} ,

where xEX = IR", u€ U = IR™, y €Y = IRP and where F, G, H are matrices with coef-
ficients in !R of the dimensions n X n,n X m, p X n respectively. We speak then of a
svstem of dimension n, dim(Z) = n, with m inputs and p outputs. Of cource the discrete
time case also makes sense over any field k, (instead of IR). The spaces X, U, Y are
tespectively called state space, input space and output space. The usual picture is a “black
box".

(12) u,(») ¥i(t)
: x(t) :
WO Yolt)

.at is, the system I is viewed as a machine which transforms an m-tuple of input or
control functions u, (1), ..., uy, (t) into a p-tuple of output or observation functions

Y1 (t), ..., ¥p (t). Many physical systems can be viewed as such a “black box". For instance
the box may be a chemical reaction vat. The u, (t), ..., um (1) may be concentrations of
various chemica's which are insected and the ¥i(t), ..., yp(1) reptesent certain series of
measuremenis serving as indicators that everything goes as we wish (or not). Especially

the output aspect (represcnted by the matrix H) captures something very often encounte-
red in physics, electronics, chemistry, and also astronomy: only certain functions of the
state vanables x, (1}, ..., x{t) are directly observable! Thus in astronomy one has to make
do with certain projections (against the sky sphere) of the space variables describing e.g.,
Lie solar systemn, in atomic physics one 144y have 10 rely only on scattering data, and, as

a last example, in economics one uses socalled economic indices. which. hopetully, reflect
more o7 less accurately the goings on of the “ical” (largely unknown) underlying economic
processes.
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Txe formulas expressing y(t) in terms of the u(t) are

w(ts = HeF'x(0) + J HeF - Gu(r)dr,
(13) °
t-1
y(t) = HF'x(0) + N HF'"'7'Gu(i),
i=0

where x(0) is the siate of the system at time 0 (and where we start putting in input at

vme 1 = 0), Thus the input-output behaviour of our box depends of course on the initi

~-ate x(Q). One 15 pariiculany tnterested in the input-output behaviour of T when x(

We shall write f¢ X1 for the associaied input-output operator. Thus -

[}

y - . - t—-1
{04) T(D):wll) _.He”‘*”cu(f)dr,f(z) sut) - Z HF* =1t Gu(i)
o i=0

1:' -.i now an important fact that the input-output behaviour description of the machine

(1 2V1s degenerate. much as. say, encrgy levels in atomic physics may be degenerate. More
orecisely the matrices F, G, H (and the initia! state x(0)) depend on the choice of a bass
ir: state space and from thz input-output behaviour of the machine there is (without chan-
g:ng the machine) no way of deciding on a “‘canonical” basis for the state space X = R"
“tore mathematically we have the following. Let GL,(IR) be the group of all invertible .
rea! n X n matrices and let Ly, p(IR) be the space of all triples of matrices (F.G,H) o

Cimensions n X p,n X m, p X n respectively. The group GL(IR) acts
IR™ = space of initial states, as group GLn(IR) acts on L, n,(1R) and

{1.5) (F,G,H)® = (SFS™', 5G, HS™), x(0)® = Sx(0)

J:J‘as is eas:lyﬁchecked l.hc. associated input-output behaviour of the corresponding machine
d.~‘g;ve_r-1 by {1 ..:J'and (l.») is invariant under this action of GL,(IR); i.¢., in particular .
I ; = :(g). This l:f{::non corrclsponds 1o base change in state space. Indeed if x' =Sx and
{=Fx+Gu,y = Hx then $7'x" = FS™'x’ + Gu,y = HS"*x’ so that X' = SF§"'x’ +

« = HS™x" and x'(0) = Sx(9). P

_ 3:15 chapter is copcemed with those aspects of the theory of linear dynamical systems which
nfh {lnolle or less dure.ctl).f relalefi to the presence of the internal symmetry group GL,(IR)

‘; the internal description of linear dynamical systems by triples of matrices (cf. (1.1)) as
:;mp;red 1o the degenerate external description by means of the operator {(Z) (or (1.3)).
This is not really a research paper (though it does in fact contain a few new results) but

Tdlher a grﬂdualc level CXPOSI(O.V accoun L -
f
t ol some 0| llle mater 'al 0[ l3 8] :“ld llllllledﬂleh

1he main results ol sections 2—8 below.
Ye shall concentrate un the continuons time case.

it the remaining part of this introduction we give a slightly informal description of moslé
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1.6 - Feedback and how to resolve the external description degeneracy. In the case of ato-
mic paysics 8 degenerate energy level may be’split by means of, e.g., a suitable magnetic
sield. One can ask whether there exists something analogous in our case of degenerate ex-
ternal {= observable) descriptions of linear dynamica! systems. There does in fact exist
some such thung. It 1s calied state space feedback. Consider the system (1.1). Introduc-
tion of state space feedback L changes it to the system E(L)

-
<

L

g=(F+GL)x+Gu u(t) y(t)
|

y = Hx x(t)

’

¥

In thinking about these things the author has found it helpful to visualize a linear dynami-
cal svstem with (variable) feedback as a set of n-iniegrators, 1....n. interconnected by
means of the matrix F.a set of m input points connected to the integrators by means of

the matrix G. a ser of p cutput points connected to the integrators by means of the matrix
H acd a set of connections from the integrators to the input points {feedback) which may be
varied in strength by the experimentator (as in atomic physics the splitting magnetic field
may be varied). Cf. also the picture below.

u ] U
PALY
u,lt
1 y,lﬂ!o

Fig. 1

—— ' — interconnections between the integrators as given by the matrix F

0 1 0
F=|{fu fa fn
f;] 0 f!!

v..e.».— connections from the input points to integrators as given by the matrix G

¢ &n
G=]1 ]
g 1
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_ connections from the integrators to the output points as given by the
matnx H

0 hy hy
H=[ hy; 0 0
0 0 0

.. connections from the integrators to the input points (zan be vari:td in strm.
by the experimentator) as given by the matrix L
L= h 0 Iy
0 0 Iy

Nowlet T=(F,G.H) and T = (F',G", H') be two linear dynamical systems, and suppose
that £ and I’ are completeiv reachable and completely observable. (This is n entirely
attural restnction in this context. of. 1.12 below: for a precise definition of the notians,
L 2.6 beiows. Suppose that X # I’ bug [(X) = f{Z’). Let Z(L), £'(L) be the systems
“btained by introducing the feedback L, i.e. Z(L)=(F +GL,G,H), Z' (L) = (F'+ GL,
G H'Y. Then there is a suitable feedback matrix L, which can be taken arbitrarily small
w that (L) and T'(L) are still completely reachable and observable) such that

(L)) # £(Z'(L)). ).e. feedback sphits the GL,(IR) — degenerate externai description
f Lnear dynamical systems.

1.5 Realization theory. Let T be a linear dynamical system (1.1). Then, if we leave T
“unchanged. from our observations we can deduce the operator f(Z) or, equivalently, we

<an find the sequence of matrices A(Z) = (Ao, A, A, ...}, A; = HF'G. To ob:ain these
5-functions and derivates of & -functions as inputs. Another way to see this is 1o apply “‘
Lizlace iransiorms to {1.1). This gives

(1.9) sk(s) = Fa(s) + Gli(s), §(s) = HA(s) ,

80 that the relation between the Laplace transforms §(s), §(s) of the outputs #(t) and
1puts u(t) is given by multiplication with the socalled transfer matrix T(s)

(110)  §(s) = T(s)ii(s), T(s) = His-F)7G.
The power series development of T(s) in powers of 5! (around s = =) js now
(L) T = Ags™ + As 2+ A3 e . . '

The question now naturaily arises: when does a sequence of P X m matrices A = (A, Ay, . é‘,—\
come from a linear dvnamical system (1.1), or, as we shall say, when is A realizgble
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1.12 Theorem (cf. [10]):

g ¥ - l< n
i i i Z then it is also realizable by an n
i is realizable by an n-dimensional system .
¢ :ifn:e:sir:nal system £’ which is moreover completely reachable and completely ob

servable. . | ‘ ‘ )
(ii) The sequence A is realizable by an n dimensional system I if and only if ran

(H(A) <n forall sENU{0].
Hers #H,(A) is the block Hankel matsix

@ Ao A ... A,

Ay
Hy(A) =

Ay - - . Az

1.13 Invariants and the structure of M7 (IR) = Lia » (IR)/GL(iR).

Let L (IR) be the space of all triples of matrices {F.G,H) of dhpensliosn; _![1]:: li:put-
nX mmi)n;n respectively. The group GL,(IR) acts on L,,,',,_p(IR)das u:n (u.est.ion it
' i . 0 . . c q
,atrices A; = HF'G are clearly invarianis fqr l.hls. action an ‘ :
\ov‘;l?;::r &t:;e:re ;he only invariants. Here an invariant is defined as a ;uncu;)ln b:: ‘ o
i i invariant open dense

-» IR (or possibly a function defined on an invarian .

lﬂ’"'“”ﬂ:i) such(tha]: p((F, G, H)®) = p(F, G, H) for all triples (F, G, H) (in the open

1] “l p
d;nnse subset).

14 Theorem: Every continuous invariant of GL, (IR) acting on Ly, a,p(IR) isa function
.of the entries of Ag, ..

L, n o {{R). On this subspace GLy (IR} acts faithfully and a more precise version of theo-
L nlp *

' =LEC (IR)/ licitly and
rem 1.14 describes the quotient space M o _(IR) = L "o (IR)/GLo(IR) explicitly

gives an algorithm for recovering (F, G, H) up-to-GL,, (IR)-equivalence from Ay, ..., An1

’ i i iable manifold and
(cf. 4.25 below). 1t turns out that Mf;".f".p(lﬂ) is a smooth differentia

: is a principal GL,(IR)-bundle (cf. 6.4 be-
that the projection Liy' s (IR) = M2-T" L(IR) is a principal GLa(IR)

low). -
1.15 Canonical forms. For many purposes (prediction, construction of feedbacks, identi-

i i 1 description of a black box by
icati t least, for proving theorcms) an interna :
{:.ia,::l:\:l:(t;::p of matricfs (F.G. H)is preferable over knowledge of the input-output

"Aln—!'
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.ulating some T = (F,G. H) which realizes f(Z) or A(Z) from the matrices Ag, - Aza—1.

_ime such algorithm is described in 4.25 below. All these algorithms have the drawback

«rzt tnev are discontinuous in general. This is a pontrivial difficulty, because after all one
suicutates the (F, G, H) because one wants to use them as a basis Tor further calculations,
:2mgn. predictions etc., and the Ag, ..., Aap -y are after all subject to (small} measure-
—ent errors. Thus the question arises whether there exist continuous methods of recove-
arg {F,G, H) up-10-GL,, (IR )-equivalence from Ag, ..., Azn 1. Or, in other words, be-
cause Mo :;"P(IR) is an explicitly describable subspace of the space of all sequences of
_np X m matrices and My o (IR} = L' 1" (IR)/GL, (IR), the question arises whether
‘here exist continuous canonical forms on L"5' 0 (IR), where a continuous canonical

torm 1s defined as follows. o .

1.16 Definition. A continuous canonical form on a GL, (IR)-invariant subspace
L' = L n,p{[R) is a continuous map ¢: L'~ L' such that
(iv ¢((F.G.H)®) = c((F,G, H)) forall (F,G,H) EL’,
b if Ic((i:‘,G. H)) = ¢((F',G', H')) then there is 2 S€ GL, (IR) such that
{F, G H) = (F,G,H), and
iiii) for all (F, G, H) € L' there is an § € GL, (IR) such that ¢(F, G, H) = (F, G, H)®,

For some additional remarks on the desirability of continuous canonical forms of. [2}

2nd also | 15]. Also our proof of the “feedback suspends degeneracy™ theorem mentioned
iri 1.6 above is based on the use of a suitable canonical form. It turns out that there exist
ooen dense subspaces U, C Ly, o, p(IR), which together cover L *“"_(IR), on which

m,n,p

continuous canonical forms exist. Cf. 3.10 below. On the other hand.

1.17 Theorem: There exists a continuous canonical form on all of Lyg'a', (R) if and

riyfm=lorp=1. _ ®

ljlﬁ On the geometry of Mo [(1R). Holes. Now suppose we have a black box (1.2)
which is to be modelled by a linear dynamical system of dimension n. Then the input-

output data give usa point of M3ys' , (IR) and as more and more data come in we find

(@ea.lly) a sequence of points in Mﬁ::‘:p(lﬁl representing better and better linear dyna-

mical system approximations to the given black box. The same thing happens when one

l_-s dealing with a slowly varying black box or linear dynamical system. If this sequence

4?£rltzgchcs a limit we have “identified” the black box. Unfortunately the space

1“ m.n,p (IR} is never compact s that a sequence of points may [ail to conveige to any-

hmg whatever. There are holes in M, (IR} Consider for example the following

family of 2-dimensional, one input, one output systems 3
®

M1ty . /o T "R 1 =2/ M a1 21

|
|
l{
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CLet u().0<t <ty bea smooth input function, then y(3) = ll!_mmf (T Ju(t) exists and is

equal to y(t) = a'% u(t). This operator can not be of the form f(X) for any system I of

the form (1.1) (because the f(T) are alwavs bounded operators and f; is an unbounded
operator). A charactenstic feature of this example is that the individual matrices

F,. G, H; do not have limits as z — . (A not unexpected phenomenon. because after
ali we are taking quotients by the noncompact group GL, (IR)). This sort of situation is
aciualiy impoitant 1n praciice, €.g. in the study of very high gain state feedback systems
% = Fx + Gu. u = cLx, where c is a large scalar gain factor. Cf. [12).

Another type of hole in M5, (IR corresponds to lower dimensional systems, and in a

way these two holes and combiniations of them are ail the holes there are in the sense of

.ths following definitions and theorems for the case p =m = 1. There are similar theorems

in the more mput/more ouiput cases.

1.20 Definition: We shall say that a f amily of systems I, = (F,, G, H,) converges in
input-output behaviour to an operator B if for every m-vector of smooth input functions
ue t) with support in (0, =) we have lim f(Z,) u(t)= Bu(t) uniformly ir t on bounded t
intervals. e

121 Definition: A differential operator of order r is an operator of the form

r
uft) ~ y(1) = Dy(V) = agult) + 3, 'gi u(t) v+ ...+ a :'—r u(t), where the 3o, ..., 3 ar¢
p X m matrices with coefficients in IR, and a, # 0. We write ord(D) for the order of D.
By definition ord{(0) = - 1. :

522 Theorem: Let (Z,); be a family of systems in L; »,1(IR) which converges in input-
output behaviour. Let B be the limit input-output operator. Then there exist a system X'
and a differential operator D such that

Bu(t) = f(Z)u(t) + Du(t)

@ 224 0rd(D) + dim(Z)<n -1

1.23 Theorem: Let D be a linear differential operator and '€ L, 4 1(IR) and suppose
at ord(D) + dim(Z") < n—1. Then there exists a family of systems (Z,)s,
T, € LY, (1R) such that for every smooth input vector u(t)
lim £(ZHu(t) = £(Z)u(1) + Du(t) '
‘ —
uniformely on bounded t-intervals.

1.24 Concluding introductery remarks. Many of the results described above have their
analogues in the discrete case and/or the time varying case, cf. [3-8,9~11, 14]. But not
all. For instance the obvious analogues of theorems 1.22 and 1.22 fail utterly in the dis-
crets time case. In this case Ili_lpm (T, )u(t) exists for all inputs u(t) if and only if the in-

Aividnal matrices A:(z) = H,Fi,G, converge for z -+ *o. This means that in the case of in-
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~ui-output convergence the limit operator is necessarily of the form (X'} for some, possibly
1ower dimensional, system I'. The same answer obtains in the continuous time case if

n2sides input-oulput convergence one also requures that the F,, G,. H. (or more
‘ .G,, e
ine A, (z)) remain bounded. 2.6, H; ( generally

4 number of sections have been marked with a *: these contain additional material and
can without endangering one's understanding be omitted the first time through.

¢ Complete reachability and complete observability

L;ﬂ F, G H) € Ly a,p(IR) be & real linear dynamical system of state space dim«lmsion n,
with m inputs and p outputs. We define

(21D R(F,G)=(GFG...F'G),s=0,1,2,..., R(F,G) = R, (F,G)

the n X (s + 1)m matrices consisting of the blocks G, FG, ..., F'G, and dually

H
HF
(22) Q,(F, H) = - [3=0,1,2,..,Q(F,H) = Qu(F,H).
HFY,
We also define
Ay A, ... A,
Ay
(23) H(F,G,H) = H () = : _ = Q,(F, )R,(F,G1,5=0,1,2, ...,
A, e Az
where A; = HF'G,i=0,1,2,.... ]

1t is useful to notice that

(24) R ((F, G)) = SRy (F, G), Qu((F, H)®) = Qu (F, H)S™! ,

where of course (F, G)® = (SFS™, SG), (F, Hf = (SFS7', HS™). It follows that
(2.5) He(Z%) = H (F, G, H)®) = Hy ((F, G, H)) = Hy ()

for all S € GL,(IR), which is of course also immediately clear from (2.3).

;’-EG Definitions of complete reachability of complete obscrvability, The syztem
9.. G, H)e Lm'ntp(ll-'_l) is said to be completely reachable iff rank (R(F,G) = n. The
vstem (F, G, H) s said to be completely observable iff rank (Q(F, H)) = n. These are
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generic conditions: in fact the subspzce L' (1R) of Ly o~ (IR} consisting of all systems

which are both completely reachable 2nd zompletely observable is open and dense. We note
that (F. G, H) is co t= completely observable) and ¢r (= completely reachable) iff the
matrix H,(F,G. H) = Q(F,H) R(F, G) is of rank n.

*2.7 Termilogical justification. Let (F,G.H) € Ly, , o(IR). Then (F. G, H) is completely
reachable iff for every x; € IR™ there is an input function u(t) such that the unique solu-

tion of
x = Fx + Gu{t), x(0) = 0

.assa through Xx,: i.e. every state is reachable from zero. For a proof cf., e.g., {17, theorem

3.5.3 on page 66) or [ 10, section 2.3). Instead of completely reachable one also often finds
tne termunology 1completely state) controllable in the literature.

Dually the system (F, G, H} 1s completely observable iff the initial state x{0) at time zero
i deducible irom y(t), 0< t <1;,1; >0 (using zcro inputs). Equivalently (F, G, H) is
completely observable if the initial state x(0) is deduciple from the input-output behaviour
of the system on an interval [0,t,],t, > 0. Cf,, e.g.,[14, Ch. V, section 3] or {17, theorem
3.5.26 on page 751.

The following theorem says that as far as input-output behaviour goes every system can be
replaced by a system which is co and cr. Thus it is natural to concentrale our investigations

on this class of systems.

2.8 Theorem ((10]): Let £ =(F,G,H)EL,, , ,(IR) with input-output operator {(Z). Let
n' = rank(#, (Z)). Then there exists an

= (F,G, H) € L (IR) such that f(Z) = f(Z').

m,n,p

Proof: Let X = IR" be the state space of £. Let X"*® be the linear subspace of X

.panncd by the columns of R(F, G). Then, clearly, G{IR™) C X"™*" and F(X"*M) C

X™5h (Because F" = a,] + a,F + ... + a;_, F"~! for certain 3; € IR by the Cayley-
Hamilton theorem). Taking a basis for X" and completing this to a basis for X we see
that for suitable S € GL, (IR), Z% is of the form

(SN e

where the partition blocks are respectively of the sizes:

"X ma-n"Xmn"Xna" 0" Xn-p",n-n"Xn",(n-n"YX(n-n"),
pXn",pX(n—n") for G",0,F",F;,0, Fyy, H', H} respectively if n” = dim X",
Now clearly

-1
HeF7G = (1157}e5F5 7SG = H''eF G”
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andrank R(F".G") = rank (R(SFS™*, SG)) = rank (SR(F, G)) = rank R(F, G} = n""
It follows. cf. (1.4). that £ and "' = (F".G", H") have the same input-output operator
Trus to prove the theorem it now suffices to prove the theorem under the extra hypolh'esis
thar (F. G, H1 is cr. Let X, be the subspace of all x € X such that HF'x = 0 for all
y=0.1.....0: i.e., Xo = Ker(Q(F, H)). Then HF'x =0 foralli= 1,2, ..., using the Cay-
:ev-Hamilton theorem. Hence FX, € X, and HX,, = 0. Taking s basis for X, and comple-
tng it to a basis for X we see that for a suitable $ € GL,(IR). 5 is of the f;n'n

s . G_':) (F'n F'u) .
- k(c, s 0 F; D(ODH) »
®

where G'. F". H’ are respectively of the sizes ' X m,n’ X n',pXn',n'=
i g »P X n,n = rank (Q(F, HD),
whicn 1s atso equal to rank H,, (F, G, H)if (F,G,H) iscr. (Q(F, H))
Ciearly

HeF'G = (HS™)eSFS " 7SG = H'eF *G'
rani{Q(F, H)) = rank (Q(SFS™, SHS™) = rank (Q(F', H)),

so that T = {F', G, H') is completely observable and fy’ = f5. Also li(SFS'l SG) is of
the form '

R(SFS™, SG) = ( R )
R(F,G")
But rank R(F, G) = n %o that the n rows of R(SFS™', SG) = SR.(F, G) are independent.

It fallows that the n' rows of R(F',G’ i i i
s at (F', G') are also independent, proving that %' is also comple-

[ 2 .

,__"'9 Po.le Assignment. A set A of complex numbers with multiplicities is called symme

;‘f w@ feAhaso € A‘wnh the same muitiplicity. Here 8 is the complex conjugate of .
A isareal n X n matrix then o(A), the spectrum of A, is a symmetric set,

210 Thegum: The pait of matrices (F,G), FEIR"*?,GE IR"* ™ is completely
teachable iff every symmetric set with multiplicities of size n occurs as the spectrum of
F + GL for a suitable (state feedback) matrix L.

Le the system (F, G, H) is cr iff we can b i
he sys: ,G, y means of suitable state feedback arbitraril
reassizn the poles of the system. For a proof cf., e.g., [ 18, section 2.2]. iand

&
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3 Nice Selections and the Local Structure of L, , , (R)/GL, (IR}

3.1 Nice Selections. Let (F.G,H) € L n,p(IR). We use I{n, m) to denote the ordered

set of indices of the columns of the matrix R{(F, G).

Le. ltn, m} = {(L, PLi=0,...,nmj=1, ..., m} with the ordening

(0, 11<{0,2)<...<(0.m)<{], 1< L <1, m<...<(n, D<... <(n, m). Anice

selection a C 1(n, m) is a subset of I(n, m) of size n = dim L such that .

(iLyea=(-l.jJ€Ea if i 1. Pictorially we represent I{n, m) as an (n + 1) X m rectan-

guiar array of which the first row represents the indices of the columns of G, the second

row the indices of the columns of FG, ... etc.... We indicate the elements of a subset a
.with crosses. The subset of the picture on the left is then a nice selection (m=4,n=9)

and the subset a’ of the picture on the right below is not a nice selection

X . X . . X

If § is a subset of I(n, m) we denote with R(F, G)g the matrix obtained from R(F, G)
by removing all columns whose index is not in f.

We use Ly, o(IR) to denote the space of all pairs of real matrices (F, G) of dimensions
n X n, n X m respectively. :

3.2 Lemma: Let (F,G)€ Ly, ,(IR) be a completely reachable pair of matrices. Then
. there is 2 nice selection a such that R(F, G), is invertible.

Remark: Complete reachabilitiy means that rank R(F, G) = n, o that there is in any case
some subset § of size n of 1(n, m) such that R(F,G) is invertible. The lemma says that
in that case there is also a nice selection for which this holds.

Proof of the lemma: Define a nice subselection of 1(n, m) as any subset g (of size <n)
such that{i,j) €B. i=1=(~1,j)Ef Letabea maximally large nice subselection of
1(n, m) such that the columns in R(F, G), are linearly independent. We shall show that
rank (R (F, G),) = rank (R(F, G)), which will prove the lemma because by assumption
rank R(F,G) = n.

Let w={(0.51). ... (i a ) i €0,3), ..., (ig, §s)3- - Then by the maximalitr of a we know
tha columns of R(F, G) with indices (0,j).j € {1, ..., m}\ Gy, ..., js) and the columns of
R(F, G) with indices (ig + 1,§),t=1,...,s are linearly dependent on the columns of
R(F. G).. With induction assume that all columns with indices (i + k. ji). k<,
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t=1,..sand (k- 1,j),k<r,j€{1,...m}\ j,,

colurans of R(F, Glg. So we have relatiuns =+ Js} ate linearly dependent oa the

«-<1, - V© -
Frolg= > a(l,j)F'g,-.]E{l,...,m}\{j,,....j,]
(i.j)Ea
Fi'*lgj'= b(isj)FlS|t=l|-Ha‘|
(i.))Ea

where g; denotes the j-th column of G. Multiplying on the left with F we find

F'gj= .‘_: a(i,j)F“'g‘- .
(inj,eﬁ .
Frf g = N b j)Fivlg,
(il€Ea

we have aiready seen that the F'*! i+ (i, j} € a are linea inati
RIE.G)o. It follows that ales the F§J e I combinations of the columns of

‘ at als g and Fy*"™* Vg are linear combinations of
limns of R(F, G),. This finishes the induction and l;encc the proof of the Ie‘.mnltf1 "

3.3 Successor indices. letaCl

(n,m) beani : g
those elements G, ) € (n, m) \ ) nice selection, The successor indices of o are

. a for which i = 0 or for which (i’ i i'<ii
i . _ ich (i',j)Eaforalli'<
l.Forevery j,€ {1, ..., m} there is precisely one successor index of & of the fo::nlf

(i, jo); this successor index is denoted i CESSO
» this s i s(a, jo). In the pict indj
of a ase indiced by *'s (and the elements o‘} a with J]:' s)-ure below the sue rindices

Columnsof G & x o X e X e
Columas of FG X . x .
* ) . e‘
X . & . xa
. % . ']
Columns of F*G
34 Lemma: Let

a C1(n, m) be a nice selection and
Then there s precisely one pair (F, G) € Ly, o (R) such thar ™ Pe O Avecton.

R(F,G)p=Iyx o then X n unit matrix
R(F, G); o,y = xjforallj=1,... m.
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Proof: Let f; be the i-th column of the matrix F,i=1, 2, ..., n. Then in the example
given above the values of the g;,j=1,...,m and f;,i=1,...,n cansimply be read of
from the diagram. One has in this case

- - +
BL = X182 T €1,83 = X3, B4 &2

fl = e;.f; = e‘,fg = e,.f. = x.,f, = Xz,

It is easy to see that this works in general and to write down the general proof though it
1ends 10 be notationally cumbersome.

. 3.5 Local structure of Lf,:_n.p(lﬂ)iGL., (IR). Let-&a C I(n, m) be a nice selection.
We define
U, = {(F.G,H) € Ly, 5., (IR)| det R(F, G), # 0}

(3.6)
Vo= {(F,G,H) € Ly 4, p(IR)IR(F,G)e = laxa} .

3.7 Le:p;m:
() Ua =V, X GLy(IR)
(ii) Vg = R™2Y 1P

Proof: (i) Let (F, G, H) € U,. We assign to (F, G, H) the pair (F, G, H)%,8™") where
S=R(F,G);!. Then (F,G, H € V, because R(SFS™, 8G) = SR(F, G) and hence
R(SFS87?, SG), = SR(F, G),. Inversely given {(F, G, H), S) €V, X GL,(IR) we assign
to it the element (F, G, HY. This proves (i). Assertion (ii) follows immediately from
lemma 3.4. Indeed, let Z€ IR™"* ®P and view z 25 an m + p tuple of n-vectors

Z2= (Xyy .. Xme Yo -o-» ¥p)- Then there ace unique F, G, H such that R(F,G)a = lnx as
R(F, G)y(a,j) = Xj» hy = y; where h; is the /-th row of H.

3.8 Local structure of L7'1" (IR)/GL,(IR). Let again @ be a nice selection. Then we de-
fine in addition.

(3.9) Ug” = Up N LI 00(R), VG = Vo N Ll (R)

Then one has clearly that V:° is an open dense (algebraic) subset of V, and that
U = Va' X GLy(IR).

3.10 The local nice selection canonical forms ¢,. Lemma 3.7 defines us a (local) conti-
nuous form on U, for each nice selection a. It is

(3.11) ¢ ((F.G,H) = (F,G, Hfe€V,, §,=R(F,G), (F.G,H) EU,
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The L, are open dense subsets of Lf,:_n'p(lR), 4nd by lemma 3.2 the union of all the U,

o 1 ruce selection. covers all of L::,:_".P(IR). This is thus a set of local canonical forms

which can be usefui in identification problems (it leads 1o statistically and numerically

wel} posed problems, cf. [15, section Ii}. '

3.12 The dual results. Dually we consider the set I{n, p} of all row indices of Q(F, H), .
wiuzh we also pictuse as an {n + 1) X p array of dots. Now the first row represents the f
rows of H. the second row-the rows of HF. ... . A nice selection is defined as before and q
onre has the obvious analogues of all the results given above. In particular if ;
'F.G.Hi €LY, (IR) there is a nice selection § C L(n, p) such that Q(F, H), is inver-‘ !
iiple. Here Q4F, H)y is the matrix obtained from Q(F, H) by removing all rows whose i
index is notin §.

Une also has of course local canonical forms ¢ (defined on Up) for every nice selection .
< Yn,p) :

1313} ¢{(F.G.H)) = (F,G, H)*s, Sy = Q(F, H)y, (F, G, H) € U,
(3.14) Uy = ((F,G,H) € Ly, a,p(IR)| Q(F, H)y is invertible} .

4 Realization theory

Let A =(Ag, A}, Ay, ...) be 2 sequence of p X m matrices. We shall say that the sequence ‘
A is realizable by an ndimensional linear system if there exist a system (F, G, H) € Lon,e.p(iR
Lun,n,p(IR) such that A; = HF'G, i=0, 1,2, ... . It follows immediately from (the proof

of) theorem 2.8 above that if A is realizable by means of (F, G, H), then there is also a

possible lower dimensional system '= (F', G, H') € L0 (IR), n’ < n. which also

realizes A and which is moreover completely reachable and completely observable,

For each sequence of p X m matrices A we define the block Hankel matrices

Ae A, .. A,
Ay

(4.1) H,(A) = ,8=0,1,2,... .

A, vee  Agy

4.2 fheorem: The sequence of real p X m matrices A = (Ao, A,, .. ) is realizable by

means of & completely reachable and completely observable n-dimensional system if and

only if rank #,(A) = n for all large enough 5. Moreover if both Z, T'€ Lf:';"(lﬂ) realize

A then T'= =% for some S € GL,({R). o @

This alio oo o . osan . -~

@4 Lemms: Let A=(Ao, Ay, bease
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4.3 Corollary: If the sequence of p X m matrices A is such that rank H,{A) = n for al!

. sufficiently large s, then rank H,(A) = n forall s>n~1.

i i dimension n, then
- if T =(F,G,H) realizes A and X is co and ¢r and of .
znosz,,_,([-. C) = rank Q, _; (F, ) = n, so that rank Hy 1 (A) = rank (Ra-1(F,G) |

Qn—l(F} H)). n

A First step in 1he proof of theorem 4.
rank Hy(A)=n forall s> 1-1, then the Ay

21 matrices Ag, - Aar-1-

2 is now the following lemma which says that if
for i > 25 are uniquely determined by the

ries of p X m matrices such that rank H,{A)=n

fer all s3> 1 - L. There ate m X m matrices Sg. ..., S;—1 and p X p matnces Tos s Tr-1

such that foreD i=0,1,2,....

(4.5) Ajor = ASo + ApniSit oot Ajar-1Sea
=ToAi + iAoy + .- ¥ TeaAjerre

Proof: Becawse rank H,_1(A)=n and rank H,(A) = n we have

Ao A oo Ay A,
A,

n = rank H, —; {A) = rank : |
Acr o Az | Az

s0 that there are m X m matrices S, -+ Sr-y Such that
Ajer =™ AiSo +..+ Ai"r-lsl—h i=0,...,1 -1.

Similarly, it “ollows {rom

Ao .. A.._l

n =rask H,-l(A)‘m‘k Arar . A2

A[ ate Alt—l

that there are matrices To, ..., Tr—1 such that
(4.6) Aps1=ToAi+ oo + TroiAjap-1, 120,00 v -1.
Suppose wizh induction we have already proved (4.5) for i<k -1, ka1
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(onsider the following submatrix of Hy (4)

Ag Al ves A-r_l Ar ‘ee At
A, . . .

wnl| . . . | ;
A.--; A!r—z Azl'-l AI;H'——I I
A, Ay Ay Agag / . !

Using the relations (4.5) for j <k — | we see that the rank of 4.7 js equal {0 the rank of [

Ao AL A 0 ... 0 o - ®
A
(4.8) o
Ar-[ ves A:;—; 0 e 0 0 »
Ar s Aﬂ’—l o .. 0 X

whercX=A,”.,—AkSo~...‘-Ak+, ’S, I USU'IS(46)WCSCeb
. —15;-,. . y means of row apera-
Gons on (4.8) that the rank of (4.7) is also equal to the rank of Pem

A_n A(.—[ 0 e 0 0

Arng Az ¢ .. 0 0
0 .. o | o 0 X

Now the rank of (4 7)is n=rank M,_, (4). H = i i
_ . r—1(A). Hence X = 0 which proves the ind ct .
This proves the first half of (4.5); the second half is proved si.m.i.laI::y. éuction step

Aore generally one has the following result (which we shall not need in the sequel), .

*49 Lemma: Let Ag,.., A, beafi '
4 : oo Ay tnite series of matrices and s
l.jEWU{O}suchthati+j=s—lmd opose thereare

Ao .o A Ao oo A | Agyy Ao . A
rank [ - : =rank { - . : |
. . =rmk - . =
A‘ ae Ai.’ A’ . Ajg.’ Aif‘f‘ Aj teu Al*‘ "
————

Ajﬂ--- Ahhl
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for some n€IN U {0}, then there are unique Agyg, Ageg, ... such that
rank 4 (A)=n
for all t > max(i, j).
Proof: By hypothesis we know that there exist matrices Sor-a 8
(4.10) Ajyrs1 =ASot...+tA,S,1= 0,...j.
Now define A, for t > s by the formula
‘4.!1) Ag= A 1St ... +A_S,.
Also by hypothesis we know that there exist T, ..., T; such that
(4.12) Ajese) =ToAr+ .+ TiAjor 1= 0,...,i0.

To prove that rank H,(A4) = n for all t 3 max(i, i) it now clearly suffices to show that
(4.12) holds in fact for al! r > 0. Suppose this has been proved forr<q-1,q>i+1.

Consider the matrix ’
A_. vee A.l Aifl ves A?
@.13)] - : : :
g e Ajyg Ajrjer Ajeq

Aper oo Aprje I Ajrjer Aj+qei

By means of column operations, the hypothesis of the lemma, and (4.10)—(4.1 1) we see
that the rank of the matrix (4.13) is n. Using row operations and (4.12) for r < q-1 (in-
duction hypothesis) we see that the rank of (4.13) is also equal to the rank of

. Ao ... A Altl . Ag

(4.14) : : B
A A Ay Ajvgq

0 .. 0 o 0 X

where X is the matrix Ajager —ToAg—... - TiAj+ - Now use column operations and
(4.10),(4.11) to see that the rank of (4.14) is also equat 10 the rank of

Ao ... A 0o .. 0 o
(4‘15) A] PN Ahj 0 0 0
0 0 X

0 .. 0 |
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4.16 Proof of theorem 4.2 (first step: existence of & co and cr realization; [10]): Lat
;EINbesuchl.hatr>nandran.kH,(A)=nforalls>r—l.Wewﬁte '

Ao o A AL
. ,H(k)'-' R

A -
H = He_1(A) = A

A“—l aee Azl’—l

Arex-t - Azrsx-

and for all s, t €IN we define

Eox:® QaxolOuxg-g) f8<t
E;Xl"n!a fs=t ' .
|
E.x:=(a—'5-t——) ifs>t,
G- x 1

_whe;e laxs i.s'.he a X a identity matrix and O, x , is the a X b zero matrix. Because H
is of rank n, there exist an invertible pr X pr matrix P and an invertible nu X mr matrix
M such that

laxa I on)((mr—n)

{4.17) PHM-= =EyxnEaxme-

Ope ) x n Opx —n) X (mr—n)

Now define

(4.18) F = Eux prP”(nM Epexn G = Egqx FPHme m»
H= pr WHMENX a

We claim that then (F, G, H) realizes A, i.e. that

(119} A;=HF'G,i=0,1,2,....

To prove this we define
P s o P00
p=lg .. o
¢ 0 o ... 0 I
0 . -0 I S| -1 To cew T[—'

w};ere 0,1,0, I'.are respectively the m X m zero matrix, the m X m identity matrXx, the
F % p zero matrix and the p X p identity matrix and where the S, ..., S, and

To. ..., Ty, are such that (4.5) holds for all i. Then @

(4200 H™ = C*y= D% k=1,2,... .
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Let H* = MEmy x nEnx pP- Then H* is a pseudoinverse of A in that
(821) HH*H=H

(Indeed using (4.17) we have HH*H = P Epx nEnx M MEm; x nEax P
P—l E.rx nE’nX “-“M_1 = M because M"M =1, PP-‘ = l. E“x mEm,x s*® l.x as
En» ptlprxn= Inx n-)-

We now first prove that

(422) EpxpP CHMEmxn=F k=12,

in view of (4.20) this is the definition of F(cf. (4.18)) in the case k=1. So assume (4.22)

!.13.5 been proved for k < t. We then have

Enx mpcl+lHM Emr)( n = Enh p!‘PC‘HDM Emt! n (by (420)
= Enx pPCHH*HDMEqm, x o (bY (4.21)

= Epx p,PC'HME,,,,,( nEnx WPHDMENK n
(by the definition of H*)

= F'Eq x pP CHMEq x n (by the induction hypothesis
and (4.20))

= F'F (by the definition of F, cf. (4.18} and (4.20)) .

W= now have forall k>0
Ay = Epx peH® Emex m (definition of H&h
= Epx pC*HEmix m (by (4.20))
= Epx wC*HH*HEmex m (bY (4.21))
= Eg x prC*HM Eanr x nEnx pePHEmex m (by the definition of H*)
= Epx pr HD*MEmex oG (by the definition of G and (4.20))

o = By x e HH*HD*MEmex G (by (421))

= Epx prHMEmex nEnx PHD*ME e x oG (b the definition of H*)
= HEqx prPCXHME e x oG (by the definition of H and (4.20))
= HF*G (by (4.22)).

