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OPTIMIZATION OF HYDRO ENERGY STORAGE PLANT SYSTEMS

{Case Studies: Power Plants Gosau - Gosauschmied - Steeg
Power Plant Partenstein)

W.Bauer, H.Gfrerer, E.Lindner, Hj.Wacker

1. Hydra Energy Productien

Production of electric energy by hydro enerqgy plants i< of some
importance in Austria, cf. figure 1.

year hydro energy thermal energy imports total
{GWh] [GWh] [GWh] {GWh1
1960 lo. 345 2.593 851 13.7
1970 19.296 6.220 1.605 27.1721
i980 27.0l15 9.342 3.492 39.8%
1982 28.630 8.926 3.408 40, 96<
1983 28.295 8.904 4,681 41,88

Figure 1: electric energy production/consumption in Austria

Although the ratio hydro energy production versus total energy production
decreased from 75 % (1960) to 68 % (1983}, river power plants and storage
power plants are the mair suppliers of electric energy in Austria, cf. [2c].
In 1983 river power plants produced 19.432 GWh whereas storage power plants
produced B.863 GWh. Although the ratio is more than two to ane, storage pcwer

plants are more important. Botk river and storage power plants have a
reservoir, but only the reservoir of a storage power plant can be used for
transferring energy production with respect to time. Austrian river power
plants are mainly situated at big rivers, e.g. river Danube. Their operation
mode is almost completely predetermined by the influx and restrictions due to
floed protection, shipping etc.

In this paper our central interest is the optimal control of storage power
plants. The objective of our control problem is always the energy produced
within a given interval of time, weighted by a nonconstant tariff function.
This means, that we want to maximize the monetary value of the energy produced
resp. the income of the power piant compary.
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2 An Optimization Model for Energy Production by a Single Storage Figure 2 describes the essentials of a storage power plant system.
Power Plant (Rated Energy Production) The inflow Z runs into the reservoir, whose content 1s V. Water is taken

down through a cenducting system ( head rise gallery, penstock) to the power plant
itself, There, the amount of discharge  leaves the power station after the
turbines, where the potential energy is changed into cinetig energy (water »
turbine} and afterwards into electric energy (turbine + generator).

For a power ptant with a single turbine this can be formalized as follows:

We will give a description of a single storage power plant.

PTh = g.p.H.Q theoretic power [W]
\7 j/ P o= Pron(K.Q) actual power (W]

i.e., the theoretic power is reduced by the efficiency n (€ 10,1[) due to
losses during transmuting the potential into electric energy. g, and p, see
below. '

head rise gallery Our aim is to optimize this system, i.e., we want to maximize the total

q rated energy procuction E(TB,TE) within the time interval [TB'TE]' This results
in the following model (M1):

reserveir

surge tank

Model (M1):

Maximize

influx penstock

volume
amount of discharge

T
E
head a(t
turbine hydro power plant (M1.1) E(Tg,Te) =/ 3—31—1—- P(t)dt
B''E TB 00 000

T O =

whare

1| ohy {ML.2)  P(t) = P (t).n(H(t).0(t})
(ML.3)  Pr(t) = g.o.H(t).Q(t)
Q under the restric=zions

t
(M2.4) V(t) = V(TB) + { (Z{*)-Q(1)-5(1))dx
B
‘ (reservoir continuity equation)

M1.5)  (Tp) = vy

Figure 2 Adria



{M1.5)

(M1.7)

(M1.8)

(M1.9)

(M1. 1o

(M1.11

)

)

V(Te) = v,

V. sV(t)sv

min max

Qmin S Q(t) = anax

0s5(t)s Smax
¥(t) = C(hy(t))
H(t} = hy(t)-h,

for t € [TB,TE].

We use the foilowing notations (t ¢ (TgsTel):

E(TB.T

TB'TE

a(t)

P(t)
Prnlt)
ﬂ(H.Q)

v{t)

g)

total rated energy production in the time interval
[TB.TE], ATS ... Austrian Shilling

beginning, and ending, point of the time interval urder
consideration, resp,

tariff at time t, varying on day time, day of the weak
and season,cf, remark 1. a)

actual power at time t
theoretical power at time t
total efficiency of the power plant cf. section 3.1

acceleration due to gravity, 9,81 m/s2

density of water, looco kg/m3
head at time t
amount of discharge through the turbine

volume of water in the reservoir at time t

[ATS)

[s]

[ATS/kih]
[Ws]

[Ws]

[-1

5(t)

VB‘VE

vmin’vmax

Q

min'Qmax

Remark 1:

a) The tariff a{.) is a step function, attaining just five different values
a year, Figure 3 gives the tariff in ATS/kwh valid since April lst, 1985.

influx into the reservoir at time t [m3/5]
. . 3

sptllage water at time t [m“/s]

volume of water in the reservoir at TB' and TE'

resp. {m3]

minimum, and maximum, volume of the reservoir, resp.[m3}

minimum, and maximum, amount of discharge through

the turbine, resp. [m3/s]
maximum spillage water [m3/S]
absolute height of the surface of the reservoir

at time t [m]
absolute height of the level, where the water

leaves the power plant again {m]
reservoir capacity function cf. remark 1. b (md)

Summer transition period winter
high .433 . 546 1)
Tow . 382 .489 .489

Figure 3: tariff valid since April lst, 1985 in ATS/kwWh
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Wren "high", resp. "low", tariff is valid, is presented in figure 4.

