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L INTRODUCTION
Microslecironics has been ons of the worids growth Indusiries a1 &

time when In the weat ganerally and In Britain in particular. traditional
manufacivring Industry has been in serious deciine, Just as the post-war
Indusirlal boom In Western Europs gave riss to. for example. the
manulaciure of molor cars with iis assoclated other indusiries - the
machine ool Industry to maks the parts for the cars, the road buliding and
isisure indusiries 1o allow full use of the newly svaliable consumer product.
20 ihe manufacture of microslectronica devices has s own assoclaied
indusiries; Jn particular, the manufacture of equipment to make the devices
and the software Indusiry io make full use of the manutactured compuier
products. Mathematicians have normally regarded thelr contribution w0
Information Yechnology In terms of the writing of software packages and ]
may nol be gensrally recognised that the applied mathematiclan has an
Imporiant role 1 play In developing models thal can be used 1o explain
ceriain aspecis of ihe microfabrication process liself and to asslst In
modelling fabrication and also the design of oqulpl;lcm used in tha process.
This equipment — tha machine loois ~ of the microslecironics Industry. sl
is ofisn a highly sophisticaied elecironic device. it can Involve the use of
cherged pariicis beams 10 delineate patterns and operste under high

vacuum conditions. V.L.B.1. (very large scale Infegration) devices which

have circults with high density and progressively smailer fesiures are
invariably manulactured using such eguipment. which has many advaniages
over chemical siching lechniques.

Microslectronics ciroult fabrication is based on the ablity 1o remove
and add material selectively from and 1o the surlsce of a suitable
subsirate, ©.g.. & semiconducior. However, new devices such as galllum
arsenide Integrated clroults demand thal materials difficult to eich chemically
be patterned down to submioron (< 10" m) dimensions.

The patterns ocan be m.lnufacturod by using a beam ol ensrgetic
particles inocident on the aurlace lo rou,on material. This process of the
removal of atoms by an inoldent lon beam - skin to sand blasting on the
alomic scale - Is known as spullering. Masks can bs used with broad
beams. &0 that only ceriain parts of the surface are eroded. cofresponding
to the required surfsce patiern. Allernatively il the Incident particles are
of a very small energy then the incident malerial can siick o the substrate
and build-up a thin fim. This is often ol a ditersnt material to the
subsirals 50 thal! patierns can be eiched In materisis which have differemt
slectronlc propertiea to the subsirate. Somelimes malerial can be addod
and elched back to bulld bl or sven tri-ievel electronic struciures, in this
way.

The technique outiined above Is essentially non—directional but
because ihe Incident particles are often charged. slectric and magnatic
fisids can be used 10 steer and foous the mmn.‘ Direct write of patierns
can therefors be achleved. a process known as I-Ithoguphy and a question
that naturally arises ls ‘what are the fundamental size-limiting iactors on the
production of devices'? Is present technology near the Hmis of smalinses
of size In terms of microsiscironic devics production? Electron snd lon
beam lithography are capable of producing even smaller devices that thoss
producible by masking bul how viable Is this sconomically? W will be



shown that the mathematician has a role io play in the answer to this
question.

In both Ithographic and masking techniques |t is not only ths
production of & pattern by atomic sand biasting techniques which is of
Interesi, In addition to pattern delineation. ions from the beam can be
Implanted In the material In order to change Its elecironic properties In
some subsuriace region. with the surface damaged Induced bilng a
subsiduary factor. Mathematiclans have a role to play in the descriplion
of this process also.

This paper will concentraie on two mathematical problems associated
with processes described Dbrisily above. Firsi, the erosion/deposiion
phenomena on the suriaces of materials will be modelied by a non-linear
wave squation. Secondly. electrostatic oplical sysiams for focussing charged
particle beams will be computed. This requires the solulion of Poisson’s
squation for complicated gonmoirln"’. This Is not a complete list but one
used 10 llustrate some of the mathemaiical compiexities that can arise In

modelling real iHe physical problems.

2. _PATTEAN DEUNEATION: BASIC MATHEMATICAL TECHNIQUES
2.1 The srosion of iwo-dimensional amorphous sufaces
Meihod of Characierislics

Consider the simplified model of a two-dimensionat section of a
surface. subject to bombardment by a besam of pariicles Incident In the
y-direction. This is shown schematically In llgu_ro 2.1 in the simple
case of a uniform beam. the rate of erosion of the surface Is a function
only of the angle ol Incidence 8. so that

3y

J
_— = - — ¥Y{(8) .
a Ix N 2.1

where J Is the particis flux. N the atomic density of the target and Y(8) Is
called the sputiering yield and its units are atoms/Incident particle.