This proves the existence of an n-dimensional system Z = (F, G, H) which realizes A. Now
foralls=0,1,2,...

H,(AY = Q,(F, IR, (F, G),

where H
HF _ .
Q,(F, H) = ,R(F,G) = (G FG .... F'G).

HF
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Both Q,(F, Hy and R,(F, G) have necessarily rank < n. It follows via the Cayley-Hamilton
theorem that (F, G, H) is completely reachable and completely controllable, because
rankH(A)=nfors>r-1.

4.23 Proof of the uniqueness statement of theorem 4.2: let T=(F,G, H) and

Z=(F.G, H) be two co and cr realizations of A, Then dim(Z) = rank H,,_,(4) = dim(E).
By hypothesis we have
(4.24) A =HFG=HFG,i=0,1,2,... .

According to lem 3.2 and 3.11 there exists a nice selection a (of size n) of I(n -1,
the set ofcglumn indicesof R, _; (F,G) and Hy - (F,G, H), and there exists a nice s’uc-
tion fh(of size n) of I{n -1, p), the set of row indices of Qu-y(F.H)and H,_,(F,G H)
such that B

rank (R, -, (F, Glo) = rank(Q,, ., (F, H)‘) =n.

-.',\'ole_ that a nice selection in I({n, m) {or I{n, p)) is always éontained inl(n-1,m)
or I(r_n -1,p))LetH, ., (F,G, H),,p be the matrix obtained from Hy(F,G,H) by
removing all rows whose index is not in 8 and all columns whose index is not in a. Then

Ha-1(F.G,H) 5= Qu, (F,H)R,_, (F,G),
sothat H, _, (F,G, H),,a is an invertible n X n matrix. Also
Hy -1 (F.G, H)g g = H, ., (F, G, H)a,p = Qu- (F, H)sR, -, (F, Gla
sothat Q,_, (F, H) and R, _, (F, G)q are also invertible. Now let
1= (71,6, Hy) = (F,G, H)', T = Qu, (F, ),
I, =(F,,G,,H,) = (F,G, HLT= Qn-l(l_:.ﬁ)n .
Then of course I, and ¥, also realize A. Morcover, using (2.4) we sce
Qu-1(Fy, Hy)p =1, = Q,_, (F,, H)y .
It follows that
R(F,.G,) = Ha(Z1)g = Ha(Z)s = Ha(Z)g = H, (€)= R(F,,G))

?.nd, in }um, this means that F, = F, and G, =G, by lemma (3.7) (i) combined wit}
uer:::lna (3.4). Further the matrix consisting of the first p rows of Ho(Z)) = Ho(Z,) is
€qual to

HlR(Fncl] = EIR(T:h 6:)

% inat also H, = H, because R(F,, G, =R(F,,G,)i i i
S ytoth =B, b nG,) (F;,G,) is of rank n. This Froves that indeed

-

S
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4.25 A realization algorithm, Now that we know that A is realizable by a co and c¢r sy-
stem of dimension n iff rank #;{A) = n for all large enough s it is possible to give a rather
easier algorsthm for calculating a realization than the one used in 4.16 above (which is the
aigorithm of B.L. Ho). Iv goes as foliows. Because A is realizable by a £ € L:_':"p {(IR)
there exist a nice selection a C [{n, m), the set of column indices of R(F, G) and H, (),
and a nice selection 8 C 1(n, p}. the set of row indices of Q(F, H) and H, (£), such that

(4.26) Hp(A)yp= 8
is an invertible n X n matrix. Consider
S 'Ha(A)y .
is n X (n + 1) m matrix is necessarily of the form R(F, G) for some (F, G) € L3 o (R)
d moreover by (4.26)
(7" Hn(A)g)y = Iy

so that F, G can simply be written down from §™ H,(A); as in the proof of lemma 3.4.
The matrix H is now obtained as the matrix consisting of the first p rows of Hy(A),.

After choosing a, this algorithm describes the unique triple (F, G, H) which realizes A
such that moreover R(F,G), = I,.

*4.27 Relation with rational functions. Suppose that #,(4) is of rank n for all sufficiently
large k. Then by theorem 4.2 the sequence A is realizable. Using Laplace transforms (¢f.
1.8 above) we see that this means that the p X m matrix of power series

-

Z A~ isin fact a matrix of rational functions.
i=0

(428) D A = (" - aa 8"~ - a5 20) B = d(9) BGS),
i=0

.here B(s) isa p X m matrix of polynomials in s of degree <n—1.
Inversely if

4.29) D Ag™ = d'(s) ' BYs)

i=0

for a matrix of polynomials B'(s) and a polynomial d'(s)=s"—a/, ;8" "' ~...— a;s —a,
with r = degree (d'(s)) > degree B'(s), then

Alvy=agAi+ aYAi t o v ar Ao,
foralli=0,1,2,.... And this, in turn implies that

rank Hy (A) = rank H,_,(A)
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forall k> r~1, so that A is realizable. It follows that 4 is realizabje iff ZAis""l
represents a rational function which goes to zero ag § —+ oo, -

5 Feedback splits the external description degeneracy

In this section we shall prove the result described in section 1.6. To do this we first discuss
still another local canonical form.

5.1 The Kronecker nice selection of a system. Let (F,G,H) & Lm n,p(IR). We procet.
as follows to obtain a “first™ nice selection x such that (F, G, H)E U,.

Consider the set of column indices k(m, n) in the order (0, 1) <(0,2) <... <(0, m) <
. <. <(d,m<.. -<{n, <. . <{n, m}). For each (i, } we set (i, ])ex‘#Fi&
is insar independent of the F gi- with (i',§') <{i, j). We shall call the subset x of I(n,m)
thus obtained, the Kronecker selection of (F, G, H) and denote it with x(F, G, H). It is
obvious that k has n elements if (F,G, H) € L:'n’p(lﬂ).

5.2 Lemma: The Kronecker selection x defined above is a nice selection.

Proof: Let (i, j} € x and suppose i > 1. Suppose that (i’, j} € x, i’ <i. This means that
there is a relation

F'g = Z
®H<q¢")
Multiplying with F'=1 on the left one obtains

Z b(k'I)FI-i'i-k&
o <d'.p

showing that F'g‘ is linearly dependent on the F*g;, with (s, ") <(i, j). A contradiction,
q.e.d.

b(k, HF*g,

Flg =

5.3 Lemma. LetF, G, H)EL, , L(R) and S € GL,(IR), then
(F,G,H) = x((F, G, H)}).

5.4 Lemma. Let (F,G,H)€L | ((IR) and let L be an m X n matrix. Then
x(F,G,H) = x(F + GL, G, H).

[1

-
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The proof of lemma 5.3 is immediate, because the dependency relations between the
(SES™1)iSg;) = S(F'gy). (i, j) €1(n, m), are precisely the same as those between the
F'gj. (i.j) € ltn,m). As 1o lemma 5.4 we define

Xo(Z) = subspzce of X = 1R" generated by g;,..., 8w

X, (T} = subspace of X = IR™ generated by g;. ..., Bm- FR1+ -+ FBm
(5.5)

Xn (L) = subspzce of X € IR™ generated by gy, ..., Bm»

Fgyy-- FBmo - F 810 oo FORan -

A
lgS(L) ={F+GL,5,H)and let F = F + GL. Then one easily obtains by induction
that

(5‘6:' ‘:Itz(l‘)) = xi(s)l i= Or -0
and that
(5.7 Big = Flg; mod X*1(X),i=0,1,...,n

(where. by definition, X™ (Z) = {0}). Lemma 5.4 is an immediate consequence of (5.7).
{Note that a basis for X () is formed by the vectors F*g, with (k,)) € k(L) and k< i;

the clzsses of the F"g with (k, ) €x(Z), k = i are a basis for the quotient space
X'ENXTHE),i=0, .., n).

If £=(F,G, H)E L‘,; o.p(IR) then x(F, G, H) can be calculated from H, (F, G, H).

Indeed in that case Q F, H) is of rank n. Therefore, because H, (F, G, H) = Q{F, H)R({F, G),
the dependency relations between the columns of H,(F, G, H) and between the columns

of R(F,G) are exactly the same.

Remark: If (F, G, H) € L&.n,p(IR) then also (F +GL,G,H) € L p(IR) as is easily
checked. But if (F,G H)€ L::n o (IR), then (F + GL, G, H) need not also be completely
obsenab]e Though o course this wili be the case for sufficiently small L (because

m o,p(IR) is an open subset of Ly, n,o(IR)).

*5.9 The Kronecker control invariants. The invariant & (F, G, H) depends only on F and
G, 52 that we can alsc write k(F, G). For each j =1, ..., m, let k; be the number of ele-
ments (i, f) in x(F, G) such that 7=j. Let &, (F,G)> ... 2 kn'(F, G), m’ = rank (G), be
Lhe sequence of those k; which are # 0 ordered with respect to size. It follows from
lemeia’s §.3 and 5.4 that the x;(F, G) are invariant for the transformations

(5.12) (F,G) w(F G)*=(SFS,SG)
(5.11) (F,G) - (F +GL,G)

{base change in state space)
(feedback) .



5 Feeaoack splits the external description degeneracy 34h

One easily checks that the x;{F, G) are also invariant under
(5.12) (F,G) » (F,GT), T €GL,(IR) (base change in input space) .

Thus can, e.g., be seen as follows. Let A,(Z) = dimX'(Z) - dimX' ™' (Z) for i= 0, 1, ..., n.
Corsicer an rectangular array of (n + 1) X m boxes with the rows labelled 0, ..., n. Now
Fut 2 cross in the first 4;(Z) boxes of row i fot i=0, ..., n. Then &;(E),j=1,...,m" is
ne number of crosses in column j of the array. Obviously the A,(Z) do not change under
a transformauon of 1ype (5.12), proving that also the «;(F, G) are invariant under 5.12.
The group gencratzd by all these transformations is called the feedback group, Thus the
;(F G} are invariants of the feedback group acting on_ L',':; »(IR). It now turns out that
these are in fact the only invarants. L.¢. if (F,G),(F,G) €L, (IR) and x,(F,G) =
xtF.G),i=1,...,m", then (F,G) can be obtained from (F, G) by means of a series of.
trans’ormations from (5.10)—(5.12). Cf. [11] for a proof, or ¢f. 5.30 below.

The «.,tF, G are also identifiable with Kronecker's minimal column indices of the singu-
ar maunx pencil (zl, - F|G), . [11).

Stli ar.other way to view the x,(F, G) is a follows.

Corsider the transfer matrix T(s) = H(sl, ~ F}™ G of the & and co linear dynamical
system £ ={F, G, H) considered as a p X m matrix valued function of the complex
vanablz 5. Ons can now prove (cf. [14]):

Theorem: There exist matricss N(s) and D(s) of polynomial functions of s such that

th Tts1= N(s)D(s)™, (ii) there exist matrices of polynomials such that X(s)N(s) +
Y¢$)D(3) = i, (idi) N(s) and D(s) are unique up to multiplication on the right by a unit
from the ring of polynomial m X m matrices. Moreover degree (det D(s)) = n = dim(Z).
Now for each s € IC, one defines :

¢z (s) = {(N(s)u, D(s)u) jlu e L™} C ICP* ™,

i s € & such that D(s)™ exists, then also g5 (s) = {(T(s)u, u)| uECLM}CKP* ™ In
any cse O (s) is a p-dimensional subspace of ICP* ™, |n addition one defines ¢pr(=) =
{0, u)IuE L™} CICP* ™, which is entirely natural because ‘li_.m_T(s) = 0. This gives .
continuous map of the Riemann sphere IC U {=} = S? 10 the Grassmann manifold

Gm.p » @ (IC) of m-planes in P+ m space. Let £, = Gy, p 4 o (IC) be the canonical complex
vector bundle whose fibre over z € Gm,p+m(IC) is the m-plane represented by 2. Pulling
back £, along ¢y givesusa holomorphic complex vector bundle £(Z) over 2.

Now holomorphi¢ vectorbundles over the sphere S? have been classified by Grothendieck.
The classification result is: every holomorphic vectorbundle over S? is isomocphic to a
Cirect sum of line bundles and line bundles are classified by their degrees.

It now tuzns out that the numbers classifying £(2), the bundle over S? defined by the
svsterm T, are precisely the —x;(Z),i=1, ..., m, where i(Z) =0 for i > m’ = rank (G).
One also recovers n = dim(Z), if £ € Lf:",f_'l, (IR), as the intersection number of ¢y (S?)

with 3 hyperplane in G, + p(IC). =
These observations are due 1o Clyde Martin and Bob Hermann, cf. [13]. @
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As we have seen the x;(Z) are invariants for the transformations {5.10), (5.1 1),(5.12).
Being defined in terms of F and G alone they are also obviously invariant under base

change in output space: (F, G, H)  (F, G, SH), S €GL,(IR). The K (Z) are, however,
definitely not a full set of invariants for the group ¢ acting on L  (IR), where « is

Lhe group generated by base changes in state pace, input space and output space and the
feedback transformations.

5.13 The canonical input base change matrix T(Z). Let £ = (F,G,Hy€Ly , (IR) and
let k = k() be the Kronecker nice selection of =, Let (i, =s(x,j)bea suc'ce'ssor index
.of &. By the definition of x we have a unique expression of the form
(514) Fig = .1, 3 )F'g + Z a(k, HF*g,
(i.i)&x k.ne«
i< k<i

{where the a(k, /) in the second sum also depend on i and j of course). Now define recur-
sively

(519 =g~ 2 4G &= Qb

I'<j
and

(5.16) T(Z) = (b)),

wherenb,-k =1 lf]" k, b,‘k=—ak(j), lfj <k, and bjk =0 lf] >k
Then G = GT(Z), and T(Z%) is an upper triangular matrix of determinant 1.

517 Lemma: Let Z€(F,G,H)€L] (), then
T(Z) = T(2), TEW) = T(Z)
for all S € GL, (IR) and all feedback matrices L € JR™ X o

Froof. Obvious. (Use (5.7).

5.18 Example: Let m=5,n=9, and let (F, G, H)€ LgTy ,(IR) have Kronecker selection
x(F, G, H) equal 10 o

Lo

uharae tia haca oL tus 1.1 s -
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et

Then T(Z) is an upper triangular matrix of the form

1 0 = Q0 »
01 = »
=(oo 1 0 0O
00 0 1 »
o0 0 0 1

Note that T(E)™! is of precisely the same form.
This 1s a gencral phenomon. indeed by (5.14) and (5.15) (cf. also example {5.18)) 'g"j is:‘}
the form .

(519) =g+ . bgi T(E)=by).
NP
Su that bj; = 0 unless i = j (and then by=1)ori<jand k> kK
Let 1,,..., tm be the columns of T(T) and ey, ..., em the standard basis for IR™. Thea

(5.20) ty=¢+ Z bue; .
"y >y
i<}
Using induction with respect to an ordening of the {1, ..., m} satisfying i <j=*k; > k it
readily follows that

Geye 3 bin.
i<}
K>y
which proves that T(Z)™" also has zero entries at all spots (i, j) withi>j or (i <jand
Kk, % kj)- '

§21 The block companion canonical form. Let k be a nice selection. We are going to
construct a canonical form on the subspace W, of all Z€ L:::‘_’p (IR) with x(Z)=«x. We
shall do this only in full detail for the case that « is the nice selection of example 5.18.
This special case is, however, | general enough to see that this construction works in genenal.
Let (F, G, H} € W, and let G = GT(Z). Now consider the system (F, G, H) which is also
in W, as is easily checked. This system has the property that for each successor index
s(x,7) = (i, j) of x with i # 0 we have

(527) Py= 2 2DFY
k<i
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1i.e. T(F, G, H) = 1,). Indeed, using (5.14)

Phi=Flg- > 4()Fg= Y akDFg= Y GNP
i'<j k.NExX &.DEx
- K<i k<i

2ecause, clearly, X;(F,G,H) = Xi(F,é, Hyforalli=0,1,2,...,n, cf.(5.5), and cf. also
he remarks just below (5.7).

N.ow define a new basis for IR" as follows. Let k = {(0,j,), --.. Gi. 1) - (0, e}y ooey (i §io)-
Toen ke =ig+1,t=1,...,r,and k, + ... + k.= n. For the successor indices
j(«, 1) = (ke ju), t =1, ..., 1, write

[5.23) FNeg = - b, (k, HFR, .
x, e«
k < Ky

Setting b, (k, 1) = 0 for al! (k, I) € x we now define a new basis for IR® by

m t
Q=F1 4 Y b - LDFY T R Y b (LD

= i=1
m t

2= F %+ Y bk - LDEN T e Y b2
. . i=1 i=1

) A
=8
(5.24) '

m
e 1 =F2 7+ 3 bala - L)FTIge 4 3 b, (LD G
. j=1 i=

A
ekl + k3= Sh

Cry ... 4Kk, =§!|- .

Let X, C IR" be the space spanned by the vectors §; g i = G
Biyr - g, 8. Xo=Xo(F,G,H) =
X5 (Z). Then we see from (5.23) that for the vectors tﬂleﬁm:dl rby (5.24) above we have

Fe, €Xo, Fle) = ey modXe for i =k, k, - 1,...,2
Fek'-..l ?Xo, F(e,)?ei_l mdeO for i= k| +k1,...,k| +2

Fey, . 4k, . EXo, Fled Sei_ymodX, fori=ky + ...+ k... kot .tk 42
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A 0 ¢ 0 0 o
it follows that which respect to the basis e,, ..., &5, F and G are of the form 1 0 ¢ ¢ o+
3 0 0 0 0 o
. .. 0
010...0,0 0 0 i\ 00 0 0 0
RO AR E AN c=[ 00000
0 1 0 .- 0 0 . 0 0 1 * [ ] "
N . . . . * * . ) 0 0 0 0 o
0 0 0 1 »
+ 01010...0 6 ..- 0
° S DL P : : 0 0 0 0 1
: : ) "0 0 .. 0 x is does not yet define a canonical form on W,. True, for every TEW, there exists an
F= 0 : 0 2 . : 0 1 Y e . J SE€GL,(IR) such that (F.G)5 takes the form (5.27). But for two pairs {(F, G) #(F, g),
. h botk of the form (5.27), there may very well exists an S = Iy such that (F, G) = (F, G).
" . : In fact. it is now not difficult 10 check that if S is an n X n matrix of the form
5.25 1 05350 0]0 00
429 0 . 0 0 0 0 o ... 0 13 54
. [ . L) . . * . . 0 l 0 S.g s;‘ 0 0 0 0
. N A oo . ‘l’ ks 0 01 0 0 o]0 oo
e o Y% . ven e 0 0/0 1 0 o0/o0o ooy
§S=L 0 0]0 0 1 oo 0|0
€ = (81, 82, .- ), with © 0|lo o 0o 1o oo
(526) By = exp By = Cuperp o By =yt rn T 0n s 0 Olsnso0 01 0o
8=0forj€(1,...,mI\ {1, ..o je} 0 0]0 spnsy 0/l0 1 (0
In particular in the case that « is the nice selection of example 5.18 we see ~hat with s 0 503 Soe Ses O N 1

Tespect 10 the basis ¢, ..., e, defined by 5.24 the matrices F and G take the form (f.

£.18, the inverse of T(Z) is of the same form as T(Z)). O en 8G =G and SFS™ is of the same general formas F, if F and G are of the form

-27). Choosing $,3, 3,4, 313, 374, S91, S93, S94, Sg5 and sg, judiciously we see that for every

0 1 0O 0 0 0 ¢ 0 0 L =(F,G, HYEW,, there exists an S € GLg(IR) such that SFS™ and SG take the forms
4 2; | ay A ag ag | ay ay | a3, 0 1]0 0 o0 0 0 010
6 0 {0 1 o0 0|0 o0 o0 a; a3 a, 0 0]a; aa
0 0 0 0 I 0 0 0 0 0 0|0 1 0 o]0 0}0
F<l ¢ o0lo 0 o 110 oo 0 0o 01 oflo ofo
by by | by ba bg bg | by by | by SFS'=1 0 00 0 0 1{0 oo
0 0 0 O 0 o 0 1 0 by by{ by b, by bs{ b, bs| by
€ €3 | €3 €4 €5 C | € c3 | o 0 00 0 o0 0lo0 ) 0
d da | dy de ds dg | dy dg | dy @ ¢ 1 |C ¢ 0 0)¢, o
(5.28) PY R ——
(5.27)
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0O 0 0 0 0
1 0 ca 0 ¢
o0 0 0 O
o0 0 0 O
sc=f{ 0 0 0 0 O
0 1 c33 € Cus
0o 00 0 0
000 1 cu
0 0 0 .
where 1 0 ¢y O cis
0 1 ¢33 Cae C2s
TEZ)'={o 01 0 0O
0 0 0 1 «cu
o090 01

The general pattern should be clear: the off-diagonal blocks have zero’s 'm.the last row iff
thete are more columns than rows, in fact in that case the last row ends with (number of
columns) — (number of rows) zero’s; the structure of the diagonal blocks is cl'ear.' .

Now suppose that (F', G',H) and (F",G", H" are two systems such that (F, G') 8’
(", G") for some S and such that (F',G') and (F",G"") are both of the forms (5.28).
One checks easily that then necessarily S = 1,. We have shown

5.29 Proposition: Let & be the nice selection of example 5.18. Then for every

z=(F, G':ol-l) €W, there is precisely one § € GLy (IR) such that SFS™ and 5G have ¢
fcrms (5.28). -

This means in particular (in view of the results of section 4 above) that if

TEW,N L'ff",:'p(lﬂ), then the real numbers a;, ..., 24,87, .- 39, D1, .- D9, €1y e oo
Crr . Cody Gu dy, dy can be calculated from f(E) (or Ag, .-+ Aza—1)- Of course these
results hold quite generally for all nice selections k. We note that in general W, is notan
open subspace of L  ,(IR). Infact W, /GL,(IR) is alinear subspace of U, I(?L,,(IR] =
IR™"* P ~ __ In case x is the nice selection of example 5.18 the codimension of .
W, /GL, (IR) in Uy/GLy (IR) is 12.(This number can immediately be r.?ad of f from x: @y
linearly dependent on g, gz causes 9 -2 =7 linear rest.rictions; F‘gs' hnearly dc?endenl
on gy, 82, B4» B » FBs. F82, Fia causes 9~ 7 = 2 extra linear restrictions; F 2 ‘lme.nrlyd
dependent on gy, B, B4, Bs: F&:s Fga, Fga causes 9 7= % more linear restrictions; am
finally F?g4 dependent on g1, 82,84, 8s: FB1, Fga, Fga, Fg; causes 9 —8=1 more lin
restriction; 7+2+2+1=12). 303
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*530. Using the results above, it is now easy to prove that the x, (F,G), ..., Km (F,G)

are the only invanants of the ieedback group acting on L;:'n(lﬂj. Indeed, we have already
shewn that the x;{F,G), i=1,..., m’ are invariants.

“nversely. using first of all a transformation of type (5.12) we can see to it that (F, GT) has
< Zka>...Z km.and thea x, (F,G) =k;, ...k m(F,G) =K, ki =0 for i > m'. Then,
ssing transformations of type (5.10} and (5.12), we can change (F,GT) into a pair (F, G')
with F' and G’ of the type (5.25).{5.26). A final transformation of type (5.11) then

hanges F' into a matrix of type {5.25) with all stars equal to zero. The fina pair (F",G")
-4us obtained depends only on the numbers &, (F, G), ...,k u'(F,G).

5.31 Feedback breaks all symmetry. We are now in a position to prove the result menti-

onad in 1.6 that feedback splits the degenerate external description of systems. We shall
certainly have proved this i we have proved.

§.32 Theorem: Let L €L "." (IR). Then I is completely determined by the input-out-
put maps f{Z(L)) for small L. More precisely let T =(F,G, H) and A;(L)=H(F + GL)IG
for i=0, 1,..., 2n = 1. Then the entries of A;(L) are differentiable functions of L, and
F,G and H can be calculated from A,, ..., Az,~ and the numbers

aA(L)

3 |Leo

i=0,...2n-1,j=1,...mk=1,..,n.

Proof: Let k = x(T). Recall that k can be calculated from A,, ..., Azn-; (because
co and cr). Now assume that x is the nice selection of example 5.18. (This is sufficiently
general, | hope, to make it clear that the theorem holds in general). Let Z'= (F',G’, H') be
the block companion canonical form of (F, G, H) (Z' is obtained as follows: first calcu-
late any realization ' = (F",G"",H") of Ao, ..., Azn-, €.8. by means of the algorithm
of 4.25 above and then put £"' in block companion canonical form as in 5.21 above).
Then

. Y= ZS-‘

fo: a certain S € GLa (IR), and it remains to caiculate S. With this aim in mind we examine
Z(L) = (F + GL, G, H) and its block companion canonical form. Consider

—I N
TP =(S"'FS+S7GLS,57G, HS)
= (F'+ G'LS,G" H).
Now assume that L is of the form
0...0

Li. . . by
(533)L={o0.. . 0

0.. .0
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Then if F™ is of the form (5.28) we see that if S = (siy)

6 110 0 6 0o 0|60
3 2; | a3 a 0| a;, a5 | a
0 o0jo 1 0 0|0 0o
0 0j0o o0 1 oo oo
F+G's=[ 0o o |0 0o 0o 1/0 o |0
by b3 | by bi by by | by by | b
0 0|0 0o o0 oo 1 |o
Ch C3 | €3 co O O | cy 5 | co . .
d, 0 /dy 0 0 ¢4, 04
9

with b =bi(L) =by + > b;s;i, i=1,....9. Thus the block companion canonical form of

=t

S(LY is always (L) ' i L is of the form (5.33). Note that the number of the row which
bas nonzero entries is determined by x(Z); it is the smallest i for which k; i maximal;
note also that if j is such that k; is maximal then the j-th vector of G' is always the

{k) * ... + kh standard basis vector (cf. just below (5.19).

5010 find S we proceed as follows. Calculate the block companion canonical forms of
I(L) from Ag(L}. ..., Aza—y (L) for small L. (This can be done because for small enough
L, Z{(L) is still co). This gives us in particular the functions b;(L). Then

ab;(L)
L TV
This determines S and givesus I as T = (2')5, g.c.d.
6 Description of L7 (IR)/GL, (IR). Invariants L

6.1 Local structure of LT3 * (IR). Let a C 1(n, m) be a nice selection. We recail that
Uy ={(F.G,H)e Lm,n.p(IR)| detR(F, G), # 0}, that V, = ((F,G,H) € La,n,p(R)I
R(F,G), =1,} and that U,/GL,(IR) ~ Vo S IR *®P cf section 3.

Foreach x ER™* ™ let (F,, (x), G, (x), H, (x)) € V4 be the unique system correspon-
dirg 1o x according to the isomorphism of 3.7 above. .

6.2 The quotient manifold M5, | (IR)= L':.n'p(lFl)IGLn(lH). Now that we know what
Us/GLa (IR) looks like it is not difficult to describe L:':l:.n.p( R)/GL,, {IR). R=:ail that the

union of the U, for a nice covers Lf,:'n'p(iﬁ)). We only need 1o figure out how the

Va = iR™"* ™ ghould be glued together. This is not particularly difficult bezause if
(F,G,H)% = (F,G",H') for some S and (F, G, H) € U, then S = R(F’, G')J’.(F,G);'. It
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follows that th ti r =1
follows. at the quotient space M::n,l'l,p“R) = L, n.p RY/GL, (1R) can be constructed as

For each nice selection a let Vo=R™*op 0 for each second nice selection J let

Vog = {xEV_|der R(Fa(x}.Gq(x))s 0} .
We define

¢d . VM - \7,,,
by the formula

.(6-3) %aal(x) = y @ R(F, (x), G, (x));! R(F (x), Ga(x)) = R(Fg(y), Gg()) .

Let My | (IR) be the to
of the isomorphisms Pag-

Th Mcr =1 ¢ . v
I aegnc Vi i/np,(r lil)’“ Lm'(Thp(IH)/GL,,(IR). .lf we denote also with V, the isomorphic
- a 1f My, 1, UR) then the quotient map : L' (IR}~ M (IR) can e
described as follows. For each T = (F.G.H)eL¥ ). ch e seie -
he m

‘ £ (IR), choose a nice selectio h
: each np ion a suc
that Z€ U, Then (L) =x& Vg C anrln.p(lﬂ) where x is such that

¥ = (Fa (%), Go(x), H, (x)) with § = R(F,G);'.

pological space obtained by glueing together the v, by means

6.4 T_ha?rem: M::_n_p(IH) is a differ
1s a principal GL, (IR) fibre bundle.
For a proof, cf, [s].

entiable manifold and  : L | p(RY=> M (IR)
LRad ] . lp

6.5 The quotient manifold Memp(R) = L2 (RYGL, (R). Let

Py - co,cr . . m.n,?
m.n.p (IR} = w(L 20T (1R)). Thon Mon OR) is an open submanifold of My, . o (R).

It can be descri i i % v
€ described as follows. For each nice selection a let V5° = {x €V, {F,(x), G,(x),

a(x)) is completely observable}, and for each second nj i
A o) and fo \ n mce. selection f Jet
Ve ned,,by gﬁ:f'. T?ene:&;f(::;,, )v <o V00 and M5 (IR) is the differentiable manifold
ng together the V" by means of the isomorphisms $ag: Vog = Vo2,

6.6 Mrn'ao (IR) as 2 submanifold of R, 14, (F,G,HeL™

cr
iR). We i
to (F, G, H) the sequence of 2n P Xm matrices (Ao, ..., A,n_,)ETﬁg'('ml? whe::socme

A= Hf iG,i=0,...,2n—1. The results of section 4 above {realizatjon theory) prove
that this map is injectzive and prove that its image consists of those elements d
(Ac?:', o A20-1) ER*™P guch that rank Hn-1(A) = rank H, (A) = n. We thus oblain
M nin,pR) asa (nonsingular algebraic) smooth submanifold of IRI"™P,

6.7 Invarants By definition a smooth invarj i
riants. : invariant for GL, (1R) acting on L IR) i
sinooth function f: U - IR, defined on an open dense suheet 11— 'g : :':5:"3.(,-, )“1s‘a

&ren -~
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Now L2:" (IR) is open and dense in Lm,q,p(IR). 1t now follows from 6.6 that every
;vanant can be written as a smooth function of the entries of the invariant matrix valued

functions Ag, ..., A2p—) 0N L n,p(IR).

7 On the {non} existence of canonical forms

7.1 Canonical forms: Let L' be a GL, (IR)-invariant subspace of L. n,p(IR). A canonical
form for GLy(IR) acting on L' is a mapping ¢: L'~ L' such that the following three pro-

perties hold .
2 (@3 =c(Z) forall ZEL, S EGLL(R)

(7.3) forall £ € L' there isan S € GL, (IR) such that ¢(Z) = .

17.4) ¢(Z) = ¢(ZT'} =3S € GLa(IR) such that £'= s

{Note that (7.4) is implied by (7.3)).

Thus 2 canonical form selects precisely one element out of each orbit of GL,(IR) acting
on L. We speak of a continuous canonical form if ¢ is continuous.

O cousse, there exist canonical forms on, say L5 . (IR), e.g. the following one,

R B | B LS5 S (IR) which is defined as follows: let € L0 (IR), calculate
x| T) and let ¢,(Z) be the block companion canonical form of I asdescribed in section
3.21 above.

This canonical form is not continuous, however (, though still quite useful, as we saw in
section 5.31). As we argued in 1.15 above, for some purposes it would be desirable to

have a continuous canonical form (cf. also [2]). In this connection let us also remark that

ths Jordan canonical form for square matrices under similarity transformations (M~ SMS™)
is also not continuous, and this causes a number of unpleasant pumerical difficulties, cf.

[16). °

*2 5 Continuous canonical forms and sections. Let L' be a GL, (IR)-invariant subspace
of Ly . p(IR). Let M=m(l)C M?.,',.,p(‘ﬂ) be the image of L' under the projection
tef. 6.2 above). Now let ¢: L' L' be a continuous canonical form on L'. Then c(Z5) =
2{Z) for all €L’ so that ¢ factorizes through M’ to define a continuous map 5: ML
such that ¢ = s o 7. Because of (7.3) we have # o ¢ = 7 50 that x=wo so 7. Because 1 is
Zutjective it follows that @ o s = id, so that s is a continuous section of the (principal
Gi,(IR)) fbre bundle m: L'~ M’ Inversely let s: M' - L' be a continuous section of =.

Then so n: L'~ L' is a continuous canonical form on L.

S

7.6 (Non) existence of global canonical forms. In this section we shall prove theorem
1.17 which says that there exists a continuous canonical form on all of L:'_ I,_F,(IR) if and
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First suppose that m = 1. Then there 1s only one nice selection in 1(n, m), viz. ((0, 1),

(1. 1), ....(n =1, 1)). We have already seen that there exists a continuous canonical form
¢y - Ug = U, for all nice selections a. (cf. 3.10). This proves the theorem for m=1. The
case p=1 is treated similarly (cf. 3.11). It remains to prove that there is no continuous
canonica! form on LY'5 (IR) if m > 2 and p3 2. To do this we construct two families
o linear dynamucal systems as follows foralla€ IR, b € IR (We assume n > 2;if n=1 the.
ezamples must be modified somewhat).

s 1 o ... 0 1 b| O 0
' 1 10 ... O 1 0 0
® cw-; Gib) = 77
S : B '
2 1 2 1

where B is some (constant) (n — 2) X (m — 2} matrix with coefficients in IR

1 0 ... 0
o 2 ° :
Fi(a)=} - . "o = F, (b)
) 0 n
(@) 1 ]2 ... 2 k) 1 ]2 ... 2
ya@ 111 ... x0) 1]1 1
H@={ "5 o H®)= |7 ¢
L€ o] c
0 0 0 0
o

where C is some (constant real (p — 2) X (n — 2) matrix. Here the continuous functions
¥1{a), y2 (a), x; (b), xz (b) arc e.g. y; (a) = a for la] €1,y,(a)=a"" for |a{ > 1,

ya(a) = exp(~=a%), x, (b} =1 for {b] <1,x,(b)=b? for {b] >1,x,(b) =b"exp(-b7?)
for b #0, x; (0) = 0. The precise form of these functions is not important. What is impor-
tar.t is that they are continuous, that x, (b) =b™ 'y, (b™), x; (b} =b* y2 (b™") for all

t # 0 and that y; {(a) # 0 for ail a and x, (b)# 0 forail b.

Forall b # 0 let T(b) be the matrix

(7.7)
T(b) =

b 0 ... 0
01
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Let T,(a) = {F,(a), G, (a),H; (a)}, Z.(b) = (F, (b}, Gz (b), H; (b)). Then one easily chzcks
that

(7.8) ab=1=Z,(a)7® = z,(b).
Note also that I, (a), Z; (b) £ L"" (1R} for all a, b € IR in fact

m,n,p
9 T;@€Uie=(0,2,(.2),...,(n-1,2) forallae R
(1.10) Z;(b) € Us, 8= ((0, 1).(1,1),...,(n~1,1)) forall b E R
which proves the complete reachability. The complete observability is seen similarly.

: is a conti , et (R). Let ¢(Z, (@) =
Ncw suppose that ¢ is a continuous canonical form on Lonp (R)
(F,(a).G, (a), H, (a)), c(Z;(5)) = (F3 (b), G2 (b), H, (b)). Let S(a) be such that ¢
STy (a)p =, (a5 and iet S(b) be such that c(Z,(b)) = £, (b ®,
li follows trom (7.9) and (7.10) that
S(a) = R(F, (a), G, (a)), R(F, (), G, (a));}
S(b) = R(F,(b).G; (b)) R(F1 (), G2 (b))5" .
Consequently S(a) and S{b) are (unique and are) continuous functions of a and b.

Now take a=b=1. Then ab=1 and T(b) =1, so that (c£(7.7),(7.8) and (7.11))
S(1) = §(1). It follows fram this and the continuity of S(a) and S(b) that we must have

(7.12) sign{detS(a)) = sign(detS(b)) forall a,b €ER .
Now take a=b =~ 1. Then ab = 1 and we have, using (7.8),
5,-18ENTED: (o Y TEMSED
= (- 10V = (2, (- 1))
(Z,(-1) = 2, (- 1)1,
It follows that S(- 1) = (- 1)T(~ 1), and hence by (7.7), that 9
det (S(- 1)) = - det (5(- 1)) '

which contradicts (7.12). This proves that there does not exists a continuous canonical
formon L' 2" (1R) if m> 2 and p>2.
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*7.13 Acknowledgement and remarks. By choosing the matrices B and C in G, (a),

G: (b). H, (a), H; (b} judiciously we can also ensure that rank(G, (@) =m=rank G, {b)
if m<n and rank K, (a) = p = rank H, (b) if p <n. o '
As we have seen in 7.5 above there exists a continuous canonical foeromc?n Lo np (.IR) if
and orly if the prinicpal GLy, (1R) fibre bundle 7: L * (IR} = Ai 2"+ (13) admits a .
section. This, in turn is the case if and only if this bundle is trivial. The example on whicl
the proof in 7.6 above is based is precisely the same example we used in [5] Lo prove that
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the fibre bundle 7 15 in fact nontrivial if P2 2and m2 2, and from this point of view
the example appears somewhat less “ad hoc™ than in the present setting. The idea of
using the example to prove nonexistence as done above is due to R. E. Kalman.

8 On the geometry of Mj\"",f"p {IR). Holes and (partial) compactifications

As we have seen in the introduction (cf. 1.19) the differentiable manifold MZ*" (IR} is
full of holes, a situation which is undesirable in cenain situations. In this section we piove

theorems 1.22 and 1.23 but. for the sake of simplicity, only in the case m = landp=11)

8.1 Anaddendum to realization theory. Let T(s) = d(s)™! b(s) be a rational function, with
degree d(s)=n > degree b(s). Then we know by 4.27 that there is 2 one input, one output

system I with transfer function Ty (s)- We claim that we can see to it that dim (Z)<n.
Indeed if

Te(s) =208 +2,8 2 42,53+,
then, if d(s)=s" ~ dn_,s'f" = d,s - d,, we have
dj4 0= d.o!i + dl.ifl + ...t dn-l'ii-n—l

forall i > 0. It follows that if A = (30, 2y, 23, ...), then rank Hi(A) = 1ank H, _, (A) for
all r>n-1. But H,,_, (A) is an n X n matrix and hence rank H,(A) < n for all s, which
by section 4 means that there is a realization of A (or T(s)) of dimension < n.