Summer and transition period winter
Mo-Fr high high
6am-1lopm
sa high high
Gam- 1pm
sa Tow high
1pm-lopm
S0 Tow high
6am-lopm
daily Tow low
lopm-6am

Figure 4: periods of "high“,and "Tow", tariff, resp.

The actual value of a{.}) gives the price at which an Austrian electric emergy

supplying company can buy or seil electric energy from or to the Austriar Central
Electricity Board. Note also, that most of our results presented in the “cilowing
parts are substantially depending on this varying tariff.

Figure 5 gives a sketch of the principial behaviour of the tariff functi:n during

one week of summer and transitinn neriod.

& tariff [ATS/kWh]

high

Tow  —

+—b time

~

Mo 6%0 229¢ Tu 6°° 2299 we 6°° Fr 227%sa §9913°°

Figure &

Mo 6°°

principal behaviour of the tariff function during summer (May - Augusz) and
transition period (April, September)

b} The reservoir capacity function €: [hv min'hv max] - [Vmin'vmax] is a
Ll L]

positive, strictly increasing smooth function. h s and hv max® are
L]

V,min

the minimum, and maximum, height of the reservoir, with Voin = C(hV.min)'

and vmax = C(h ), resp.

V,max
As C is bijective, (Ml.lo) can be written as

(M1.10') hy(t) = ¢ Hu(e))
and - more important - (M1.11) can be written as
(ML11') H(t) = € v(e))-hy = ¢ F(V(D))
Therefore, H depends continuously differentiable on ¥ and vice versa,f is

a positive, continuously differentiable strictly increasing function in V.
Both € and f are nonlinear.

A
hy
hV.max
Py min
o ¥
Vm1’n vmax

Figure 6

reservoir capacity function C (resp. E'l)

Mote, that the above figure 6  is interpreted as (2"1 by a mathematician.
An engineer always represents both C and C"1 as sketched above. As "height"

is a vertical direction it has to be represented by the ordinate ignoring
the actual functidnal formulation.



c) Obviously, in model (M1} there are some equations just written dowr for
clarifying the physical background, If we inciude (M1.2}, IM1.3), (M1.11")
in (M1.1) we result in

Model (M2):

Maximize
T

E
M2l BT Te) = 1 il -90-FV(D).Q(8) n(F(V(E)). (D)t
B

under the restrictions

t
(M2.2} V(1) = ¥(Tp) + § (Z{)-Q{x}-S()) dv

B
(M2.3)  V(Tg) = vg
(M2.4)  V{Tg) = v,
(M2.5) VsVt sV
(M2.6)  Quio s 0(t) 5 Qy

{M2.7) 05 5(t) s Smax

for t e [TB,TE]

For notations see model (1) and remark 1. This is a problem of nonlinear
optimal control with Q and § as contrel variables and V as state variable.
Because of the tariff function a(.) the objective is nonconvex in any case.

Remark 2 :

Both for further anatytic and numeric considerations
eliminating H in (ML} - as done in (M2) - is to prefer to eliminating
¥ in (M1). This second elimination is also based on {Ml.lo}, (M1.l1)},

- lo -

leading to

V(t) = C(H(t)-hy)

Its disadvantage is, that (M1.4) becomes nonlinear: (M1.4} leads to

t
C{H{t)-hs)} = Vg + { {Z(x)-Q(1)-5(x))dr
B
resp.
-1 t
H{t) = np+ ¢l (yy + ! (20)-Q(=)-5(x))d),
B

and thereby increases the complexity of our model.

{M1), and (M2} are models for the simplest case of a storage power plant.

In general, a power plant does not have a single turbine, but two or more. Also
& chain of hydro energy power plants will be of interest. However, model (M1},
and {M2), can easily be generalized.

Remark 3:

Other authors use objectives, which are not based on the price of energy.
Bauer et at. [7!, [8] consider an objective similar to (M1.1) but drop the
tariff, leading tc
T
E(TB,TE) = %B P{t)dt

In Bauer et al. [2] models using abjectives of the type

1
nrs

0.(t) - min,

UOREN

J

and

n
P(t) = £ P.(t) - max,
j=1 d

under suitable restrictiens on Pj(t), and Qj(t), resp., are set up.
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Concentrating our interest on models of the type (M1), (M2} is guiced by .
applications. The power plants Gosau - Gosauschmied - Steeg and Partenstein
are owned by the Upper Austrian Power Plants Company (0XA}, whose thares are
comptetetly held by the federal government of Upper Austria.