DHferentiating squation (2. 1) with reapect 10 x gives

a®y J a8

— - - g .

axat = N ax (2.2
Howeaver.

dy

— ‘.

ox 1 = tand

and differentiating this equation with respect to t. and substituting into
squation (2.2} gives
a0

o as
—+ = Y8 — .
3t N Y ™ =0 ‘ (2.3)

Similarly. from fgure 2.1, since O0x = -cotfby:

an ay L J
R - |o — -—
m 'y = ~gol a = cot® N Y(e)

a2y J
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and difterantiating this equallon with respect to 1 and substituting Into (2. &)
gives

2 + - [Y(O) Y'(8)sinfcosd 29 0 (2.5
—— — - — = .
at sinfcos 3y
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Equations (2.3 and (2.5) form the basis of a scheme 10 caiculate
changes In suriace shape under particle bombardment once the sputiering
ylold Y{@) is known. This can be measured experimeniaily or deduced
using compuler modeis,

Equations (2.3 and (2.5) are both first order non-linear partial
difterential equations (P.D.E.‘'s) of a type first stucled by Lagrange. The
solution Is by the method of characieristics. This mathod efactively
reduces the P.D.E. to & series of ordinary dgifterential equations
(0.D.E.’s) along the characteristic Knes.

For a general equation of the form
ag a0

Ple.x.t) — + QMé.x.00) — = A8, 2. (2.6
ax dy

the characieristic lines are lines In the x =~ 1 planse delined by

dx/dt = P/Q, since along these lines (2.8} reduces 1o

dx 3¢ 38 R 99 e 204
o o a Y 2 Q
Le.
% R @.n
gt Q )

This Is an O0.0.E for 9.
It thess general results are applied 10 equalions (2.3) and (2.5},

the characteristics are lUnes of consiant surface orientation (@ = const)
defined by.

dn J o 2 dy J .
o = N Y’ cos“@ , ;;- = N[Y Y -InOcosO] 2.7

Thus the characteristics are also straight lines.

it however. the flux is spatially non-uniform J = Jix) then the
characteristic equations remain the same. bul & Is no longer constant

ajong them. Equation (2.7) becomas

[] J'(x)
d—- - - Y cosZe

at N {2.8)

and although JY/N is constani aiong the characieristios. these are no

longer straight lines.

Caompulational Mathod for Determining Surface Shaps

At first sight. the method of computing the surface shape appsars
vary simple. However. the non-linearity of the process reveais a number
of hidden difficulties. First define the initial surface shape by a series of
polnts (x.y} | = 1..... n. The surface at time t, for the uniform Hux

case. is (x;.y;) 1= 1,.... n whers

. J
=+ o YiepcosPey

. J N
=t N [Y—Y slnﬂcolO,}l 2.9

However, if this scheme Is applled. in the simple form as given. to
surfaces with initlal surface gradieni discontinuities. gaps can appsar in
computed surtace at time 1, due 10 divergence of the characteristics (an
expansion fan). Simiiarly characteristics from ditierent portions of a
smooth surface can Interssci (shock waves) to produce a suriace at time 1
which would consist of cusps and jolds. These are unphysical and the
real surtace consisis of gradieni disconiinuilies at those points.

For (he case of a non-uniform beam. 1hen the simuiatencus
O.D.E.'s (2.7) and (2.8} must be solved at each point on ihe Iniial

surface. usually this hss besn done using a Runge—Kutts fourth order



method. This increases the computing lime and the same problems of
shock and expansion waves arise dus 1o the non-linearity of the process as

with the case of uniorm characteristics.

Consider the erosion of ssctlons of a oclrcular contour with s
sputiering yield dependencs on Incidence angls that due to 1 keV Ar* lons

on SI. Thia dependence which has besn m ed experimentally’® s

shown In figure 2.2. The lon current |.e. Hux Is assumed to vary spatialky

ot the form

Jd = Jo .,‘2,92

where Jg and p are constant.

Figures 2.5. a-d. Indicate quite clearly. the formation of adges from
a smooth Initial surface. For the case of a uniform beam (iigure 2.3 0.
an edge iirst form at a polni near the lop of the circle. This edge than
moves Inwards, 10 Intersect with a simllar edge formed symmeirically on the
opposite side of the circle. eventually producing a sharp pointad struciure.
In figures 2.3, b-d. the characteristics are curved and a sharp rimmed
crater Is jormed In figure 2.3 d, dus to ths Intersection ot curved
characieristics. The formation of sharp-pointed structures such as cones ls

a well observed experimental facet of suriaces undergoing lon bombardment,

Ihe Formatien and Motion of Edges

An edge first forms when neighbouring characteristics intersect (see
figure 2.4). H the velocity of erosion along the characteristics (given by
equations 2.7) s v = “x"y" then nelghbouring characteristics Intersect

at a point (x.y) where

.

X = oxg 4 vt = xg + Oxg + v(8g + 88 2.0

The quaniities In 1his equalion are defined in figure 2.4, with (xg.yg)
being the polm on the Initial surface when 1 = 0 whose gradient Is 8.