It follows that a cr and co system I of dimension n has a transfer function Tg(s) =
d(s) ™ b(s) with degree (d(s)) = n and no common factors in d(s) and b(s), and inversely
if T(s)=d(s)™"b(s), degree b(s) <n = degree (d(s)). and b(s) and d(s) have no common
factors, then all n-dimensional realizations of T(s) are co and cr.

.lndeed if d(s) and b(s) have a common factor, then Tx (s} = d(s) b'(s) with degree

d'(s)) <n -1 and it follows as above that rank H.(A) <n -1 so that £ is not cr and co.
Inversely if Z is not cr and co there is 2 &' of dimension <n - | which also realizes A s0
that T(s)=Tg{s) = h'(sl - F Y 'g = det(sl ~ F)"B(s) = d'(s) B(s) with degree
(d'(E)<n-1.

*8.2. There is a more input, more output version of 8.1. But it is not perhaps the most
obvious possibility. E.g. the lowest dimensional realization of s™(} 1) has dimension 2.
The right generalization is: Let T(s} = D{s) " N(s), where D(s) and N{s) are as in the theo-

fem menticned in section 5.9. Then there isa co and cr realization of T(s) of dunension

.degree (det (D(s)).

*

1} Added ir proof. For the analogous results in the multivariable case and a more careful, easier and
more detailed treatment ¢f M. Hazewinke!, “Famihes of systems: degencration phenomena™,
Report 1918. Econcmetrie Inst., Erasmus Univ. Rotrerdam.
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n—1 a .
8.3 Theorem: Let D=2, % 2, ;‘:— +...t an_,iﬁ. 3; € IR be a differential operator of Hence
. . . R m )
order < n - 1. Then there exists a family of systems Eh< 11"?“‘: (IR) such that the h.,e" R 8 = }: xz™ hay (- n)ie ¢-n

f(=,) converge to D in the sense of definition 1.20.

i=1
To prove this theorem we need to do ome exercises concerning differentiation, deter- e (5.7
munants and partia! integration. They are _ mdj using (8.7),
) t
(8.4) Let k€2, k> —1 and let By be the n X n matrix with (i, j)-th entry equal to the c-nF moo m+i . ey i1 vivj
binorual coefficient (3 3°%). Then det(Bax)=1. : j‘h,e‘ NFegu(r)dr= izl (Ghp , }1[ EnaneEy ) ="
! = =34
t ) : ] :
d'ult : G-i- -
(8.5) Let t®(1) = "?(‘) . Then jz“e"“"’u(r)dr = ¢ @ w1+ 0z™)
! m-1
o i . m .yl
- .\ m-i+1d m+i-I-1\ (m-1-n oz
_ a1 _ yn=l_(n—1) -1 } =2, h z xi( . )“ 1+0(z")
=2 Yu(t)+ ...+ (- D"y (t) + 0(z™") . = ('Z::‘ i

i supp(w) < (0, ). whese 0 is the mem: symbol. . Now, by (8:4) we know that det ((m*ii"" l) u) =, 5o that we can choose Xy, .-y Xm
= Am (1) f’_?ﬁ)_ (e = . i in such a way that
(8.6) Let o(7) = (t—7)"u(r), ¢'""(r) = i Then ¢’(1) =0 for i<m and ,
‘ ]
¢ = D™iGE-1) .. -m DM i > m. ; j hye® ?F2gu(r) d7 = 8 - 0™ (D) + OC™)
H
And finally, combining (8.5) and (8.6), ; D

where an, _ is any pregiven real pumber.

! n
—rt=T) N _ W = (- 1}™ N -t n—ig—l (I—1-~-m) -1y .
@) [ et = 0t B COETEUETRO POy foows that tim (2 =am 1 S

° Ism+l
8.8 Proof of theorem B.3: We consider the following family of n dimensional systems Let £,() = (F; (i), g: (i), (), i =0,..., n =1 be systems constructed as above with limi-
(with one output and one input), ting input/output operator equal to 3; i;.—. Now consider the n?dimensional systems ﬁ,
0 -z z 0 ... @ ' . delined by _
: I [F.(0) 0 0
=10]. FK= v e ,.'- 0 .h'=(0..__.0.xm'_”'xl) +{0) - ( .
z- : : [ ) Z ? * T * : ” Bt(-O)
0 -.. 0 4 %lz . . R ) . 0 ’8I= : iﬁt=(hl(0)|°"nhl(n-l))'
. . o ... 0 F,(n-1) g:(n-1)
where the X,, ..., Xm, M < n, are some still to be determined real numbers. One calculates
2z (sz)* ! Then clearly ;h;!n_ f (i‘,_) = D. Let T(l") (s) be the transfer function of Z,(i). Then for cer-
I = 5 (n— 1) ' tain polynomials B(:') (s) we have
s o 1 IR s,:z, - (89) T (5) = d,(s)™ BY (5), with d,(s) independent of i
. I 2 @ The transfer function of £, is clearly equal to
1 82
0 . e 0 |

n-~-1 n—1
@10 Tu0= S TV = 4,67 B,(s), B,(s) = Y B(s)
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By 8.1 it follows from (8.10) that T,(s) can also be realized by an n-dimensional system,
<!.Then also lim f(Z;) = D. Finally we can change I, slightly to I, for all z to find

- T - o
a family (£,); C L% (IR) such that Il_h.r!. f(Z,) = D. This proves the theorem.

Lin

8.11 Corollary: Let I’ be a system of dimension i and let D be a differential c:secr'ator
of order n - i — 1 (where order (0) = ~1). Then there exists a family (Z,), C Ly a1 (R)
such that lim f(Z)=D+ £(Z")

Froof: Let Z; =(Fy, gy, hy) be a family in Ly ; (IR) such that lim £ (Z)=D. a
Let ' =(F' g, h'). Let i‘., be the n-dimensional system defined by the triple of matri

hal F;. 0 B;l [Ty
= - . = (h], 1),
FI (0 F:).s! ('y)bh ( )

Then lim f (f‘.,) =D+ f(Z'). New perturb :[., slightly for each z to Z,, to find 3 comple-

tely reachiabie and completely observable family (Z,), such that Jlim £(Z)=D +£(Z).

8.12 Theorem: Let (Z,); €L, 4, (IR) be a family of systems which converges in input-
output behaviour in the sense of definition 1.20. Then there exist a systen} z and'a
differential operator D such that dim(Z') + ord (D) <n—1 and Jim £(ZD)=1(Z)+D

Proof: Consider the relation

Ya(t) = £f(ZJu(t)
for smooth input functions u(1). Let §(s) and §,(s) be the Laplace transforms of u(t)
and y,(t). Then we have
(0 Then e ®
Ya(sy = Ty(s)u(s),

where T, (s) is the transferfunction of Z;. Because the f(T,) converge as z+ = (in the
sense of definition 1.20), and because the Laplace transform is continuous, it follows that
there is a rational function T(s) = d{8)”' b(s) with degree d(s) <n, degreeb(s) Sn—1
such that

lim T,(s) = T(s)
2-r o
pointwise in s for all but finitely many s. Write

n~i=1 + l.’:.@).

T)=egteys+. .. 4eq 8

@
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with degree d'(s) = i, degree (b'(s)) <i. Let ' bea system of dimension <j with transfer
function equal to d'(s)™ b'(s) 3{1(! let D be the differential operator
N
Coter St tea i, gn—i-1 The Laplace transform of the relation
y(1) = f(Z)u(t) + Du(t)
for smooth input functions u(t), is

¥(s) = T(s)l(s) .

.Because the Laplace transform is injective (on smooth functions) it follows that

im f(Z,)=f(Z)+D.
g+ m-

*8.13 Remarks on compactification, desingularization. symmetry breaking, etc. There

are more iput, more output versions of theorems 8.3 and 8.12. To prove them it is

more convenient 1o use another technique whick is based on a continuity property of

the inverse Laplace transform for certain sequences of functions. (The inverse Laplace

transiom is certainly not continuous in general; also it is perfectly possible to have a

sequence of systems Z, such that their transfer functions T, (s) converge for z + oo, but

such that the £(Z,) do not converge, e.g. T, (s)=z(z-35)™).

Let Z bea co and cr system of dimension n with one input and one output. Let T(s)
Ba-is®'+ . +bistby  b(s)

Ptda " T tdsrd, d(8)

be the transfer function of I. Assign to T(s) the point
(bo s bn-—-l 1do Teeet dl\—l . ])e Pz“(lﬂ),

T(s) =

.leal projective space of dimension 2n. This defines an embedding of M " {IR) into

t,nl
Pi“(cllf_i). The image is obviously dense so that P?® (IR) is a smooth compactification of
M (R).

Let ﬁl_,,l 1 (IR) be the subspace of P?"(iR) consisting of those points
LR S 233 TR y,,)Ele“(lFi) for which at least one y;,i=0, ..sy 1 i3 diffe.
rent from zero. For these points

Xot X8+ ... 4+ xq_,8"?
Yotyist ... +y,s"

has meaning and this rational function is then the transfer function of a generalized linear
dynamical system:

x=Fx +Gu

8.14
CUENY
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where D is a differential operator. (The points in PR\ My 1 co‘rrespond to
~s-sterns” which tznd 1o give infinite outputs for finite inputs, they are interpretable, hcwe-
ver. 1 terms of correspondences y(t) ~u(t)).

Furtner let B:ll.n.l, consist of those (Xg : ... Xp—1 " Yo" -+ ya) for which if ;=0 ff}r

., >1. thenalsox; . =0fori2r For these points the D in (8.14) is zero and. th%se poirts
thus vield transfer functons of systems of dimension < n. (But many points in My, 01

Lave the same transfer functions). Assigning 1o 2 point in My ; the first 2n + 1 coelfi-

cients of
n—-1
xgt X8t . ¥ Xg¥
, o
Yot Y15+ ... ¥ ¥al
we find the following situation

= nos-l + al'-! + 833-3 +..

co,ct "
Mina € Minn

A
lu N

RIntE = m!ln 1

Yere M is an embedding and its image is the subspace of all sequences A =(2g, -+os 31n)
such that rank M, —y (A) = rank H,, (A) = n. The image of H is the space of all sequences
A such that rank H,(A)=rank H;_ (A) = i for some i & n. This is a singular submanifold
of IR3"*Y and H is a resolution of singularities. _

The points of (ﬁ Lot \ Mf?,‘f:) correspond to transfer functions of lower d:unensionnl
w0 and cr systems. If a sequence x, € Mj ;' converges to such a poiat, the mtefnal sym-
metry group GLy, (IR) of x, suddenly contracts to some GLy (IR) C GL,(R) with
m<n.
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ABSTRACT.

This tutorial and expository paper considers linear dynamical
systems ¥ = Fx + Gu, y = Hx, or, x(t+1) = Fx(t) + Cu(t), y(t) = Hx(r);
more precisely it is really concerned with families of such, i.e.,
roughly speaking, with systems like the above where now the matrices
M. HAZEW'NKEL F,G,H depend on some extra parameters 0. After discussing some
motivation for studying families (delay systems, systems over rings,
n-d systems, perturbed systems, identification, parameter uncertainty)
we discuss the classifying of families (fine moduli spaces). This is
followed by two straightforuard applications: realization with parameters
and the monexistence of global continuous canonical forms. More applicaticns,
(/{:‘: au'rvo\,ﬂ especially to feedback will be discussed in Chris Byrnes' talks at this
- - conference and similar problems as in these talks for networks will be
. discussed by Tyrone Duncan. The ¢lassifying fine modul{ space cannot
readily be extended and the concluding sections are devoted to this

observation and a few more related results,
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REPORT 7914/M 2. Why study families of systems
3. The classification of families. Or: fine moduli spaces
4, The classifying "space" H::“’p is defined over Z and ¢lussi<i.c over u. .

5. Nonexiastence of global continueus canonical forms
6. Realization with parameters and realization by means of delav-
differential system.
ERASMUS UNIVERSITY ROTTERDAM, P.O. BOX 1738, ROTTERDAM, THE NETHERLANDS 7. The cr subsystem for time varying systems and families of systems and
related "decompositions”,

8. Concluding remarks on familiea of systems as opposed to single systems.



1. INTRODUCTION.

The basic object of study in these lectures (as in many others at this
conferrncs) is a constant linear dynamical system, that is a syscem of

equat inns

(1.1) x = Fx + Gu x(t+1) = Fx{t) + Gu(r)
y = Hx ) y(t) = Hx(t)
(a): continuous time (b): discrete time

. n .
with x € K" = space space, u € k™ = input or control space, ¥ € k" = ourput-
space, and F,G,1 matrices with rcetficients in k of the apnropriate sizes;

that is, there are m inputs and p ooatputs and the dimension of the state

space, also called the dimension of the system I and denoted dimil}), is n. )

Here k is an appropriate field (or possibly ring}. In the continuous time
case of course k should be such that differentiation makes sense for (enough)
functions R ~ k, e.g. k =R or L. Often one adds a direct feedthrough term
Ju, giving ¥ = Hx + Ju in case (a) and y(t) = Hx(t) + Ju(r) in case (b)
instead of y = Hx and y(t) = Hx(t) respectivelys forthe mathematical problems
to be discussed below the presence or absence of J is essenftially irrelevant.
More precisely what we are really interested in are families of objects
(1.1), that is sets of equationz (1.1} vhere now the matrires F,G, H degend
on some extra parameters O. As rennle have found out by now in virtually
all parts of mathematics and its applications, even if ene is basically

interested only in single objects, :t pays and is important to study familic

of such objects depending on a small parameter E (detormation and perturbat - o
considerations). This could be already encugh motivation to study families, ,
but, as it turns out, in the case of {linear) systems theory there are many
more circumstances where families turn up naturally. Some nf these can b¢
briefly summed up as delay-differential systems, systems ovet rimgs, rontirue:.
canonical forms, 2-d and n~d syutrec, parameter gncert..iut., (in,elurlyd
perturbed systems. We discuss these in some detail Lebew u Leoreen

To return to single systems far the moment. The ejuativn: .
Inputfoutput maps f[ s u{ty— yit) nivea respectivelv by

(1.2a) y(t) = f qu(t ™

14
1A .
(1.2b} y(e) = ¥ Aulrelmi), Ap o= LA TR PR B P
il

Gu(TidT, t >N

wite we have assumed thah the system starts in x{(0) = 0 at time 0. In both
rases the inputfoutput opcrator is uniguely determined by the sequence of
matzices A Ayy wen o Inversely, realization theory studies when & glven

sequence A, is such that there exist F,G,H such that Ai - uri'ic

fyy
for all 1. Rcaiization with parameters is now the question: given a sequence
of matrices A, (o), A (o), Ay (o), ... depending polynomially (resp. continuoualy,
resp. a1alyt1cally. resp ...) on parameters g, when do there exist matrices
F,G,H depending polynomially (resp. contlnuously, resp. analytically, TEBP....)
on the parameters g such that A (g} = H(U)F1 l(o)G(o) for all i. And to what
extend are suth realizations unlqnc’ Which brings us to the next group of
questions one likes to answer for families.

A single system L given by the triple of matrices F,G,H is completely
rezchable if the matrix R(F,G) consisting of the blocks G, FG, ..., F b
.3 . R(E) = R(F,G) = (G! FG! ... {F'G)

has full rank n. (This means that any state x can besteered to any other
state x' by means of a suitable imput). Dually the system I is said to be
completely observable if the matrix Q(F,G) consisting of the bloeks

H, HF, ..., HE"
H
HF
(1.4) Q) = Q(F,H) = |

WF"
has full rank mn. (This means that two different states x(t) and x'(t) of the
system can be distinguished on the basis of the output y{1} for all 1 > t}.
Ag is very well known if Al' Az, ... can be realized then it can be realized
by a ¢o and cr system and any two such realizations are the same up to
bzse change in gtate space. That is, if T = (F,G,H) and L'= (F',G",H") both
realize Al' gr e and both are cr and co then dim(E) = dim(L') = n and

there is an invertible n x n matrix © such that F' = 5FS l, G' = SG,

H' = ES I. (It is obvious that if ¥ and L' are related in this way then
they give the same input/output map). This transformation

(1.5) £ = (F.G R I° = (F,G,0)° = s¥s”,s,ms™)

corresponds of course to the base change in state space x' = Sx. This argue:
that at least one good notion of isomorphism of systems is: two systems =

over k are isomorphic iff dim(I) = dim(L') and there is an § € GL (k), the
n



such that ' = ZS
A corresponding notion of homomorphism is: a homomorphism from

group of invertible matrices with coefficients in k,

L = (F,G,H), dimL = n, to L' = (F',6',H'), dimf = n', is an n x n' matrix
B (with evefficients in k) such that BG = G', BF = F'B, H'B = W,
Or, in other worde, it is a linear wap from the state space of ¥ to the

state space of ' such that the diagram below commutes.

n

~

B

w. /
kn' K

The obvious corresponding notion of isomorphism for families

I(g), I'(0) is a family of matrices S{0) such that E{o)s(o) « 1'(a),

(I'ﬁ)

=
B
\
\es
—
=
—

where, of course, S(g) should depend polynomially, resp. contiruously,

resp. analytically, resp... on G if I and L' are pelynomial, resp.

continuous, resp, analytical, resp....families. One way to look at the

results of section 3 below is as a classification result for families,
or, even, ag the construction of canonical forms for families, under the

notion of isomorphism just described. As it happens the classification

goes in rterms of a universal family, that is, a family irom which,
roughly speaking, all other families {up to isomorphism) can be uniquely
obtained via a transformation in the parameters.

Let Lh n p(k) be the space of all triples of matrices (F,G,H) of
»

co,cr

dimensions nxn, nxm, pxn, and let L be the subspace of cr and co

» L]
triples, Then the parameter space for the universal family is the quctien:

co,cr
space L

(k)/GL (k), which turns out to be a very nice space,
The next question we shall take up is the existence or nonexistence
co,cr

MNP
ig a continuous map (F,C,H} c(F.G,H) such that c(F,G,H) is isomorphic

to (F,G,H) for all (F,G,H) € L“’n‘:; and such that (F,G,H) and (F',G',H')

are xsomorph1c if and only if ¢(F,C,H) = c{F',G',H') for all (F.G,1),

(F',0' H') g LEOCF
m,n,p

get rid of superfluous parameters in an identification problem the

of continuous canonical forms. A continuous canonical form on L

+ Obviously if one wants to use cancnical [orns to
canonical form had better be continuous. This does not mean That
(discontinuous) canonical forms are not useful. On the COntrary, witness
e.g. the Jordan canonical form for square matrices under similariby, On tic
other hand, being discontinuous, it also has very serious drawbacks; ci,

e.5. [GWi] for a discussion of some of these. In our case it tur s vut tha:

. s : co,cr
there exists 8 continuous canonical form on all of 1h ; p
LbE |

if and only if
m={orp=1,
Now let, again, I be a single system, Then there is a ¢anonfcal
(o)
E

which is completely observable. Combining these two constructions

subsystem which is completely reachable and a cancnical quotient
system £
one finds a canonical subquotient (or quotient sub} which is both cr and
co, The question arises naturally whether (under some obvious necessary
conditions) these constructions can be carried cut for families as well
and also for single time varying systems. This is very wmuch related

to the question of whether these constructions are contimuous. In the
last sections we discuss these questions and related topics like: given
two families I and E' such that L{o) and I'(c) are isomorphic for all
(resp, alwost all) values of the parameters o; what can be said about
the relation between £ and I' aas families (resp. about E(0) and I'{(0)

for the remaining values of o),

2. WHY SHOULD ONE STUDY FAMILIES OF SYSTEMS.

For the moment we shall keep to the intuitive first approximation of
a family of systems as a family of triples of matrices of fixed size
depending in some continuous manner on a parameter o. This is the

definition which we also used in the introduction,

2,1, (Singular) perturbation, deformation, approximation,

This bit of motivation for studying families of objects, rather than
just the objects themselves, is almost as old as mathematics itself.
Certainly (singular) perturbations are a familiar topic in the theory
of boundary value problems for ordinary and partial differential equations
and more recently also in optimal contrel, cf. e.g. [OMa].

For instance in [OMa], chapter VI,0'Malley discusses the singularly
perturbed regulator problem which consists of the following sét of
equations, initial conditions and quadratic cost functional which is to be

minimized for a control which drives the atate x = (z) to zero ar time t = 1,

¥ = A e)y + A, (e)z + B, (e)u y(0,e) = y°(e)
EZ = A}(e)y + A (E)z + B (€)u z(0,e) = z°(a)

Ie) = x(1, e)ar(e)x(l ) + } (xF(t,£)Q(e)x(t,€) + u' (t,e)R(eIulc,e)dde

(2.1.1)

with positive definite R{c), and Q(€)},7(c) positive semidefinite. Here the

upper T denotes transposes. The matrices Ai(E)’ i=1,2,3,4, Bi(c), i=1,2,



wiy, NGy, REYy may also depend on t. For fided small o > U there. is o
unique optimal solution. Here one is interested, however, in the
agymptotic solution of the problem as € tends to zero, which im, still
quoting from [OMa] a problem of considerable practical importance, in
particular in view of an example of Hadlock et al. [HIK] where the
asymptotic results are far superior to the physically unacceptable
results obtained by setting £ = 0 directly.

Another interesting problem arises maybe when we have a system

(2.1.2) % = Fx + G,u + G,v,

i 2 y = Hx

where v is noise, and where F, G], GZ'H depend on a parameter €.

Suppose we can solve the disturbance decoupling problem for € = 0. I.e.

we can find a feedback matrix L such that in the system with state feedbach
loop L

% = (F+CL)%x + G,u + G,v, ¥ = Hx

1 2
the disturbances v do not show up any more in the output ¥, (for £ = 0}.
Ie it possible to find a disturbance discoupler L(e) by “perturbation”
methods, i.e. as a power series in £ which converges (uniformly) for €
small enough, and such that L{0) = L.

In this paper we shall not really pay much more attention to
singular perturbation phenomena. For some more systems oriented material

on singular perturbations cf. [KKU] and also {BHaz &].

2.2. Systems over rings.

Let R he an arbitrary commutative ring with unit element. A linear
gystem over R is eimply a triple of matrices (F,G,H) of sizes nx n, n X M,
p x n respectively with coefficients in R. Such a triple defines a lincar
machine
(2.2.1)  x{t+1) © Fx(t) + Gu(t), £ = 0,1,2,..., x € R®, u € K"
y(t) = Hx{t), y € aF

which transformes input sequences (u(0),u(1),u(?),...) into output scquenc.s
(y(l).y(Z).y(3),...) according to the convolution formula (1.2.B).
it is now absolutely standard algebraic geometry to consider theae

data as a family over Spec(R), the space of all prime ideals of R with the

(2

e

zariski topology. This goes as follows, For each prime ideal'p let

: R+ Q(Rfr] be the cancnical map of R into the quotient field
Q(R/p) of the integral domain R/P . Let (F(p), G(p), H(p)) ba the triple
aof matrices over Q(RIP) obtained by applying i? to the entries of
¥,G,H. Then ECP) - (F(r),c(r),u(r)) is a family of systems parametvized
ty Spec(R).

Let me stress that, mathematically, there is no difference between

e system over R as in (2.2.1) and the family E(r) . As far as intuition
goes there is quite a bit of difference, and the present author e.g.
has found it helpful to think about families of systems over Spec(R)
rather then single systems over R. Of course such families over Spec(R}
do not quite correspond to families as one intuitively thinks about them.
For instance if R = Z = the integers, then Spec(Z ) consists of (0)
and the prime ideals (p), p a prime number, so that a system over Z
gives rise to a certain collection of systems: ome over I = rational
sumbers, and one each over every finite field 7 = Z /{p). Still the
intuition one gleans from thinking about families aa families parametrized

-ontinuously by real numbers seems to work well also in these cases,

2.3, Delay-differential systems.

Consider for example the following delay-differential system

il(t) - xl(t—Z) + xz(t-a) + ule-1) + u(r)
(2.3.1) iz(t) - xl(t) + xz(t-l) + u{t-a)

¥(t) = xl(t) + xZ(t—Za)

where @ is some real number incommensurable with 1. Introduce the delay

operators 0,, 0O, by Ulﬂ(t) = B{t-1), o,B(t) = B{t=x). Then we can rewrite
(2.3.1) formally as i

(2.3.2) x(t) = Fx(r) + Gu{t), y(t) = Hx{t)
with
of 02 1 0I
(2.3.3) F= , Cn= , H= (1 og)
] g [s]
! 2



and, forpetting so ro speak where (2.3.2), (2.3.7) came from, wo can viow
this set of equations as a linear dynamical systom over the rng ﬂ[u‘,uz],
and then using 2.2 above also as a family of systems parametr zed by the
(complex) parameters 9,, 9, , a peint of view which has proved fruitfull
e.. in [By 4]. This idea has been around for some time now,

[2W, An, Yo, RMY], though originzlly the tendency was to cuniider these
systems as systems over the rields R(UI,...,UZ); the idea to consider

them over the rings R[cl.....02] instead is of more recent viatage([Mo,Kam]},

There are, as far as I know no relations between the solitiens of
(2.3.1) and the solutions of the family of systems (2.3.2), (2.3.3). Scill
many of the interesting properties and constructions for (2.3.1) have their
counterpart for (2.3.2), (2.3.3) and vice versa, For example -o eanstruct
a stabilizing state feedback loop for the family (2.3.2) - (2.3.))
depending polynomially on the parameters Tps Oy that is findiag a
stabilizing state feedback loop for the system over m[ul,oz],neala finding
an m x n matrix L(OI’UZ) with entries in m[cl,czl such that for all complex
0,40, det(a~(F+CL)) has its roots in the left half plane. Reinterpreting
o, and g, as delays so that L(UI'OZ) becomes a feedback matriz with delays
one finds a stabilizing feedback loop for (the infinite dimensional)
system (2,3.1)., (cf. {BC], cf. also [Kam 1, which works out im some
detail some of the relations between (2.3.1) and {2.3.2) - (2 3.7) viswed
as a system over the ring'm[cl,czl)

As another example a natural notion of isomerphism for srstems
I=(F,GH), L' = (F',G',H") over a ring R is: E and L' are isomecrphic if
there exists 4n n x n matrix S over R, which is invertible over F, 1.2,
such that det(S) is a unit of R, such that L' = ZS. Taking R = m{o],o,]
and reinterpreting the o, as delays we see that the corresponcing notzon
for the delay-differential systems is coordinate transform&ticns with
time delayswhichis precisely the right notion of jsomorphism for studying
for instance degeneracy phencmena, cf[lap].

Finally applying the Laplace transform to (2.3.1) we finé a troncic:

function T(s,e

-as . . . . -8 -as :
ve¢ ), which is rational in s,e - and e . It can a.so

be obtained by taking the family of transfer fun~tions 'I'0 g (s) =
| R

H(cl,oz)(s—F(o|,a2))_|G(UI.02) and then substituting « ° for ¢, and P

for 0,. Inversely given a transfer function T(s) which is ratsonal in

“6 =08 . . .
5, ,e one way ask whether it can be rcalized as a system with delays

. . . - 08
which are multiples of | and a. Because the funpctions 5, € q, e are

algebraically independant {(if a is incommensurable with 1), there is a uninu.

“ o

N

2\

1Y

)

rational function *(s.al.oz) such that T(g) = %(s.e-',e'us) and the

realizability of T(s)} by means of & delay system, say a system with trans-
mission lines, is now mathematically equivalent with realizing the two
parameter family of transfer functions T(s,ul,02) by a family of systems

which depends polynomally on UI, az.
2.4, 2~d and n ~ d systems.

Consider a linear discrete time system with direct feed-through term

(2.4.1) x{t+l) = Fx(t) + Gu(r), y(t) = Hx(t) + Ju(t)
The associated input/output operator is a convolution operator, viz.
(cf. (1.2.b))

t .
. . i-1
y(ty = L Awu(e-i), A =J, A, = RF’

1=0

(2.4.2) G fori=],2, ...

Now there is an obvious (north-east causal) more dimensional,

generalization of the convolution operator (2.4.2), viz.

h k
(2.4.3) y(h,k}) = T I Ai alh-i,k-j), h,k = 0,1,2,...
i=o j=o vd

A (Givone~Roesser) realization of such an operator is & “2-d system"

xl(htl.k) - Fllxl(h,k? + Flzxz(h,k) + Glu(h,k)

(2.4.4) xz(h.k+l) - PZExl(h'k) + Fzzxz(h,k) + qu(h,k)

y(h,k) = Hx, (h,k) + Hyx,(h,k} + Ju(h,k)

which yields an input/output operater of the form (2.4.3) with the A, 5
r
determined by the power series development of the 2~d transfer function
T(sl.sz)
(2.4.5) EA, eted 8,) = (H, H,) - i e’u,),,
i, i,j’1 "2 1772 172 0 eI ) ; !G :
n 1

vhere Ir is the r x r unit matrix and n, and n, are the dimensions of Lhe
state vectors X, and X,. There are obvious generslisations to n-d systems,
n > 3. The question now arises whether every proper 2-d matrix transfer
fd;ction can indeed be so realized. (cf.[ Eis] or [So2] for a definition

of proper. A way to approach this is to treat one of the a; as a parameter,



giving us a realization with parameters problem.

More precisely let Rg be the ring of all proper rational functions in
8, In the 2-d case this is & principal ideal domain which simolifies
things coudiderably. Now consider T(al,sz) as a proper rational function
in 8y with coefficients in Rg' This transfer function can be realized
giving us a discrete time system over Rg def ined by the quadruple of
matrices (F(sl). G(sl), H(al), J(sl)). Each of these matrices is proper
as a function of 5 and hence can be realized by a quadruple of constant

matrices. Suppose that
(FF'GF’HF'JF) realizes F(sl)
(FS,GS,HB,JS) realizes G(s]) .}) .
(FH,GH.HH,JH) realizes H(sl)

(FJ,GJ,HJ,JJ) realizes J(si)

Then, as is easily checked, a realization in the sense of (2.4.4) is defined
by

J
3 _G
P F Jpi My H, 0 0 c 0
11 12 Cpi Fp 07 "0 0 1
F o= - r F G= - GG
0,0 F, 0 0y’ c
For Fa g, ' o ’ °
v T 00° GJ/
]
10 o 0 F

N @

H--(Hl Hz)-(JHID 0 Hy HJ).J-JJ

This is the procedure followed in [Eis] ; a somewhat different approach,
with essentially the same initial step (i.e. realization with parameters,
or realizaction over a ring) is followed in [So2].

2.5. Parameter Uncertainty.

Suppose that we have a system I = (F G,H) but that we are uncertain aponr
some of its parameters, i.e. we are uncertain about the precise value of
some of the entries of F,C or H. That is,what we really have is a family or
systems L(B}, where B runs through some set B of parameter values, which
we assume compact. For simplicity assume that we have a one input-one output
system, Let the transfer function of L(B} be TB(B) - fB(S)/sB(B)o Now

suppose we want to stabilize ¥ by a dynamic output feedback loop with §

Lriceslor function P(s) = ¢#(s)/¥(s), still being uncertain about the value of
fi. ~he transferfunction of the resulting total system is T{s)/(1-T(8)P(8)}.
So <& ghall have succeeded if we can find polynomials ¢(s) and y{(s} such
tha: for all B € B all roots of

BB(H)¢(8) + f8(8)¢(s)

ace in the left halfplane, possibly with the extra requirement that P(s)
be aleo stable. The same mathematical question arises from what has been
named the blending problem, cf [Tail,It cannot alwaye be solved. In the

special but important case where the uncertainty is just a gain factor,

i.e. in the case that B is an interval [bl,hzl,b2 > b| > 0 and

Tais) = AT(s), where T(s) is a fixed transforfunction, the problem is

sodved completely in [Tall,

3, THE CLASSIFICATION OF FAMILIES. FINE MODULI SPACES.

3.1. Introductory and Motivational Remarks.

(why classifying families is essentially move difficult than
clissifying systems and why the set of isomorphism classes of (single)
syttems should be topologized).

Obviously the first thing to do when trying to classify families up
tc isomorphism is to obtain a good description of the set of isomorphism
classes of (single) systems over a ficld k, that is to obtain a good
description of the sets Lm,n.p(k)lGLn(k) = Hm.n.p(k) and of the quotient

mas L (k) ~ M (k). This will be done below in section 3.2
m,n,p m,n,p

fo- the subset of isomorphism classes (or sets of orbits) of completely
-eachable systems. This is not particularly difficult (and also well known)
aoc is it overly complicated to extend this to a description of all of

H-.n,p(k) - Lm’“'p(k)/GLn(k). cf. [Hazé). Though, as we shall pee, there

atz, for the moment, good mathematical reasons, te limit curselves to

sr systems and families of cr systems, or,dually,to limit ourselves to co systems.
Now let us consider the classification problem for families of aystems.

Fx definiteness sake suppose we are interested (cf. 2.1 and 2.3 above e.g.)

ir real families of systems L(o) = (F(0), G(o), H(0)) which depend

cantinuously on a rveal parameter ¢ € R. The obvious, straightforward and

ir fact right thing to do is to proceed as follows. For each o ER we have
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a system L(g), and hence a point d(o) € M
m,0,p

®) = Lm’n'p(lﬁ..GLnGR).
the set of isomorphism classes or, equivalently, the set of orbits in

. s
Lm,n.pm) uhder the action (I,S)}++ £° of GLnuﬁ) on Lm,n,poa)' This defines

4 map ¢(I): R ~ Hm a p(lR), and one's first guess would be thzt two families
1 [ ]
L,L' are isomorphic iff their associated maps ¢(L}, ¢(I') are equal,

However, things are not that simple as the following example in 1.l 3 IOR)
» ]

shows,
1 0 1
(3.1.1) Example. I{0) = (( 2 bGoa,m),
g 1
\ 1 0
@ = (o DL )y (20

For each g € R, Z£(6) and L['(g) are isomorphic via T(g) = (I
0

2, . . :
]) if 0 = 0, Yet they are not isomorphic as continuous

2Yitaso
q
and via T{og) = (é

families, meaning that there exists no continuous map R + GL2 »m),

0+ T(g), such that E'(g) = Z(O)T(U) for all o € R. One might guess that

part of the problem is topological. Indeed,it is in any case sort of

obvicus that ome should give t-lm a pUR) as much structure as pcssible.
» ]
Ocherwigse the map ¢$(L): R + Mm n pm) does not tell us whether it could
] L)

have come from a continuous family, (Of course if E(0) is & ccrtinuous

family over R giving rise to $(L) and S € GLnaR) is such that I(O}s ¥ I{0)
chen the discontinuous family L'(0), I'(6) = 2(0) for 0 4 0, £'(0) = £(0)S
gives rise to the same map), Similarly we would like to have $I) analytic
if £ is an analytic family, polynomial if I jig polynomial, differentiable
if I is differentiable, ,,. .

One reason to limit oneselve to ¢r systems is now that t1e patural

topology (which is the quotient topology for m: Lm,n,paR) - Hm.]’pGR)) will
not be Hausdorff unless we limit ourselves to c¢r systems. (It i3 clear rha:
oneé wants to put in at least a}l €o,Cr systems),

There are more reasons to tupologize Hm.n.pam and more generally

Hm,n,p(k)’ where k is any field. For one thing it would be nice if

Mm,n,paR) had a topology such that the isomorphism classes of iwo systams 2

and £' were close together if and only if their associated inpit/output maps

were close together (in some sujtable operator tupclopy; say the weak
topology): a requirement which is also relevant to the consistercy
requirement of maximum likelyhood identification of systems , cf,

[ De,DDH,DH,DS,Han].

O ]

Jet topologizing Hm n Pm) does not remove the problem pased by example
»its

(3.1.1). Indeed, giving Mo pm) the quotient topology inharited from
bl

Lm n i:‘CII-'l) the maps defined by the families I and L' of example (3.1,1)
b ]

are both continuous.

Restricting ourselves to families consisting of cr systems {or dually
to families of co systems), however, will soive the problem posed by
example (3.1.1). This same restriction will alsoc see to it that the
quotient topology is Hausdorff and it will turn out that u::n'pm)/cx.nan)
is naturally a smooth differentiable manifold, From the algebraic geometric
point of view we shall see that the quotient L::n'P/GLn exists as a smooth
scheme defined over Z . It is also pleasant to notice that for pairs of
matrices (F,G) the prestable ones {in the sense of [Ma)) are precisely
the completely reachable ones ([Ta2]) and they are aleo the semi-stable
points of weight one, [W!,

Ideally it would also be true that every continuous, differentiable,

polynomial,... map ¢ : R + M;rn Pm) comes from a continuous, differentiable,
L
pelynomial,.., family. This requires assigning to each point of M;r“ POR)
LRl

a system represented by that point and to do this in an analytic manner,
This now really requires a slightly more sophisticated definifion of

family then we have used up to now, cf. 3.4, below. And indeed to obtain
€.g. all continuous maps of say the circle into Hm,n,pm) as maps associated
to a family one also needs the same more general conceptof families of system

over the circle.

3.2. Description of the guotient set {or set of orbita) L:]rn (k) /CL_{K).
—SIpTion ot e - VI s

Let k be any field, and fix n,m,p € N. Let

G2 o e 00,0, L, Oy a0, L, (s .

(n,1}), R (n,m)},

lexicographically ordered (which is the order in which we have written down

the (n+!)m elements of 'Jn m)' Ve use Jn m ° label the columns of the matrix
1, [ ]

R(F,G}, F € k™", G € ™™, £, 1.3
to the j-th column of the block FiG.
is called nice if (i,j) € a - (i-1,j) €Eaor i =0

above, by assigning the label (i,j)

A subset a c J
n,m

for all i,j. A nice subset with precisely n elements is called a nice select.on.