The OKA intends the following production strategy:

production by OKA itself 1/3
Joint production with other (Austrian) power companies 1/3
purchase of energy 1/3,

i.e., & ratio of one to one to one, whereas the actual ratio is 13 to 12 to 21.
Therefore, it is of interest for the OXA to reduce purchase by producing more
energy itself (resp. to reduce the amount of money for purchase). “ne objective
used in (M1), {M2) alsoc is the accounting mode of the Central Eleczricity Board,
the exchange mode between different companies and the internal accsunting mode

of power plant companies in Austria.

-12 -

3. The Storage Power Plant Partenstein

The storage power plant Partenstein and ftts storage lake Langhalsen
are situated north of river Danube in Upper MihTviertel, Upper Austria
(cf. figure 7). It was built between 1v19 and 1924 and opened on
October 3oth,1924 as the first hydroelectric superpower statfon {at that
time). It was designed for supplying Vienna with electric energy by the first
tlo kV high-voltage power 1ine in Austria. Because of harnessing river Danube
by river power plants and thereby rising the level of the river, the power
plant Partenstein had to be recenstructed from 1962 ti1]1 1964. Since that time
Partenstein has had the following technical equipment:

main part:
2 Francis turbines with vertical shaft and 16,2 MW power each
maximum consumption 13 mals each
2 three-phase synchronous alternators with 21,5 MVA, 5500 V,
50 Hz each ’

ancillary part:
1 Kaplan turbine with an inclination of 18° with 2192 kW power
maximum consumption 25 m3/s
1 three-phase asynchronous alternator with 2,4 MW, 5500 ¥, S0 Hz

The reserveir Langhatsen is due to a gravity retaining wall at river

GroBe Mihl, some 1o km before it flows into river Danube, Its maximum content
is 736 ooo m3, its Tevel is varying from 451,00 m til] 456,20 ».

Water can be drained off by a weir plant at a maximum rate of doo nals (two
hook-shaped brackets, each 8,0 m broad and 9.2 m high). River GroPe MUR! 1is
the only influx to the reservoir. The water runs at first 5 572 m through a
head rise galiery into the surge tank (capacity 1 619 m3) and then through a
penstock 371 m into the power station Partenstein. After the two Francis
turbines the water can run efther directly into the river GroBe Miin? {Tevel
291 m} or through the Kaplan turbine into the river Danube {mean level 280,5 m).
The watershed is 506 km? with a mean annual water freight of 290_m111.m3.

The power plant Partenstein produces 97 GWh anmually on an average. For the
data ¢f. [19]. The power plant Partenstein 1s part of the group of hydro
power plants Upper Mihlviertel, consisting of Partenstein and Ranna. Both are
owned by the Upper Austrian Power Plants Company (OKA). Partenstein and Ranna
are only joint by a 1lo ky power line,
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Without modelling the ancillary part we get a model similar to {M2) for
Partenztein, but for two turbines.

Mode! ‘Pl!:

Maximize

T
E
(LA ET0To) = 1 1 gilas (0t

where
(P1.2)

P]-(t) = g.p.f(V(t)).Qj(t).nj(f(\l(t}). Ol(t), Qz(t)} i= 1,2

subject to

t
(PL3) VU0 = ¥(Tg) + 5 (2(9)0,(1)-4y(1)-s{x))ar
B

(PLE)  v(Tp) = v
(PL5)  ¥(Tg) = v
(PLE) Vo s ¥(t) s v,

(PL7)  Qpin,5 8 (2] s Omax, j

(PL.8) Oz s(t) s Snax

for j = 1;2! t c [TB,TE]

We use the same notations as in (M2}, and acd subscript j, for denoting
turbine j, j = 1,2.
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Most of the input parameters in our model are easy tc get. We confine

our interest to the determination of C resp. f, nj and Z.

At the beginning of our work no data were available on the amounts
, of discharge and Q,. Hence, we tried the following ansatz.
i) Determining the reservoir capacity function is an easy problem. ge Qp» % ' 8
We used a polynomial approximation, ar acceptable result was
. poly : pF.) i e From (P1.3) we obtain
obtained by classical linear least squares after some initial
troubles on the data set. For details see {15, 15]. \
VI(t) = Z(t)-Q(t)-Qy(t)-5{t) = (C(hy(t}) =
ii)  For determining the efficiency function ny see 1.1,
= C' (ny(£)).hy(t)
ji1) Estimating the influx 7 to the storage lake Langhalsen was done by
two methods. For a mode! based on Multivariate Normal Distribution . " . ts of h 4 7. at time t 4t eat and
. ave two measurements o an at ti an +
and conditional probability see {17]. For a transfer function model we € ¥ * me 4 ptat an
see [1B], or Oberaigner {Z21]. if there is no spillage water S, we can approximate the total efficiency
E1+E2
Ttotal = goll, T, B

3.1 Determination of the Efficiency

where

The totai efficiency n of the power piant is defined as the ratio of 1 )
produced power and theoretical power. The theoretical power is Hav -7 (hv(to) + hV{to+At)) hT
reduced by losses
i} in the tunnel system conducting the water from the reservoir

to the turbines
ii) in the turbines themselves and * E
i11) in the generators and transformers.
Afterwards the produced electric energy is no more under the
responsibility of the power plant. Therefore, we do not consider
further losses in the network etc. Only for iii) acceptabie in-
formation was available from the producers. Hence we had to develop
a model for the efficiency inciuding the losses i) and ii) only.