Thus from equation (2.10), the edge occurs
I —— - —f —e (2.1

Howsver. this is only the condition for any two neighbouring characleristics
to intersect. The sdge first forms minimum value of 1 as a function of

8y. I.e. when dt7/deg = 0. This yields the further condhon
v (0)x(8) = Xg(B)vy(8) = 0 (2.12)

Aftsr Its initiation, the edge Is produced by 1ihe Intergection of the

charscteristics from points of orlentation 8, and 0, at txy.¥9). (xy.¥p)

i.e.
X1(89) ~ x5(85) yi(8y) - ypl@y)
1" 22_'.1 2're 2.1
v'(91l - Vl‘ezl vy(01) - VVIOQ’

Examole

Consider the sdge formation on a symmetric suriace proirusion

y==x" : x>0 mo>
ys--0M: x¢0

The surface !s coniinuous at x = 0, with continuous derivative. The

squation of the surface can also be written as

‘ 1/m-1
X - = [— lanﬁ]
m

80 %-0 when =0 It m<2 " Tt ¢em <2



an edge forms immediately at the maximum poimt on the surface, "

m= 2 the edge forms at a time t

sece
1=

where & Is given by

dev' dv,,
= 2 tanb ——
de? i

80 for m > 2, the edge forms &' symmetric points away from the maximum

point for finlte t » 0.

Ihe Expansion of Cornars

Consider now the erosion of a poiml P a1 & suriace gradlent
discontinuity.  Because @ s discontinuous at P. the polmt (xp.yp) I8 not
give siraighforwardly by equations (2.9), It Is however. possible 1o
investigate the erosion of P by considering. firsi, a value of 8 at P
corresponding 0 the left-hand valus . and. secondly. a valve
corresponding 1o the right-hand plane 8p. see figure 2.8, i the
characteristics from P are such thal the pianes intersect at a point # as In
Figure 2.5a. then the locus of the edge P as eroslon continues Is sasy 1o
caiculate. However. Figures 2.5b and 2. 5¢ indicate caes whers the
¢roded lsfl and right-hand sections irom P do not Inlersect. In this case
the point P is treated by assuming that all angles betwesen 8 and 8 are
potentlally present at P and the locus of these characieristics is drawn. The
shoriest portion ol this locus curve then joine the two portions of the
surlace. The normalized characteristic locus curve (assuming JUN = 1) i
shown In figure 2.6 for the sputiering yield of figure 2.2 and two important

examples In microslsctronic device production are iliustrated In figure 2.7,

10

These are the erosion at normal incidence of a convex and concave 90°
corner. The rounding of the convex corner which occurs in figure 2. 7a Ia
a well known feature of patierns which are siched using lon beama but for
many applications it is Important o maintain square-wave structures. The
expansion of the concave corner. 2.7 b. Iis a isss Important problem since
the expansion only marginally allers the parpendicular wall, which al such a
concave corner Is in any case subject to the Influence of secondary sHecls

such ss redeposition or particls reflection.

Agplication 1o Device Production

In the production of patierns on microelectronic devices. material ls
olien added to a substrale by low onsrgy spuller deposition. in addition o
being removed by eiching. Thus for example. & thin metallic film can be
lald down on a semiconducior subsirate and then a mask overiald and the
pattern eiched using a broad lon beam. Somelimes M Is not solely a
single structure that (s manufactured. N is somstimas required fo build bi
or sven tri level siruciures by a combination of (sputter} deposition and
sputier ercelon. In this case it is necessary 1o hide the structures beneath
Hial laysts of material before the nexd siructure is laid down, This
technique Is know as pianarisation.

The deposition process can oiten ococur Isotropically. By this we
maan that malerial Is added to the surface In such a way that the surface
moves a fixed amount in its normal direclion. Chemical erosion, where
ballistic effects are unimporiant can also be an isotropic prooess. in this
case the aitered morphology can be ocalculated by a Huyghsn's wavelront
oonsiruction from the original suriace whare ciroular arcs of a fixed radius
are drawn from each point on the surface. The envelope of these circular
arcs Is the new suiace efter erosion/deposition.

Examples lor the square wave struciure ars lilusirated in figure 2.9
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The cusps and expansions of corners which occur are |uslt a more simple
form of thess previous descrived bya genarat Y(8) dependence. These are
well known in optics - being called caustio curves.

An exampie of the use of masks is shown In figure 2.9. In figure
2.9a. the erosion is due to a ballistic process with a sputtering yleld as
shown in figure 2.2. The walis are naver straight but take the shape of
ihs characteristic locus curve due to the fiux discontinuity at the edge of
the mask and the "Sneil’'s Law® requirement to maich the spesds parallel to
the Intetface. In figurs 2.9b, the situation where & reactive pas
component I8 Introduced Into the system causing undercutting of the maak
s Nustrated. in this example the area under the mask is subjected 10 an
isotropic erosion rate, wheress the area between the masks Is subjected to
both a chemical and ballistic component. The shape of the walls under
the mask consists of an arc of a circle dirsctly underneath the mask joined
smoothly o a straight line whose gradient can be calcuisted as shown in
the figure caption,

Figurs 2.8 shows that ptanarisation of square wave siruciures can be
achieved by Isotropic deposition on a squars wave structure. In the
Industrial manufacturing procou' it Is required (1) to make ihe planarised
suriace as flat as possible while (2) maintaining the submerged struciure
near io the surface. This Is efieciively a non-linsar optimisation problem.
The parameters which can be adjusted are combinations of the
srosion/deposition rate. In all cases H was tound that ptanarisation could
be best achieved by first deposition and then ‘olchlng back ihe suriace

after deposition, A combination of the two processes is atways Inferlor.