. . Prcof. Let a be a nice subset of J such that the colusns of R(F,G)
Civen a nice selection 1, a successor index of o is an element (i, j) € J - . n,m i . . a,
I, L, T are linearly independant and such that o is maximal with reapect to this
such that a U {(i,j)} is nice. For every j_€ {I,...,m} there is préisely :
o property.

one successor index (i,j) of a with j = j . This successor index will be Let @ = ((0,5.) Goaios (@30 Y . 0.5 Goio)
l‘l"" ]'l' Iz!"‘l 2!2!“'! .B.“.' !'5-

denoted s(a,jo).
Pictorially these definitions look as follows. We write down the By the maximality of a we know that the successor indices 8{a,j}, =1, ..., m
elements of J in a square ns> follows (m=4,n=5} are linearly dependant on the columns of R(F,G)u. I.e. the columns with
m,m

indices (iM,j), .--+ (i+1,j,) and (0,t), t € {1,...,m} ~ {jl,...,j‘}

(0,1) (1,1 (2,1 (3,1) {4,1) (5,1) are linearly dependant on the columns of R(F,G) . Suppose now that with
(0,2) (1,2) (2,2) (3,2) (4,2) (5,2) induction we have proved that all columns with indices (ir+£,jr), r=1, ..., s
(0,3} a,d (2.1 3,9 4,3 (5,9 and (R-1,t), t € (1,...,m} ~ {jl“"'js} are linearly dependant on the
0,4) (1,4} (2,4) (3,8 (4,6) (5,4) columna of R(F,C) , L > 1. This gives us certain relations
Using dots to represenrt elements of J and x's to represent elements of . - P i +8 .
ng > Tep n,m 28 Tep . UN #7l6, - T e, FT o6 = B b(LIFG
o the following pictures represent respectively a nice gubset, a not nice {i,j)€a ] Ir (i,j)Ea ]

subset and a nice selection. .. .
{where Gt denotes the t—-th column of G). Multiplying on the left with F

3 S we fiond expressions
XXX .o+ s X .o %X .o S S ) 1 +241 .
Koo k... . Flo, = I a(i,j)r‘”cj, PTG = T b, HE G,
< x o x (i,j)ea t(i,})ea
.o . . .. . i ot
expressing F G, and F G. as linear combination of those columns of

The successor indices of the nice selection a of the third picture above i .
i . . R(F,G) whose indices are either in a or a successor index of a. The latter

are indicated by *'s in the picture below . R . .
are in turn linear combinations of the columms of R(F,G)u, so that we have

e e proved that all columns of R(F,C) are linear combinations of the columns

XX g o s of R(F,G)a. Now (F,G) is cr so that rank(R(F,G}) = n, so that a must have had
(3.2.2) wr oo )] . n elements, proving the lemma.
xxx®* .. For each nice selection o we define
We shall use L (k) to denote the set of all pairs of matrices (F,C) -
_ w0 _ 2 , (3.2.4) Uy () = ((F,6,H) €1 (k) [det(R(F,6),) # O}
over k of sizes n » n and n x m respectively; Lm n(k) denotes the subset ol
’
completely reachable pairs (cf. 1.3 above). For each subset B € ‘,n o Recall that GL (k) acts on L (k) by (F,G,H)S - (SFS-",SG,HS-I).
. 1) My N
and each (F,6) € L (k) we shall use R(F,G)g to denote the matrix obtained s
’
from R(F,G) by removing all columns whose index is not in B. 3.2.5. Lemma. Uc1 is stable under the action of GLn(k) under Lm,n.p(k)' For
With this terminology and notation we have the following lemma, each L € (F,G,H) € Uu there is precisely one S € GL (k} such that
n
3.2.3. Nice Selection Lemma. R(Zs)‘- R(SFS I,SG)G =1, thenxn identity matrix.
Let (F,G) € L;rn(k). Then there is a nice selection o such that’ Proof, We have

det(R(F.G)a) 40, S -1
(3.2.6) R(Z”) = R(SFS ,SG) = SR(F,G) = § R(¥)

Gy
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It follows that R(Ib)a - SR(rJa, which proves the firste statement. It also
follows that if we take S = R(F,G).' then RE®) | - 1 and this is aleo

the only S which does this because in the equation § R(Z)u - R(Es) R(:}u has

m,

rank n.

3.2.7. Lemma. Let Xy veny X be an arbitrary m-tuple of n-vectors over k,

and let a be a nice selection. Then there is precisely one pair (F,3) € L:rn(k)
LJ

such that R(F,C)a = In' R(F,G) = xj, j=1, ..., m

s(a, j)

Proof (by sufficiently complicated example). Suppose m = 4, n = 5 and that

@ is the nice selection of (3.2.2) above. Then we can simply read off the

desired F,G, In fact we find Gl =X, G2 =, 03 - Xy, Gﬁ = ey, FI - e,

F2 = ey, F3 - %Xy F4 = &g, F5 =X, writing down a fully general proof is a

bit tedious and notationally a bit cumbersome and it should now be trivial ) .

exercise.

3.2.8.“§or011:rz. The set :f orbits Uu(k)/GLR(k) is in bijective correspondemce
with K™ x kP%, and Ug (k) + 6L (k) x (k""xkP") (as sets with GL, (k)-action,
where GLn(k) acts on GLn(k) X (knmxkpn) by multiplication on the left on the
first factor),

Proof. This follows immediately from lemma 3.2.5 together with lemma 3.2,6.
Indeed given I = (F,G,H) € U,. Take S = R(F,0)]' and let (F',G*,H") = 5.
Now define ¢ : Uu(k) + GLn(k) x (knkaP“) by assigning to {F,G,H) the matrix

o
s, the m n~vectors R{L") ~1l, .., mand the p x n matrix ",

s(u'j)! J

Inversely given a T € GLn(k), m n-vecLors xj, i=1, ..., mand a pxn

matrix y. Let (F',G') ¢ L;rn(k) be the unique pair such that R(F',G')a = In'
»

R(F',G")

oy K., jom i .. . 'om i
s(a,j) xJ, J , » m. Take H y and define 1) .

Vs GL Gk X KPT) w oy (k) by (T, (900 = (1,600 T, Te is trivial
to check that ¢¢ = id, ¢y = id. It is alse €asy to check that ¢ commutes with
the GLn(k)—actions.

3.2.9. The 4o {local) canonical forms. For each [ € Uu(k) we denote
with c#a(i) the triple:

S . -1
(3.2,10) C#G(E) =17 with § = R(E)u

i.e, C#Q(E) is the unique triple I’ in the orbit of I such that

R(Z') = I. Further if z € K™ x k™, then we let (Fy(2), G (2), H (2))
be the triple ¢(In.2); that is if z = ((xl, . xm). ¥)

(Fa(z). Ga(z), Hu(z)) is the unique triple such that:

(3.2.11) R(F, (z), Gulz)) =1, R(F, (2), G,z

sla,i) " *jr Bo(@ =y

2 € (x5 seuy x ), y) € k™ x KPD

3.2.12, Remark. Let 7 : U (k) + k"™ x kP" be equal to y: U, (k)

+ GLn(k) ™ kpn) followed by the projection on the second factor,
Then Tz (FG(Z), Ga(z), Ha(z)) is a section of ﬂa (meaning that
“aTa = id), and ¢ (Ta) =T

+ 0Of course, Ty induces a bijection
pn
Uu(k)IGLn(k) + ko ox kb,

a

3.2,13, Description of the set of orbits Iirn P(k)/GLr(k). Order the
L ) L

set of all nice selections from J in some way, For each I € L°F

n,m m,n,p

let a{l) be the first nice selection in this ordening. Now assign to I the

. . s cr ,

triple c#a(z)(Z). This assigns to each I € Hm.n,p(k)fGLn(k) one particular
well defined clement in its orbit and this hence gives complete

- A
description of the set of orb1tsLm’n'p(k)ﬁLn(k).

H(:l‘.'

3.3, Topologizing L%  (k3/GL (K} = K
opologizin m,n,p( 3/ n( ) n,n,p( )

3.3.3. A more "homogeneous” description of M;rn p(k). The description of the
» L]
set of orbits of GL_(k) acting on L;'n oK) given in 2,3.13 is highly
2 L]
lopsized in the various possible nice selectionsa. A more symmetric

description of M5"_ (k) is obtained as follows. For each nice

m,0,p nm pn .
selection o, let Va(k) =k x k' and let for each second nice selection

B:
(3.3,2) Vop(k) = {z € Vaidet(R(Fa(z). 6y(2))g) ¥ 0)

That is, under the section Tyt Va(k)+ Ua(k) of 3.2 above which picks out
precisely one element of each orbit in Ua(k) VuB(k) corresponds to those
orbits which are alse in UB(k); or, equivalently vaB(k) - ﬂu(Ua(k)n UB(k)).
We now glue the Vu(k), a nice ,together along the vuﬂ(k) by means of the
identifications:



ltcv.f!: VuB(k) * VBG(k)' %8(2) e
(3.3.3)
(5 (), G,(), B)® = (Faa"), Gyla"), Hgla), 5 = REF, (2),G, ()5

Then, as should be clear from the remarks made just above,M;rn p(k) is
Ll ]

the union of the Vu(k) with for each pair of nice selections

a, B, vaB(k) identified with VBu(k) according to (3.3.3).

3.3.4, The analytic varieties M {R) and M

PR m.ﬂnP
x k its usual (real) analync gtructure, The

(l‘.) Now let k =R or C

and give V (k) = for ™
subsets V B(k) c V (k) are then open gubsets and the [ B(k) are analytic
(B and Mo, plE) will be V@

'
respectively a real analytic (hence certamly C-) manifold and a complex

diffeomorphisms, It follows that H

analytic manifold, provided we can show that they are Hausdorff.

First notice that if we give L (R) and Lm a
.

he t 1 £
: m,0,p ,p(l:) the topology o
ROE P g4 " +rminp respectively and the open subsets U (k) and

L"1 n p(k). k =R, € the induced topology, then the quotient topology

for m : U (k)+V (k) is precisely the topology resulting from the

o
1dent1f1cat1on V (k) = ™ » kPP, 1t follows that the topology of
er
L o.p (k) is the quotient topology of I..|Il n p(k)*L (k)IGL (k} = (k)-
How let G

m(n +I)(k) be the Grassmann variety of n—planes in m(n+l)—
space. For each (F, G), R(F,G) is an n x m(n+l) matrix of rank n which
=1 . .
= F
n,m(n+|)(k)‘ gecause R{SFS ', SG) SR.F, G}

we have that (F, G} and (F, G)~ define the same point in Grassmann space. i .

hence defines a unique point of G

It follows that by forgetting H we have defined a map:

cr
(3.3.5) R ,n p( ) > Gn,m(n+l)

rows of R{¥,G).

{k), (F, G)# subspace spanned by the

2
In addition we let h: MeT (k) -+ k(nﬂ) ™ Le the map induced by:
P

w.n,p ‘
Al Ay R ntl
Az .
b f . i-1 . .
(3.3.6) W(F,G,H) = , A = HETIG, B om0, e, 2t
An+l -l A2n+l

2o

1t is not particularly difficult to show ([ Haz 1-3], cf. also the realization
algorithm in 5.2 beloz that the combined map (ﬁ,h):H:fn'p(k) -

Gn m(’nﬂ)(k) [ k(nﬂ) is injective. By the quotient topology remarks

above it is then a topological embedding, proving that H (k) is a

Hausdorff topological space. So we have:

¥
3.3.7. Theorem. M Mo, p (R) and Mm n,p

The sets H“ c.o(n) and Hcr >€0

{C) are smooth apalytic manifolds.

(I:) are analytic open sub-manifolds. (These
are the sets of orbits of the cr and co systems, or equivalently, the

°"'°°(k) under w: LT (k) + m,n_Pm. k= R,E),

images of L
B m,n,p

3.3.8. Remark. A completely different way of showing that the quotient

space H P(R) is a differentiable manifold is due to Martin and

Knshnapraaad [MK]. They show that with respect to a suitable invariant metric
on Lcrn“(k) L (k) acts properly discontinuously.

3.3.9. The algebraic varieties M°Y (k). Now let k be any algebrai-
m(ﬁip o2 omarnp

cally closed field, Giving L the Zariski topology

m,n,p
and U (k) the induced topology for each nice selection a. Then l! (k) =
GL (k) x V k), V (k) = knm+np also as algebraic varieties. The V B(k)
are open aubvanenes and the ¢ B(k) v B(k) + v (k) are isomorphisms

of algebraic varieties. The map ®,h) is still xn]ectwe and it follows

that Hc (k) has a natural structure of a smooth algebraic variety, with
c1,C0 '

M k an open subvariety.

m,n.p( ) P 4

3.3.10, The scheme MeT
—_——= m,n,p

the algebraic varieties

. As a matter of fact, the defining pieces of
uer (k), that is the V {k), and the glueing
isomorphisms ¢uﬂ(k) are all defmed over Z. So there exists a scheme
uET
m,f, P
are precisely the orbits of GL (k) acting om L

over Z such that for all fields k the rutmnal points over k' . pt’l
| R ]
(k). For details
cf. section 4 below.
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Ji4s A universal fawmily of linear dynamical systems

3.4.1. As has been remarked above it would be nice if we could attach

in a continuous way to each point of M
minlp

ting that point., Also it would be pleasant if every appropriate map

(k) a system over k represen—

from a parameter space V to M°F

mn,n,p
from 2,2 above that systems over a ring R can be reinte-preted as .

came from a family over 4, Recalling

families over Spec(R), this would mean that the isomorphisn classes

of systems over R would correspond bijectively with the R-rational
. cr cr

points Hm,n,p(R) of the scheme Hm,n " cf. 3,3,10,

]
Both wishes, if they are to be fulfilled require a slightly more

over Z,

general definition of system then we have used up to now. In the case
of systems over a ring R the extra generality means that irstead of
considering three matrices F, G, H over R, that is three haromorphisms
G: R™ + R“, F: R® Rn, H: R" + RP e now generalize to the definition:
a projective system over R consists of a projective module X as state
module together with three homomorphisms G: R™ + X, F: X + &, H: X » &P,
Thus the extra generality sits in the fact that the state R-module X

is not required to be free, but only projective. The geometric counter=-
part of this is a vectorbundle, cf, below in 3.4,2 for the arecise
definition of a family and the role the vectorbundle plays.

In some circumstances it appears to be natural, in any case as an
intermediate step to consider even more general families, Thus over 4 ring
R it makes perfect sense to consider arbitrary modules ag state modules,
and indeed these turn up naturally when doing "canonical" realization
theory, cf. [Eil, Ch. AVI], which in terms of families means that one
may need to consider more general fibrations by vector spaces than
lecally trivial onea,

3.4.2. Families of linear dynamical systems (over a topological space).

Let V be a topological space. A continuous family I of real linear
dynamical stystems over v {or parametrized by V} consists of:

(a) a vectorbundle E over V

(b} a vectorbundle endomorphism F: E + E

{¢) a vectorbundle morphism G;: Vv x R™ + E

(d) a vectorbundle morphism H: E + V x RP

1@

[ @
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For eac1 v € V let E(v) be the fibre of E over v. Then we have homo-
morphisms of vector spaces G(v);{v}x R™ + E(v), F(v): E{v) » E(v),

Hv): Elv) + (n} = BP, Thus choosing
the obv_ous bases in {v} x B® and {v} » RP we find a triple of

8 basis in E{v), and taking

matrices F(v), E(v), fi(v). Thus the data listed above do define a
family over V in thé sense that they assign to each v € V a linear
Eystem, Note however that there is no natural basis for E(v) so that
the system is really only defined up to base change, i.e, up to the
GL (R) action, so that what the data (a)-(d) really do is ageign a
point of Mm.n’p(lJ to each point v € vy,

As E is a vectorbundle we can find for each v € V an open neighbor-
hood W and n~sections 815 eves 8¢ W Elw such that al(w). ceey
sn(w) € E(w) are linearly independent for all w € W. Writing out
matrices for F(w), G(w), H(w) with respect to the basis
B, (w), ..u,y s (w) (and the obvious bases in {w} » B® and {w} = BP),
we see tiat over W the family I can indeed be described as a triple of
matrices depending continuously on parameters. Inversely if (f, G, H)
is a triple of matrices depending coentinuously on a parameter v € V,
then E = v x B, F(v,x) = (v, F(v)x), F{v,u) = (v,G(v)u),

Hiv,x} = (v,H(v)x) define a family as described above. Thus locally the
new definition agrees (up to isomorphism) with the old intuitive one we
have beer using up to now; globally it does not,

Here the appropriate motion of isomorphism is of course: two families
L= (E;F,G, H) and £" = (E'; F', G', H') over V are isomorphic if there
exists a3 vectorbundle isomorphism ¢: E + E' such that F'¢ = §F, ¢GC = G',
H=H',

3.4,3, Other kinds of families of systems, The appropriate definitions of

other kinds of families are abtained from the one above by means of minor
and cbviois adjustments. For instance, if V is a differentiable {resp,

real analytic) manifold then a differentiable (resp. real analytic) family
of systems consists of a differentiable vector bundle E with differentiable
morphisms F, G, H (resp. ananalytic vectorbundle with analytic morphisms

F, G, B}. And of course igsomorphisms are supposed to be differentjable
(resp, analytic),
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gsimilarly if V is a scheme (over k) then an algebraic family omnsists
of an algebraic vectorbundle E over V together with morphisms of
algebraxc vectorbundles ¥: E+E, G: vea® > E, H: E+ V x Ap

where A* is the (vectorspace} scheme AT(R) = RY (with the obvious
R-module structure}.

Still more variations are possible. E.g. & complex analytic Eamily
(or holomorphic family) over a complex analytic space V would comsist
of a complex analytic vectorbundie E with complex analytic vecto-bundle

homomorphisms F: E + B, G: V x € + E, H: E~ V » [ L9

3.4,4. Convention. From now one whenever we speak about a family of

systems it will be a family in the sense of (3.4,2) and (3.4.3) above.

(k) be the Grassmann
E(k) + G (k) be the
’
(k) is the n—plane in Kt 1epresanted

3.4.5, The canonical bundle over G (k) Let G

manifold of n-planes in r—space (r > n) Let

fibre bundle whose fibre over x € ¢,
I
by the point x, If k= R or € this is an analytic vector bundle over
G_ (k). More generally
n,t
over the scheme G

this defines an algebraic vectorbund’e E
n,r’

In terms of trivial pieces and glueing data this bundle can e
described as follows, Let Hn:r(k) be the space of all n ¥ r mat~ ices of
(k) + G

!

rank n and let W: M (k) be the map which associates to each

n » r matrix of rank n, the n-space in K" spanned by its row v=ctors,
Then the fibre over E{x) of E over xcG (k) is preclsely the wector
space of all linear combinations of any'element in (x) From this
there results the following local pieces and glueing data description of
(k) and E(k). For each subset o of size n of {1,2, «.v, t} let U&(k)
be the set of all n x r matrices A such that A is invertible, let
Vi (k) « k") and for esch z € VI(K), 2 = (z ez ) 2 €K
let A (2z) be the unique n » r matrix such that (A (z)) 1 and
Aa(z)t(j) - z] where t(j) runs through the elements of {l 2, . ., El-0
vass T=n. Then G

V&(k) glued together along the V' (k) = {z € V (k)[A (z)B is ivertible}

in the natural order, j = 1, (k) consists o the

by means of the isomorphisms:

» @

3 .'
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(06.7) 835001 V) * VA, (), 2 4> 2" s (A () A (D) = Ag(e")

(Note how very similar this is to tle pieces and patching data description

of M (k) given in 13.3.1 above; the reason is understandable if one
observes that the map R: Lm n P(k) -+ Mnx(n+l)m{k) induces a map
R: Hm,n,p(k) + Gn,(n+l)m(k)’ which is compatlble with the local pieces

and patching data for the two spaces).
The bundle E(k) over G
each Vé(k) cG

o r(k) can now be described as follows. Over
1]

o r(k) we can trivialize E(k) as follows:
L]
13.4.8) V0 x k" 3 E@R) (z,x) = x'A_(2)
a W C5 al#

It fcllows that the bundle E(k) over Gn r(k) admits the following local
pieces and patching data description which is compatible with the
MOk
~he bundle E(k) consists of the local pieces E (k) = V (k) = k glued

= 1
B(k) Va

“ocal pieces and patching data description given above for G

rogether along the Ea ﬂ(k) « k" by means of the isomorphisms:

{3.4.9) 5&3' Vig(k) k"3 MO K

(z,%) = (@lg(2), (Aa(z)B)Tx}

The bundle which is really of interest to us is the dual bundle Ed to E

described by the local pieces Eg(k) - V&(k) x k" glued together by the
patching data:

(3.4.10) F gt Vig(k) x K" 3w (k) = K"

(z,x) b G0, @70

(NOte that the glueing isomorphisms ¢ b are compatible with the projections

’k) > V (k) and the glueing isomorphisms ¢'B for G (k), note also

that all three sets of gluexng data ¢ B? . ag? ¢ are transitive in the

sense that ¢BY [ ¢ - ¢ are similarly for the 6' and ¢').



3.4.11. The underlying vector bundle of the universal family cver

er L g (ntl)n ;
oon, p(k). The map R: Lm n p(k) H reg (k}, (F,G,H) = R(F,G) induces

a map.

= cr
GebedD Re My o) 6 et

(k)

(because R(Z%) « SR(I), s € GL_(k)).

If k=R or €, (3,4.12) is a morphism between analytic manifolds, In

general (3,4.12) defines a morphism between rhe schemes Mcr“ . and
o =1d = 20
Gn (n+1)m" Now let h R°E”, the pullback by means of R of the

“canonical" bundle E deecrxhed above in (3.4.5),
Now recall that M°

(k) was obtained by glueing the
nm pn P
Vu(k) =k xk

various pieces
» »

together, where @ runs Lhrough all nice selections

from J o In terms of this description EY (k) can be described as follows:
EY (k) consists of pieces Y (k) -y (k) x k" = ™M x KP™ x ™ , one far
(k) =

Now for each pair of nice selectlons a, B

each nice selection o, For each pair oE nice selections E

B(k) xkcv (k) x k*
let ¢uB(k)' aB(k) + Eﬂu(k) be the isomorphism:

-1
(34013 § 00 (2,0 = (0,(), REF (2), Gz )" %)
where ¢ : v B(k) -+ VBu(k) is the isomorphism of 3.3 above (which
descrlbes how the V (k) should be glued together to give H n )(k), and
l

v (k) + U (k), z - (F (z)}, G (z), H (2)) is the section Ty des:ribed
above in (3 2,13, Thcn E" (k) is ohtalned by glueing together tie E” (k)
along the E B(k) by means of the isomorphisms (3,4,13),

3.4.14, Construction of a universal family of cr systems. Let L"(k) over
H;rn p(k) be the bundle described above and view it as obtained via the
iy

patching data (3,4,13),

Recall also that, cf.(3.3.3) above:

(3:4:15) () = 2' w0 (R (2), € (=), B, 20 = (b2, Gy, Hy(a'))

B
. . -1
with § = R(Fa(z). BQ(Z))B

For each nice selection a we now define a bundle endomorphisa
F (k) of E (k) = V (k) x k™ and bundle morphisms G- (k)
v (k) x K"+ By (k) Hy(k): E(k) + v (k) x kP, These are defined as

Eollous.

: F:(k) (z,x) = (z, F_(2)x)

(3.4.16) c;(k) (z,u) = (z, G (2)x)

i u
. Hu(k) (z,x) = (z, Ha(z)x)
e : . Lo :
#e pow claim that these bundle morphisms are compatible with the glueing
isomorphisms (3.4.13), which means that we must prove the commutativity

of the diagram below for each pair of mice selections a, B.

GLI Fll Hu
v xk™ - g -9, g 2 5 v P
aB oaf af af
(ub17) [ gxid %a 1P bogrid
G F H
v Bu:k"' N E;G £ E;a By P

where we have abbreviated various notations in obviocus ways, Now

l . B a(z u) = ¢JB(Z' G (z) u) by (3.4.18)

= (yg(2)) R(F (2], G (2N’ 6 (2) w) by (3.4.13)

= (¢GB(2)' GB(z') u) by (3.4.15)

- c‘(cpuﬂxid(z, u))
proving the commutativity of the left most square of (3.4,17), Similarly:
c‘Bm(z x) = ¢ ap (s Fo(2) x) by (3.4.17)
= (¢ B(z), R(F (z), G (z)% F (z) x) by (3.4.13)
= (¢ 8(z). F (z ) RIF (2), G (z))B x) by (3.4.15)

- FB ¢a3(2.x)
proving the cowmutativity of the middle square of (3.4.17). And finally,

and completely analogously:

25
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W Caxy e L Gh ), /Y G2y, 6 BT by (3.4.073)
Il [N it " 4.19. The topologiczl fine moduli theorem. Let V be a topological space

* (¢m8(z)' “B(Z) R(F (2), Cu(z))-l %) by (3.4.16) :nd £-a continuous family «f completely reachable systems over V. Then
- (@GB(z), Hu(z) x) by {3.4.15) © there exists a ?nique continuous map ¢: V —+ H;tn,p(nj such that I is
- (¢ x id) (Hu(z, ) isomorphic to ¢°L (as continuous families; i.e. there is a bijective
aB | correspondence between continuous maps V + Hm n pﬂﬁ.ﬂ isomorphism classes
proving the commutativity of the last square of (3.4.17).

of continuous families over V).

Thus the Fu' ¢". u" combine to define bundle morphisms F (ks %) +

o' ta .
(), ¢ ST (k) x W™ - gd0, BYk): BV - Mcr (k) x kP, ! 1,4.20, The algebraic-geometric fine moduli theorem, Let V be a scheme
m,n,P n,p
1f k = R or L, FU k), cU(x), 14 (k) are morphxsms of analytic vecter v and E ar. algebraic family of cr systems over V., Then there extsts a unique
bundles. Algebraically speaking the FUeR, g (k), HY(k) For varying k ' morphism of schemes ¢: V ~+ Hm n,p such that I is isomerphic to ¢° I over V.
! LRt
are part of a morphism of algebraic vector bundles over the scheme Ll .
MEF , which are defined over Z, ' 3.4.21. On the proof ¢f theorem 3.4.19. First consider the topological case. The map ¢
m,n,p i
v 1gsociated to I is defined as follows. For each v € V we have a system
3.4,.18, The pullback construction. Let V be a topological space and f(v), which uniquely determines an isomorphism class of linear dynamical
G v o+ M (R} a continuous map. Let e (Eu; Fu, Gu. H') be the systexs (cf. (3.4.2)); that is.it uniquely defines a point ¢{v} of
P
unlversal'f;m11y of systems constructed above, Then associated to ¢ ' H;r1 F(]l) which is the space of all isomorphism classes of cr systems
we have an induced family ¢ 7Y gver V (ohtained by pullback), The precice {of tke dimensions under consideration). This ¢ is obviously continuous.
formulas are as follows: Now I“(z) for all z € Hm n P(BJ respresents z. So, by 3.4,18, L and ¢' Z
- ¢ EY = {tv,x) EV xE |¢(v) = 71{x)}, where m: Eu - M;r“ ;(R) is the are two cont!nuous families of cr systems over V such that for all v € ¥,
1] sy
bundle projection; the bundle projection of ¢ EY is defined by L(¥) and ¢'E (v) are isomorphic, It follows that the families I and
loua s : . iqs s .
(v,x) —» v; E' = ¢°i" are isomorphic as continuous families. The reason is the following
p e o ' . :
- ¢:F“; (v,x) + (v, F'x) € ¢:Eu rigidity property: if (F, G, H), [F', G', H') € Lm n P(iﬂ are isomorphic
then the isomorphism is unique. Indeed, if 5 is an isomorphism then we must
o + (v, ") € oE" 1 @ .
- ¢’6: (v,w Vo b ¢ have SR(F, G) = R(F', G") so that if o is a nice selection such that R(F,G) s
U u toCT P p ' . . invertiblc, then
—p'H : (v,x} = (v, Hx) E ¢'(Mm n P(IU x{R") =V xR $ = R(F', G )ﬂ {R(F, G)u) , The statement that [ and I' over V are iso-
tly
. . . . . .
Obivously ¢.Eu is (up to isomorphism) the family of systems over v such morphic if they are pointwise isomorphic results as follows, For every

-

: EV i L) p [ )
that the system over v € V is (up to isomorphism) the system over () v there is a V v such that the bundles E and E' of I and L' are

. . u trivial over V' so that over V' the families I and I' are simply (up to
in the family I .
150 i i i tri i ' [ R
1f V and ¢ are differentiable (resp. real analytic) there resulls a isomorphism) continuously varying triples of matrices (F(v y, G{v'), H{v')),
FI L] 1 1 1 t t |. T i 5 ,(
differentiable (resp. real amalytic) family over V. If ¢: V =+ Mm . p(E) (F'(v'), G'(v'), W' (¥'Nv' € V', Let o be a nice selection such that R(F(v},Clvn
- . . s ' . .
is a morphism of complex analytic manifolds there results a complex i+ invertible. Restricting V' a bit more if necessary we can assume
. . . that ! * is i i ' L ') om 1ot vy
analytic fumiiy and on the algebraic-geometric side of things if at A(F(v'},Glv )1 is invertible for all v' € V'. Then $(v') = R(F'{(v"),C'{v' 1)
3 1 L] . . = a ’ . n
1 V -+ is a morphism of schemes one finds thus an algebraic (R{F(¢"), G{v')) )  is a continuous family of invertible matrices taking
family ove ‘Ehe scheme V I(v') into EYv') for all v' € V', Thus L and L' are isomorphic over some
al y T .

small neighborhaod of every point of V. The isomorphisms in question must
agree on the intersections of these neighborhoods, again by the rigidity
property, It follows that these local isomorphisms combine to define a

[‘;}) global isomorphism over all of V from I to I'.
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A mere Tormal and alse more formulki based version of this argument 4.1. Definition of the scheme M°% . For each nice selection g C J
. . . " - T m,n,p n
can be found in [Hazl]. The scheme thcoretic version (theorem 3.4,20) let v ’

is based on the same rigidity property, cf section 4 below for some details,

o

: (.. v = Spec(z [x?j,yﬂ

si=0, o, n, =1, L., m,

3.4.22, Remark. In [HK) 1 claimed that the underlying bundle E” of the

universal family I" was the pullback by means of R {cf. (3.3.5)) of the r=1, ..., p,8=1, ..., a]}

bundle E over G whose fibre over z was the n-plane represented

n, {n+l)m

. a .
by z. As we have seen it is not; instead E" is the pullback of the dua- Let HQ(Y) be the p x o matrix (Y“). and let (FQ(X).GQ(X)) be the unique

bundle Ii‘i of E. Now the determinant bundie of Ed is a very ample line pair of matrices over Z [x(:,]] such that

bundle (rathet then the determinant bundle of E) so that the argument

a
. . : . X,
in [HK] to prove that Hm o 18 mot quasi affine is correct modulo two 1i
1] ."‘ : .
errors which cancel each other, ' (4.1.2) R(Fa(x),Gu(X))a - In' R(Fa(x)'ca(x))a(a,j) - ' s J* 1, <oy m
.
nj
4, THE CLASSIFYING "SPACE" MS® IS DEFINED OVER Z

(where the s(n,j) are the m successor indices of o, cf. 3.2), Finally

(LN

AND CLASSIFIES OVER Z .

C e m e .;H-. L Wi e et

for each pair of nice selections o,B let duﬁ(x) €z [xci‘j] be the
Mainly for completeness and tutorial reasons 1 give in this section ) element

the detalls algebraic~geometric details of the remarks 3.3.10 and 3.4.20

that there exists a scheme MS¥ over Z of which the varieties ¥°F  (k), ‘ (4.1.3) d B(x) = det(R(F_{X),G_(X)),})
m,n,p m,n,p aj o o] ¢}
cf. 3.3.9,k an algebraically closed field, are obtained by basc¢ change
and that this scheme is classifying for algebraic families of cr systens, and let Vuﬂ be the open subscheme of V, obtained by localizing with
and thus in particular classifyingforcrsystems over rings (with possibly respect to duB(X).i.e.

a projective module as state module).

Those who are not particularly interested in the algebraic-geometr-ic . (6.1.4) vaB - SPEC(Z‘{x?j'Y?s’duB(x)-!])

details can skip this section without consequences for their understanding

of the remainder of this paper. There is in any case nothing difficult Now for each pair of nice selections n,B write down the formulas

about what follows below and anyone who has once seen, say, the constructior

of the Grassmann schemes or projective spaces over Z , will have no diificul: 5 (X)-lF 08 (0 - F_(X)
a a
in supplying all details for himself from what has been said in section 3 (4.1.5) 8 o 8
above. All we are really doing below is rewriting a number of formulas of -1
Saﬂ(x) GG(X) - GB(K) ' HG(Y)SaB(x) - HB(Y)

section 3 above using capital letters instead of small ones. This dous take

a certain number of pages, though. It seemed desirable to include thes:z as, where
judging from the audience's remarks during the oral presentation of th:se

lectures, there is, perhaps rightly so, a distinct unwillingness in aczepting (4.1.6) S _(X) = R(F (X),6 (X))
without further proof a statement on the part of the lecturer like "th: B a Vo B

algebraic-geometric version of this theorem is proved similarly", Because the entries of F_(X) and G (X) are equal to zero, | or X
B B : i

j
for some i,j and because the (r,s)-th entry of HB(Y) is ¥8 , the formui:v

rs
@ {4.1,5) provide us with certain expressions for the X?J and YB . in

Ly
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terms of the Xi', Yrs' which by {4.01.0), (4.1.5) and (4.1.3) (and

the usual formula for matrix inversion) can be written as polynowials

-1
in x?j. Y:S. 3gX) s say

B . P -1 B - -1 4a
w.an X ¢GB(1.J)(x‘i‘j,duﬂ(x) ). Y, %B(r,s)(x‘;j.daﬂm R
Then
(4.1.8) ot KB g (LU, B m g (e (8D
. - GB 1] QB L] L] s uB " ’

defines an isomorphism of rings.

[} -1q . -t
m[” Bum ] = 2z[x , ,d I3(711) ]

s

It follows from 4.1.5 that (with the obvious notations)

. -1
,gR(Fg (¥, G (X)) = S (X)" "R(F_(X0),G (X))

af
(4.1.9)

*
b (D) = H, (05,4 (X)

*
and these formulae describe ¢uB completely. It follows that

* -1 Y
¢as Eh(x) = %Bdet(R(FB(X),GB(X))u) = det(SuB(X)) - daB(‘)
so that ¢‘ does indeed map d, (X}~ into z [x%.,¥" w0 h
af Mmap “oy nto ij'Yrardap :

*
The ¢GB induce isomorphisms of open subschemes

(4,1,10} ) v -V

a8 ' "B T Vga

r N . .
and M n.p 1s now the scheme obtained by glueing together the schemes

v for all nice selections o, by means of the 1somorph15ms [ e

a)
As in section 3 above one can now embed M-
m,n,p

a Crassmannian over Z and an affine space over Z to see that Mm P is
r

into a product of

a separated scheme.
For each nice selection O let

defined by

v"® be the open subscheme of Vu

@

n

eoa co o
{6.1.11) Vu = |} Spec(Z [xij'

a -1
y ¥ g QUF (0, H Y]

vhere Y runs through atl the nice selections of the set of row indices
JP n of Q(Fa(x),H‘ﬁB.Then the ¢GB regtrict to give isomorphisms

co co co
¢

u8; Vo, vBu

(4.1.12) s

COo

co .
where vaB Va n qu' Glueing together the V°° by means of the $< B we

cr,co cr
m,n,p m,n,p’

To see how all these abstract formulas look in concreto consider

obtain the open subscheme M

the case m = 2, n» 2, p = 1, In this case, there are three nice selections

a,B,y J2,2' viz,

(b.I.IS) [+ S ((0.'), (0|2)}’ p - {(Onl)s (]II)}' Y= {(Ool): (!nz)}

We have
s |
X, 5, i o
F (X) = v Gy (K) = B
a
SR it 0
8 8
ifo x”] | L
F(X) = o G (X) = o ol HptY)- (¥
\ 1 22/
Y Y
o, X,
FL(0 = N o H¥)- v
¥ Y
1, 0
Thus
- .. - 4B B BB B _ BB
dyg®) = Ky 4 4 (0 = = Ky, dg 00 = Xx], ¢ X0 W0, - o xR
- B R ¢ A Y ¥ LYY
dgg (B) = Xpy 4 4, (XD X0 dygt0 = X[ X[}« X[ xPx] - XX



o ! i
(' 11 ! xl?l
S (X) = (x) = |
af a B '
@ Xy 0w,/
¥ '
: Qg X I
;0 le : ( 11
Say ™ = o 1’ Sya (¥ '»\ y '
g, X o
B B ' I Y oY !
("12 88, X NEE TR
(x) = Ly 5.0 = '
8 g ..B ! -l Y Y Y
1x3, Xio¥%y,Xy/ Ko ik

. - * * =
Thus for example the two 1somorphisms ¢&B and ¢Bu are given by

* B a -1
bog ¢ 2L Y (6871 o Z [X{,Y, ()7

o .~ o B a .-}
2™ T ) X Xo e ()

B a L0 [ o a
x -
Pl v XIi%aae X3 X[+ Xy,

B o B a

Y‘--» YI ’an—r ()(2]) (x
* -, B B B -l
L ?ZIX .Y .(x Dol z:[xij,yr,(xzz) ]

~1,B o |

Xy ‘“‘22) Ko X (X5,)

B.8 _ .B.B 1.8 8
X X x5, Xig¥y, = 05 X12%)2
© -1 . B

22" “‘22) Xja * Xy

a, B Lo B -1, B ,-1.B.8
Y tye G Y - (Xy,) Y X,

and one checks without trouble that indeed dﬁa(x)_' = (ngj-] pets

mapped into Z [x?. Yu,(xgl)_l] and d E'()\'.)-| = (x“ -l into

g8 B
zZ {x Y x d th =
5 ,( ) ] an at indeed ¢U80¢ﬁﬂ id, ¢& o ¢ id. (1he
formulas are not always so simple; for instance the formul;u for ¢

By

and ¢ B are a good deal more complicated).

N

A R
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4.2, Small Intermezzo: Completely reachable Systems over a ring,

A system La(F,G,H) over a ring R is said to be completely
reachable if R(F,): R* = R%, ¢ = (n+1)m is a surjective map, cf,
e.g. [Sol]l or {Rou). Thias is equivalent to each element of the family
E(p) = (F(f),G(r).H(T)), rE Spec(R) being completely reachable. Indeed
R(F,G): R* » R™ is surjective if it is surjective mod every maximal
ideal [Bou, Ch.IT, §3.3,Prop.!1] and the statement follows,

4.3. The algebraic geometric version of the nice selection lemma.

The next thing to do is to discuss the algebraic-geometric version of
the nice selection lemma, 3.2.3. Recall that this lemma says that if
the system (F,G,H) over a field k is cr then there is a nice selection
a such that R(F,G)u is inverctible. Now let (F,G,H) be a cr 8ystem over
a ring R, which per definition means that R(F,G): R' + R, r (n+1)m,
is surjective, which in turn is equivalent to condition that the systems
I{p) = (F(p),C(p) H(r) over k@b), the quotient field of er. atre cr
for all prime ideals T« Then of course one does not expect the existence
of 4 nice selection 0 such that R(F,G)u is an invertible matrix over R;
after all I = (F,C,H} should be interpreted as a family and not as a
single system.