0, = 7 (Z(t,) + Lt #at) = Tx (C(hy(t +at))-C(hy(t,)))

j is the energy produced in the interval ito,to+At} for j = 1,2

This ansatz was not successful as

- it does not contain the partitioning of the total discharge on the two
turbines

- the numerical results are not acceptable. Small errors in the
measurements of hV result in enormous errors in Qav' as

C'{hy) ~ 1,4 . 10°.

Hence, we tried another ansatz.
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Figure 8: basic hydrological structure of the power plant P:-tenstein

where Fo’ Fl’ F2 denote the circular cross-section of the

upper tunnel, the tunnel to the first and to the second turbine,
resp. Because of similar construction we assume

eV g, (2 _ (),

reservoir

Summing up all losses we get the

head rise gallery following expression for the manometric head H; before turbine i

surge tank I. tunnel Hy = Hec (040,) - €0, i=1,2
system
Q,+Q
H 172 penstock where €g = ¢+ c(l)/Foz and ;= ci(z)-ci(l)/f’i2
Y-pipe

Therefore, the power before the turbine iis
Por, = 9-0-H;-Q; = g .oMQing(H,0;.0,)

(Q1+Q2)2 2
1 cp g -y O;°/H

]

where nS(H,Ql,QZ)

penstock i1) As in our case there are two identical turbines we assume that
§? i the efficiency functions "1 and T2 of the turbines are
’ »
I1. turbrines identical. Significantly the contours of the efficiency of a single
turbine are shell like.
I11. generators and "
transformers i
We took a model motivated by technical considerations. "T(Hi'oi) = const.
i)  The water isbrought down to the power plant by a single tunnel Figure 9: efficiency
which is split up into two just before the turbines. By function of a single
engineering assumption the losses of pressure in the tuinel may ' turbine

be expressed by a fictitious reduction of the head H which is
proportional to the square of the discharges in each sezarate
section of the tunnel system. So we get

H(z): = H-c(01+02)2 in the upper tunnel, . 2l Qi
Q.+Q Q. Therefore, we use a bi-quadrati imati i
3) (2y_ (L) 142 .2 i42, e , quadratic approximation, i.e.
H, ( = e, { o= )71 in the Y-pipz
i i (-p Fi

rT(Hi’Qi} H a0+a101+a2Hi+a3HiQi+a4Qi2+35Hi2.
of the tunnel and

For the output-power of the turbine we get

H.(a): = H.(3)_c,(2)q,2 = : H, 1in the part just before
’ Voo ‘ Proi = Por,inr(Hi04) = 9-0 HQing(H,0,05) ny(H;Q;)

turbine i, i =1,2
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111} Again both generators and transformers are identical. The
producers presented a function :G = ﬁG(Pi). As the argument is

the output value of the power plant, we computed its invers:
"6 = nglPr i)
Putting i.), 1i.} and iii.) together we obtain

Pi = PT,i'"G(PT,T) with PT,i =4.p HQinS(H.Ql.Oz)-nT(H1.01)

resp.

IS b - N S 2 A R LA Ll S L
"Total PTh,1+PTh.2 i=1 Ql + QZ

= "Totai{1Q1:Qp)
and

Protar = 9-0-H(01+0)nrgy,(Hi0p,0,)

To determine Nrota] Means to determine (a,c): = (ao,...,as;co,cl.cz).

In principlie this can be done by nonlinear least squares techniques

based on measurements for Plj‘ sz at the points (Hj. Qlj’ sz).

In our case there arises the additional difficulty that the points where the
Measurements (Hj’olj’QZj) are taken can be determined onlty with wacertainty,

A first attempt to use standard nontinear least squares was on obrious faitiure,

Nevertheless, this probiem cam be handled satisfactorily by the following
techninue sroposed by Schwetlick/Titler [23].
We consider the uncenstrained optimization oroblem
: . T 1 2
1 [r{xd,e)-¢ rixJ,e)-yJ
b . W, s g + min
J‘=1 va_x\] J XJ-XJ
where minimization is done with respect to xl,....x] and 8. The
matrices Nj are appropriately chosen weights, which are symmetric and

positive definite. The main problem is the high dimension caused bv

inciuding the errors of the input data (xj—xJ) into the standard
model. Schwetlick/Tiller overcome this difficulty by reformulating

L

the above optimization probiem as a nonlinear least squares problem
which is solved in two steps: at first linearization by the Gaus-
Newton method and secondly solving the resulting Tinear minimum norm
problem profiting by the special structure of the resuiting objective.
For details see [23]. We additionaily used a damped GauB-Newton method
and regularization for the 1inear solver.