12

2.2 Ergslon |n Three Dimansions
General Non-linesar Firat Order Equations
Conalder a function w of n variable x5.....%, whose derivative

P = Ov/3%. i ¢ satisfles & ditfersntial equation of the form
Hp.o. 0} = 0 (2.14)

then characteristics can be defined which reduce equation (2.14) to a
serles of ordinary ditferentisl equations as In two dimensicns. Consider a

curve In n-apace C defined by = = x(\) along C

dv ax)
—_— ——— (2,15
d - !l: p' dX 2
dp. 2 dx;
D 2e 1 (2.6
a ) oy dx
Diferentiating (2. 14) with respect 10 x ylelds
% M oM 3 A 2.0
| ax,axl apl ap 3% ax
il the curve C is now chosen to be defined by
d
e I3 (2.8
a  ap
then (2.106) becomes
apy aH  aH ’
en— - —— —— (2.19)
o T TP 3T oy
and (2.15) becomes
g _ o 2.20

a P 3p,
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Thus alonp curves C defined by

dx aH

—_— —
dx ap,
the function v and Iis derivatives can be determinad by solving the

O.D.E.’s. (2.19) and (2.20).

Apgiioation o Thres Dimsnalonal Surlace Ergaion

Consider a suriace the equation of which at time t Is S(r.) = 0,
where r Is the position vector of a point an the lurfaod. ses figure 2.10,
H an infinitesimai surface siement moves along Hs normal direction with a
speed c to the point r + Or at time t + Bt then expansion to ftirst order

of B{r+dr. 1+ = 0 gives
8 £ (0-WS = 0 (2.21)

where © Is the wvelocity of the surface in the normal direction and
subscripts denote ditterentiation. i squation of the ouﬂncq Is written In the

aiternative form
Bir.) = oin) -t = g {2.22)
then use of {2.2)) shows that

3
E

of a o2 . ’ ' (2.23)
L o ¢ 2.23

where ¢ = (xy.x5.%3). 0 is the unit normal to the surface and 1. the unit

tangent In the direction of n x k. Hence

3
3 3
n= [0'1'0"2""3]’[.?1 ofl] (2.20
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2 3
fy = [0‘3.-0.1.011' IEIO%] . (2.2%
3 2
cosd = -a,‘lel-ZI cfl . {2.20)
2 4
cosy = 0'9’[15'; o;‘:l ] . (2.2

Equations (2.21) and (2.23) are for many conditions of the normal speed
¢ first-order non-linear equalions: a mathod of solution sxisis by using

(2.23) and (2.208) 10 define a Hamilonian
0?02,

cos?e

H=1- =0 . (2.28)

Equation {2.28) can also be given in the form
H-a-—.‘*’aﬁs-o. 2.29

where g is the affective wavefront velocity In the Kk direction. Attention will

now be resiricted to the case whers
U= plx.xaxg. L0 .

The physical Interpretation of this assumption ls that If @ is a function
of x,. X3 OF gy then tha waveiront propagation is appropriate to an
inhomogensous system: i g Iis a function of time m.n tha propagation s In
a tima dependent system: H g is a function of @ or ¥ the systam Is
anisotroplc.

Foliowing the characteristic method. the squations of the

characieristics curves are piven by
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dx,/dt = - gg cosh sin¥ - gy colé cosy
dig/dt = - 9g cos® cost - gy coté sing t2. 30

dxg/dt = cosé sin@ gg — 9

and the Invariant relations hoiding along the characteristics
do.'ldt - ('Ilg)(o,'g, + g’l) . | = 1,23 . [2.31)

Without being specific about the processes which lead 1o surface motion
soms general results can bs derived from (2.30) and (2.31).

First. if g is not a function of x; or t then g = gle. v} and (2.3
shows that ths o,' are constamts along the characteristics. Thus from
equations (2.26), (2.27) and (2.30) the characteristics are siraight lines
and relate fo constant surface orientation values. The characterislics are
also lines of constant surface orleniation It g is time dependent but spatially

Invariant. In this case (2.31) integrates 1o give

gy =g . 1=1.23.

where k; are constants: from (2,28} and (2.27) the characteristics are sl
lines of constant @ and ¥. However. since t appears oxplicitly on the
right hand side of (2.30) the characteristics are no longer straight lines.
In the most gensral case. the characteristics are lines of constant surface

orlentation provided
ox|g'+g,|-0. i=1,2.3.