For a continuous topological family (o) over a topological space M
the nice selection lemma implies that there is a finite covering
M=uUu Ua such that for all ¢ € Uu,R(F(o),G(G))u is invertible. And this

property generalizes nicely.

4.3,1, Lemma. Let § = (F,G,H) be a cr system over a ring R. For each

nice selection o let da - det(R(F,G)Q). Then the ideal generated by the
dOL is the whole ring R. (This means of course that the Uﬂ =- Spec(R[d;]])
cover all of Spec(R)).

Proof. Let I be the ideal gemerated by the da' @ nice. Suppose that [ # i.
Then there is a maximal ideal M such that I € m. Consider

E(m) = (F(m),G({m) ,H(m)). Then det(R(Z(m))a) =0 in R/ for all «, showing
that Z(m) is not cr{by the old nice selection lemma 3.2.3 over the field

E/m) which contradicts the assumption that I was cr.

To state the more global version of this lemma we need a bit of notacion

Let I be a family of cr systems over a scheme V., For each nice selection

we define

(4.3.2) u, =1{ve V]det(R(I.‘(v))a) )]
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This definition seems a bit ambiguous al [irst because R(Z{v)) depends
on what basis we choose in the state space of L(v) and hetice is only
defined up to multiplication on the left by an n x n invertible matrix
with coefficients in k(v). This matrix being invertible, however, meana
that the whole symbol group det(R(Z(v))u) ¢ 0 makes perfectly good senge
go that U, is welldefined. Of course U is an open subscheme of V.

4.3.3. Lemma. Let [ be a family of cr systems over a scheme V., For each

nice selection o let Uu be as in (4.3.2), Then agice Ua =V,

This follows immediately from lemma 4.3.1 because V can be covered with
affine schemes Spec(Ri) {such that moreover the underlying bundle of I
is trivial over each Spec(Ri)).

4.4, The universal bundle E” over Mer .
m’nlp

;rn ° is constructed just as in 3.4.1} above. Writing things out in
: ] H]

relentness detail one obtains the following algebraic-geometric local

The universal bundle B over

pieces and patching data description.

For each nice selection o let

o (s 3 (s 4 n
(6.56.1) E, = Spec(Z [x‘:j,\rrs] 8 zZlZ),..., 2. =V, xA

o o . . a
where Z [f?j'yrs] is as in 4.1.1; i.e. Spec Z [K?j,Yrs] Vu. Let

(4.4.,2) L E, Y,

be the projection induced by the patural inclusion
* a A a o o
L z{xij,vr's] < zz[x.lj,vr.s,zt].

Define for each pair of nice selections a,B.

[ . § o -1 n
(4.4,3) EaB = Spec Z [xij'Yr,s’Zt’dcr.B(x) 1 = VuB % A
and let
(4.6.4) 35&5 : Bp * By

be the isomorphism given by the ring isomeorphism

a Z",d (X)-I]

. B (B B -1y ., o
(4.4.5) 3:;8 fZ K] Y 0 200dg, (0 1 - =X Y2,

w

@ven by
] {4 B 3 8 ”
(®.x.6) xij"’ ¢aa(1,3)(x“),Yr‘Br+ @uﬂ(r,s)(x“,Y Y, T zas(t)(xﬂ.ta)

«Jhere the $uﬂ(t)(x°,z“) are defined by the equality

1 L

g 2N A

: - -

b 4.7) : sue(x) :
o § o

§ ot (%2 22

The *aB

are compatible (by their definition) with the ¢ 8
a
-1 that the following diagram commutes for each pair of nice selections

caf.
E —— E
af ¥ Ba
4.4.8) l af l
" ﬂB
—_—
qu . VBu
aB
it follows that by glueing the ECI together by means of the $ﬂa we

-btain a vectorbundle EY.

“4.4,9) m: EY » M:fn

* lp

i . I3 . . .
o5. The_meephism inbo ML, o associated to an algebraic tamily of cr systews.
He start with the case that the underlying vectorbundle E of the family 7
-s trivial and that the parametrizing scheme V is affine.l is then
described by & ring R, V » Spec(R), E = Spec(R[Zl,...,zn], mT:E-V
_nduced by the natural inclusion R = R[ZI,....Z“], and vectorbundle
qomomorphisms F: E + E, G: Spec(R{UI,....Um]) + E, H: E + Spec(R[Yl....,T a
The fact that these morphisme are vectorbundle homomorphisms is reflected
oy the fact that the associated homomorphisms of rings

£ RIZ,, . 02 ] R[zl...,.zn], G*: n[z]....,zn] + REUl,....Um],

A% R[YI,...,Y] -+ u[zl,....zn] are firstly R-algebra homomorphisms and
further of the form

n

m n
4.5,1 F*(z.) = L f,.2., G*(Z.) = L g,.U,, H*(Y.
{ } ( l) j_lf”zj, G*(z,) jilg”ul. HE(Y,) = jf‘h”zJ
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where the f, ij B i hij are elements of R, This dofines a triple of
matrices F = (f ), (W] (g ), H = (h, J). For each nice selection o
let 5 = R(F,G) ,%ﬂdet(s ) e R, let U = Spec(R[d ]), and let

- Spec(z [X u

6 I above. Nou deflne

]) be "the nlce-select1on-u‘Plece of H n P" of
I »

(4.5,2) 7 wa : Ua -+ Vu
by the morphism of rings
. . a o =1
(4.5.3) Wz [xij.vrg] + RId_ )
given by
o s -1, ,= =

xijh’ i~th entry of the column vector Su R(F'G)s(u,j)
{4.5.4)

Ygsr+ r=th entry of the column s of the matrix ﬁSu
where s(a,j) is the j-th successor index of the pice selection a,
cf. 3.2 above,

Or, using the obvious notarion, ¢; is defined by

(4.5.5) VIR (),6,(0) = 57 'R(F,D, vy B (1) = B

Now let 8 be a second nice selectlon We claim that the ¢ and wB

g " Spec(R{d I, B ]). In view of how the L Vg are

glued togecher to cbtajin M°F

agree on U nu

P this means that we must prove the
£ ]

commutativity of the diagram

a -1
Z (X idg 7'
\l‘~\
% Tt =1 .~
(4.5.6) ¢"ﬁ e R[da ‘dB |
B .8 -1 —””Wg
Zz [Xij.Yrs,dBu(X) ]

Note first that

(4.5.7) Y (5,5 00) = PR R(F 00,6, () ) = s;'R(F-.E)B - sc;'sla

kY

. - -l -1 } .
50 that ¢a does indeed map duB(X) ! into R[dml.dB|j. Now w; is described
by

i --I F.C -‘-
(4.5.8)  VER(Fg(X),Ga(X)} = S 'R(F,E), yH (¥} = Hs

[ B

and on the other hand

-1
Uy R(FB(X),GB(X)) w;(suatx) R(ru(x),ca(x)) (by (4.1.9))

_l -! [p—"
SB Sasa R(F,G) (by (4.5.7) and (4.5.5))

.—] - —
sB R(F,G)

which fite perfectly with (4.5.8). Similarly ¢;¢&BHB(X) = w&Ha(Y)SuB(X)

- Esus;'sB = HSy = ygH,(Y), g0 that (4.5.6) indeed commutative. Thus
the wu: Uu + V are compatlble, and because ag1ce Uu Spec{R) we obtain
a morphism of schemes

wz : V= Spec(R)—» M°F et 0,p
4.5.9. Lemma. The morphism wz depends only on the isomorphism class

of £ (so in particular wz does not depend on how E is trivialized).

Proof. Let E' be a second family of cr systems over V = Spec(R) with
trivial underlying vectorbundie E' = Spec(R[Zi,Zé,....Z;J). Suppose
' is isomorphic to I and let the isomorphism be |y : E + E'. Because

p is a morrhism of vectorbundles over V = Spec(R) its ring homomorphism
ut @ R[Z},23,...,20] R[Z,,25,..2,2 ]
is an R-algebra homomorphism of the form

*(Z') = N
in (Zl) E 811 i+ 8y € R
j=1
Let 8 be the matrix (sij). Then S is invertible (over R) because y is
an isomorphism. Now because . defines an isomorphism I' = [ we have
F'y = yF, w6 = G', H = H'y which in terms of the matrices F,G,H

associated to I {(cf. (4.5.1) above) and the analogous matrices
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Fr,G',H' of L' means that

SF = F'S, S6=G', H=H'S

It follows that if d('l, 5&, Uc.x are defined analogously to du’ Sa' Uu

1 t 1 - r -
I:hezl ?a - Sfa‘_da -_dfi(s)ilu so that Ua Uu and 4:0 wa all because
SR{F,G} = R(F',G"), HS ~ = H', which proves the lemma.

4.5,10. Construction of vy for families whose underlying bundle is not

necessarily trivial.

Now let I = (E; F,G,H) be a family of ¢r systems over a scheme V., We can
cover V with affine pieces Ui =- Spec(Ri) such that E is trivializable
over U.. By the construction above and lemma 4.5.% this gives us

morphisms (independant of the trivialization chosen}

cr
2 U, > M
wl 1 m,n,p

Now on Ui n Uj the q:i and lle must agree, because by lemma 4.5,9 again

i

Y. and wj agree on all affine pieces Spec(R) © Ui n Uj‘ Hence the ll!i
combine to define a morphism

. cr
vy vemE oo

which, again by lemma 4.5.9 depends only on the isomorphism class of 7.

4.6. The universal family i of cr systems over M;rn P Let E' be the
Ll 1]

cr s . .
vectorbundle over Hm np constructed in 4.4 abowve. Tn this section I
* r

describe a (universal) family of cr systems over H;r whose underlying
* i ]

bundle is E". (That this family is indeed universal will be proved in 4.7
below).

Recall that E” was constructed out of affine pieces

a o
E, = Spec{Z [xij’Yr

s,Zc':]) glued together by means of certain isomorphisms
QiuB, cf. 4.4. Let A" = Spec(Z [U,...,U ]). To define " = (";¥",¢" K",
it suffices to define vectorbundle homomorphiams

. . m . P
(4.6.1) Fos Eu. + Ea, Gt v, * A~ E» Ha P B+ Vu x A

39

wlicn are compatitle with the identifications

"\

¢egt EaB * EBu’ %8 B

xid: v _ x A" o ¥
o

m T P p
xA,d;QBxxd.VaHtA +VB&><A

{y the sense that the following diagram must be commutative

{+.6.2) |
af ‘ol

c

¢ xid

Ba

F H
m __B, B, P
v ox A Eﬁu——ﬁ—vﬁﬂa Vo * A

xid

v

(:f. also {3.4.171). We now describe Fu’Ga’H as those morphisms which

01 the ring level are given by the Z [X?..Y(:s] - algebra homomorphisms

.. a a0 a

(e.6.3) F3: z[xij.*frs.zt] + zz[xiJ.Y A

- . a o a0

(1.6.4) G*: z{x—zj,vrs,ztl + Z XY
(2 o

- *. e - ZIX .Y

(3.6.5) WA Z XYLV o) e 20X

: i1
wieTe Zu, U, V are respectively the column vectors (?.l,...,Zn

t t
lll....,Um) s (VI,...,VP) .

]

a o a a
rs t]’ o= Fu()nz

o
SUpsee U ), 2 60U

o L X
srlely Ve B (D2

1, b

)

1t remains to check that the diagram (4.6.2) is indeuwl commutative,

whizh is done by checking that the dual diagram of rings homomorphisms

is commutative.

This comes cown to precisely the same calculations as in 3.4.14. Ax

zn example we check that the diagram

z[ %, 7%, %4 7)) —2 z[xr;j.y

ij’ rs'e’ 01.8(

B

*
F
o

1

a s ] -
orZrnd (07 ]

T

T

&

F
-1 -1
m[x?j,vss,zf,dm(x) | —2 oz KEJ.,YB 284 07

r

.5 commutative., Because ¢;B maps Z[ X{;’j,Y

‘st al

o B
rs] algebra and Z[ xij

20, ¥
1]

z0 3%,y
ij

;o check that

d (X]-'] and because F(:

A
,Yrs]

¢pr
ra’ t'dBu
B -1 ..
rs'dBa(x) 1into

and F(: are respectively

- algebra homomorphisms it suflice
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8 B
g FR(ZD) F;&T;B(zt). t =1, ..., n

By the definitions (4.4.7), (4.6.3) and using the definition of
¢;B, cf. 4.1, we have

7, B -1, a - -1 o
F;¢;B(z ) = F;(suﬂ(x) 20 S,a¢0) F (07

raFyed ¥oa(Fa 028y - 0 (Fg (XIS 12"

1

-1 -l -1 &
-SQB(x) FG(X)SOB(X)SBB(X) Z -SaB(K) Fa(X)d

The remaining two squares of diagram (4.6.2) are similarly shown to be '
commutative.

4.7. A rigidity lemma.
The key to the proof of theorem 3.4,20 {the algebraic-geometric

clasaifying theorem) is (as was remarked before) a rigidity property
which in this context takes the following form,

4.7.1. Proposition. Let £, I' be two families of cr systems over g
scheme V. Suppose that there is a covering by open scle.homes (1.3 !
of V such that the two families ¢ and I' restricted to Ui are jﬂ;nurphlc
for all i. Then { and L' are isomorphic as algebraic families over v.
We note that no such proposition holds for arbitrary families

of systems cf, [HP] for a counterexample, .

Proof. We can assume that the underlying vectorbundles E and E' have becn
obtained by glueing together trivial pieces over affine subschemes of V.
Refining the covering (Ui) if necessary (this does not change the
validity of the hypothesis of the proposition) we can therefFore assus
that E and E' have been obtained by glueing togecther trivial bundie.

Ui x A" over affine schemes Ui.

Our data are then as follows. We have for each i an affiee scheme

IJ.l = Spec(Ri) and for each i,j isomorphisms of (trivial) bumiles

LI n n
°ij'¢ij JR( P Uy x AT - W, nupy xa

@
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which respictively define the bundles E and E'. The remaining ingredients
of the two families of systems I and I' are then given by vectorbundle

homomorphisms

1 " n ‘e oy, xa”
Fi,l-“i. uixA +UixA,Gi,Gi. UixA +
(4.7.1)
e U, x AT » U, x Ap
Hi’Hi' Ul A i
such that the following diagrams are commutative for all i,j (where
U.. ig short for U, N U,)
1] 1 p)

F.,F!
(4.7.2) L i I T
1%, " OIS
- PRy 0,100} > U P
Uiij ij*t*i; 11'71) L4 i
~._ 3..G! F.,F! "’/ﬁi-ﬂ'
BRI L S BT !

Finally the fact that Zand &' are isomorphic over each Bi means that

. n
there are vectorbundle isomorphisms ¢i: Ui A"+ Ui x A" such that the
following diagram is commutative for all i

F. n

VA" —5 uaa

H.

G%/x | . i
m !
(4.7.3) UilA\ lq’l i —/'
GI’ F! -~ H!

1 ui-A“ - ui:A“

We now claim that the ¢i are compatible and combine to define an
isomorphism ¢: E +E' (it then follows, because this is locally true,
that ¢F « F'¢, $G = G', H'¢p = H), To prove this we must show that for
each Spec(R) » I © Uij =- IJi n Uj the following diagram commutes

b, .

1]
U x A" ——— p x 4"

(4.7.43 ¢. '%
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Now vectorbundle homomorphisms of trivial vectorbundles over an affine
scheme U = Spec(R) are given by matrices with coefficients in R as we
cxplained en passant in the first lew parapraphs of 4.5 above. Lot
E}'E;'fi'Fi’ﬁi'ﬁi'sij'slj’si’sj be the matrices of the morphisme of
vectorbundles Gi,Gi.Fi,F;.Hi.Hi,¢ij,¢;j,¢i,¢J restricted to U, The
commutativity relations (4.7.2) and (4.7.3) then imply for these matrices

with coefficients in R that

ij’i it T i* i jhi3T Tiii 371}
0 = n v oo - [t C. =Gt F. = F'S . W's, = i
6.7.5) S;if Heo 83 Hy. ;6 G, 8;F; 154 WS it

$.0. =0C', §.F. = F'S., H'S, =1,
i it Ui it 1 ]

and the matrices Si’sj' 5. ., S;j are all invertible hecause they come from

1]
vectorbundle isomorphisms.

It follows that

F. . = LR(F,,G. = R F'-,G.
8.8, ,R( ,G } 5 { ’ ) ( }
(’4.:.6)
- s s F - Sl R(F.,G.
S R( -,G.) .8 ( 1 )

Now L is a family of cr systems and hence so ig its restriction Lo
U = Spec(R). It follows (cf. 4.2 above) that R(F,,G;): R" - R",

r = (n+})m,is a surjective map. Hence (4.7.6) implies that

§.5.. = §'.5. proving the commutativity of {4.7.4) and hence the

3743 i1
propesition.

4.8. On the pullback construction. let } = (F; F,G,H} he a family

of systems over a scheme M and let ¢ : v' > M be a morphism of schemes
Assume that everything is given in terms of local affine picces aml
patching data; i.e. I is given by trivial bundles U, x A, Ui = Spec (Ko
with vectorbundle isomorphisms ¢ij: Uij x Al Uii x &7 and vector

bundle morphisms F : U % A U x A", Gy U x AT U, AT
H,: U, * A" Ui x AP such the nonprime diagram (4.7.2) is comrutative,
a;d ¢1is given by affine morphisms ¢, : Ui—+ Ui,U; = Spec(Ri). Let
w;: Ri i R; be the ring homomorphism of ¢ .. Let, as before, Fi,(;i.ili

be the matrices of the vectorbundle morphisms Fi'Gi’“i'

‘“ e

N |

L)
Then the local pieces of the puliback family ¢'L = T' are:
the trivial bundles U; x A" - Ui with the vectorbundle homomorphisms
Floout x AT o Ut x AT, Gl Ut x AT o Ul x AT, HI: Ul < AT s UL < AP
i* 7i i it i i A S 1 i

ziven by the matrices f; - yiF., Gi - w;Gi, H; - wzHi. The patching data
are defined as follows., If U' = Sprc(R') < Ui n U; maps into U = Spec(R)

:i n Uj under ¥ and W?: R + R' is the associated map homomorphism of

rings, then over Spec(R') the isomotphism ¢}.: U' x A" o U x A" s
' P L4 ij

given by the matrix Sij = ¥15,

, if §,. is the matrix of
1]} 1]

Py Ux A" U ox A", '

This can be taken as the definition of the pullback family ¢°L.
1t agrees of course with the more informal description given in section
3 above.

4.3. The classifying theorem for algebraic families of cr systems over
schemes.

(M;fn . is classifying over Z ). We can now prave the algebraic-geometric
L] 1]
classifying theorem for families of cr systems, i.e. theorem 3.4.20.

Stated more precisely this theorem says

4.9.1., Theorem. Let I be an algebraic family of cr systems over a
scheme V, Then there exists a unique morphism of schemes
cr
R M
wE - m, 1,

universal family constructed in section 4.6 above. That is the map

]
idefined in 4.5 above) such that ¢i£uﬁ 7 where 1 is the

1
I wz and the map Y 5" (of 4.8 above) set up a bijective correspondens.

between the set of scheme morphisms V + ur
H] *

of families of cr systems over V., Moreover this isomorphism is functurial.

and isomorphism classes

t
Proof. First le: y: V -+ Mer be a morphism of schemes, let I = ¢'£u.

m,n,p
Then we must show that wz = L. To do this it suffices teo show that

WI and ¥ dgree on all elements of some affine covering (Ui) of V. We can

take this covering to be finer than the covering (W’I(Vu),drﬁce) whiel o
cr

M

is the piece belonging to the nice selection a, cf. 4.1
m,n,p

vV <
a
Let therefore U = Spec{R) be such that Y(U) © Vu, and let

a o

P zfxij. rs] TR

be the associated ring homomorphism. Then according to 4.8 gbove and
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the definition of Z“, cf. 4.6, the family I over U is described ty the

three matrices
F = p* G = y* H = ¥

(4.9.2) F "] FG(X), G [} Gﬂ(X). H Y Ha(Y)

By 4.5 above the morphism w; : Z:[x?j.Y:S] *+ R associated to this family

is characterized by

_I - -
(4.9.3) wz(R(Fu(x). GG(X)) - Sa R(F,G}, w;Hu(Y) - Hsu

where 5 = R(F,G) . Because RO, GO0 = 1,8 =1 in this case

(cf. (4.9.2)) so0 that indeed (comparing (4.9.2) and {4.9.3)) WE =
Now let I over v he a family of cr systems and let wE: v o+ H;fn.p

be the associated morphism as defined in 4.5. We have to show that

wéiu i? isomorphic to L. By the rigidicty result 4.7.1 it suffices to show

that wéz“ and I are isomorphic over each element of some affine covering

(Ui) of V, which we can take fine enough so that the underlying bindle

E of £ is trivial over each Ui' Let therefore U = Spec(R) be such that [

over U is described by the triple of matrices F,G,H.

Let du - det(R(i,E)a) for each nice selection &, Then U in turn is covered

by the u, = Spec(R[d;Il) (by the nice selection lemms). So taking a scill

finer covering (if necessary) we can assume that U = Spec{K) is swch thut

for a certain nice selection a we have that Su = R(I_-‘,f})a is inverzible

over R, Then by 4.5 is given on U by the ring homomorphism
I3 8

characterized by

_] - - -
(4.9.4) w‘R(Fu(X),Ga(K)) - Su R(F,G), w*Hu(Y) - HSG

1
By 4.8 the family of cr systems vif' is defined by the matrices

F' = ¢* C' = y* H' = y*
(4.9.5) F ih Fu(x), G 17 ca(x), H Y Ha(x)
Comparing (4.9,4) and (4,9.5) we see that over U the families defined
by F,C,H and by F',B8',H' are indeed isomorphic with the isomorphism being
defined by S¢ {which is invertible over R). This concludes the rrouf

of the theorem.

rJ

¢

“we

4.10. On cr systems over rings. The classsifying theorem 4.9,1 of
course also applies to systems over rings R. Such a system (with
finitely generated projective state module X} gives rise to a family
of cr systems over R iff R(F,G): RF + X, r= (n+l)m,is surjective
(cf. 4.23, If R is such that all finitely generated projective
modules are free (which happens e.g. if R is a ring of polynomials
over a field by the Quillen-Suslin thecrem [Q..S“]},then theorem 4,9.]
says that t:e RE-rational points of M;fn.p are precisely the GLn(R)
orbits in Lm‘_fn'p(a). i.e.

cr

~ cr
m, nip(R) - Ls“rp(R)/GL“(R)

(if R is projective free)
In general the theorem gives a canonical injection

LCI.'

cr
Ill’“’p(R)/GLI_I(R)‘--’ M p(R)

t] »

r - . c

with the remaining points of Mmrn p(R) corresponding to systems over R
» »

whose state module is prejective but not free.

4.1 A few final remarks. There is a completely dual theory from the
co instead of er point of view. Also the open subscheme M°T'°° iy or
tourse classifying for families of co and cr systems. Thi:‘zégeme is
embeddable (over Z) in ap affine scheme A(n+!)mp as a locally closed

sudscheme,



5 . EXISTENCE AND NONEXISTENCE OF GLOBAL CONTINUOUS CANONICAL
FORMS.

As a first application of the fine moduli spaces of section Jand 4 above wt

discuss existence and nonexistence of global continuous canonical forms

for linear dynamical systems.

5.1, The topological case.

Let L' be a GL (R)-invariant subspace of L (R). A canonical
n m,n,p

form for GL W) acting on L' is a mappimg c: L' - L' such that the

following three properties hold

(5.1.1) e(t5) = o(f) for all £ € L', S € GL (R)

n
(5.1.2) for all T € L' there is an 5 € CL_(R) such that c(i) = 75
(5.1.3) c(f) = c(Z') = § € CL ) such that I' = 7

(Note that (5.1.3) is implied by (5.1.2).

Thus a canonical form selects precisely one element out of each
orbit of GLnUR) acting on L'. We speak of a cont inuous canonical form
if ¢ is continuous.

Of course there exist (many) canonical forms, F.g. ordut the + o

of all nice selections o in J in some way. For each I € Lor W)
1,m w0, P

let a{l) be the first a such that R(Z)u is monsingular. Then

5

5.1.4 s -

(5.1.4) Erc a(i)(z) £, 5 R(E)u(i)

is a canonical form on L;r (R} (Luenberger canonical forms 3 la Biysom
’ *

mapping is mnot continuous, however, except when m = | {in which caxe Tl

which entails a number of drawbacks €. ..

numerical calculations and in identification procedures, et [owil o g
discussion in the similar case of Jordan canonical forms.. .
s

5.1.5. Theorem. There 1s & cont inupus cancnical form o Lm " P(M\
— W,

is only one nice selection),

it
and only if p= | or m= 1.

Proof. Ifm=1 letacd, = [0, 1), (1,1)5 «ee
(n-1,1)}. Then

(n,!)} be the unique

nice selection {(0,1}, «..,

(5.1.8) c

. - S - !
w' Lr C“G(E) L S R(L)-

¢

th

in o cemUianous canonical Torm, becanse RO is always inverti
. ')u ix always invertible for

)ocr.
Similarly if p= 1, let B=J_ be the unique nice row selection.
“h E'_‘):s -1 . ! .
‘hen , S Q(E)B is a continuous canonical form because Q(I)B is
invertible for all co I (if p = 1},
*t remaine to show that there cannot be a contjnuous canonical form
a1 ct,co .
c on all of Lm,n.pGR) if bothm > 1, p > 1.

"5 do this we construct two families of linear dynamical systems
as fo_lcws for all a €R, b ER {We assume n > 23 if n= 1 the examples

must se modified somewhat).

(I ] 0
0o 2 .
o O N L
. 0
0 . O n
yl(a) 1 2. 2 xl(b) 1 2 .20
ypa) L}l ENC I R 1‘
H, ()=t O =|
I 1) : ? s Hz(h) 1 0 0 :
!
. C 5 C
I
i |
0 0 / o 0 |
where C is some {constant)} real (p-2) x (n-2) matrix. Here the

continuous functions.

ylta). yz(a). Xl(b). xz(b) are e.g. y](a) = a for |a] < 1,

-1
y, &) = a  for la] > 1, yy(a) = exp(-az)' x,(b) = 1 for |B] < I,




® (b} = b.2 for |h| >, xz(b) = b-'exp(-b_z) for b 4 0, xz(O) = 0,

What is important

- - -
Y 7, x,m) = by, a™h
for all b ¥ 0 and that yz(a) ¥ 0 for all a and xl(b) ¢ 0 for all b.

For all b # 0 let T(b) be the matrix

The precise form of these functions is not important.

. -1
1s that they are continuous, that xl(b) = b

b 0...0
(51.7) Ty = (0 1 T s
o o
0o . 01

Let Xy (a) = (Fy(a), G, (a), K (a)), T,(b) = (F,(b), G,(b), H,(B)).

one easily checks that

Then

T(b)

(5%1.8) ab = | = El(a) = Zz(b)

Note also that I (a), L,(b) € L% TRy for all a,b € R; in fact
! m,n,p

(5.1.9) E](a) € Uq, a = ((0,2), (1,2, ..., (n-1,2)) for all a €EF

(5.1.10)  E,(b) € Ugs B = (0,13, (1,1), «ucy (n=1,1}) For ull b €Ik
which proves the complete reachability. The complete observability is

seen similarly.
co,cr

n.PaR)'
et o(Z) (a)) = (F|(a),§, (a),ﬁ (a)), e(Z,(8)) = (F,(b),G,(b),H,(b)).

Now suppose that ¢ is a continuous canonical form on L

Let S(a) be such that ¢(I (a)) = I (a)s(a) and let 5(b) be such that

ez, (b)) = I (b)S(b)
It follous from (5.1.9) and (5.1.10) that

= = -1
Sta) = R(F (a),6) () R(F ()6 ()
(5.1.11)
= = = . -
S(b) = R(F(b), Cy(0)) k() ()6, (b))

Consequently 5(a) and S(b) are (unique and are) con.inuous functions
of a and b,

Now take a = b = I. Then ab = | and T(b) = In sa that (cf. (5.1.7}),

(5.1.8) and (5.1.11) S(4) = 5(1). 1t follows from this and the

]
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continuity of 5{a) and 5(b} that we must have

{5.1.12) sign(det §(a)) = sign(det S(b)) for all a,b €R

Now take a = b = ~1. Then ab = 1 and we have, using {5.1.8),

El(_”s(-l)T(-l) . (zl(-l)”“”)“'”

508N L, e

= e 1) = 1, nseD
It follows that S(-1} = §(-1)T(-1), and hence by (5.1.7), that
det(S(-1)) = - det(5(-1))

which contradicts (5.1.12). This proves that there does not exists a

comtinuous canonical form on L;oéc:GR) ifm>2, and p > 2,
pily - h

S.1.13. Remark. By choocsing the matrices B, C in G (a), G (b) H, (a), H (b)
judiciously we can also see to it that rank G (a) mnq = rank G (b).

rank H {a) = p = rank H (b) if p < nw and m < n. Note also that F in the
example above has n dlstlnct real eigenvalues so that a restriction like

"f must be semi simple"also does not help much,

5.0.14. Discussion_of the proof of theorem 5.1.5

The proof given above,

though definitely a procf, is perhaps not very enlightening. What is behind it
is the following. Consider the natural projection.

Cr co
Lan,p

{5.1.15) T ®) + MT1°0 )y

0,n,p

Let ¢ be a continuous canonical form. Because ¢ is constant on all orbits
CT,co 4 1ETsC0
@,0 an

1) - G.1.0). Inversely if T is a continuous secticn

¢ induces a continuous map T: M UR) which clearly is a
section of #, (cf. (5.].

of 7 then Tow ; L°9»¢F
m,n,p

Ry Lco crGR) is a continuous canonical form.
Now (5.1.15) is (fairly easily at this stage, cf. [Haz 11}, seen
to be a principal GLnaR) fibre bundle.

a continuous section. The mappings

Such a bundle is trivial iff it admits
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ar E!(a). b~ Zz(b)

of the proof above now combine to define a continuocus map of PIGR) = circle
into n;';‘cgcm cuch that the pullback of the fibre bundle (3.1.13) is
+ L]

nontrivial. In fact the associated determinant GLIOR) fibre bundle is the

Mobius band (minus zero section) over the circle.

5. 2. The algebraic-geometric case.

The result corresponding to theorem 5.1.5 ia the algebraic geometric
case is the following. For simplicity we state it for varieties (over

algebraically closed fields).

5.2.1. Theorem. Let k be an algebraically closed field. Then there exists

a canonical form c: Lcrnco(k) -+ Lr.r r"O(k) which is a morphism of algebraic
Ll 3

varieties if and only if m = 1 ot p = l

Here of course a canonical form is defined just as im 5.1 above;
simply replace R with k everywhere in (5.1.1) - (5.1.3) and replace the
word "continuous' with "morphism of algebraic varieties, which means that
locally ¢ is given by _raticonal expressioms in the coordinates.
The proof is rather similar to the one briefly indicated in ¢.1.14

above. In this case Lcr,co(k) -+ M;r;cz(k) is an algebraic principal

GL (k) bundle and one again shows that it is trivial if and onmly ifm=1

or p = |. The only difference is the example used to prove nontriviality.

The map used in 51.14 is non-algebraic, nor is there an zlgebraic injective

morphism P (k) » Mco cr(k). Instead one defines a three dimensional manifold

'
much related to the fam111e5 T {a), L (b) together with an injection inta
M;rnco(k) such that the pullback of thxs principed Lundle is easily seen
,
to be nontrivial. Cf. [Haz 2] for details.

LY

6, REALIZATION WITH PARAMETERS AND REALIZING DELAY-
DIFFERENTTAL SYSTEMS.

As a second application of the existence of fine moduli spaces for

. also [BY) and
A preliminary step for this is

cr 8ystems we discuss realization with parameters (cf
remlization of delay-differential systems.

the following bit of realization theory.

6.1, Resume of some realization theory.

Let T(s) be a proper rational matrix-valued function of s with the
$crmal) power series expansion {around s = =)

-1 -2

[ -
(w1.1) T{s) = A;s + Ajs +...,AiEkpm

Ore says that T(s) is realizable by a linear system of dimension < n,

if T(s) is the Laplace transform (resp. z-transform) of a linear

differentiable (resp. difference) system L = (F,G,H) € L (k). This

means that fetP

(w.1.2) T(s) = H(s'rn—r)* e

o1, equivalently

(+.1.3) A - wrivle, 1=1,2,3,...

A necessary and sufficient condition that T(s) be realizable by a system of
d-mension n is that the associated Hankel matrix h(A) of the sequence

- (AI'AZ‘ A3,...) be of rank < n. Here h4) is the block Hankel matrix

AL Ay Ay
Ay Ay

h -

o) Ay

Mare precisely we have the partial realization result which says that there
_ co,cr
ezist F,G,H € L (k) such that A = Hr' lG iff rank h () = rank h ol)
n+
waere h, Gﬂ) is the block matrix conststlng of the first i block rows an; the

forst i block“columns of hid).

= n,
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Now suppose that rank hid) is precisely n, and let F,G,H realize A

We have

H

hd) = | HF

l‘ll“2

.

(GEchrch...)

and it follows by the Cayley-Hamilton theorem that R{F,G) and Q(F,H)

are both of rank n so that L = (F,G,H) is in this case both cr amd co.
Finally we recall that if [ and ' are both cr and co and both

realize-‘. then I and I' are isomorphic, i.e. there is an 5 € GLn(k)

such that E' = is_
For all these facts,cf. e.g. [KFA) or [Hazl].

6.2. A realization algorithm.

Now let 4 be such that rank hed) = n. We describe a method for

calculating a L = (F,G,H) € L;rr’lc;(k) which realizes of. By the above
L] »

we know that there exist a nice selection a. ch a the set of cwlumn
L]

indices of

Al Az . An+l
(6.2.1) Az
hn+l @) = :
Am—l - A211+1

and a nice selection @, € Jp n' the set of row indices of hnﬂ(ﬂl}, such

that the n n matrix hn+| d)a has rank n. Here hmld)u a

r'c

,0
r’c ; .
whose index ig not in o

chtained from hn+1u) by removing all Irows
and all columns whose index is not in a. We now describe a mettcd for

finding a L = (F,G,H) € L:lr;cz(k) such that ¥ realizesof and suct that
R(F,G), =L . (Such al is unique).

<

is the matri.

&

ul 9

-

Let v be Lhe

¥
hnﬂ(d)Yr consists of the first row of blocks in (6.2.1).

subsel of .lp n ol the Lirst p orow indices, ko that

Now let

(6.2.2)

“)Y,-a

l1n+1
c

Now let

(6.2.3)

a

5 = hn+l“)a .
T "¢

. -1
and define R = 8" (h ¢ ). Then my -
C

In and we let F,G be “he
unique nxn and n*m matrices 1;1.14:}: that

(6.2.4) R(F,G)} = R'
Recall, cf.3.2,7above that the columng of F and G can be simply read of
from the columns of R', being equal to either a standard basis vector or
equal to a column of R',

For' every field k and each Pair of nice selections
a, C'Jm,n’ o, CJp,n let H(ur.ac)(k) be the space of all sequence aof
pXm mal:rxcesa‘ - (Al’ ey A2n+l) such that rank(hnﬂﬂ)) = 1 and

rank(hml“)“r,uc) = n. Then the above defines a map

(6.2.5) Ta,,a): W ,a ) (k) - L;r.c;(k)

1nI
6.2.6, Lemma, If k =R or T the map T(ar,ac) is analytic, and algebraic-
geametrically speaking the T(ur,u":) define a morphism of schemes from

the affine scheme H(ar,ac) into the quasi affine scheme INLERC
m,n,p

Lemma. Let W(k) be the space of all sequences of pxm matrices
A - (AI’AZ""'A2n+I) such that rank(hnﬂﬂ)) = n = rank hn(d). Let

h: LEF»c0
m,n,p

6.2.7,

(k) + W(k) be the map h(F,G,H) = (HG,HFG, ... HF’"G). Then
hoe T(ar'ac) is equal to the natural embedding of H(ar,ac)(k) in W(k).
(1.e. hc'r(ur,uc) is the identity on w(ar,ac)(k).

Proof. Let o € H(ur.uc) (k). By partial realization theory (cf. 6.1 above)

we know that o is realizable, say by I' = (F',G',H"), Then because

JAe W(a ,0_)(k; we have that 5 = R(F',6"), 1is invertible. Let

c
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57! -1
Te (F,G,H) =8'% = (8 F'S, 5 G',H'S).

R(F,G) - In. Now observe that the realization algorithm described above
a

simply fecalculates precisely these F,G,H from .

-1 Then I also realizes ol and

6.2.8. Corollary. Let k = R or L and let h: M;f;f:(k) + W(k} be the map

induced by h: L (k) » W(k).

Then h is an isomorphism of analytic
™, 1, P

manifolds.

€9:CF | 4 induces an isomorphism of

6.2.9. Corollary, More generally h: L
- ’
+ W, In particular if k is an algebraically closed field
m,n,p ) i
then we have an isomorphism of the algebraic varieties M {k) and

m,n,p
W(k}.

schemes M

6.3. Realization with parameters.

Let Ta(s), a € VY be a family of transfer

6.3.1. The topological case.
functions depending continucusly on a parameter a € V., For each a g V
8(s) - A'(a)c_l + Az(a)s—2 +
the rank of the block Hankel matrix of L{a) = (Al(a),Az(n),...). The

write . and for each a let n{a) be
question we ask is: does there exist a continucus family of systems
£{a) = (F(a),G(a),H(a)) such that the transfer functionof I(a} is

T (s) for all a.
bounded as a function of a. Simply take a long enough chunk of the o (a)

The answer to this is definitely yes provided n{a) is

for all a and do the usual realization comstruction by means of bluck
companion matrices and observe that this is continuous in tie Ai(a).*)
The question becomes much more delicate if we ask for a continuous family
of realizations which are all cr and co. This obviously reduires that n(a)
is constant and provided that the space V is such that all n = n(a)
dimensional bundles are trivial'this condition is also sufficient.