For Partenstein we chose HJ to be diagonal matrices with the rezi-
procals of the variance as diagonal elements. Based on 26 measurements
we got

o = 0.0l06 a = 99,070 3; = -0.020

¢y = -0.1283 3 = 3.098 a4y = 0.172

¢y = -0.1249 8y * -1,329 3 = 0.004

The same method has also successfully been applied to the power plant
Gosau. For details see {17].

3.2 Optimization for Partenstein

Up to now we used three different optimization techniques.
At first we present two models based on a constant efficiency.

.21 A_Decomposition/Convexification Technique

In [1lo] Gfrerer describes a globally convergent decomposition
methed for nonconvex optimization probiems. He considers separable
problems of the following form

minimize f(x)

subject to Ax = b (*)
g(x) £ 0
x ek
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where f € Cz(]Rn). AE Rr: with full rank m s n, K = R" is 3 corvex, SUbJECtVtQ y
fth 1 j i-17"
compact set with int K # £, 9; € CZ(IR") convex on K for j = L,...,p. Oyin S .-t AR BULE ™ TE N
and there exists X, € int K so that Axo = b and g(xo) < 0.
Vmin $ V5 8 oy el K1

For fixed y € R" he considers the problem

minimize f(x) + 1/2 (x-y)TC(x-y)
subject to Ax = b

(22} A sepa-able structure is obtained by introducing new variables Vi+' and
g(x) s b - . .
. Vi . Finally he results in the problem
maximize

where C s a positive semidefinite matrix preserving the seperab’e

L. . . : . t. + -
structure of the original problem {#) so0 that the objective in (+#) is N o V. -V,
i - i e D1 At )+ 2t )
strictly convex on K with respect to x. Then problem {#%) ha an unicue 3,6.10° i=1 t. j=1 t ti-l j-1
solution x(y)} and the sequence (yk)k €N defined by Yeal' = x(yl_) fcr i-1
k€N and Y1 € R" arbitrary has the property that each clusterfeint N _ t_ti-l
s f(V1_l+(Vi V1-1) T T ) dt
satisfies the necessary conditions for a local minimizer. iTH-1
This time the problem of maximizing the rated producticn of subject to
energy was discretized with respect to time, i.e., Vi
i-1 "4
N-1 Qmin s t-t ) + 2(t1-1) s Qma)-( T=1....,K
[TB,TE] = 1_L=JO [ti-l’ti[ U {tN-l’tN]
+
min ® V'i—l s vmax 1= 20N
where t1‘~1 < t1. for i = 1,...,N, according to the tariff functior af.).
A - W
Assuming the influx and the discharges to be constant on [ti-l’t‘[’ the Vmin sV = vmax P= 1y Nl
influx to be known a-priori and $ = 0 this leads to the following optimizatior Voo vt - N-1
model with (N-1) vardables Vi: = V(t:), 1 = 1,...,N-1 and (44-2) inecuatity ! ! T
constraints, oyt o
Vo = Wy = max
maximize n n,
0 N ;'i vi-l'vi ; ‘v W"'Vi-l)(t'ti-l))dt The iower, and upper, bounds Vm.n < Vm.n, and Vimax > Vmax‘ resp., were
T3 L a(t, g+ It . . ot e - . s , . .
3.6.10° i-1 t ( 1-1)(t1.-t1.h1 (ty)) -V t-tig introduced to avoid difficulties concerning linear dependence of the

gradiemts of the active constraints at the solution.
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For Partenstein he obtained the following results for an optimizatian period
of one week.

Number of time intervals CPU-time on an IBM 3031
42 14"
84 28"

168 127"

504 9'30"

loo8 35111"

The optimal solution looked like as follows

vee)

\/ \/ \/ \/W v

max

v,

min

—-

Mo ‘ Tu ] we ‘ Th ‘ Fr Sa Su

Figure lo

- 24 -

3.2.2 A Variational Method

It is quite outstanding, that the optimal solution in 3.2.1 seems
not to depend on the discretization parameter N. In 3,2.1 model (P1) §s
mainly seen as a nonlinear nonconvex optimization problem.
This time it will be considered as a control problem. Assuming a constant
efficiency and 0 & Qmin < I{t) < Qmax for t € {TB.TE] this results in the
control problem (M)
Tg
maximize { a(t)}f{v(t))Q(t)dt
B

subject to ¥'(t) = Z(t)-Q(t)

V(Tg) = Vg, V(Tp) = v
Vmin s¥(T) s Vmax
Qm1'n 5 Q(t) s Qmax
for t € [TB,TE]
with V € CETB.TE] as state variable and § € Lm(TB’TE) as control variable.
Applying the maximum principle for the calculus of variations we

get the following necessary conditions that {v () Q,(.)) is a solution
of (M): {see Girsanov [14]),

There exist real numbers 1, Ag ® 0, a function ¢ and nonnegative

measures u) resp. k with support ¥: = (t € [TB,TE]IV*{t) = Viay} resp.