H g is temporally invariant. then provided that g,, = 0 for soms |.

u,l = constant. In particular, H g, = 0. then (2.29) Identifles the
3

characieristics of those lines of constant g. Finally, # g has & stationary

valus with respsct to @& and ¥. then {2.30) show that the characteristics

is

propagale in the X direction.

It should be noted that when the o,l are constants, and the
characieristics are those of constant orieniations @ and ¥. then only valves
of & and ¥ between the lower (8,.%) and upper (8,.¥,) bounds
presents on the Initial surface are present at some time later. ¥ the o.'
vary with lime. this Is not the cese and new surlace orlentations are
generated.

Equations (2.30) and €2.91) in general. form a set of six
non-finear ordinary differential equations which can be solved 1o frack the
motion of a surface H the function ¢ Is completely specifiied. A given
Initial surlace Is prescribed dighally In ilerms of Ws coordinates In space
(x,.%p.%g) and its suriace orlentations (0, .0y, .0y, ). The method s
squivalant to that of ray tracing In geometric optics. Care must be _lalm'n
when solving these equations. bscause an Initially comtinuous !urfaco. can
deveiop surface gradient discontinuities (shocks) dus to the Intersection of
the oharacteristics or rays and the generation of a multivalued solution,

This aspect is considersd in more detall in the next section.

Development and Motion of Pointa and Edges

When rays Intersect. the surface o remains continuous but orientation
or siope discontinuities ocour at the point of Iniersecilion. The angles &
and ¥ which bound the edge can change continuously as the suriace
continuss o evolve. The formation of such & slope discontinuity I3 shown
schemaiically In figure 2.1%a. b. W Is poulblo_ that a two dimensionasl
edge or an apex (point) could form depending cn the precise conditions on
the initial surface.

Consider tha iime 1 &t which edge formallon first occurs from an
Initially continuous surface. as a result of the Intersection of characteristics

from the nelghbouring points rg.f5 + Org. These points iranspose to the
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sama point in space f; st time 1. I the characleristics velocities are

denoted from 2.30 by ¥ = (v,vp.¥g), where
yirt) = dg/ot . i=1.238.

t 1
o * I vrU)ar = rp + Brg + Io wir+lr,. ) dt’
]

i.e. Org = r (orit) vir.tdt" | {2.32)
0

Hers 0Or{t’) Is the vector separation of these points on the suriace at ime

Oriy’) = Bry + I (OHE") - w(r. ") dt* . (2.39)
0

in principle, (2.32) and (2.38) can be soived 10 give the time at whloh a
surface gradient discontinuity inltially forma. provided the point fq I8 known,
This point must siso be determined by asseking the minimum value of t
from (2.32) and (2.33) m fg ranges over all the values on the Intial
suriace. After the edge has formed. the Intersection of characieristics
from neighbouring poinis no longer defines the edge position. The edge
propogaies as a result of the Interseclion of characteristics firom
non-neighbouring points collapsing into the edge.

In practice. (2.32) and (2.33) are rarely used 1o determine edge
formation, This is most easlly accomplished by numerical solution ot

(2.30) and (2.31) and by direct ray tracing.

Linear Characteristics
Equations (2.32) and (2,33) can be simplified In the imporiant case

ol linear characleristics whers 9 = g(8.y) only, giving

18

aro * -Ubry-VIv

(2.34)
ﬂfo = (u1o. aleo. sto)
or lefting
3 avl
By +t — 0. .2.3 . .
|§‘ W t axll bllo - = 1.2.5% 12.35)
Equations (2.34) Indicates that the edge formation occurs when
-1
t=-[owaxg] . 1=.28. (2.38)

Howsever. the characterisiics velocities depend on . which s defined In

lorms of @ and ¥. and so {2.34) ocan be written
Byo = t[vie0® * vpor] . 1= 12,8, (2.3n
Since Oxgq Is explicily defined in jerms of 8x1g #nd Bxpy on the initial

surfsge. the third component of (2.37) is not Independent of the first two

components. By using the resuit

Oxig = xig0® + xB¥ . 1w 1.2,8 .

where xjg.xjy are the partial differential coefficients of x; on the inital

surface with respect to & and ¥. the first two “components of equations

R

(2.37) are given as

“'u 'lrl_'['u Yip
X289 Yoy V2o Voy

This has & solution for t given by
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det[X - W] =0 . (2.99)
where
x x L V1
X = 10 v . LR 18 v .
Xzg Yoy vos Vor

This Is a quedratic equation for t. The edge first forms at the minimum
non-negative value of t given by (2.39). as @ and ¥ range over all the
values on the Initial surface. For a smooth suriace. t Is given from

¢2.39) by t = 1(8.¥) end the additional conditions
31/38 = 3/ay = 0 {2, 40)

are required o determine the values 8y.%g of & and ¥ at which the edge
first forms. Equation (2.39) also gives the orleniaticns of the Ine
slements on the Initlal surface which collapse to the edge. Having
determined t. the line elements on the initial surface which collapse o the
sdge are given by

de - (l"' - W") - K” - Ne’.

av g - ™p %pg ~ tze

(2.47)

It all the slements of the matrix X - ¥ are zero, than iine eslements of all
orlentations near xio(#g.¥o! collapse 10 the edge and a vertex rathar than
a finlte edge. forms. BSoms compuied erosion profiies of tymmotr'lc and

slliptic hummocks are shown In fgure (2. 12)

2a
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The beams of particles which ars used for pattern delineation need to
be guided ftowards the siched matsrial. in the case of ion beam
lthography. the beams also nsed fo be focuseed 10 a point. Both
magnelic and electrosialic forces are used for the general guidance of
charged particls beams but for lon beam llthography elecirosiatic focussing
Ia the only praciical method.