Indeed if n(a) is constant then the o (a) determine a continuous map

V + WR) and hence by Corollary 5.2.8 a continuous map V + MO

m,n

Pulling back the universal family over M;t;fgdk) to a family ;vés v

gives us a family (E;F,G,H) over V such that the tramsfer function of "
system over a € V is Ta(s) for all a. The bundle E is trivial by hypocte:
so there are continuous sections €y aves B F V¥ + E such that
[el(a),l..,en(n)] is a basis for E(a) for all a € V. Now write out the
matrices of F,G,H with respect to these bases to find a continuous Eamilv

F{a), which realizes Ta(s) and such that Z(a) is cr and co for all a.

*) True if V is paracompact and normal, one needs partitions of unity
(in any case, 1 do) to find continuous T.{a} such that B al = Tan+
vhere B is the i-th block column of hbdj

om iransfer function T(s

£3.2. The polynomial case.

Let k be a field and k its algebraic closure,
e.g. k =R and k = L. Let Tx(s) be a transferfunction with coefficients
i1 k[xl,...,x ], where Xy --.y X_ are indeterminates. We ask whether
tlere exists a realization of T{s) over k[x].....x 1, that is a triple of

matrices (F,G,H) with coefficients in k[xl,...,x ] such that

Ti(s) = H(sI-F)

a1y minimality conditions on the realization (provided n(xl,.. ,x ) the

G. Again the answer is obviously yes if we do not require

d2gree of the Hankel matrix of T{s) is bounded for all (xl,...,x ) € k9.
Now assume that n(xl,... Xy ) is constant for all (xl....,x ) € ¥,
Taen (xl....,x )P+ﬂ*(x!, ...x ) defxnes a morphism of algebraic varieties
' + W(k) and hence by Corollary 6.2.9 a morphism k7 + Hirncg( ). Pulling
back the universal family by means of this morphism we f1;d.a family
13;F,G,H) over kI wh1ch is defined over k because the morphism k% + Wik)

Cr,co

zad the 1somorphxsm\ﬂ (k) are defined over k., Thus I is defined over k

and by the Qulllen—Suslxn theorem E is trivializable over k. Taking the
cerresponding sections and writing out the matrices of F,G,H with respect
ts the resulting bases we find an F,G,H with coefficients in k[x|,...,x 1
vhich realize T (s) for all x € kq i.e. such that T (s) = H{s8I-F) lG.
Fereover this system (F,G,H) is cr over k[x],...,x 1 (meaning that

RF.G): klx),...,x ](“‘”“'»k[x ..,xq] .

and even stronger 1ts dual system is also cr {i.e.

is surjective); it is also co
(F,G,H) is split
in the terminology of [So 3].

6.3.3. Realizatipn by means of delay-differentiable systems,

Let L = (F(o .,0 3, G(c .,0 Y, H(U . .U )) be a delay
d:fferential system thh q 1ncommensurab1e delays. Here o
tte delay operator 0 f(r) = f(t-a,), cf. 2.3

Tte transfer function of I is then

stands for

above for this notation.

-a

T(3) = Gle - !

- 4 ))_IH(e —

(v.3.6) 9 y(aI-F(e

wiich is a rational function in s whose coefficients are polynomials in

-als ~-a s
a

2

LA
Now inversely suppose we have a transfer function T(s) like (4.3.4)
ard we ask whether it can be realized by means of a delay-differential

switem 5{g). Now if the ai

-3,(s) -a,s
s,e |, L, e O

are incommensurable then the functions
are algebraically independant and there is precisely

;UI.....Oq) whose coefficients are polynomials

lS ~a s ‘318 -8 _8 —a,.s —-a

s

9



~a s -a s
ing | ...,Uq'such that T(s} = T'(s,e ! seees® T}, Thus the prcb‘lerfx is
mathematically identical with the one treated just above 6.3,2, In mssing
let us remark that complete reachability for delay-systems in the semse of
that the associated system over the ring m[ol,...,oq] is required to be cr
seems often a reasonable requirement, e,g. in connection with pole placement,

cf. [S0.1] and [Mo].

7. THE "CANONICAL" COMPLETELY REACHABLE SUBSYSTEM.

7.1, f for systems over fields. Let £ = (F,G,H) be a system over & field
k. Let X°F be the image of R(F,C): k¥ kn, r = m(n+l). Then obvious .y
F(xc’) [ xcr. G(km) [ xcr’ 80 that there is an induced subsystem

% - (xcr;F',G’,H') which is called the canonical cr subsystem of Z‘ In
terms of matrices this means that there is an 5 € GLn(k) such that §°

has the form

s {Gl Fll FlZ

(7.4.1) E -{ R ' (H! H,) ]
(¢] 0 F22
with (FII’GI'HI) - Ecr' the "canonieal" cp subsystem. The words Kalman
"decomposition" are also used in this context. There is a dual construction
relating to co and combining these two constructions "decomposes" the
system into four parts,
In this section we examine whether this construction can be

globalized, i.e. we ask whether this construction is continuous, and
we ask whether something similar can be done for time varying linear

dynamical systems,

7.2. L% for time varying systems. Now let I = (F,G,H) be a time vary.ng
system, i.e. the coefficients of the matrices F,G,H are allowed to vary,
say 3 t1("**‘u. with time. For time varying systems the controlabil:ty

matrix R(I) = R(F,G) must be redefined as follows

(7.2.1) R(F,G) = (G(OY} G(1)} ... {G(n))
where
(7.2.2) GO = 6 G(i) = Fo(i-1) - &(i-1)
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where the * denotes differentiation with respect to time, gs ugual, Note
that this gives back the old R(F,G) if F,G do not depend on time. The
system is said to be cr if thig wmatrix R(I) has full rank, Thege seem
to be the appropriate notions for time varying systems; cf, e.g. {We, Haz5]
for some supporting results for this claim.

A time variable base change x' = Sx (with § = 8(t) invertible for all t)
changes I to f5 with

(7.2.3) . (srs™ 857! 5o us7 Y
Note that R(I) hence transforms as
(7.2.4) R(ZS) - sr(p)

7.2.5. Theorem. Let [ be a time varying system with continuously varying
arameters. Suppose that rank R(E} is constant as a function of t, Then
there exists a continuous time varying matrix S, invertible for all t,
such that Es has the form (7.1.1) wicth (FII'GI’HI) cr.

Pracf. Consider the subbundle of the trivia) (n+1)m dimensional bundle
tver the real line generated by the rows of R{(I}. This is a vectarbundle
tecauge of the rank assumption, This bundle ig trivial. It follows that
there exist r secticns of the bundle, where ¢ = rank R(I), which are
tigearly independant everywhere, The continuoyg sections of the bundle are
of the form Zai(t)zi(t). where zl(t). - zn(t) are the rows of R(I) and
tae ai(t) d4re continuous functions of t. Let bltt), vy br(t) be the

r everywhere lineacly independant sections and let

bj(t: - Eaji(t)zi(t), i=, ..., rii=1, ..., o,

Let E' be the r dimensional subbundie of the trivial bundle E of

dimersion n over the real line generated by the r row vectors

aj(t) - (ajl(t)’ cey ajn(tn. Because the quotient bundle E/E' is trivial
Ve can complete the r vectors a](t), feny ar(t) to a system set of n
vectors al(t). reny an(t) such ‘that the determinant of the matrix formed
by these vectors is nonzere for all t, Let Sl(t) be the matrix formed by
these vectors, then SlR(E) haa the property that for all t its first r

Tows are linearly independant and that it is of rank r for all t. It follows

that there are unique continuoys functions cki(t) sk=r+l, ..., pia= | IO



58

such that z;(t) =L cki(t)zi(t}, where zg(t) is the j~th row of S|R(I).
Now let

5,(t) =

-C(t) 1

Then S{t) = Sz(t)sl(t) is the desired transformation matrix {(as follows
from the transformation formula (7.2.4)).
Virtually the same arguments give a smoothly varying S(t) if the
coefficients of L vary smoothly in time, and give a polynomial $(t) if .
the coefficients of [ are polynomials in t (where in the latter case we
need the constancy of the rank also for all complex values of t and use

that projective modules over a principal ideal ring are free).
7.3. 2T for families. For families of systems these techniques give

7.3.1. Theorem, Let E be a continuous family parametrized by a contractible
topological space (resp. a differentiable family parametrized by a contractible
manifold; resp. a polynomial family). Suppose that the rank of R(E) is

constant as & function of the parameters. Then there exists a continuous

(resp. differentiable; resp. polynomial) family of invertible matrices

S such that Es has the form (7.1.1) with (F ,HI) a family of cvr systems.

11°%1
The proof is virtually the same as the one given above of theorem
7.2.5; in the polynomial case one of course relies on the Quillen-Suslin .
theorem [ Qu; Sus] to conclude that the appropriate bundles are trivial.
Note also that, inversely, the existence of an 5 as in the theorem implies
that the rank of R(I) is constant.
For delay-differential systems this gives a "Kalman decompositior’provided
the relevant, obviously necessary, rank condition is met.
Another way of proving theorem 7.3.1 for systems over certain rings rests
on the following lemma which is also a basic tool in the study of isomorphisms
of families in [HP] and which implies a generalization of the main lemma

of [0S] comcerning the solvability of sets of linear equations over rings.

7.3.2. Lemma. Let R be a reduced ring (i.e. there are no nilpotents ¢ 0)
and let A be a matrix over R. Suppose that the vank of A(p) over the quotient
field of R/r is constant as a function of p for all prime ideals ) Then

Im{A) and Coker{A) are projective modules,

o
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Now let I over R be such that rank R(Eﬁr)) is constant, and let R
be projective free {i.e, all finitely generated projective modules over R
are free), Then Tm R{I) < R" is projective and hence free. Taking a basis
of Im R(I) and extending it to a basis of all of Rn, which can be done
because R%/Im R(E) = Coker R(L} is projective and hence free, now gives the
degired matrix S,

There is a complete set of dual theorems concerning co.

7.4, £°7 for delay differential systems. Now let L{o) = (F(0), Glo), H{0))

be a delay differential system. Then of course we can interpret I as a pol-
ynomial system over R[g} = m[UI""'Ur] and apply theorem 7.3.1. The
hypothesis that rank R(Z(g)) be constant as a function of g
(including complex and negative values of the delays) is rather strong
though.

[+ vrer G

Now if we assume that all functions involved in
(7.4.1) k(t) = Flg)x(t)} + G(aluft), y(t) = H{g)x(t)

are zero sufficiently far in the past, an assumption which is not unreasonable
and even customary in this context, then it makes perfect sense to talk about
tase changes of the form

(7.4,2) x' = S(g)x

where 8(g) is a matrix whose coefficients are power series in the delays
Cye eses O, and which is invertible over the ring of power series
}I[ol,...,cr]]. Indeed if ula(t) - a(t-al), a > 0 and the function B(t) is
2ero for t < —Nu| then

> i NN .
('Zobicl)P(t) = ifo biB(t-xai)

1=

vkere N' is such that t < N'al.

Allowing such basis changes one has
7.4.3. Theorem. Let I{0g) be a delay-differential system. Suppose that
rank R(E(U)) considered as a matrix over the quotient field k(cl""‘cr)
is equal to rank R{E{0))} (over R) where L[{(0) is the system obtained from
{0 by setting al_ o equal to zero. Then there exists a power series

bage change matrix § € GLHUR[[O]]) guch that ES has the form (7.1.1)
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with (Fll.cl,ﬁl) a cr system {over R[[al]).

The proof is again similar where now of course one uses that a
projective module over a local ring is free.

Note that I(0) is not the system obtained from L(g) by setting
all delays equal to zero. For example if L(0) is the one dimensianal,
one delay system ®(t} = x(c) + 2x(e~1) + u(t) + u(t-2),

y{t) = 2x(z) - x(t-1), then E(0) is the system x(t) = x(t) + ulty,
y(t) = 2x(t) obtained by removing 211 delay terms.

8. CONCLUDING REMARKS ON FAMILIES OF SYSTEMS AS
OPPOSED TO SINGLE SYSTEMS.

=9 . (o 5 (o]
8.1. dability of th duli spaces M nd M . One
{. Non extendability o e moduli spaces non.p & 0, p

aspect of the study of families of systems rather than single systems
is the systematic investigation of which of the many constructiols
and algorithms of systems and control theory are continucus in te
System parameters (or more precisely to determine,so to speak, thz
domains of continuity of these constructions). This is obviocusly
important if one wants e.g. to execute these algorithms numericakly.

Intimately (and ¢bviously) related to this conmtinuiry probl:m
is the question of how a given single system can sit in a family of
systems (deformation (perturbation) theory). The fine moduli spa‘es
MeT and N°° answer precisely this question {for a system wiich
m,n,p m,n,p
is er or co): for a given cr (resp, c¢o) system the local structure of
M @ (resp. H°®  (R)) around the point represented by the ziven
m'“!p mlnlp 3
system describe exactly the most complicated family in which the given
system can occur {all other families can up to isomorphism be uniquely
obtained from this one by a change of parameters), Thus one may well be
interested to see whether these moduli spaces can be extended a >it.

. cr co
In particular one could expect that M R) and M ) could be
p p min!p m'n.pm

combined in some way to give a moduli space for all systems whic: are

¢r or co. The following example shows that this is a bit optimis:ic.

B.1.1. Example, let I and I' be the two families over € (or R) given

by the triples of matrices

L=l (; :) : (;} ), T -(l: ‘:) . ‘3) . (L)

&
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L is ce everywhere and cr everywhere but in g = 0, and §' ig cr everywhere
and co everywhere but in g = 0, The systems L(g) and I'(0) are isomorphic
for al. o # 0, but L(0) and I'(0) are definitely not isomorphic, This
kills &1l chances of having a fine moduli space for families which
consist of systems which are co or er. There cannot even be a coarse
moduli space for such families,

Irdeed let F be the functor which assigns to every space the set of
all isamorphism classes of families of ¢r or co syatems. Then a course
moduli space for F(cf. [Mu) for a precise definition) consists of a
space M together with a functor transformation F(-) 4 Mor(-,M) whi. . isg
an isemorphism if - = pt and which also enjoys an additional universality

pProperty. Now consider the commutative diagram

FEN (o)) + Mor L~ {o},M)

L]

F€) — Mor(c,M)

| 1

F({o}y == Mor ({o},M)

Consider the elements of %(C) represented by T and L', Because I and L'
ave isomorphic as families restricted to €N {0} we see by continuity

(of the elements of Mor (€,M)) that a(f) = a(l'), Because £(0) and

L'(0) are not isomorphic this gives a contradiction with the injectivity
of H{0}) + Mor({0},m).

Coarse moduli spaces represent one possible weakening of the fine
woduli space property. Another, better adapted to the idea of studying
families by studying a maximally complicated example, is that of a versal
deformation. Roughly a versal holemorphic deformation of a system I over
€ is a family of systems L(0) over a small neighbourhood U of 0 (in
Bome parameter space) such that IZ{(0) = I and such that for every family
L' over ¥ such that E'(0) = £ there is some (not necessarily unique)
h?lomorp1ic map ¢(i.e, a holomorphic change in parameters) such that
$'L = L' is a neighbourhood of 0,

For square wmatrices depending holomorphically a parameters (with

similari:y as isomorphism) Arnol'd, [Ar], has constructed versal deformations
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and the same ideas work for systems (in any case for pairs of matrices

(F,G), cf. [Ta 2]).
8,2, On the geometry of M;r;c;‘ From the identification of systems poirt
1] »
of view not only the local structure of Mioac;
* L]
its global structure cf, also [BrK] and [Haz 8], Thus for example if
co,ct
1,n,! .
some of these components are of rather complicated topological type,

(R) is important out also

m=a | =p, M (R) = Rat({n) decomposes into (n+l) components, and

[Br], which argues ill for the linearization tricks which are at the

back of many identification procedures. One way to view identification

is as finding a sequence of points in Mco;crum) as more and more data come
» ’

in. Ideally this sequence of points will then converge to something.

Thus the question comes up of whether H;o'crﬂk) is compact, or

» »
compactifiable in such a way that the extra points can be interpreted
. o,c
as some kind of systems. Now MEO EF
* m‘n,P . : 4 I .
compactification question. There does exist a partial compactification
= . . . - cr,co
M such that the extra points, 1.e. the points of M ~M?
Wy, m,n,p m,n,p
correspond to systems of the form

{R) is never compact. As to the

(8.2.1) X =Fx +Gu, y = Hx + J{D)u

where D is the differentiation operator and J is a polynomial in D. This
seems to give still more motivation for studying systems more general
than ¥ = Fx + Gu, y = Hx [Ros), This partial compactification is also
maximal in the sengse that if a family of systems converges in the sensa
that the associated family of inmput/output operators converges (in the
weak topology) then the limit input/output operator is the input/output
operator of a system of the form (8.2.1), Cf. [Haz 4] for details,

8.3. Pointwise-leocal-global isomorphism theorems. One perennial questioan

which always turns up when one studies families rather than single objects
is: to what extent does the pointwise or local structure of a family
determine its global properties, Thus for square matrices one has e.g.
the question studied by Wasov [Wal, cf. also [0S]: given two families of
matrices A(z), A'(z) depending holomorphically on some parameters z.
Suppose that for each separate value of z, A(z) and A'(z) are similar;
does it follow that A(z) and A'(z) are similar as holomorphic families.
For families of systems the corresponding question is: let I(g)

and L'(0) be two families of systems and suppose that IZ(g) and I'(0) zre
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isomorphic for all values of 0. Does it follow that [ and L' are
isomorphic as families (globally or locally in a neighbourhood of every
parameter value G}.

Here there are (exactly as in the holomorphic-matrices-under—
simi_arity-case) positive results provided the dimension of the
stabilization subgroups {§ € GLnOR)|E(o)S = I{c)} is conatant as a
Zunction of o, cf, [HP].
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ON FAMILIES OF LINEAR SYSTEMS: DEGENERATION PHENOMENA
by

Michiel Hazewinkel

1, INTRODUCTION.

This paper is concerned with an aspect of the theory of families
of linear dynamical systems rather than single systems, viz. degeneration
phenomena. As such it is part of a general program (briefly discussed
in [Haz 3]) which consists of trying to carry through for families of
systems (and hence systems over rings) all the nice results and
constructions which one has for single systems over fields (or finding
out how and why these results and constructions break down in this more
general setting). Thie iucludes 2 systematic investigation of which

constructions are continuous in the system parameters; that is, which

constructions and calculations are stable (more or less) with respect to small

perturbations or errors in the system parameters, a topic which obviously
deserves at least some attention in & world full of uncertain measurements.
And in turn this topic includes trying to find out what may happen to
systems and associated objects whenm certain parameters go to zero

{or infimity, or ...), which is the topic of this paper.

Still more motivation for studying families rather than single systems
can be found in [Haz 3] and some results concerning other aspects of the
theory of families (then the degeneration phenomena discussed below) can be
found in [Haz 4] (fine moduli spaces, continuous canonical forms) and
[RF] (pointwise-local-global isomorphism problems).

Here we discuss degeneration phenomena. That is, suppose there is

given a family of systems
(1.1} E{c): % = Fx + Gu, y = Hx + Ju

where the matrices F, C, H, J depend on a parameter ¢. What can be said

about the limit as c¢ + =, For example let Vc be the input/output operator
of L{c)

t
(1.2) VC: u(t) =+ y(t) = f HeF(t-T)Gu(T)dT
0



and suppose that as ¢ +  the operators Uc converge (in some suitable
sense) to some operator V. What can be said about V? E.g. can V still be

viewed as the input/output operator of some sort of processing device?

There are a number of reasons for being interested in such
degeneration phenomena, some of which can be characterized by the key
words or phrases: identification, high-gain feedback, almost F mod G
invariant subapaces (and almost disturbance decoupling), dynamic
observers (and invertability),

b.3. Identification. Suppose we have given some sort of input/output
device which is to be modelled "ag best as possible” by means of a

Linear dynamical system (1.1) of dimension n. Now if S € GLnOR), then

S - -
a system L = (F,G,H,J) and I” = (SF§ I,SG,HS I,J) have the ssme inputIOutput‘).

opérator. Let M be the space of orbits of thig action of GL_(R) on the
space L of all n-dimensional systems (with a given number o? inputs and
outputs). The best we can do on the basis of input/output data alone

is to identify the orbit of [ (and even that is not true if T ia not
completely observable and completely reachable, a fact which can be
expected to cause a fair amount of extra trouble}. Thus we are tryimg
to identify a point of M and we can picture identification as finding
(or guessing at) a sequence of points in M representing better and hetter
identifications as more and more data come in. From this point of view
the question naturally arises. Does a '"converging" sequence of points
in M necessarily have a limit in M. The answer is no. It is perfectly
possible for a sequence of linear dynamical systems (1.1) to have a
limiting input/output behaviour which is not the input/output behaviour

of any system like (1.1) as the following example shows
(1.4) 2o g = o s Ouyy = (400
{one input/one output, dimension 2). Let U be a smooth bounded function

on R with compact support in (0,2), then if Y. = V.u a little partial

integration shows that 1lim yc(t) - g?—u(t). uniformly in t on bounded
c-’W

. d .
t intervals, and dc cannot possibly be the input/output operator of a
system (1.1}, (e.g. because gf is not bounded on smooth bounded

functions in [O,U while all the V2 are bounded operators).

0e

The presence of these holes is by no means the only difficuley
in identification caused by the nontrivial topology and geometry of M.
For some more remarks concerning this topic cf. [Haz. 2] (though the
point of view I took there is still a good deal too optimistic) and
also [BK].
1.5, High-gain feedback. Consider a system with output feedback loop

{t.6} X=Fx+Gu, y=Hx, u=Ly

What happens when L or certain entries of L go to infinity? For instance
in [YKU] it is shown in the case of a large scalar gain factor L = g
and under some additiomal hypothesis the system (1.6) can be transformed

into the standard singular perturbation framework
. . -1
(7)) % = Fiyxg + FioXy, by = Fyux + Fooky, U= g

(with F21 = 0 in the case considered in [YKU], so that there is a
separation of slow and fast modes; more precisely there is a fast
subsystem which in the setting of [YKU] is asymptotically stable
(if v is small enough) feeding into a slow system)., Of course setting
U =0 in (1.7) yields little information about (1.7) for small y and
the idea is rather to study (1.7} and (1.6) as perturbations of the
limit behavicur as p goes to zero or various coefficients of L go to
infinity. In the setting of [YRU] the limit input/output operator
is the zero operator, but in general this need not be the case, and
one may hope that on the basis of some knowledge about what limit
operators can arise it will prove possible to obtain some results
on the lines of [YKU] and related papers in wore general situations.
For some motivation for studying (very) high gsin feedback cf.
[YKU] and some of the references therein, cf. also below in 1.8.

1.8. Almost F mod G invariant subspaces and almost disturbance decoupling.

An F mod G invariant subspace for = Fx + Cu is a subspace V of the
state space such that one is in it one can stay inm it. As is wellknown
(cf. [ Won]) these subspaces "solve" the disturbance decoupling problem.
An almost F mod G invariant subapace is one such that once one is im it
one can stay arbitrarily close to it, and these spaces “solve" an
almost disturbance decoupling problem, which turns out to be important

especially when the disturbances (partiy) come in on the same channels



as the inputs (cf. [Will, Wil2)),

A subspace V of dimension r is almost F and G invarisnt if and
only if there is for every € > 0 a feedback matrix Ke such that
(F+GI(E) V is within € of V (in a suitable sense), and if V is almost
F mod G invariant but not F mod G :'mvm-ianc,l(E will not remain fimite
4s € + 0. Thus implementing a decoupling by means of an almost F mod C
invariant subspace will give rise to a family of systems.

(1.9) X = (F+GKE)x +Gu + G'v, y = Hx
where Ke does not necessarily remain finite as £ + 0.

1.10. Dynamic observers. In [BM1), [BM2] Baaile and Marro congider '}.

the problem of constructing observers for the state of a system (1.1) '

when the inputs are unkown. For this it is advantagous to have
differential operators {cf. loc. cit) and these, as is suggested

by the example (1.4), may be approximated by systems (1.1) {of
comparable rank), thus giving us arbitrariiy good approximate
observers of the form (1.1).

1.11. As we shall see the limit operators as ¢ + = of the input/output
operators Vc of ; family of systems I(c) are necessarily of the form
vz + L(D), where I is a system (1.2) (and Vz its input/output operator)
and where L(D) is 8 polyncmial matrix (with constant coefficients) in
the differentiation operator D = %?. I.e. the possible limit operators
are the input/output operators of systems of the type

ne

(1.12) k= Fx + Gu, ¥ = Hx + J(D)u

where J(s) ie a matrix of polynomials, argueing that this wider class
of systems is in some ways a more natural class to study then the
clasa of systems (1.1), cf. also [Ros1,Ros2].

2. STATEMENT OF THE THEOREMS.

The first thing to do is to specify in what sense we shall understand
the phrase "the family of input/output operators Lc converges to the
operator L as c » =", And, in turn, this means that we must describe

the spaces of Functions between which these operators act,

(&

2.1. The spaces

all smooth functions zi

0) ot
‘F(C) ®") Lnﬂ*g(mr). The elements of $( R ) are

R + RF with suppert in (0,%) and of no more

i is as usual
than exponential growth. Here the support of a function ¢ 14

0. Thus
defined as the closure of the set of all t € R where z(t) ¢

> 0 such that
2 E'*'F(D)‘.Rt) iff there are an € > 0, an M > 0, and b >

z(ty » 0 for t < € and

(2.2) |1ePEz(e)|] < M for all ¢

(Both £ and b may depend on the function z)}. This class of functions
0

. in (0,
includes the smooth functions of slow growth with support in (0,
(cf. [Ze, chapter 1v}), which space in turn contal
: @ .
% ®") of smooth functions with COTP?“ support in (0,)
° i P mty i aid to converge to
A sequence of funtions 2z, EF M) is 8 g

z € T (®F) if there is a b such that

ns the subspace

lim sup 1] Pz (0)-2z(en|] = 0
¢t

(2.3
Note that (2.3) in any cas¢ implies that the functions zc(t)
bounded t intervals.

niformly in t on ' .
o e |"), which is in fact the inductive

o}
This defines a topology on ‘F( 1133 -
nductive system of normal topologica

1imit topology defined by the i
vector spaces

. ok (0) Ty L OV GTY, b > b
(2.4) FO @, iy o Ty ®) T ®D, b2

where for a given b €R

© gr ol = el <=
(2.5) FOE) - (2 € F @D st;pHe 20| b

{b'-b)t ()
i is defined by z(t)r+ e z(t).
with the norm ||z||, and vhere i, .. 18

Th pace # tries hard to be com‘ple te 1n he sense © the
a Cﬁ ) t f
E B

following lemma.

€
.b6. Lemma, Let n > 0 and let zc -
o =) for all c. Suppose that there is a b ER

1(0) ") be a sequence of

functions with support in [n,

i uch that
guch that for sll € > O there is a c 8



(2.7 sup []e™P (2 (-2 O] < e for all ¢,et > ¢
t |4 < - g

Then the Z. converge to a function gz E‘F(o) mr) with surport in [n,«)
a8 ¢ + @ (where the convergence i in the sense of (2,3)).
Froof. Let z(t) be the peintwise limit of g

c(t) a8 t + o (which clearly
exists by (2.7), Then aupp z(t) < [n,

«) and zc(l:) converges to z(t)
uniformly on bounded t intervalsg (again by (2.7)). 1t foliows that
z(t) is smooth. Take € ® | and let e, be such that (2.7) holds for this
E with e, = cl. Let zcl(t) E?é‘:)ﬂkr). We can assume l:nl 2 b. Then,

using bl >b,
=b t
|

Chaosing ¢' depending on t such that |]zc.(t)-z(t)|] <}

it follows
that z{r) €$g°) ®F) c‘F(c')URr), proving the lemma,
1

Just what b € R is used in (2.3) is largely irrelevanc, Firstly if
(2.3) holds for a given b then it still holds with b replaced by b' > b.

Secondly if (2.3) holds and 2 €5 ®") then 2, EFPRY) for a1l

large enough ¢ where b" = max(b,b'). The converse of this:

"if z (1) €$1§?)0Rr) for all large enough c then z(t) E"ﬁ;'ﬂ)ORr) with

b" = max(b,b')" follows as in the lemma. Thirdly and lastly it does not
teally matter if one uses "too big a b" in (2.3), Indeed, z(t) as the
pointwise limit of the zc(t) is of course independant of b, What (2.3)
does is to require a certain mild uniformity about the way the limit

is approached. (It is, incidentally, perfectly possible for g sequence

of functions zc(t) €$(°)(mr) to converge to zero when considered as

elements of thE?) URr) for b' > b while not converging when considered

48 4 Sequence in ‘féo) GRr); take for exampl : zc(t) =0 for ¢ e,
b

zc(t) - ebt - et for ¢t €, suitably smoothed, )

2.8. The spaces WﬂRr). For the purposes below the spaces‘#o)m!r)

are still too big ¢ be suitable as in

shall want differentiation”

Put spaces (essentially because we
to be a continuous operator). Cn the other

hand ‘FOGRr), while eminently suitable as ap input function space is not
large enough to accommodate output functions. As we shall need to be able

to use the cutputs of one dynamical System as the inputs of another,

-b.t - - U
e ol e s, @) . RUDSCI WO PISITRRN.
1 [+ c

00

& )

we need an intermediate space, A suitable one is
2.9 F&) - (z e FO®N [0 cFOR) for wir k= 0,1,2,...)

: T
where z(k) denotes the k-th derivative of z. P(I:)gwe(t)ﬂk } the
topology determined by z, > zasc+ > iff L for all
i + ®
k»0,1,2,... in $(°)0Rr). Thus the family z, converges to z ae c

k
iff there are real numbers bo'bl"" such that for all

. —bk:
lim sup e
cy t

28 - :® o)) -0

When dealing with systems of dimension < n only,one can also

work with F M RT) o (4 Eﬁ(o)(ﬂ)l LY E‘F(O)GR). k= 0,1,...,n+i},

2.10, Convergence of input/output operators. Now let I = (F,G,H,J)

be a linear dynamical system with direct feed through term

: o
2.y X=Fx+Cu, y=Hx + Ju, x €R", y €RP, u €
where F, G, H, J are real matrices of the appropriate dimensions
) . ]
{independent of t), Then the associated input/output operator is defined
by
; F(t-ﬂc (t)dt
(2,12) Vet u(t) = y(t) = Ju(t) + f He u
0
o - P). Then v,
Lee U= F&%, Y-Fah, U - F&™, Y - F &h e
is a continuous linear operator W —+ l} . Indeed if u € U is such tha
i lue
||u[|h < = and if b' > max{ReA,0} where A runs through the eigenvalues
of F then [|V W <o .
Thus iorrevery ;b> 0 there is a b' > 0, usually necessarily larger
a (o) gy ; o) P i ' depending on L.
than b, such that V[ maps ?b R into ‘Fb' (W ): with b. p I3 °
Thus, when dealing with families of systems one ts)practlcally force
o R Q) P ;
to use the union of the all che FIS )CRP), i.e. Y0Py, and if one '
would like differential operators to be continuous one is slmost obliged
to work with $0RP) and FM™). From now on we fix the dimensions m,n,p
of the systems (2.11) which we are considering, Let L denote the space
of all systems (2.11). I.e. L is the space of all real quadruples of
matrices (F,G,H,J) of the dimensions n x N, nXm pXn, pxm

respectively.



We shall use Lco' Lcr, LoCct

to denote the subapaces of

completely observable, (abbreviated co), resp. completely reachabl
e

(ct), resp. compl
. pletely reachable and com
pletely observabl
We now define "

2.13. Definition. The family of systems L{c)
—_— c

behaviour to an operator V iff for all u € U the functions V
converge to Vu in Y as ¢ + =,

Z(c}

L :

( ;t supp(u} = [n,») (such an n necessarily exists because

supp(u) « (0, and supp(u) is cl
osed by definition). Then
. 8 v
UPP Vg (o)t
(L{c)) converges with ioni ey
out menticning (or knowing) imi
the 1

The fantty oty 4 tmit operator V.

c

=
{n,=). It follows by lemma 2.6 that one can decide whether the

converges inm input/output behaviour iff there are

for every u € U a se
quence of
numbers bo,b],hz,... such that for every

€>0,k =0,1,2,... there is a c(e,k) such that

~b t
(2.14)  supfe “1okv - ok

u I £ie) " P Vgl < e if eet > elie)

where D is the differentiatio oper T = 1+ NYerge:
1ation erator D Thus i conver a
it" f (Z(C))

in i . .
n input/output behaviour (in the sense that {2.14) holds) then th
ere

i e .
5 a well-defined limit operator V. (This uses of course (cf. (2.14))

tha 18 a continuous opetrator u ad u . ether this limit operator
era

V is conti i i
ontinuous is unclear at this stage. (1t is though, as will b
. e

shown below in section §).

2.15. Differential operators.

o bl Let U and v be as above. Then a (matrix)
ential operator (in this paper) is am operator of the form

m
VD)t uleyes y(e), y;(ey = & vii (P ()
i=1

where v.. (D) i i i
ji } is a polynomial with constant real coefficients in D = d

E Ty poly mial (S) (
v of size X i
e lyno '} ] m) thus defines a continucus linear
2.16. The scalar cas €.
t e, If m= ] = P i.e if we are dEEllﬂs with one imput
]
and one output the main theorem of this paper says that

2.17. T
heorem, Let (I(c}) be a family of one input/ome output linear

dynami i i
y cal systems (2.11) of dimension < n converging in input/output
< u

bellaw.our to the oper tor V: u nd . Then there exist a stem
pera y y
s L

and a polynomial L(s) such that Vv = VZ + L(D}, where moreover

< L converges in input/output

1@

W

dim(L) + degree L(s) < n. It follows in particular that the limit
operator V is continuous. Inversely, if V is an operator of the form
Vo= Vg4 L(D) where L(s) is a polynomial of degree < n - dim(E), then
there exists a family (Z{c)) < 1%9+¢T such that I(c) comverges in
input/cutput behaviour to V.

In case one wants to restrict oneself to systems (2.11) with J = 0
the theorem remains essentially the same except that the essential
inequality dim(Z) + degree(L(s)) < u gets replaced by dim(Z) +
degree(L(s)} < ol (where by definition degree{0) = -§). This is
stated and proved (more or less) in [Haz 1] and the proof readily
adapts to a proof of the present theorem. In section 5 below a
different proof of theorem 2.17 is given which also covers the

multivariable case.

2.18. Degree of a matrix polynomial (differential operator).

Obviously if L(c) is a family of systems of dimension < n
which converges to the p x m matrix differencial operator L{(D) then
all the entries of L(s) have degree < n (by the result in the scalar
case). One might think that inversely every such operator arises

as a limit of systems < n. This ,however, is not the case as the

example.

0

o’

(2.19) L) -
shows. One shows readily by explicit calcula.ion that the operator
(2.19) cannot arise as a limit of one-dimensional systems. A more
sensitive definition of "degree" is meeded.

7.19. Definition. Let L(s) be a matrix polynomial. Then we define

(2.20) deg L(s) = max(degree{M))
M

where M runs over all the minors of L. This agrees with the MacMIllan
degree of a polynomial matrix, (lemma 4.10, vr cf. [AY, section 3.6,
properties 5 and 10).

2.2]. The multivariable case. In the case of more inputs more outputs

the main theorem now is precisely amalogous to theorem 2.17. T.e,



2.22. Thegrem. Let E(c) be a family of g dimensional systems with m

inputs and p outputs. Suppose that I(c) converges'in input/output

behaviour to the operator v: Y » 1 as ¢ + =, Then there exist

é@ system £ and a p x m matrix polynomial L{s) such that

Ve Vz + L(D) (so that V js continuous) apd moreover dim(I) + degree L(s) <m,
Inversely if V ig an operator of the form Vx + L(D) with

dim(E} «+ degree L(s) £ n, then there exists g family of completely

observable and completely reachable systems L(c) of dimension <n

which converges in input/output behaviour to V as ¢ » @,

The proof of the first half of the theorem uses the continuity
(in this case} of tha Laplace transforms and the upper semicontinuity g.
of the MacMIllan degree (theorem 4.16} and thus gives us (besides
lemma 4.10) yet another characterization of the MacMillap degree of
a matrix of rational functions,
2.23, Theorem. Let L(s) be a matrix of rational functions. Then the
MacMillan degree of L{s) is < n iff there exists a sequence Lc(s) of
Proper rational function matrices such that Lc(s) converges to L{s)
for ¢ + = pointwise in s for infinitely many values of g, Moreover
one can see to it that the poles of L.(s) fall into two sers one
equal (together with mulciplicities) to the set of poles # = of L(s)
while the remaining poles of Lc(s) all go to == a3 ¢ + =,
It is not true, however, that ope can always obtain L(3) as a
limit of the Lc(s) in the sens
that these matrices of rational functions define. This in fact orly ) .
happens when L(s) is itself proper.
To prove theorem 2.23 without the extra requirement that the
remaining poles of Lc(a) BO Lo —™ as ¢ goes to © jg quite easy
(Proposition 4.18). The extra requirement complicates things considerably
and T know of no direct proof except for certajn special, albeit

Beneric, cases. (Like "the matrix of coefficients of

miximal powers of g in each row is of maximal rank"). Another
corollary of the Proof of the second half of theorem 2,22 ig

2,24, Corollary. Let L(s) be a polynamial matrix of size p x m. Thep
L{s) has degree <n if and only if it can be obtained from the zero
watrix by means of the operations,

{i) addition of a matrix of constants
(ii) multiplication on the left by a nonsingular polynomial p x P
matrix of degree i

(iii) multiplication on the right by a nonsingular m x m matrix of

congtants

times an operation of tyne (ji}.
whereTﬂi?euffso?tcgg::enan g;slagous statement with right inatead

of left in (ii) and left instead of right in (iii), and slso an
analogous statement where in both (ii) and (iii) multiplications

on both sides are allowed.

3, ON LIMITS OF RATIONAL FUNCTIONS.

The degree of a rational function T(s) = q(s)-lp(s),
p(s), q(s) € k{s] with no common factors is equal to &(T) = max{&{p),5(q))
where the degree of a polynomial is defined as usual. We shall need
the following intuitively obvious fact, .
3.1. Proposition. Let Tc{s) be a sequence of rafionélifunctxona of
degree < n. Suppose that lim Tc(s) exists (and is finite) for
infiniézly many s. Then ©  there exists a rational fu?cfxon T(s)
of degree < n such that lim Tc(s) = T(s) for all but fl?ltely man¥ 8
{and if the Tc(s) and c‘?(s) are interpreted as functions L +~ TP (L)
then Tc(s) converges to T(s) in the compact open topology).