Y= (te [TB,TEJIV*{t) = Vpinls not alt zero, so that

TE TE TE
-t} = -1—10 { a(t)f'(V'(t))Q*(r)dr + { ldpl{r) - { 1du2(1)
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and for all Q{.) satisfying Q Q(ty s Q % and almest all Tgsts T

min s ma

(ult)-ng a()f{¥ (t)))-(Q(t}-Q,(t)) = 0.
If further

Vmin < vB < vmax' Vmin < VE < vmax

is satisfied, then y and kg are not both zero.

Analysing these necessary conditions {see Gfrerer [11]) we ob:ain, that the
optimal solution (V*,O*) is characterised by two time points “or each time

interval, where the tariff is constant. Hence, the control pr:blem is

equivalent to a finite dimensional nontinear nonconvex optimi:ation probtem,
which was solved using an algorithm based on imbedding (see G rerer et al. 13],
CPU-time about & min.).

In a further step the assumption Z(t) < Q. for t € [T,T.] vas dropped and

spillage water S introduced as an additional control variable. The analogous

analysing was done in [15], and finally also resulted in a “inite dimensional

optimization problem,

3.2.3 A Generalized Gradient Procedure

Assuming Qi < Z{1) < Qpay e obtain 5 = 0. Then mydel (P1) is a

special problem of the following general type:

Model (A) S{x,u) + max!
T{x,u) = 0
z: = [x,u) € D, =D, = Du

S: X xU+R, T:XxU->¥
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We assume that

- X Banach space, U reflexive Banach space

- ///\\\ \\\&/// x = F{u), T(F(u),u} = 0
uel xegX

- 71,5 twice Frechet differentiable

- T;(x,u) regular

The basic idea is that the procedure yields z: = z + az for a starting point
z = (k,0) with T(x,u) = 0 so that 5(z) < 5(2), T(z) =0 and z ¢ D, -

For details see Engl/Wacker/Zarzer [9]. This method was used by Rathmair [27]

for Partenstein, resulting only in a slightly different optimal solution than
in 3.2.1, see figure 11. Cf. aiso Wacker 24].

_ head

1

time
Mo Tu We Th Fr Sa Su

Figure 11: sketch of optimal head for influx lo m3/s

This indicates that the model in 3.2.2 yields at least the principle behaviour
of the optimal solution but needs much less computational effort.

Though the project is not finished we already got some information on the
improvements due to our optimization. As the managing engineer told us the
mean amount of discharge needed for producing 1 kWh was reduced by about
lo percent, i.e., the production was increased by about lo percent.
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4 The Power Plant System Gosau

The system is & chain of three storage power plants, situated in
southern Upper Austria, namely the Salzkammergut in the calcite ranges of the
Austrian Alpes. The follewing figure 12 gives a sketch of the hvdrological system.
We again use the notation of (M2) in section 2, QL will be explained below. We add
subscript 1,2, and 3 for denoting power plant Gosau, Gosauschmied, and Steeg, -esp.

Gosau valtey

The highest point of the system is Lake Gosau, a natural lake whose capazity
for storing water was rised by building a dam. The maximum, and the minimum,
Tevel of the reservoir are 923,25m, and 875,00 m, resp. Only the upper part
of this reservoir, namely till 902,50 m, can directly be harnessed while the
remaining water can only be used by means of a shaft pump. The differencas
with respect to the heights in figure 12 are due to technical restrictions,
i.e. to ensure sufficient pressure of water in the head rise gallery and in
the shaft pump.

Gosau bhrook

Having passed the head rise gallery - and if necessary the shaft pump before -
the water runs via the surge tank and the penstock into the pumping turbine

of the power plant Gosau. The outlet is directly into the reservoir Gosau-
schmied. Alternatively this pumping turbine can restore water from the
reservoir Gosauschmied back into Lake Gosau.

The special problem of this chain of power plants is partly inherent in she
seepage losses QL of Lake Gosau. The surrounding area is mainly limestone,
that is why there are considerable seepage losses through the bottom and the
side walls of the reservoir. It is known that these losses depend on the
actual height of the tevel of Lake Gosau and are part of the influx to the
reservoir Gosauschmied {see [ 4]).