This section describes the numerical techniques necessary io soive
the equations of motion of the charged particles. An optimisation problem
will bes describsd whereby the spot size of & microtocussed lon baam can
be minimised by optimisation of the chromailc aberration of the slsctrostatic
fenses. Thus. the possibility exists that the size of VL8| structures can

be reduced sven further than presemt Hmits.

The Mathemaiicat Froblem

A bsam guidance sysiem consisis of a number of matal slectrodes
tlenses) hald at different potentiais. In order the caiculuie the elactric
forcea on the charged particies. Laplace’s t(or somsetimes Polsson’s)
equation Is scived. The particle trajeciories are then caiculated by solving
Newion’'s laws of motlon.

Thus the mathematical statement of the problem Is the solution of

V2¢-0

2
m Il e . (a.n
d

whers ¢ Is the eleciric potential. m Is the mass and ¢ the charge of a
particle. and () Is the vacior position of the particie attime t.
For the cass of dense besams where the chargs of the particles In

the .innm, contributes signiticantly the electric fleid., Polsson’s squation
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replaces Lapiace’s equation and a charge conservalion squation Is added.

The system (o be solved bscomes

vy = p

2
mEla. oo (3.2
ar?

dr
lep ;I-] a0
where p Is the denaity of the space charge.

Ina Numerical Soivtion of Laclace's Equation for Fisctrostallc Lensss

The problem is usually siated with Dirichiet (v specitiad) boundary
conditions. whars the elsctrodes are heid at certain specified potentiais
(which can be adjusted). Bscause the geomelry is exiremsly complicaled,
a numerical method of aoiution must be used which can deal with
complicaled boundary shapes. W was found convenlent W0 do this using a
variable mash finite difference scheme {aithough finite eiemeni methods are
often usad for similar problems with complicated boundaries). However. s
data siruciure was devised. which allowed the finite difference orid o be
construcisd of arblirally sized sub—grids which are delined by a special code
as part of the Input lile (in algol 88). This apprcach aliows fine . and
course grids to be placed in reglons of high and low polential ditference
respectively. aliowing easy modification of the Input fl_lo with no restructuring
of previously Input nodal ponts. when new cnes are added. This enabies
numaerical experiments o be carried ocut by altering the grid sizes in order
that the polentiais and fisids may bs acourailely determined In an ilerative
way. Esch grid point is sulomalically sssigned 8 unlgue address and Is

related o Its nelghbouring points by the computational modelouls shown in
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figure 3.1. With this form. a Tayor series expansion about v yisids

and
252 a2 3 a2

v = vy - 1o, e, +hoﬁ aop_oih ¥ |

3 3 2 a2 8,3
This yieids

3o, w0f - vy - (1-ehre, 2

— - + 0Ch°)

ar ho,(1+8;)

(3.3
azpp ’l.l + #’ - “"‘])vp
-— + 0
ar = h2e, (1+0))
2

Simllarty

2 -
- | ’P - ’2‘2 + ’4 ‘1*.2)’P

: + o(m
azt 2 00100y

Thess numerical repressntations of ihe derivatives are then substituted
directly into Laplace’'s equation in cylindrical polar coordinates (for axially
symmetric systems) given by

a2 12 2
v’ w*ao

X -0 (3.4
ar?  r a2

Substituting. the numericai representation of the ‘derivalives (3.3) into

squation (3. 4) yields.

Pp = Pl 1-W)) + 01810148\ W) + (9 8,49,) /W) /D (3.5)

L)
where W, = 7y 1 Wy = k2p,y(140,0 /020, (140))
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and D= (I+O1)(I—W1(1+O-|l) + (10'2)IW2 .

For n Interior grid points, a sel of n linear equations I8 obtained
which forms & sparse n X n matrix, and the solution for the potentiais at
the grid points Is consequently the most time consuming part of
the programme. The real problem requires obiaining the asoclution In &
minimum time while conserving computer storage 3pace.

The finite differsnce form for the partial derivatives means that the
value of ¢ at any given node I» linked 10 the » values at the four
neighbouring nodes, only. This means that the set of Hnear equations for
the values of w at the nodes Is ‘sparse’. In that the matrix lor thess
equations has many zeros as elements.