Proof. Write

p.{s) an(c)sn+an_1(c)sn-lt...+a|(c)s+ao(c)
c

(1.2 T (s} = RO bn(c)sn"bn“l(c)s“"q,_,,+b‘(c)s+b°(c)

2n+} s
and associate o Tc(s) the point ¥{c} € (C) with the homogeneous
is is well defined
coordinates (an,...,ao,bn,....bo). Note that this i
i i
because the coefficients of pc(s) and qc(s) aTe we . @
a common scalar factor. (This map is not continuous if the space
of all rational functions of degree < n is given the compact open
topology of maps € *-Pt(t); but it is continuous on the open subspace
of function of degree n, and on the subspaces of functions of fixed
degree i). . )
Let M C‘P2n+|(t) be the subspace of all points (xn,...,xo,yn,.... o
i e
€ P2“+](t) such that at least one y; is unequal te zero. Becaus

Pzn*l(t) is compact the sequence {{(c)} has limit points.



3.3, . i i infini
3. Lemma. If lim Tc(s) exists for infinitely many s then atl limit

c-m
points of the sequence {y(c)} are in M.

Proof. i
roof. Suppose that lim T.(5) = T(s) € €, and suppose that {p(e)}

fo

- . . In+l
has a limit point inPP (€} ~ M. Let this limit point be

x - i
(a ,....a1+l,1.0,...,0). Taking a subsequence we can assume that

{$(c)} converges ko x. For large enough ¢ we then have a;(e) 40
and multiplying beth P, (s) and q, (s) with a. ( ) -1 we cah assume that

ay (c) = I for all e¢. We then have for all ¢

(3.4) an(c)sn L (c)s1+l + si + a;_ (c)si-l+

eyl et ﬂo(c) =

= T a) (b (eds™ + ... 4 b (e))

with
ii: bj(c) =0, j=0, ..., n
(3.5) lim aj(c) =0, j =0, ..., i-l

C+m

lim aj(c) =- aj, i= i+, .y N

(sl

Taking the limit as ¢ + = in (3.4) and using the relations (3.5) one
finds because lim Tc(s) = T(3) # =

o

(3.6) ansn + ... +a si+| + si =0

and there are omly finitely many s for which this can hold. Thue there
can be no limit points of {P(c)} in P2n+l([) ~Mif lim T (s) exists
¢

oo

(and is finite) for infinitely many s.

The proof of proposition now continues ag follows, Let x € M cirznﬁltt)

X = (xn.....xo,yn,...,yo). Because at least one of the y, # 0 the
expression '

n
X 8 * ,,.+ x s¥+x
[+]

(1.7) T (s) = D !
X n
yns + Lt y]5+yD

' ®

is well-defined for all but finitely many s. Now let x € M be a
limit point of {y{c)}. Let i be the largest index such that Yy ¥ 0.
Multiplying all coordinates with y if necessary, we can assume
¥, - 1. Take a subsequence of {w(c)} which converges to x. For large enough
¢ we then have bi(c) ¥ 0. Multiplying both pc(a) and qt(s) with

-1 . .
bi(c) we then obtain sequence of rational functions.

a (c)ssn+ ces ai(c)s+a°(c)

3.8) Tc(s) » " T
bn(c)s + L.t 5% L4 bl(c)s+bo(c)

such that as ¢ » .
3.9 . + x,, b, + ¥, 3=0,1, ...
€3.9) aj(c) X J(C) i’ h| » D

It follows that lim Tc(s) = T (s) for all but fnitely many s, where the
cvo x
limit is a priori over the subsequence, In turn this says that

lim Tc(s) - Tx(s) for all but finitely many 5 of the infinitely
Lol o]
many s for which lim Tc(s) was assumed

to exist.

This holds for all limit points of {¢{e)}, hence if x' is a second
limit point of {Y(c)} then Tx(s) - Tx,(s) for infinitely many s so
that Tx(s) = Tx.(s) if both x,x' are limit points of {Y(c)}, and this

in turn says that lim Tc(s) - Tx(s) for all but finitely many s, where
c
now we are dealing with the original sequence {Tc(a)}. This concludes

the proof of the proposition (except for the last statement between
brackets which is easy because by the above the convergence

Tc(s) -+ Tx(s) really means that the coefficients, suitably normalized,
converge).

3.10. Corollary. (of the proof). Let T {s) » T(s) as ¢ + = and let

T (3} = q, (s)-lp (3), T(s) = q(s) (s) with no common factors.

Suppose that degree p (s) < n' for all ¢. Then degree p(s) < n'.

This follows xnumdlately because (using the motations of the proof)
after a suitable normalization and for ¢ large enough the coefficients
of P. (s) converge to the coefficients of P, (3) where 19 (s) is the
numerator of (3.7), and because q(s} 1p(s) = T(g) = T (s) =q, (s) Ipx(s)
where qx(s) is the dencminator of (3.7). So degree px(s) < degree pc(s)

for all large enough c. (Of course p_{s) and q_(s) may have common
& x %
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factors so that degree p(s) may be swaller than lim inﬂ(degree(pc{a)))).
e ond

4, ON THE DEGREE OF RATIONAL MATRICES.

Recall that the MacMillan degree §(T} of s matrix of rational
functions T(s) can be defined in a variety of ways ([Ka], [AV, section 3.5],
[Ros, section 3,4]). First let T(s) be proper, i.e, lim T(s) exiscs,

R S+
then §(T) » v(T), which is by definition the minimal dimension of a
realization (¥,G,H,J) of T(s). If T(s) is not proper write

(413 T(s) = T.(s) + T s+ Tzs2 * ..+ T, V(s) = Tla_]+ cee ¥+ Trs-r I.

, ¢
where T_(s) is the proper part of T(s)}. Then V(s} is alsc proper (in fact
strictly proper, meaning that lim V(s) = 0} and we define

B+

(4.2) G(T) = w(T_) + w(v)

This definition shows that if T(s) = T_(s) + T*(s), where T_(s) is
proper and T+(s) is polynomial then

(4.3) §(T) = ST} + 6(T)

(It does not matter how the "constant part" of T(s) is split up

between T_ and T). ! .
Another way to obtain §(T) goes as follows. (cf. [Kall). Let T(s)

be 4 p x m matrix of rational functions. For each m x p matrix of

constants K write
: -1
(4.4) det(Im + KT(s)) = byg(s) “ay(s)

where Im is the m x m identity matrix and a (s}, b (s) are polynomials
K K

without common factors. Let

(4.5) 6K(T) = degree(aK(s))

Then one has the proposition {(cf. [ Kal] )

(4.6) §(T) = max & (T) @
R K

We shall need a few elementary properties of §{T). If A and B are
matrices of constants such that AT(s)B is defined then (cf.[AV,(3.6.6))

(4.7 8 (ATB) < §(T)

{which is also immediately obvious from definition 4.2,
Now let T'(s) be obtained from T(s) by augmenting T(s) with

some rows and columns of constants. Then
(4.8) §(T') = &(T)

Thia is seen as follows. Let T{s) and V(8) be as in {3.1) and let
T'(8) and V'(s) be the analogous matrices for T'(s). Then if (F,G,H,J)
realizes T_(s) a realization for T'(s) is obtained by adding some
zere columns to G, some zero rows to H and by augmenting J with the
same rows and columns of constants as were used to obtain T'(s)
from T(s). Similarly a realization (FI’GI'HI’JI) for V(s) can be
changed in a realization of the same dimension for V'(s) by augmenting
G, with zero columns, HI with zero rows and J] with both zero rows and
zero columna. This shows that §(T') < &(T). The opposite inequality
follows from (4.7) because T(s) is a submatrix of T'(s).

A third result we need is. Let T(s) be square such that
dec(T(s)) § 0. Then (cf. e.g. [Rost, theorem 7.2 on page 135}},

(4.9) st Yy - (1)

As an application of (4.8) and (4.9) we show {using a few tricks
which will also be useful further on).

4.10, Lemma. Let T(s) be a matrix of polynomials, Then
{4.11) §(T) = max {degree(det(M{s))}
M(s)

where M(s) runs through all square submatrices of T(s).
Proof. Define &'(T) as being equal to the right hand side of (4.11).



Then we have to prove that §(T) = §'(T.

Then the analogues of
(4.7) and {4.8) also hold for §', i.e.

(4.12) $'(ATB) < §°(T), 6'(T') = §'(T)

To see this recall that a minor of a product of matrices is a sum

of products of minors (of the same size) of the factors (cf. e.g.

[Rost, thm 1.3, page 5) and that a minor oi a matrix T' obtained by aiding

a row of constants or column of constants to T is either a minor of T

er a sum of minora (of one size smaller) of T with constant coefficiants, :
This proves (4.12).

It follows that if A and B are invertible then §'(ATB) = §'(T), .

S0 by taking A and B to be suitable permutation matrices we can assube

that T is of the form z

with deg(det(Tll)) = §(T). Let the dimensions of T
be respectively v x r, r x (m-r), (p-r) x r,
T'(s) be the matrix

te Tize Tope Ty

(p-r) x (mr). Let

TII T]2 0

1 -
T'(s) TZI T22 T

0 I' 0 f "

where I is the {p-r) x (p-r) unit matrix and I' the () x (mrp
unit matrix. Then by (4.12)

(4.13) §'(T') = §'(T)

. .
Also det(T') = det(Tll) so that degree det(T") > degree{M) for ali

minors M of T'. It follows that 'I"(s)_I is proper so that

(4.14) T () Ny = wr ()]

At this stage we need one more property of the degree functian
which is essentially proved in|[ Ros1], cf. thm 4.3 on page 115,
cf. also [MH, section 2]. viz.

4.15, Lemma. Let T{s) be a p x m proper matrix of rational functions.
Then t;:;:_;re polynomial matrices N(s), D(s), of gizea p x t, m X m
such that
(i) T(s) = N(s)D(s)™
(ii) N(s) and D{s) are right coprime, which means that there are
polynomial matrices X{s), Y(s) such that X(8)N(s) + 1(s)D(s8) = Im.

Moreover N{s)} and D(s) are unique up to a common unimodular right
factor and WT(s)) = deg(det D(&)}).
(The last statement of the lepma is more usually stated for strictly
proper T(s}, i.e. matrices of rational functions T(s) such that

lim T(s) = 0; the slight extension is immed.ate; indeed if T(s) is
E-fm

proper and T(s) = J + T(s), with T(s) strictly proper, )
T(s) = N=)B(s)" ). Then T(s) = B(s)D(x)™' with N(s) = JD(s) + F(s),
D(s) = D(s), and if X(s)N{s) + ?(s)ﬁ(sz = I, then ] )
%(s)N{s) + Y(s)D(s) = Im' with X(s) = X(s), ¥Y(8) = ¥Y(s) - X{s)J}.

Continuing with the praof of lemma 4.10. Applying lemma 4.15 to T'{s)

we find
(4.16) WT' (3)7h) = degreetdet(T'(s)))

So combining (4.8), 4.8), (4.12) - (4,18), (4.15) ve have

§(1) = 8(T') = 6((EH N = v (™™

= degree(det(T"}) = degree(det(Tll))
= §'(T)

which concludes the proof of lemma 4.10.

4.17. Theorem. (upper semicontinuity of §(T)}. Let Tc(s) be &

sequence of matrices of rational functions of s. Suppose that the sequence
converges to matrix of rational functions T(s} as c + = and suppose

that 6{T {s)) < n for all large enough c. Then 8(T) £ m.
¢ =

Here a sequence of matrices of rational functions is said to
converge iff the sequences of entries converge in the sense of

section 3 above; i.e. Tc(s) converges as ¢ + = iff li: Tc(s) exists
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A Ap
for infinitely many s and then the limjt is necessarily a matrix A=
of rational functions T(s) and lim T (5) = T(s) for all bue finicely A21 AZZ
many s. e

The proof of the theorem is easy. We hav

e for each m x n matrix
of constants K that '

with deg(det(A]])) = §. As gbove let

Ay 4 O
- I

Lin det(L +KT (s)) = det(I +kT(s)) At =l Ay Ay
e m [ m 0 1 o

Hence using prapositjon 3.1 (which among other things contains the

scalar case of theorem (4.16)), or rather using corollary 3.10, and ' Then & = 4(A') = degree det(A'). Now let
using the second definition of the degree of a ratiomal matrix

discussed above (cE. (4.4) - {4.6), we have for large enough ¢ , )
!

T!(s) = nA'(al+A")~
(which may depend on K) n

{Note that (nI+A'(a))-l exists if we assume, as we can, that § > 0).
8p(T) = degree(a,(s)) < degree(aK (s)) = SK(Tc) <n

3 L]
Then claerly for a fixed s, lim T;(s) = A'(s). We claim that Tn(s)
i o

vwhere is proper for all but finitely many n. Indeed for a fixed n
-1 | eyt o
ag(s) 2, c (8 (4.19) T, = nA'(nI+A') = AT(AT) T(mA' Tel)
- = -
bk(s) det(Im+KT(s)). bx c(s) det(Im+KTc(s))
] - -
« (a9 Tt
(without common factors). It follows that S(T) = max{ﬁx(T)} < n. . |
u ' that {(A') ' is proper.
It is now not difficuit to Prove theorem 2.23 without the extra Now because §(A') = deg(det(a')) we know \
; 371, Then if -n ' is not an eigenvalue of "J it follows
requirement that the poles of L.(s) unequal to the finite poles of L(s} . Let J = lim (A"} °. Then i
a s ! Em
&0 to —© ag ¢ + »_, Indeed the upper Semicontinuity property of theorem from (4.19) that lim T'(s) exists, proving that T;(s) is proper for all
4.17 takes care of the "if" part. So ler L{s) be of degree n. Write ——

L(s) = A(s) + T(s), where T(s) is Proper and A(s) is polynomial,
Then S(L) = §(T) + §{A). So if A(s) = ]
and G(Tn(S)) 2 6(A(s)) we will be done.

but finitely many n.

iﬂ T (s), with T (s} proper Finally, by lemma (4.15), if Tﬁ(a) is proper,

4.18. Proposition. Let A(s) be 4 polynomial matrix of degree §. Then (4.20) viT (8)) ¢ deg(det(ni+a’))
there exist a sequence of proper rational matrices Tn(s) of degree <6
such that lim Tn(s) = a(s),

Now det(nl+A') is a polynomial in n whose coefficients are sums
a0

1 -
of minors of A'. Hence deg(det(nI+A')) < max deg(M) = &(A') = §
Proof. By multiplying A(s) on the left and on the right with suitable T M

. - . . i A,
invertible matrices we can assume that A is af the form where M runs through the minors of

i i iate
Now let Tn(s) be obtained from T;(s) be removing the appropria

. . . . {s
columns and rows. Then lim Tn(s) = A(s), Tn(s) is proper if Tn(s)
T
proper and d(Tn) §_6(T;) proving proposition 4.18,
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5. PROOF OF THE MAIN THEOREM.

5.1. First half of the proof of theorem 2.22. Let L(c) e L be a
famlly of systems of dimension n and suppose they converge in
inputfoutput behaviour. This means (cf. 2.10) that for every u € U
the gsequernce of functions

(5.2) (v u) o ¥

E(e)

converges. In turn this means (as in the proof of lemma 2.6) that taiere

is a b such that for all sufficiently large ¢

(0} oop .
(5.9) Vieyu €EV @D ‘

1f 2 E;F;O)Cﬂip). then sup”e—btz(t)ll < = so that
t

eI ] de <
o

which implies (cf. [Doe] or {Zem]) that z(t) is Laplace transformable
and that (£2)(s) is defined for Refg) > b+l.
Applying this to the Vz(c)u we see thav their Laplace transforms

are well defined for s > b+l. This gives us a sequence of functions
(5.4) Y (s) = T_(5)U(s)

where Yc(s) ig the Laplace transform of Vz(c)“' Tc(s) is the transfar
function of E(c) and U(s) is the Laplace transform of u(r),

The Laplace transform f is continuous when considered as am
operator on the normed space %F' @®P) congsisting of all locally

b+1
integrable functions such that

(5.5) f||e-(b+l)tz(t)|]dt <@
o

equipped with the norm defined by the integral {5.5), ¢f [Doe, Kap.111, §8].
As Téo) (mp) ::'Ft',HﬂRp) is a continuous embedding it follows that the

sequence (5.4) converges for Re(s) > b+l as ¢ + = . Choosing various

u € U judiciously this implies that the family of rational matrix

functions Tc(s) converges for infinitely many values of s. Acccrding

21

to section &4 above this means that there is a rational matrix function

T(s) much that

(5.6} lim Tc(s) = T{s}

C-»00

and moreover §(T) < n by the upper semicontinuity theorem &4.17. Write
5.7 T{s) = T'(s) + L(a)

where T'(s) is proper and where L(s) is polynomial. Let L be a co and

or realization of T'{s). Consider the operater
{5.8) Ve vZ + L(D)

Applying this operator to a u ¢ U and taking the Laplace transform
of the result (which can be done because Vu €Y and all functions
in \; are Laplace transformable) we find (for Re{s) > b'+}, for some

b* > b)

(£Vu) (s) = T' (8)U{a) + L(a)U(s) = lim T ()U(s) = lim Y (s} =

-0 C-an

= (E(ilim y V) (s)

C-+o

where y_ =V u. and where we have again used the same continuity property
(e) ™’
of the Eaplace transform. The Laplace transform being injective on the

space of functions under consideration it fallows that

Vu = lim Vz(c)u
Co
for all u € U. Thus the limit operator is indeed of the form
V= Vz + L{D) with dim{L) + degree L{s) = &(T) <, which finishes
the proof of the firat half of theorem 2.22. .
To prove the second half we need some lemma's. 1f A is any matrix

we use the following notation for its various minors:
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denotes the determinant of the submatrix of A obtained by removing

all rows e i indi i i
xcept those with the indices 1, «vay i, and all columns

. 1o jr. Recall that the minors
of ‘a product matrix are given by

except those with the indices i

Lhaeenid il,....i

(5.9) (4B) F el A vy
kl....,k

kl""'kr

]l,..-,Jt r k],....kr } jl""’jr
5.10. Lemma. Let L(s) be a polynomial matrix of size P X m. Suppose
that for a certain I < r < min{p,m)

| IR 20,1,
> deg L(s)
| PP Tyeus,r

(5.11) deg L(s) = P

Then there exists an invertible P X p matrix of constants A such that

2,..0,1,]
> deg (AL(s)) e =l lip

| IR lyenuyt

(5.12) deg (AL(s))

Proof. = j i
of., Let Ej(c) E, § € {r+l,...,p} be the matrix with 1's on the

diagonal, a ¢ in spot (j,1) and zero's elsewhere, Then as is easily
checked

. lyeeu,r ) {l if {il""'ir} = {1,0..,r}

11....,ir 0 otherwige

and for k # j, k€ {r+1,...,p}

. 2,0..,T,k N (l if {il....,ir} - {2,...,r,k}

Ll,...,Lr 0 otherwise

while

r . . !
EZ,...,r,j (-l)c if {lli"'llr}-[!.v1-|r}
—— - 1 if [11""'ir} = {2,...,1,j}
l 4 0 otherwise

It now follows from the minor product rule (5.9) thac
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[ | I 4
L if k=1
lyeoast
2,000,k 2aeeask
{EL) ={ L if k € {r+1,...,p} ~ {§}
| IS 4 | AP
2,.00,0,] . | R
L + (-1)7¢ L if k= j
\ [P 5 | P 4

It follows that (5.12) holds if we take for A a suitable product

of matrices Ej(c).

5,13, Lemma. Let L(s) be a polynomial p x m matrix without constant
terms of degree n. Suppose that for a certain r all minors of size

< r have degree < n and that
| RSP, J 2,0004T,])

) = n > deg(L
| | IR

(5.14)  deglL dod =l

Let d(s) be the diagonal matrix with diagonal entries (s,l,...,1)
and let L'{(s) = d(s)-|L(s). Then L'(s) is polynomial (because the

first row of L(s) has no constant terms) and deg(L'(s)) = n - 1.

Proof. Because deg(d(s}) = | and deg L(s) < deg(d(s)) + deg(L'(s))

we must have deg(L'(s)) > n-l. It remains to show that deg(L'(s)) < n-I.

Let L{s) be the square matrix

I TR
L L21 L22 I
4] I )
RITERP! L
where L = , where Lll is the top-left r x r submatrix of L,
Ly Ly

and where the I's are the appropriate unit matrices. Then
(5.1%) deg(L) = deg(l) = deg(det(L") = deg(det(L)) = n
which implies that il s proper. We claim that the first column

of £~I consists of strictly proper rational functions. Indeed the

entries of the first column are the functions
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(5. 16) det(f)_l'l:l ; | Proof. This is proved by induction, the case n = 0 being trivial
: = Ceey mép- . - .
i’ ' » MpTY because L{s} has degree zero iff it is a matrix of conatants. The
-1 firat thing to do next is to obtain the scalar operator

Now if j =1, ..., r, Lj is the determinant of a (r-1} x (r-1)

| D: FR) + P{R) as a limit of input/output operators of one
submatrix of I..|| and hence deg(Lj) < n by hypothesis., If j = r+i,

-1 e m dimensional systems. To this end let I{c),c » 1,2,... (or c €W)
t - i P :
hen Lj 0 and finally if j @ m + k, k = 1, ..., p-r then . be the family of systems
- 2, ..,0,r+k -
-t i emek (5.20)  Lte) = (F_,6H .30y g = €4 Fo = -, By = ¢, G = ¢
| I
: L. The associated input/output operator of I(c) is ¥ : FR) + FR)
which by hypothesis is of degree < n = deg(det(L)-l. This proves " ’ " ¢
the claim. t
- 2 -c(t-1
Now let d'(s) be the (m+tp-tr) x {mtp-r) diagonal matrix with . (.20 "c: utey- yc(t) " oule) £ e ( )U(T)dT
entries (s,1,...,1), and let L' = d'(S)-Il_.. Then L' is the p x m
top left submatrix of L' and hence : By partial integration (twice) we see that
t
(5.17) degree(L') < degree(L') (5.22) vefe) = u(”(t) - S e el T)u(z)(T)dT
0
Ou the other hand (fn)"l - (f)—ld'(s) is still proper becavse the Let b be such that u® E?I()O)CIR) (i.e. sup e‘btlu(z) (t}| < w). Then if
. — . ) t
first column of L ° consists of strictly proper rational functions. M= HU(Z}”b- we have
Hence (cf. lemma 4.15)
) (5.23) |f, I M PR Feme (e ) by T ett
(5.18) deg(1") = deg(L")™)) < depldet(@)) = T 3 To N
= deg(det(d’ (1) 'det(L)) . My s
. and it follows that the y (t) converge to u {(ty in {R). More

- -1
deg(s det(L 1) =n -1 precisely if b is such u( ), U(Z) are both in ?ﬁo) (R} then

yc(t) E*go)ﬂR) and the yc(t) converge to u“)(t) infv‘EO) ®).

because L has no constants. Co 18) and 7) we see that with induction that the proposi ¥
1 mblﬂll‘lg (5- ) 5.1
( ) Now suppose wi

indeed deg(L') < n-1, proving the lemma. (NB it is not true as a rule

that (1,')'l is proper). for all polynowmial matrices of degree < n-1.

Let L{s) be a polynomial matrix of degree n. First note that if
Note that lemma 5.13 and 5.10 combine t> give a proof of corollary poty &

2.24, P,Q are invertible matrices of constants then L{D) is the limit of

feid a family as in the statement of the theorem if and only if PL(D)Q is.
5.19. Proposition. Let L(s) be a polynomial matrix of degree n. Then ¥ y

there exists a family of n-dimensional systems I{c) such that the I{c)
converge in input/output behaviour to L(D): U.b'l}. as ¢ *+ = and such

that moreover the poles of (the transfer functions of) the I(c) all
go to —= ag ¢ * @,

Also adding a matrix of constants makes no difference. Removing

the constants and multiplying L(s) on the left and on the right

with suitable invertible matrices of constants we can therefore assume that
for a certain minimal r € N the topleft t x r minor of L{s) is of degree

n. Using lemma 5.10 and lemma 5.13 we see that after a further
multiplication on the left by an invertible matrix of constants L(8)

factorizes as
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|
L(g) = " L'(s)

o T

with L'(s) polynomial of degree n - 1. By induction we have that
there exists a family of (n-1)-dimensional systems

J -m
' (c) (F;,Gé,ﬂ;,Jé) such that the poles of I'(c) go to ~= as
c+® (if u=l >0, if n = 1,L'(s) is coustant and one takes !

' - [
E (c). (0,0,0,1")) and such that VZ'(c) converges im input/output
behaviour te L'(s).

Bow let E(c) be the composed system

(5.24)

where I"(c) {s the m input/m output one dimensional system given by

the matrices

c c 0 w0
0 o 1 -
] 1] e @
Fé - -c, GL = (=-¢,0,...,0), Hg ={:1, J: = 3. D
- 0+« 0 |
4}

I.e. if I' = (F' G is gi
e, if I'(e) (FC,GC,Hé,Jé) then E(c) is given by the matrices
L1}
F 0 G;
(5.25) F o » Gc = B = {J;Hg H;), J o= gt
- ) c cc
Mo F Cede
(if n > 1: i - -~
Iy if nw=, Fc e 6, = (-¢,0,...,0), HC - L‘H:. J. - L'H:). .
Then the £(c) converge in input/output behaviour to L{D). Moreaver
(as follows from (5.25)) the poles of E{c) BO to == ag ¢ -» « because
11
Fc = —¢ and because the poles of L'(c) g0 to ~@ as ¢ + w® jf n > |,

This proves the proposition.
Ve can be somewhat more precise about how well the I(c) converge
in input/output behaviour t. L(D). Indeed one has
5.26, Corollarz. lLet L(D)} and (E(c))c be as above in the argof of
ropositi .19, a
proposition 5.19. Let b > 0 be such that u, u ), “a u(nﬂ) Eo)c]gn)cmn).

Then there is a constant M such that
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I, bt

{5.27) - LiDu|] £ ¢ Me

Ilvz(c)u

In particular if u € Wis of compact support or, more generally if

(]) ane u(nﬂ)

u, u are all bounded, we can take b = 0 and for

such input functions u, Vz(c)u converges uniformly in t to L(D)u.

This follows readily by induction from the procf of proposition

5.19 above, (5.22), and the eatimate (5.23), because L'{D)u is a

vector of linear combination of the u.u(i), veus u(n-l).

5.28. Proof of the second half of theorem 2.22. Now let

H 11-v1f be an aperator of the form V = L(D} + VE with dim(L) + deg{(L(s)) <n.

Let E{c) be a sequence of deg{L(s))-dimensional systems converging

to L(D) in input/output behaviour as in proposition 5.19. Then if
I'(c) is the sum systew of L(c) and I, the family I'(c) converges in
input/output behaviour te V. More precisely if £ = (F,G,H,J),

I(c) = (Fc'Gc'Hc'Jc) then L'(c) is given by the matrices

c c
0 FC Gc

F 0O G
F' = ( ], G''= ) . Hé = (H Hc)' Jé =J + Jc
Because the co and ci systems are open and dense in L we can perturb
each L'(c) slightly to a E"(c¢) which is co,cr such that I"(c) still
converges to V in input/output behaviour as ¢ + = , and such that the
bebaviour of the poles of the I'"(c) as c +» @ is like that of the I'(c)
as ¢ + = , This finighes the proof of theorem 2.22.

5.29. Remark. One has of course in the setting of 5,28 above also am

estimate like (5.27) for 1|v£.(c)u - vul|.

5.30, Remark. 1f Z(c) is e.g. the family of (5.20) above, the Markov

_ 2 Py
parameters of the family Jc, Hch, FchGc' H FCG y «»s definitely do

< [

not converge as ¢ -+ @,

One can of course examine what the possible limits are of families
of systems L(c) of dimension n which converge in input/output operators
and such that moreover the Markov parameters converge as well {or more
generally such that the Markov parameters remsin bounded) as ¢ + @,

The answer is simple: the limit operator is then necessarily of the
form VE where L is a possibly lower dimensional system. Inversely every
VE with dim(L) < n can arise a limit of input/output operators of co

and cr systems of dimension n, cf. [Haz 2].
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5.31. Approximaticn by systems with J = 0. Let T(s) be a matrix of
rational functions. Write

(5.32) T(s) = T_(s) + L(s)

with T_(s) strictly proper and L(s) polynomial. Define

nr(T) = dim of the R-vectorspace spanned by the rows of L(s)

5.33) nc(T) = dim of the R-vectorspace spanned by the columns of L(s)}

(1) = min[n (1), n (D)} .

. 2 3
E.g. if T(s) = L( - (B b4 8
D=l 5 ) thenn(T) -2, o (T) = 3 and if

2 2
T(s) = L(s) = {* ¢
(s} (s 5 Y, nr(T) =2, nc(T) = |,
Let L realize T_{s). Then the operator VE + L{D) is the limit in
input/output behaviour of a fami
mily of (deg(T(s)) + q(T - dimensi
e q(T(s)}) - dimensional
This can be seen as follows. Because T_(s) is strictly proper it
suffices to see that L(D) can be obtained as the limit of the input/
out i
utput operaters of a family of deg{(L(s)} + q(L(s}) dimensional systems

Agsume for definitiveness th
" at q(T) nC(T). Then we can factorize L(s)

L{s} = (L'(s) 0)qQ

where Q is a asquare invertible matrix of constrnts and L'(s) has q(T)
columms. It now clearly suffices to obtain L'(D) as a limit of !
deg(L) + q{L) dimensional systems, To this end let I(c) be a famil

of syztems converging to L(D) of dimension dep(L) and let ' () beya

9 = q(L)-dimensional family of systems with J = i imi
input/output operator equal to I, the q x q izentgtjo;azlzxc ::Z: h
family is e.g. given by the matrices ‘ )

; (-c. 0 1 0 fc 0
- ., , G 0w ., H = "

i e A e s o
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Let T;(s) be the transfer function matrix of £'(c) and Tc(s) that of
L(c). Then the {y+deg(L))-dimensional system E"(c) obtained by applying
firat L'{c) and then I(c) has transfer function matrix Tc(a)T;(n).
which is strictly proper, and the I"(c) converge in input/output
behaviour to L'(s).

This result is optimal if p = 1 or m = 1, but, though definitely
genericelly best possible (meaning that for almost all T(s) with given
q{T)} = q, deg(T) + q is the best one can do), it is not best possible

for every particular T(s). E.g. the factorization

I T

ghows that this L(s) can be obtained as the input/output limit of a
family of four dimensional systems with J = 0, although deg{L) = 3
and q(L) = 2.
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Lie algebraic method in filtering and identification
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These lectures concern (nonlinear) tiltering. Very roughly the an of cbtaining besl esbmates for some slo-
<hastc tme-varying variable x on the bass ol observations of anolhar process . The more concrete
©Dec! under consideration being a stochastic dynamical system dx = f (xidf + G{x)dw. where w 15 Wianer
nose, with observations dy = h(a)d! +dv, corrupled by further noise. The subject as presenled here
nvolves 10eas and technigues from Lie aigebra theory, slochashics, diffetential topology, approximation
theory and partial differenlial equations and has relations with quantum theory and stochastic physics. The
leclures are adressed to prachtioners in any one of ihesa areas assuming thal as a rule they are not
expers in the other ones.

1980 Mathematics Subject Classification: 93E11. 93830, 93E10, BOH15, 33815, 17865, 17899, S57TA25
Keywords & Phrases: nenlinear fillenng, estimanon Lie algebra, asymptolic expanswon, Weyl algebra,
Heisenberg algetra, Katman-Bucy fihler, condmonal density, Duncan-Mortensen-Zaka eguation, BC-
prmciple, eniificaton, Lie algebra of vectorfields, linite dimensional hilter, robustiness

1. Introduction
Fillering is concerned with making estimates of quantities associated with a stochastic process {x,} on
the basis of information gleaned from a related process {y,}. The process [x,) is called the signal or

staie process and {y, ) is the observation process. In this paper the followang more concrete realization
will be considered

dx, = fix)dt + G(x,)dw,, x, €R", w, c R" .
dv, = hix i + dv,, y, <RP, v, e RP (1.2)

Here fis a function R" —R"; G is an n X m matrix valued function on R*, 4 is a funclion R" - R
and w; and v, are Wiener processes, assumed independent of each other and also independent of the
inital random variable xo. More precisely these equations can be written

L '
X = xo+ [fl0Ms + [Glx)dw, (.3
0 0
L}
y = fhGeds v, (L4
0

where the last term of (1.3} is a stochastic integral in the sense of Jto.
Much more loosely one can ook at equations (1.1) and (1.2) as

i = flx) & Gl 0.
= Ax)+s 1.6)
with & and v while noise. Thus we have a differential cqualion x = f(x) on R which is subject 10

continuous random shocks whose intensity and direction (distribution) is state dependant and as

ohservations we have an integral of some function of x and these observations are corrupted by more
noise.
The general filtering problem for the state process {x,} with observation process {y,} is now to

L,

2

calculate for (interesting) functions ¢ of the state the conditional expectation
Elgix,) |y, 0S5 <1] = dlx,), (LN

i.e. the best (lcast squares) estimate of ¢(x,) given the obscrvations y, up ta time r. That is we are
intzrested in calcutalion procedures for ¢{x,). In many {engincering) applications the data come in
sequentially and one does not really want a calculating procedure which needs all the data y,,
051, every lime ¢ that it is desired to find ¢(x,); rather we would like to have a procedure which
uses a stalistic m, which can be updated using only the new observations y,, <3<’ to its value m,-
e

my = almy, 4, (pt Ksst')) (1.8)
and from which the desired conditional expectation can be calculated directly, i.c.
#x) = E[@x)]y,. 0S5<t] = B(ty,.m,). (19)

Fimally to actually implement the filter it would be nice if m, were a finite dimensional quantity. All
this leads to the (ideal) notion of a fimite dimensional recursive filter. By definition such a filter is a
system

&t = ale + S By (1.10)

i=t
driven by the observations y,; y, is the i-th component of y,, i = 1,....p; together with an output map
#(x) = n&) (.11}

More precisely formulated our problem is now the (ollowing: given a system (1.1)}{1.2) and a func-
tion ¢ on R", how can we decide whether for these dala there exists a finite dimensional recursive
filser {1.103{1.11) which calculates ¢(x,), the best least squares estimate, and how do we find the func-
tions (vectorfields) a, By, -+ - B, v of (L10}(1.11).

Now this may of course be a totally unreasonable question to ask. [t could be that such nice fliers
virtually never exist. That is not the case though. In the case of linear systems

dx, = Ax,dt + Bdw, 1.12)
dy, = Cx,dt + dv, (113

where now A,8,C are matrices of the appropriate sizes {which may be time varying), the well known
Kalman-Bucy filier is precisely such a filter as (1.101(1.11). The equations are as follows. The statistic
£, is a pair (m,,P,) consisting of an n-vector and a symmetric # Xn mainx P, These evolve according
io

dP, = (AP, + P AT+ BBT—P,CTCP)H {L.14)
dm, = Amdt+ P,CT(dy, — Cm,dr). (1.15)

Here X7 denotes the transpose of a matrix X. This filter was discovered in 1961 and it is hard 1o
overestimale its importance: whole books are devoted 10 its applications into single specialized ficlds
amd substantial companies can make a good living doing little more than Kalman-Bucy filtering.
Naturally, efforts immediately started 1o find similar filters for more general systems than (.13}
(1.13). This turned out to be unexpectedly difficult and this is still the case though there exists hosts
of approximate filters of various kinds which (seem to) work well in a variety of situations; there is
very little systemalically known about how to construct approximate filters or about how to predict
that a given one or class will work well when applied to a given collection of systems.

The approach based on Lie-aigebraic considerations which [ will try to discuss and explain below
seems to hold great promise both in understanding the difficulties involved and in providing some
kind of sysiematic foothold in the area of constructing approximate fitters, For, as will become clear
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below, the existence of firute dimensional recursive filters for a nontrivial statistic will be & rare event,
Let me pause at this point to point out that identification problems can eusily be construed as
liltering problems. By way of illustrating this point consider again a linear sysiem

di, = Ax, + Bdw,, dy, = Cxdt + oy, (1.18)
where now the matrices A, B,C are (paruially) unknown. By adding 10 (1,16} the stochastic equations
day, =0, dby, =0, deg, = 0 (1Li7N

for all unknown a,, by, c,., one obiains a system (1.16)-(1.17) (of much larger stale space dimension).
And solving the filiering problem for the functions which project the vector (x, {a,), (byh (eg)) onta
a suitable component means idenfying that particular coefficient.

2 The DMZ-equation and the estimation algebra
Let {x,} be a diffusion process as in {L.1)(1.2) above. Given sufficient regularity of f,G.4 the condi-
tional expectation ¥, will have a density w(x,¢).

Treorem 2.1. Under appropriale regularity conditions there exists an unnormalized version plx,t) of
w(x,1} which satisfies an equation

dp = Cpdt +  h(xIody, @)
i=1
where £ is the second order differential operator given by
@ =+ 3 2 wehn- Sy - LEm @3
1“’=|3x,3x1 v Hax Y 21_,| 4

Here (GGTL, is the (i, /}th component of the n X# matsix G(x)G(x)T and Jiky are the i-th and j-th
compaonent respectively of £ and h.

Several comments are in order. First of all equation {2.2) is in Fisk-Stratpnovic form. The
correspanding lio equation looks the same with t changed by removing the ~ 5 3hly term. The
word “unnormalized” means thal p(x./) = o(t)y(x,¢) where ofr) is an unknown function of time.
Under appropriate reachability conditions on (1.1) #(x,t) is a positive function. That p is unnormal-
ized does mot hurt much as p(x,¢) still suffices 10 calculate such things as ¢(x,). Indeed

ox) = (fotxadx) ™ fpte.npxdx 2.4

Theorem 2.1 was proved by Duncan [13], Mortensen (28] and Zakai [36] and the corresponding equa-
tion 2.1 is often refered to as the Duncan-Mortensen-Zakai or DMZ equation.

It is a stochastic partial differentiat equation being driven by the stochastic PrOCESSES ¥1,..., 1.