We are not allowed to model spiliage water S1 for Lake Gosau, flood protection
purposes have to be covered by a suitable long term drainage through the

turbines. Practically this is also done by reducing h by 1 m.
V,max,1 -
After the reservoir Gosauschmied the water runs down the Gosau valley as a ;
i
A

ol

reservoir
Ktaushof

HPP, Gosauscheried

~

head rise gallery
penstock

surge tank

Lake Hallstatt

HPPl Gosau

865,15m

shaft pump
surge
tank
¥
o
11T

O (hy 2
HPP, Steeg

900,720

natural brook. At the end of this plain valley there is the reservoir Klaushof.
Finally the water runs through the head rise gallery, the surge tank and the
penstock into the turbines of the power plant Steeg and afterwards into Lake
Hallstatt.

12

Figure
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For the system Gosau we use a mode! derived from (M2}
Additionally to the physical constraints we have to consider some other

restrictions: Model ({SG):

1) There is a supply contract with the UBB (Austrian Federal Railway Company),

Maximize
saying that Steeg has to produce 1,5 MW from 6 a.m. til] lo p.m. daily, T
a(t
= t)+P,{t)+P, (L) }dt
1) Lake Gosau is situated in a touristic area of Austria, thzrefore, gne has (s6-1) E(TgeTe) { o0 oog (T1(t) 2(t)P3(1))
to keep in mind the landscape. This results in the restriction, that
the level of Lake Gosau must not fall below 915 m from Jume 15th tin where
October 15th. There alse is an agreement with the local teurist ofFice
to keep the level of Lake Gosau at least at about 920/921 m during July (56.2)  Py(t) = g'p-fl(vl(t)'Vz(t))'QI{t)'"l(fl(vl(t) Va(t)).0y(t))
and August,
(S6.3)  Pplt} = g.0.Fp(Vp())0h(t) np(F,(V,(£)),05(1))
For the system Gosau there are the following data:
power plant Ggsau: (3G-4) P3lt) = 9'°'fs(VB(t))03(t)‘“3(f3(v3(t)).Q3(t)st)
- , . , . "
one Francis pumping turbine with a maximum power of %.,5 MW subject to
one three-phase synchronous atternator, with 7 MVA R
-1
(56.5)  Vy(t) = vi(Tg} + £ (Z{1)-Qp{1}-9, (€, (¥, (1)) dr
power plant Gosauschmied: 1 1*'e TB 1 ! L !
one Kapian turbine with a maximum power of 0,8 MW
. t _
one three-phase asynchronous alternator with 1 MYA (56.6) Vy(t) = Vy(Tg) + { [22(‘)+Q1(’)+QL(CI 1(V1(r)))'02(1)'52(1)]df
B
power plant Steeg:
. : s . : t
one twin Francis turbine with a maximum power of 15 bd (56.7) Vy(t) = ¥ (Tg) + [23(1)+02{1-12)+52(1-12)-03(1)—53(r)]dr
one three-phase synchronous alternator with 15,5 MVA Ts
two Pelton turbines with a maximum power of 2,4 MW each
two one-phase synchronous alternators with 1,5 MVA each (56.8) vi(TB) . vB.i
For a more detailed description and more technical details we refer tc i1, (56.9) V~(TE) . VE : i=1,2,3
4, 18]. In Steeg the supply contract with the UBB can only be fulfilled by 1 ’
f the P ines, This i i . » i
means ? he Pelton turbines. This is their only purpose. Note, that spillage (56. 10) vmin P Vi(t) < Vmax 1
water in Gosauschmied, and Klaushof, is overflowing water. ' *
i=1,2
(5G.11) Qnin,i S O {t) s Omax, i
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(56.12) Qmin,aﬂ s Q3(t) H Qmax.3 daily from 6am tiil lopm

{56.13) Qmin,3N < 03(t) F4 Omax.3 daily from lopm titl 6am

(56.14) 055, (t) i=2,3
(56.1%) 15.106 s V(t} from Jure 15th till October 15th
(6.16)  18.10° 5V (t)  during July and August

(56.17) (Voo s V(8))Si(t) =0 1=2,3

(5G.17) describes, that spitlage water is overflowing water, i.e. water

running over the dam. The supply contract with the UBB is hidden in (SG.4),
{$6.12), and (56.13). Originally, we had

Q3(t) = Q5 (t) + Qqp(t) + Q33(t), with separate upper and lower bounds on
Q35(t)s 3 = 1,2,3

Py(t) = Pyy(t) + Poy(t) + Pyy(t),

P3a(t) + Pya(t) = 1,5.10% daily from 6am til1 lopm (+),

P32(t) + P33(t) =0 daity from lopm till 6am (ne},

and an upper bound on the capacity of the penstock, i.e.

B31(t) + Qqp(t) + Qg4(t) = PSmax® where U3, and Q,,, Q33> represent(s) the
Francis, and the Pelton, turbine(s), resp. in Steeg. Because of the special
situation in Steeg we can calculate Q;z(t) = an(t) =q (Oal(t)’t) a-priori.

This leads to (56) finally by the monotonic behaviour of the friction losses
for Steeg. (#}, and (»#) are still reflected in the split lower bound on
03(t) and in the explicit parameter t in na.