Initially. & sparse matrix solver based on & standard Gaussian
elimination was used with an n X 5 mairix and proved fast, but required an
overall matrix size declaration of approximately n X (n/8)(n > 100) lo alow
for the 'filling-in° of rows In the matrix at the slimination stage. Since
only & few rows lowards the centre of the final elimination matrix grow to
this size. the method resulls In wasted computer siorage. However, the
use of sparse mairix methods 10 raduce what would be effectively an n X n
problem allows a considerable saving 10 be made. and as a result many
more poinis can be used than would be otharwise possibis on a smaH
machine. In order to overcoms the problem of the ‘filling-in’ of rows,
each row was then repressnted as a flexible array. This allowed each
Individual row 1o expand or contract exactly according to the Insertion of a
new selement or the shmination of an existing one. but required data
transportation 1o and from a heap siorage while the arrays were
manipulated. Minimal storage was aftained by this mathod but the wvasi
Increase In computing time consequently outweighed 1his advantage. Several

ditfareni block methods were also considered. which involved using the
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sparse mairix solver on multiple segments. esach of a fixed array size. In
theory. this put no fimit on fhe compuler store avallable. but apain proved
siow In, the external linking of the Individual ssgments.

The most economic method tesied. using a Honaywsll Mullics
computer., was 1o off~line the set of equations 10 a data file and then use
a Fortran version of the sparss matrix solver. ufilizing A 'very large array’
complier option to handie the large arrays with spsed and precision. The
calculated potentiais were fhen jed back to the maln programme to
complete the trajectory anaiysis. W was alsp noted thai the performance of
a sparse matrin solver can be improved considerably by reducing the
number of row Interchanges and ensuring diagonal dominancs. but this
requires a certain sophistication by the user of the programms when sefiing

up the original grid.

Wwwﬂ

Consider & square region. where two adjacent sides of the square
are earthed, and the other sides are held at a potential of 100 V. In
order to solve the problem by hand. the interior region (s divided by a
reguiar grid. with nine Internal nodes. see figure 3.2. In two dimensions,

Laplace’s equation s

a2¢ a2e
' ———

;-x?ayz

= 0.
With a regular grid equation 3.5 becomes
1
Op'zlﬂs"!h "'02+O4]-

and a system of nine linear equations rasuits for the Internal values ol »
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Note thal with this computational moleculs.

100
100
100
1
Y12
1
21
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+
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*

V12 * ¥y - oy
Pl * Py - g
100 + pyg - 409
o * Py ~ My -
P23 * ¥yp - 4 vy,
100 ¢ v33 - 4oy -
P32 0 - ey
P33 + 0 - 4oy =
100 4 0 - dpyg
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o o o o 0o o oo O O

non-uniquely defined does nol enier Into the calouiation.

Nols

the corner points where ¢ Is

symmaetry

implles w15 = waq. ¥)) = ¥gg #nd ¥ = vyo 30 the number of squations

can be reduced 1o six.

-4 1
| -4
0 2
1 o
0 2
o o

The squations can be writien

-4

-4

1
12
13
Y22
22
b )]

and solution by Gausslan slimination ylelds

=100
-200

-200
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¥)1 = w33 = 50.00
¥ = Ppy = 7143
P 85.72
¥g) = vy = 20.57
®0 * 50.00
ey ~ 14.29 .

This example lllusirates many fesiures of the more compisx calculations

oarried out in the real problem.

JTraisctory analvsis and aoalytical gomparisons
The paths of charged particies can be traced using the esquation of
motion in either time dependent of time Indepencdent form, For time

depsndence we solve the equationa

dr
— =g

at
and

dq e

—_— - (3.8)

at = - grad v
whers q is the particle velocity. These diffarential squations are solved by
a Kutta—Merson routine with automatic step ldlunl_monl 1o tally with the
localized grid spacing. and yield the vaives r. z and u and v. the
components of velocity In the r, z directions respectively. in general. the

particie trajectories are fitled locally 10 a five—point quadratic model of the
form

lr2+b22+cr+dz*o-¢ 3.7
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whare the five cosfiicients are determinad by subsiluting into the r. Z and
¢ values of the nearest grid poim and lts four corresponding neighbours to
obtain five linsar equations. A special form of equation (3.5) is used
near the axis of symmetry whers the boundary condition 3¢/8r = 0 means
that the nearest grid point doss not possess A full set of neighbouring
points. The use of a fine axial strip in this reglon ensures that the time
speml within this narrow area is kept 1o & minimum. since the approximation
for v Is least accurate here.