It is important 10 note (Brocketl [5]), that equations (2.2), (2.4) together conslitule in fact a recur-
sive filler in the sense of (1.10)-(1.11). The role of § is played by pix.r) 5o that instead of a point §
evolving on a finite dimensional M we have an evolving density, ie. a peint p in an infinite dimen-
sional space of positive funclions evolving with time.

The simplest nontrivial example of a system (1,1)(1.2) is

dx = dw, dy = xdt +dv (2.5)
ie one dimensional Wiener noise linearly observed corrupted by further noise. In this case the
DMZ.-equation becomes

L ¢ d_1#p .
dp = (T;l—,—;x’)pdﬂxndy.. (f=3"a’;-—jx’p+xpy) (26)

I.e. we are dealing with the Euclidean Schrodinger equation with an extra forcing term. This is not an

4

accident but part of a general pattern of which we shall see a further manifestation below in section 8,
cf. also Miuer [26,27] for other remarks on this theme. 1 do not know wether the use Bismul makes of
the filering equations when dealing with a stochastic approach 10 index theorems and the Dirac
operalor can also be fitted into this framework.

3. Robustness and nunerical matters

As it stands equation (2.2) is not a very usefu) object for applications. It is a slochastic partial
differential equation (with as probability space a space of paths {y}) and as such a solulicn is in prin-
ciple only defined apart from a set of measure zero, On the other hand actual observations will always
consisi of piecewise smooth y(r) and the class of all such is of measure 2ero. Thus there arises the
question whether there exist a version of (2.2) which can be interpreted pathwise for all y(r} and for
which the solutions of (2.2) for piccewise smooth (y{1) carry {approximative) information, cf. Clark [9]
and Davis [11]. Fortunatedly the time dependent gauge transformation

M) = expl—Ry(xy (1) — -+ - Ry () )ple,x) a.n
transforms (2.2) into an equation
T == St $ rtavpoe,p e

where £ = [4,8 := A2~k and &, = &, = Jh,[A;,€}], and this equation, which does not anymore
involve derivatives of y, can simply be interpreied as a family of partial differential equations
parametnized by the possible observation paths y(1).

Equation (3.2) can of coursc be verified directly (remembering that (2.2) is a Fisk-Stratonovic
incgral 5o that the ordinary rules of calculus apply; removing the term —2 S} from £ gives the
=orresponding Io equation and then Ita calcilus of course also gives (3.2). An easier way of obtaining
£3.2) is to observe that (3.1} in (2.2) gives dp = exp{— Thy, ) exp(Thy,)p and 10 use the version of
the Baker-Campbell-HausdorfT formula which says

&

SRrABexpird) = 3 (=1 adi(B) 33)
where ady(8) = [A,B) = AB ~ BA, ad'(B) = ad,(ad,"'(B)) for lincar operators A,B. In our case
the contribulions of (3.3) for k >2 disappear because then A is a funcuon, B=¢ is a second order
differential operaton, so [4,B] is first order, i4,14,8]) is a tunciion and {4, |4, [4,B]]) = 0.

Also of course there still remains the question of how 1o use equation (3.2) or (2.2) effectively 10
calculate certain desired conditional expectations. A direct numericai discretization approach is out of
the question. Typically x is a fairly large dimensional object; for example around 27 for certain prob-
kms involving helcopiers. Taking three data points per coordinate axis {which is ridiculous) then
gives 377 2 210" space grid pointst So other methods must be tried. Tt secms likely that the Lie-
algebraic consideraions to be discussed below will help. Other promising work into the numerics of
the nonlinear filtering equations has been started by Pardous-Tatay [29].

4. Wei-Norman theory
It is important to note that the fillering equation (3.2) {or (2.2} is of the general form
X = (A o (A CR)}

where the A, are linear operators and the w, known functions of time. Of course in {3.2) the role of x
is played by p, an infimie dimensional object. Here for the moment lets consider (4.1} as a finite
dimensional object. Let us also assume that the A 1A who are now, say, n X # matrices, form the
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basis of a Lie algebra. (By adding a few more terms with corresponding u, equal to zero this can of
course always be assured.) Let us took for solutions of the form {(Wei-Norman [35]).

x(e) = 50N LBy (4.2)
Differentiating this gives

x= A eS| b0y + e""ng g5 S0 + (4.3)
and inserting

e TPl mEA LA 0

just after g, A4, in the i-th term equation (1.1} can be rewritien

i i1 g
i= Saur's s BB g b g 4a)
i=l , :"".".;":;,'.h“"']" 1}

[
= DEAAAhy(grr..8)A,}
=l

with 4,(0,....0) = 0, where, again, the Campbell-Baker-Hausdorfl formuia (3.3) has been used. MNote
that &,; are universal functions which only depend on the Lie algebra and the chosen basis. Thus it
remains to solve (equating the cocflicients of the basic elements A, in (4.4) and (4.1))

g1+ grhngrege) T E2h @B o B B T
Ex +Eihualgre B ¥ Brhn(gr ) ¥ oot BA(g ) Bk) = 2 4.5}
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which can be done for small ¢ and g(0) = .. = £{(0) = 0 because h,,{O,....O} =40, In general a
representation (4.2) for the solution is only possible for small 1. However things change if the Lic-
algebra in question is solvable, then ([35]} there is such a representation for alt 1. More precisely there
is a suitable basis such that there is such a representation for all t. How this comes about is easy 1o
sec in the case that the Lie algebra L is nilpotent. Indeed let

LOLO = LLID LY ={L LS. L™ = [LL™ V=0 ’ 4.6
- = 3

be a basis such that Ay....Ag,, A, spr Aipseidi, 410 Aa, = Ajs by <k3 <. <km such that
Ay 41y, Ay is a basis for LW, i=0,.,m—} (kg=1k, =k). Then it immediately follows from (4.4)
that h,; =0 for j<i and the set of equations (4.5) pets a nice triangular structure. Moreover
h,,(gl....,g*) involves only gy,....g -1 (this is always the case, cf.(4.5), so the k), in (4.5) are always ail
zero) and the resulting equations {4.5) for the nilpotent case are therefore of the form

B1 = Uy By, T b,
[P RTTRRR . NPT (YU AT ST 00 WO ALY O . P CPIRSETART SOPN 4N

Biyat = ket F 0, oy (8 i, B e Bk Ve B, = M, 0 W B B )

where the a, are known (universal) functions of the w's and g's.

These consideralions are not limited 1o Lic-algebras of matnices. lodeed the left hand sides of
equations (4.5) only depend on the abstract structure of the Lic algebra in question and the choice of
basis. Thus all this equally applies to Lic-algebras of say differential operators (given suitable

[

dzfinis 5n of exp(4)), though in order to have a finite set of equations (4.5) one needs of course a
finite diraensional algebra. It also follows from (4.4) that the We-Norman equations are compalible
with homomorphisms of Lie algebras, more precisely quotienis. Indeed if ¥CL is an ideal and
Aty Ay, oAy is 8 Dasis of L such that Ay 4y, Ax 5 @ basis of ¥ then the A, are zero for
je(l...ky) and ie{k;+1....k}. Soin the case of a topologically nilpotent algebra L, or more gen-
erally one with 8 chain of ideals %, D¥%; D, D.. such that N, =0 and L /¥, finite dimensional
for all i one can in principie still do Wei-Norman theory with now infinite ordered product expres-
sions x = ef e o8 10 in the sense that the equations for the g, belonging 1o a quotient
L /¥, involve only those same g,. Of course now questions of convergence arise.

5. The estimation Lie aigebra

The considerations of the previous section already make it clear that the Lie algebra gencrated by the
operators which occur in equation (2.2) or {3.2) contains important information concerning the filter-
ing problem. One therefore defines the estimation Lie algebra EL(Z) of a system X given by (1.1)-
{1.2) as the Lie algebra of differential operators generated by the 2-nd order differential operator C
and the multiplication operators h,,...,h,.

EL(Z) = Lie(®hy,...h,). (5.1)

Note that the Lic algebra generated by the operators which occur in (3.2) is in any case a subalgebra
cf EL(Z). Often it is equal.

te 52. Consider again the simplest nonzero linear system (2.5). Them p=1 and
E=—7d? /dx? — 3x?. So we have in this case the Lic algebra Lie(gd® / dx? ——7:2,1:). Now
[%e{2 JSdxt— %xz,xl =d /dx (as operalors on functions), [dez Jdxt— %.‘:2.% = x, li—-,xl =1
and [1,1] = 0. S0 iln this case we obtain the well-known oscillator Lie alpebra, which is four dimen-
sional with basis 5 d? /d.tz—-sz. %, d /dx, 1. Tt is solvable (but not nilpotent) with as derived
algebra the nilpotent Heisenberg algebra with basis x, 4 /dx, L.
EL(Z) is (of course) an iavariant of £ meaning that a change of coordinates in Z (a diffeomorphism
£ —x' taking ¥ 10 £ will yield isomorphic estimation Lie algebras. The algebra also has a gauge
transfofmation invariance. A gauge transformation p(x./)—y{x)p(x,1), where J{x)7=0 for all x,
transforms the DMZ-equation in such a way that the operators in the new equalion generate an jso-
morphic Lie algebra.

‘The new equation may again have the form of a DMZ-equation, and in this way systems which are
definitcly not equivalent as systems may have equivalent filtering problems associated to them. An
example are the 1-dimensional Benes systems {cf. various contributions in [19]).

In a way which will {(hopefully} become clearer below the estimation Lie algebra EL(Z) encodes
information about how difficult the fllering problem for I is. For example if it is finite dimensional
(a very rare case) Wei-Norman theory does the job for small time; if it is also solvable one thus gets &
filter. 1 it is infinite dimensional but solvable things become more difficult but asymptotic expansions
are possible, cf. below; ete.

The BC principle

Let me now describe a second reason why the Lic algehra EL(Z) of a system I is important for filter-

ing problems. T like to call it the BC principle. ot because it is very old, though it could have been

maybe, nor is it named after Johny Hart's chartoon character; the BC stand for Brockeut and Clark

[6] who first enunciated it. -
Supposc we have a filier (1.10)-(1.11) on a finite dimensional manifold M for a statistic ¢{x,). We

may as well assume that it is minimal, i.c. has minimal dim(M). The @ and §,,...8, in (1.10) arc
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vectordields on M. Let ¥(M) denote the Lie algebra of smooth vectorfields on M. Then the BC princi-
pie states the following

5.1. BC principle.
ir (I.IO)—(I.II) is a minimaj filter for a statistic then Crea, k) .-.ﬂ.....,h,.-ﬂ, detines an antihomomor-
phism of Lie algebras from £L(E) into V(M).
Here “anti* means the following: if ¢: L\ —~L; is a map of vectorspaces from the Lie-algebra L, o
:,IjlleALige.alfcm L3, it is called an antihomomorphism of Lie-aigebras if A, 8]) = —{${A).9B)] for
Bel,.

ExampLE 6.2. Consider again the simplesi nonzero lineas system {2.5). It is lincar so there is the
Kalman-Bucy filter for the conditional state x. This filter is

dP. = (1—Phdt, dm, = Pdy,—m,dt). (6.3)
So the two vectorfields a and B of the filter are respectively
= (1-pY) — pmd g = p O
a=(l l")a‘P P"'am‘ B Pam. (6.4)
A simple calculation shows {a,f8] = %, and it is now indeed a simple exercise to show that

2
%i-i- —%xl rea, Xr+f, induces an antimorphism of Lic-algebras. (1t also induces a homomarphism,
but that is an accident which happens for linear systems (3.12)1.13) if the drift term Ax is absen).

A fecling of why the BC principle should be true can be generated as follows. Think for the
moment of two aulomata with given initial state and with oulputs (Moare automata), which, when fed
the same string of input data, produce exactly the same string of output dala. Suppose the second
automaton is minimal. Then it 15 wellknown (and easy 10 prove by constructing the minimat automa-
wn from the input-oulpul datay that there is a homomorphism of the subautomaton of the first con-
sisting of the states reachable from the initial state to the second automaton; this homomorphism so
1o speak makes visible that the two machines do the same Jjob. A simidar theorem holds for initialized
finite dimensional sysiems [Sussmann [34]), in pariewlar for systems of the form

= ax)+ Phxm, y = vx) (6.5)
i=1

Here the picture produced by theorem is the following commutative diagram

S W

¢
ﬁl-"'-ﬂ; MOY/

R’

{The theorem asserts the existence of o differentiable map ¢ defined on the reachable from x°y subset

@

8

of M which makes the diagram commurative. This in particular implies that d¢ takes the veciorficlds
& B B im0 a,8,..., By respectively, and, ¢ being a differentiable map, d¢ induces a homomor-
phism {rom the Lic algebra generated by o', f),... B to (M)

In the case of the BC principle we also have two “machines” which do the same job: one is the
postulated minimal filter, the other is the infinite dimensional machinge given by the DMZ-equation
(2.2) and the ouput map (2.4). So we are in a similar situalion as above but with M’ infinite dimen-
sional. A proof in this case follows from considerations of Hijab [20].

The fact that in the case of the BC-principle we get an antihomomorphism arises {rom the follow-
ing. Given a linear space ¥ and an operator 4 on it we can define a (linear) vectorfield on V by
Bsugning to ve V' the tangent vector Av. (So we are considering the equation # = Av.) This defines an
anti-isomorphism of the Lie algebra of operators on ¥ 1o the Lie algebra of lincar vectorfields on .

What about a converse to the BC principle? ).c. suppose thal we have given an antihomomeorphism
of Lie-algebras EL(Z)— V(M) into the vectorfields of some finite dimensional manifold. Does there
vorrespond a filter for some statistic of £. Just having the homomorphism is cleasly insufficient. There
are also explicit counterexamples. This is understandable for in any case we completely ignored the
output aspect when making the BC-principle plausible. This is not trivial contrary to what the
diagram above may suggest. It is not truc that given ¢ and any y one can take ¥ = yo¢. The problem
is that ¥ as a Tunction on M’ = space of unnormalized densities is of a very specific type ¢f. (2.4).

Even apart from that things are not guaraniced. What we need of course is a making the left half
of the diagram above commutative. Then, if m’eM’ is going to the mapped on meM, obviously the
isolropy subalgebra of EL(Z) at m’ will go into the isotropy subalgebra of V(M) at m,

For the case of finite dynamical sysiems there are paositive results of Krener [21] stating that in such
4 case this extra condition is also sufficient 1o guarantee the existence of ¢ locally.

The whole clearly relates 10 seeing to what extend a manifold can be recovered from its Lie algebra
of vectorfields (via its maximal subalgebras of finite codimension) and whether differentiable maps
¢can be recovered from the map between Lic-algebras they induce. This question has been examined
by Pursell-Shanks [30).

A more representation theoretic way of looking at things is as follows. Both EL(Z) and V(M)
come with a natural representation on the space of functionals on M’ and the space of functions on
M respectively. If there were & ¢ as in the diagram above ¢ would also induce 3 map between these
fepresentation spaces compalible with the homomorphism of Lie alebras. That thereforc is clearly a
necessary condition. This way of Jooking a1 things contains the isotropy subalgebra condition and also
contains oulput function aspects. Thus the 1otal piclure regarding a converse to the BC-principle is
nol unpromising but nothing is established.

Except for one quite posiive aspect. If EL(Z) is finite dimensional, the Wei-Norman equations
practicaily define the filter, for small time in the general case, for arbitrary time in the solvable case.

6. Examgples of estimation algebras

7.1. The cubic sensor
This is the one dimensional system

dx, = dwy, dy, = x}di + v, (1.2)
and izl is about the simplext nonlinear system imaginable. Its estimation Lic algebra is generated by
1d® _ Le .3
PR LA

THEOREM 7.3. (Hazewinkel-Marcus [17]). EL(cubic sensor) = W, where W, = R<x, %:v is the
Lie algebra of the differential operators (any order, zero included) with polynomial coeflicients.
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EXAMPLE 7.4, dx, = dw, dx, = xide; dy, = xidt+dvi,dvy = xdt +dvy. In this case the cstina-
tion Lie algebra is W, = R<x,.x1.m,‘é~:>. the Lie algebra of all differential operators in tao

variables with polynomial coefficients.

EXAMPLE 1.5, dx| = dw.dx; = xldl.dy = x,dt +dv,. In this case the estimation Lic algebra has a
basis A,8,.C.D, =12, with the commulation relations [4.8,] = C,, [A,.C;] = B,+1B,,,.
IB_,.CJ,I = =D, , and al} other commutation relations beiween basis elements are zero. Note that
this case the Lie algebra is infinite dimensional but has many ideals ¥, such that L /9, is finite
dimensional.

EXAMPLE 76. dx = dw +exdw,, dy = xdt +dv. Here again EL = W),

‘ It has become clear that as a rule estimation algebras tend to be infinite dimensional (except in the
linéar case: then EL(linear system) has dimension 2r +2 if the linear system is completely reachable
and observable); it has also become noticeable that the Weyl-Heisenberg algebras or Weyl algebras
W, have a tendency to appear very often.

CorecTure 7.7. Consider systems (1. IH1.2) with polynomial f,G.k. Then generically, i.e. for almost
all f,G,h, the estimation algebra will be W,

7. The Segal-Shale-Weil representation and all Kalman-Buey filters

81 The linear sysiems Lie-algebra Is,.
Consider all differential operators in n indeterminates with polynomial coefficients
- . ¥
D = Zepx -a-x—ﬂ (8.2
where a = {u,....,q,). 8 = (8).....8,) are multiindices a,.8,eNU[0G}. Consider those & which are .
tolal degree < 2 i.e. such that || + [B]>2 =2 cog=0 where |a| = a;+ -+ +a,. Asis readity

verified these form a finite dimensional Lie algebra (under the commutator product [0, D3] =
D\Dy ~ D38y of dimension 2n? +3n + 1. A basis is

3 [
LX ol =y S . i = Ly =
[Tos A i, ax, Bx,axf vif = heanixx i =1 x ix, A = laon (B3
The operators of totai degree < | form a subalgebra h, (basis: 11xy....,x,; 4 /dxy....8 / dx,) which is

in fact an ideal. The quotient is isomorphic 1o the symplectic algebra sp, of all ccal 27 X 2n matrices
M such that

0 i
. B n
MI+IMT =9, J = [*-’. ol. B4

The isomorphism is giver by
2

En +) +‘El.u L et Enn,; -E, %,r.f"‘m; (8.4)
E, —E GRS
vy T Eadparm s+ 38 0 =

ax,

I!erc E,is the mairix witI‘: 8 1 at spot (1.§) and O everywhere clse; these linear combinations of the
E, lfnrm a basis of sp,; this isomorphism exhibits 3P 35 4 subalgebra complementary 1o A,; ic. a5 a
Levi-factor for the short exact sequence O—sh, —sf5,—sp, —+0).

@
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82 The oscillator representation.

There is a famous representation of sp, which occurs in the framework of symmetries of boson fields
{Shale, Segal), in algebraic number theory (Weil), and a multitude of other places, known variously as
the Segal-Shale-Weil representation or the oscillator representation. Ome way to obtain it is as follows.
Let H, denote the Heisenberg group, H, = R* XA" x §' with muliplication

(P a2’y = (x +a'y +y'e IS > 1) L

where <, > denotes the siandard scalar product on R”. The Lic algebra of H, is of course
h, = R” XR" XR. And the Lie-bracker of h, can be interpreted as giving (and given by) a bilinear
form R™ XR¥ R defined by the matrix J, cf. (8.4} above. Thus the Lic group Sp, of 5p, can be
seeh as & group of automorphism of k, and H, which is morcover the identity on the centre § CH,.
Let ¢ be the standard Schrédinger representation of }, in LYR")

(x, 0.0)—*”,. (M‘fxxl) = 02"<“">f(1'). fE.L’(II")
Oy =T, (Tf (X'} = f(x'~y), felXR") 38
(0.0.2)= 5., (Sf)Nx') = 2 f(x"). fel’(R™)

Now let g<Sp, be seen as a group of automorphisms of H,. Then kep(g(h)) is another irreducible
representation of H, with the same central character. So by the Stone-von Neumann theorem there is
an wig) intertwining them, i.e. such that

wglolhxAg) ' = plg(h)). (8.9)
These w(g) are unique up to scalar factors and therefore define a projective representation of Sp,. The

factors can be fixed up 1o define a representation of the two-fold covering Sp, of $p,. This is the
Sepal-Shale-Weil representation.

8.3. All Kalman-Bucy fifters.
Now consider something apparently totally unrelated, namely the DMZ-filtering-equation (2.2) for a
Jnear dynamical system

dx = Axdi+Bdw, dy = Cxdi +dv, xeR", weR™, yveR’, (8.11)

It is a trivial remark that the operators occurring in (2.2) are all in &, in this case. And in fact the
Lie algebra generated by them will consist of the second order operator £ and a subalgebra of b,
stable under £ In most cases, 10 be precise in the case that the sysiem (4, B,C) is completely reach-
able and completely observable, this will be all of A,, giving us generically an estimation algebra of
dimension 24 +2 which is a subalgebra of Is,, which has dimension 2n? + 31 + 1.

The Kalman-Bucy filer defines by BC principle an antihomomorphism olf this Estimation Lie alge-
bra EL{A.B,C} into the vector Lie algebra of vector fieids V(RY), N=n + Jn(n +1).

TueoreM [16] 8.12. For varying (A,B,C) these anti-homomorphisms fit together to define a antiho-
momerphism of all of /s, inlo ¥(R") with as kernel the centre R1. This representation can be lifted
to one on V(R *') which is faithful.

The explicit formulas are as follows. Interpret a point xeRY *! as a triple x =(c,m,P) consisting of
a scalar ¢, an n-vector m, and a symmetric # X n matrix P. The antihomomorphism is then given by

! .

. 8.13)
i d
X —m; 3 +;P,, am, (8.14)
[ 9

ax,  ax

{8.15)
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Inversely these formulas can be checked directly 10 give an antihomomorphism of Lic algebras anc
this thus venifies the BC principle for linear dynamical systems and also for families of such depend-
ing on a parameter.

Changing all the minus signs in (8.17) and (8.15) into Plus signs gives a faithful homomeorphism of
L, into P(RY ),

Re:l*rilcl‘mg this homomorphism 1o sp, as given by (3.5) then defines a homomorphism of sp, inic
VIRY ),

The final remark is that this realization of sp, as o Lie algsbra of vector fields on R* *' has much
10 do with the Segal-Shale-Weil representation. The precise statement is that the mapping

(e.m.p)— explc + <2mim,x > — 2 P(x)) e LA(R") (3.19)

{where P(x) is the quadratic form defined by the symmetric matrix £; aote that apart from a scaling
factor this is the normal distribution with mean m and covaniance P) lincarizes the vectorfields im the
image of} Is, in V(R™*') and switching from a linear vectorfield to the operator which defines it then
defines a representation of s, Dsp,. This is another real form of the Segal-Shale-Weil representation
meaning that after 1ensoring with C (=extending scalars to the complexes), they become isomerphic.

9. W, and V(M)

We have seen that the Weyl-Heisenberg algebra W, = R<x,,..x,. d/dx;,..,0/dx,> of al
differential operators with polynomial coeflicients often accurs in fittering problems, i.c. as an Estima-
tion Lie algebra. Given the BC-principle it is therefore of interest to know something about its rela-
tions with another class of infinite dimensional Lic algebras, viz the Lie algebras V(M) of smooth
veclorficlds on a finite dimensional manifold. The algebra W, has a one-dimensional centre R | con-
sisting of the scalar multiples of the identity operator.

THEOREM 9.1. (Hazewinkel-Marcus {17 Let a: W~ V(M) or W./RI1=V(M) be a homomor-
phism or antihomomorphism of Lic algebras, where M is  finite dimensionzal manifold, Then e =8

The original proof of this result (17]) was long and computational. Anuther much shorter proof
based on the nonexistence of finite dimensional representations of &, for which | gets mapped onio
the unit operator has more recently been given by Toby Sufford.

18. The cubic sensor.
Consider again the cubic sensor, i.e, the onc-dimensional system
dx = dw, dy = xdt +av (10.1)

consisting of Wiener noisc, cubically observed with further independent noise corrupting Lhe absarva-
tions. As noted before (theorem 7.3)

EL(cubic sensor) = W, (¥0.2)

Now suppose that we have a finite dimensional filter for some conditional stalistic ¢(Ax,) of thz cubic
sensor. By the BC-prnciple (6.1) if follows that there is an anlihomomorphism of Lie-algebras

&>
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W, = EL (cubic sensor) -—.o V(M). By theorem 9.1 it follows that a =0 and from this it is not hard 10
sec that the only statistics of the cubic sensor for which there exists a finite dimensional exact recur-
sive filter are the constants. ‘

A direct proof of this, which sort of proves the BC-principle in this particular case along the way, is
contained in Hazewinkel-Marcus-Sussmann [ 18).

11. Perturbations and approximations )
Let us start with an example. Consider the weak cubic sensor

dy = dw, dy = xdt +exPdi+dv (E) (1.1

If ¢ = 0, this the simplest nontrivial lincar sysiem for which there is the Kahmn filter. For «70 one
can prove that EL(Z,)= W, again, [15] So for all e£0 there is no recursive exact filter for any non-
constant satistic. Yet it is hard 1o believe that for small ¢ the Kalman-Bucy filter would not do &
good job of first approximation. A question thus arises whether the estimation Lie algebra also has
things 10 say about approximare filters, In this section and the following ones 1 shail argue that it
oes.
) The first observation is as follows. 1f one actually. commutes the two generalors
%dl/dxz-%(x +ex?P, (x +ex?) repeatedly of course eventually all the basis clemenis of W,

appear. But they appear with higher and higher powers of ¢ and the e-degree grows faster than the
degree in {a} and (8) of the x*?F /dx”P. ‘ ‘

A precise version of this is as follows. Consider the two generators just listed as operators over the
ring Ri¢} (or Rl{e]]), i.c. consider ¢ as an exira variable. Then it makes sense 1o consider

EL(Z)®gRld /€ =: EL(Z,)mod{e") (11.2)

This simply amounts 1o sciting € =0 for m3=n whenever it appears. The set of all ¢x/a* /dx* with
«n form an ideal in Rle}<<x,d /dx>>, so this makes sense. Now observe

ProposiTion 11.3. [15). The Lie-algebras EL(Z,) mod ¢ are finite-dimensional for all n.

As an example EL(Z,) mod ¢ wrns out to be 14 dimensional with basis

1d 13 . 3 d 1 d
ZE_ZI u.x.u.dx‘l.t.u dx'a'
L B &L,

exzx—.c——dxz.z—dx,e-—dxj.u—dxz,u.

This is a general phenomenon.

THeores §1.4. [15]. Let %, be a system of the form
dx = (Ax +eP ()t +(B +ePy(x)dw, dy = (Cx +ePr(x)udt +av (11.5)

where Py, Py, Pc are polynomial vecior and matrix valued functions of the approximale dimensions.
Then E£L(Z,) mod (¢") is finite dimensional for al} #. It is also solvabie. - _ _

In [15] this is proved for the case P = P, = 0. The prool generalizes immediately (sn‘mp_ly gveea
negative enough degree to make degree decreasing all terms in the generators of EL(Z,) in which ¢
appears (both x,,d / 3x, are given degree | in (his nrgumgnl)A) _

The next cbvious question is: do these “finite dimensional quotiemis of EL(Z,)" actually compute
anything, do they correspond to filters for some statistic? In the casc of the weak cubic sensor this is
(11.1) easy to answer. Consider the unnormalized conditional deasity p(x.1, ¢} and (formally) expand it
85 @ power serics in «

x4, 0) = polx,i}+ep(x, 03+ Epplx, )+ ... (11.6)
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Then EL(Z,) mod (¢") corresponds to the first # coefficients Pplx,1),....pq - 1 (x,1), and via Wei-Nomman
theory actually computes them. This is generally true, also in the setiing of theorem 11.4. In the case
of the weak cubic sensor (11.6) actually converges (for small ©. That, it appears, is not generally true.
But it is stili true thai (11.6) gives an asymptolic expansion {Blankenschip-Liu-Marcus [4]). The Lie
algebras being solvable one can of course implement these approximate filters, using the Wei-Nerman
technique. This was done in {4] and also the resulis were compared with the extended Kalman Glier
(EKF). The zerg-th order approximation (of course) performed worse than EKF but the frst order
approximation performed betler!

These Lie algebras £1.(Z,) tend to become large rapidly and to actually produce the, say FOR-
TRAN, code is a long, but mechanical, Job, prone to errors. Even the simplest nontrivial case needs
several pages of densely written code. It is thus natural 1o try to let the computer do the job itself and
in this way these ideas and techniques are being implemented in an expert system which is a joint
effort of INRIA and the Departinent of Electrical Engineering of the University of Maryland (cf.
Blankenschip [3]; the system also contains many other facets of stochastic control, filtering and optim-
ization),

From the point of view developed in section 4 above the fact that caleulating po{x,t),...,p, - yix.1)
corresponds 10 EL(Z,) mod {¢") can be understood as follows, Choosing a basis suitably the temarks
made in section 4 about the compalibility of Wei-Norman theory with quolicnls say that p{x,s,¢)
admits an “expansion”

plx,t,¢) = e"“"'e""“'...e“"”‘...po(x) ‘ (L7

with g,....8m) where mim)=dim{EL(Z,) mod () depending enly on EL(Z,) mod (¢"), The opera-
tors A, in (11.7) involve higher and higher powers of «. Writing out the exponentials one recovers
(11.6). {And this point of view also strongly suggests (because also higher derivatives appear in the A,)
that the best one can hope for in general is an asympiolic expansion.)

12. The profinite dimsensional case.
A Liealgebra L is said 10 be profinite  dimensional if there is a sequence, of ideals
L2, 29, 3%, 0. such that

dimL /%, < oo for all ¢ (2.1
Ny, = (0). S 12y

Suppose the estimation Lic algebra EL{Z) has this property. Then again, as in the previous sec-
tion, ane can write an expansion

px, 0y = e"'"e"".‘.eu'...m(x) (12.3)
and consider the possible approximants
PN x.0) = e""'e""'...e""po(x). ‘ (12.4)

Using, again, that the equations for Brefni A=n{m)=dimL /¥, do not depend on g,y ...
Abstractly, there is no immediate reason 1o expect the higher % to be small, though [one would
expect this Lo Lhe case in the majority of the interesting cases, even in more general cases than this, as
I shall argue below in section 14.

Profinite dimensional estimation Lic algebras occur frequently. Consider systems

dt = f(xWdt+Gix)dw, dy = hix)de+dv L(128)
with the additional assumptions that f.G and h are analytic (1otally around zero) and 1hat
f1O=6m=0.

THEOREM 12.6. |17} Under the assumptions made immediately above EL(Z) is profinite dimensional
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If one adds the condition that h(0)=0 (which surely does no harm; removing a known constant
from the observation equation is a triviality) the resulting estimation Lic algebra is even solvable
{meaning that all the quotients L /%, are solvable).

Another case of 4 profinite dimensional estimation Lic algebra (different from the class of theorem
12.6, the identification case to be treated below, and the perturbation case of section 11 abave) is
example 7.5. As a rule one should probably not expect that “the statistic calculated by L /9" of a
system whose estimation Lic algebra happens o be profinite dimensional, is casily interpretabie
{recognizable} as the statistic of an interesting Quantity. In the case of cxample 7.5 this is however the
case, (Liu-Marcus [237).

13. Hdentification of linear dynamics! systems

Suppose now that we are faced with a somewhat different problem. Namely suppose one has reason
te belicve, or simply does not know anything better to do, that a given phenomenon, say a time
series, is modeled by a linear dynamical system

dx = Axat+Bdw, dy = Cxdr+dv a3

Now, however, the coefficients in A, 8,C are unknown and also have to be estimated from the obser-
vation y{r). That is the system (13.1} has to be identified. It is easy to turn this into a filtering probim
by adding the (stochastic) equations

dA =0, dB =0, dC =0 (13.2)

{or just dr; =0 whether the r,, run through the coefficients which are unknown, if 4,8,C are partly
known; for example because of structural considerations). The resulting filtering problem is nonlinear.

13.1. Observation
The estimation Lie algebra of the system {13.1)(13.2) is & sub-Lic-algebra of the current Lie algebra
I5, @R([A, B,.C| where R[A, B,C] stands for the ring of polynomials in the indeterminates ay by pae

A corollary is thal these estimation algebras are profinite dimensional. And looking a bit more
closely at them, they are solvable {37]. Thus the ideas and considerations of the previous two sections
can be brought into play and one can try to do infinite dimensional Wei-Norman theory cte. This is
atempied in Krishnaprasad-Marcus-Hazewinkel [37]. in his rather special case it turns oul that the
higher approximations (the zero-th approximation is simply the family of Kalman-Bucy fiiters
parametrized by A.8.C also discussed in section 8 above) have to do with semsitivity equations: sensi-
tivities of the ouput y (r) with respect 1o ch ges in the par s A.B,C.

As stated above, though, the problem is degenerate and likely 1o cause all kind of difficulties. The
problem is that the conditional density p(x,A.8,C,t} will be degenerate because the A,B,C are not
uniquely determined ty the observations. Indeed if 5 is an invertible #Xn matrix then the system
(13.1) given by the mstrices SAS ™!, $8,C5! instead of A,8,C gives cxactly the same input-output
behaviour, Thus we should really be considering this problem on a suitable quotient  space
{(4.8,C)} / GL,. Thesc quotient spaces as & rule are not diffeomorphic 10 open sets in some R*.
This is one way in which stochastic systems like (1.1»(1.2) on nontrivial manifolds naturally arise and
it leads to the necessity of finding a DMZ-cquation in this morc general context. Work in this direc-
tion has been-done by Ji Dunmu and T.E. Duncan. o

Let me add one observation. For the filters giving x,4,8,C for problem (13.1-(13.2) one expects x
to move fast relative A, 8,C. Thus it would make sense to consider a system

de = (Ag+ed )xdi + (B +eB | ddw, dy = (Co+eCy )t +dv {13.4)
dd, =0, dB, =0, dC, =0

(where Ay, B,,C, are asswmed known) and apply the ideas of section 11 above to find optimal direc-
tions of change (i.e. the 4,,8,,C)).
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14, Asymptotic expansions and approximate
The ideas 1o be outlined below in this section are still speculative but there are quite a number of
posilive signs.

First however let me point out that the procedures based on Wei-Norman techniques as described
in sections 11 and 12 above clearly indicate that existence, uniqueness and regularity results for salu-
tions of the DMZ-equation have a lot to do with the existence of asymptotic expansions {[2,4]). For
regularity resulis etc. cf. e.g. work of D. Michel, J.-M. Bismut, E. Pardoux, M. Chaleyat-Maurel, D.
Ocone, Th. Kurtz, W.E. Hopkins Jr., H.J. Sussmann a.0, (|25,8,22,2] and references in these papers)

Let us consider a conitrol system of the form

x = f(x)+Zug(x) (an

where the fand g are vectorficlds. To make thinking casier assume that 0 is a stable and asymploti-
cally stable equilibrium for the unforced equation. A system like (14.1) is intended as a model of
something and as such one can argue that say the values of f(x),g(x) are relatively well known, he
values of their (partial) derivatives (w.r.t. the x;) will be less well known, the second partial der /a-
tions are still less well determined etc..

Thus, intuitively, for systems which represent or model real (stable) things ene would expect that in
many cases the behaviour of (14.1) will depend primarily on the first few terms which appear in he
Lie algebra generated by fand the g,. The higher brackets should matter less and less.

That means that instead of looking at Lie (f.g|,....n}, the Lic algebra generated by f,g|,.. .2, 2% &
Lic algebra without further structure, we should look at it as a Lie algebra with a given set of genera-
tors and sort of keep track of how often these generaiors are used to penerate further elements of he
algebra. (For each time a bracket is taken a differentiation is applied, and thus the higher brackels of
the f.g).....&m depend only on the deeper parts of the Taylor expansions of £.g,.....gm.}

Personally 1 would also say that having noises rather than precise deterministic controls 4, wosld
enhance this type of {structural?) stability.

A precisc way o keep track of how often the generators arc used is 1o introduce one exira count ng
indeterminate z and to consider instead of L = Lie{f.g)....g.} the Lic algebra generated by he
vectorfields (zf.zg,,...,2g, ). This Lic algebra L, is topologically nilpotent, ie. if L ={L 1"~
L®=1 ) then NL™={0}. And a homomorphism L, — V(M) into the vectortields on M with ker-
nel LI precisely means "respecting the structure of the Lie algebra L up to brackels of order n”. all
this is very much related to the ideas of nilpotent approximation as introduced by Stein, Rothsch M,
Goodman and Rockland, |32,14,31] in the study of hypoellipticity and taken up by Crouch in syszm
theory [10].

Thus in filtering theory it would seem natural 10 look at the Lie algebra of operators EL,{Z) gzn-
erated by the operators

2o z(hyoen 2 hy

where the Z0,24y-dy are additional variables (so as 10 give, if desired, certain obscrvaticas more
weight than others and 10 be able 1o st certain of them, especially z, equal 1o 1). The idea would be
then to study the filiers produced by Wei-Norman type techniques for the various Rnite dinensional
quotients and to see whether this produces viable expansions.

15. Removring outliers
A final idea in much the same spirit as before is the following. Suppose we are again dealing wita a
system

dx = [t +Glxydw, dy = hix)di+av. (1£.1)

Suppose also to make thinking casier thal the thing is more or less stable so that x tends to remain in
some bounded partion of R” (f asymptotically stable) and maybe suppose also that & is proper, 0
that large y observations are exceedingly rare and should probably be discounted. Suppose that e ™ ¥

2
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is differential algebraically independent of f,G,4. This is for example this casc if J.G,h are polynomual
and also if they are of compact support. In other cases other functions with similar properiies can
presumably be found. Now instead of (15.1) consider the modified system

dx = f(x)dr+Gix)dw, dy = e "V hix)ar+ v (15.2)

where a>0 is a small parameter. Note that the only thing which (15.2) does with respect to (15.1) is
to discount large y obscrvations.
Now consider Lhe estimation Lie algebra of the sytem (15.2).

TrEOReM 153, If ¢~obr 5 differentially aigebraically independent of f,G,h then the estimation Lic
algebra of (15.2) is pro-finite dimensional and solvable. To be morc precise it is finite dimensional and
solvable mod (a'e b1 ; + j 3 n) for all n.

Thus the yoga of the previcus sections can again be applied and the behaviour of the resulting
filters as a goes 10 zero could be studied.
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