T, is the mean running time of water from Gosauschmied to Klaushof.
As optimization period [TB,TE] we take the hydrological year for Lake Gosau,

i.e. September till August. Even a time discretization using just two time
points a day {i.e. when the tariff changes) results in a nonlinear optimization

- 32 -

problem with 2190 variables and 8760 constraints. Hence, for the annual
optimization some simplifications had to be met.
For the running time T, is about one hour it was dropped for the

tong term models. Further, the reservoir Klaushof was neglected because of
its extremely small capacity {4oco m3). Therefore, Qa(t) is calculated in

dependence on Ql(t) and Qz(t). Assuming a constant efficiency at Gosauschmied
we determined by the same methods as in 3.2.2 the optimal selution Qz*(t).

However, even 730 variables are too many.

Hence, for the annual optimization we took advantage of the
hydrological rhythm of Lake Gosau. Moreover, the power plant company well-
comed the following splitting into three periods:

Phase I:

The earliest starting for sinking the level of Lake Gosau in autumn is fixed
at September 1st because of tourism. The sinking process ends at December 31st
at the level of %02,5 m.

Phase 11:

At first the level of 902,5 m is kept fixed because of purposes of reserve,
only the natural influx is used for production. Then the sinking process is
continued using the shaft pump system where both the starting point and the
lowest level are determined by the optimization. Phase [I ends at June 15th
when a level of 915 m must be reached both by the natural influx .due to
melted snow and by water pumped back from Gosauschmied into Lake Gosau.

Storing water is going on up to a level of Lake Gosau of 920 m. Lake Gosau is
kept at this Tevel during summertime. There is no optimization to be done.

However, before starting any optimization code we had to spend considerable
time for determining the seepage losses QL. the influx, and the efficiencies;

for details see Bauer et al. 4], [5], Wacker et al. [25].
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Optimization of Phase I:

At first the optimal draining strategy for Lake Gosau alone was obtairnec

by dynamic programming (DP). Just considering the first power plant was
motivated by getting an insight in the principle behaviour of the systen.
Afterwards the optimization prablem for all three power plants was corsidered.

Additionally two refindd models were used. Using the decomposition/corvexi-
fication method, cf. 3.2.1, a weekly optimization with an hourly time grid

was done, see Gfrerer [12]. A special nonlinear optimization moclel for cne

day was set up which included peak power demands and where no simpiifications
were met as stated above, see [15]. This was done for justifyinc our
simplifications and for getting detailed information on short t=rm optimization.

Optimization of Phase II:

It is based on two models using DP. The first one is done by t*me discretization
as above, DP was combined with Tower- and upper bound techniques and with a
special splitting technique, see Bauer et al. [6].

In the second model the variables are certain operation modes. There are ten
different ones, where each of them represents a certain mode fiwed for cne

week. We result in a nonlinear nonconvexe discrete optimization problem with

24 variables and %5 restrictions, for details see Bauer [3].

Presentation of Dptimization Results:

The managing staff of the power plant system Gosau did not get columns ¢f
numbers etc. but a verbal formulation how to obtain the optimal value resp.
the optimal control for the power plants.

For the daily optimization we presented two main guidelines:
- Hhvoid spillage water, at least at Klaushof

- If possible produce energy at the higher tariff

and four additional guiding rules:
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- The efficiency functions are not so important, nevertheless the turbines
are to be operated near their optimal efficiency valye (t1 m3/s).

- The seepage losses of Lake Gosau are of little interest
- The reservoir Gosauschmied is used ag an auxiliary reservoir for Steeg

- Due to the running time 1y of ore hour Gosauschmied starts producing energy
already at 5 am, but stops aiready at 9pm in contradiction to the quidelines
due toc the tariff.

Hence, the acceptance of the results was rised as sufficiently many
decisions were left to the personal staff of the power plants.

Practical Resuits:

The results of our optimization models have been put into practise since 1982,
We confine ourselves to present some data of the ]ast years made available by
the OKA. Production gives the energy produced/used, and pc is the preduction
coefficient of the river power plant Gmunden, indicating the amount of
precipitation, During the last four years the results improved significantly,
especiatly taking pc into account.

year production [GWh] pc E[SQ%%EiEﬂ
1968 1,75 - -

1969 1,55 0,39 3,97
1971 0,65 0,56 1,16
1974 1,28 1,58 0,81
1979 2,08 1,11 1,88
1982 1,93 0,60 3,22
1983 2,65 0,78 3,40
1984 2,55 o,60 4,25
1385 2,26 0,46 4,91

Figure 13: Results of Phase I (Gosau)



year production (Gkh] pc EIQQEEEiEE
1969 -0,2 0,78 ~,26
1976 -a,7 0,79 -,89
1983 0,4 1,01 0.40
1984 0,7 0,86 0,81
1985 0,6 0,90 0,67
1986 1,2 1,08 1,11

Figure 14: Results of Phase II {Gosau)
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