By considering the motion along a trajectory it |s possibie to oblain a
modification 1o equation (3.4} In time Indepandent torm. Equation (3. é)

Integrates o give an energy consarvation equation

-

q’-s‘[o-ﬁo-eo]-o TN )

where Eg I8 the Initial energy of the p.rﬁclo when the potentiat is 50. I

the trajectory of the particie Is glven by r = r(D then

—_— . ——— 3.9

dr dr dz d2r d%r t‘lz]2 dr d%z
— i —— and — 4 —
dt dz dt dl2 012 1] [+ d|2

combining equations (3.8), (3.8 and (3.9) gives

afr 1 dri21(ae dor 3¢
Ts[v-%*ﬁo]*s[“ & lera-a)e
(310

Equation (3.8) requires ths solution of only two first order simuilaneous
ordinary differential equations to give r. 2 and the gradient dr/dz. By the
conservation of energy. and using the trajectory gradient, It Is then
possible to calculste the components of velocity In the r and z directions.
By either method. a full range of particle paihs are obtalned and

these are then ol-lined along with the grid coordinates lo an sxternal
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plotting programms. This then allows particie paths with ditfering Initial
wsnergies and emission angles to be compared direcily for the sams slectric
fleld and on the same grid plot.

\n order to Nusirate the method on a simple exampia for which an
analylic solution exista, & variable grid ts given below for iwo spherlcally
symmetric eisctrodes (Figure 3.3) with the cenire sphare ai a poteniial ¥V,
and the outer sphere sarthed.

For this spherical :yliom.‘ the fisid lines are radial and the variable
rectangular grid Is not the mast physical way of representing In finlite
differsnce form. Laplace’'s equation for the potential, However. even flor
this problem. with a coarse mesh. the method proves accurate 1o within
1% when calculated @ valuss are compared with the exact ones glven by

Ky
o=— 4k 3.1

r
where ki. ks are oonstants,

Furthermore. the accuracy of the tracking for this model can be
chacked by solving the squation of motion in spherical polar coordinaes
analytically to yield

1
_y| (FRee2-02" + €

8 = 2tan (3.12)
G+ E
where
F.-;z'v.i,.,.”, g = avfeny? ¢+ 8.
o?visiny? + 8
Q= 3
and
‘_3\' aR -
m IR-a
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where R i3 the radiua of the outer sphere. a the radius of the Inner
sphere. V) the Initisi velocity. ¥ the inltisl angls and e/m the ususl
charge-to-mass ratio.

The valuss of &, the angle sublended al the centre of the Iinner
sphere by particles hitting the outer sphere were to within 1% of the sxact
results when caloulated using equation (3.12).

Design Appilications
Individual Lenses

The Important characieristics of an elecirostatic lens are #is
magnification, It focal length and the magnitude of Hs spherical and
chromatioc aberrations. The spherical aberration arises because charged
particle trajeciories at ditfersnce emission angles are focussed at diHlerent
poinis. The chromatic aberration occurs because of an energy spread In
the beam, which focussss pariicles with the same inltial trajeciory. but with
different energies at ditferent points.

The parameters Involved in the lens calculations ars described In
Figure 8.4 (a). For this system where Vy/Vy = 20, A/D = 0.5 and
T/D = 0.05, the focal length F/D is calculated 10 be In good agresment
with the results of Harting and Read*.  For this problem a fine mesh was
constructed belwesn the ocentrsl and outer slements of the lens whers the
fleld Is most rapldly changing. with a coarser mesh away from thess
regions.

Figure 3.4 (b) shows the effect ol both the spherical and chromatic
aberration of this lens.

The spherical abarration is manilesied by rays of ditferent Initial
angles focusing at different positions. The chromatic aberration is dispilayed
by tracking rays with Inltial snergies of Vy and V| + &, but with the same

Inital emission angles, Figure 3.4 (b) Iindicates virtusily no difference In
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the image side focal iength | with « = 500 V bul a large shilt is indicatsd
in the iccation of the gaussian image plane. by the distance 8 !ndicated In
the diagram.

it is thus possible 1o compute the performance of individual lenses
belors they are used in a column, thus saving the anginser considerable

time and effori.

Lihography

The possiblity o using low energy scanning lon beams of high
resolution for either direct write Iithography or mask repair has astiracisd
much atiention over recent years. The motion of the bsam is conirolled by
elecirostalic defisctior plates but the principal criterion tc be achleved is the
production of the smallest focussed lon beam spot size. consistent with an
accepiable current density required for the application. The size of thess
microfocussed beams Is Jimited by the ohromatic aberration of the system
and the column designer must insert a blanking aperiure inio the column at
an approgriste point and at an appropriate diameter in order that the
aberration discs be reduced and only lons which ars emitied with a small
extraction mngle from the sourse. pass through the system. For such a
column only paraxial rays need be considered (lon trajeciories close o the
axis) and some analylical approximations are possible In this case.

Near the axis It Is asssumsd thal the potential ¢ can be expanded In
a power seties in [

wir.) = ool(2) + w-ltz)r'2 + pgtzlr" + ...

80 that

a2y 1 e a2p

—— = — B 4Py + 1002+ ., —mmgn @ e o P L,
a2 T o 1 2 a2 ot ® »

t3.13)
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whers wyiz) is the poteniial aiong the axs. Substituling Inte equation

(5.4). and squating cosfficients of r. gives

elir.z) » ¢4lz) wplz) @ + pplz) a {3.13)
r. - ¥y —_— —_—— .
o 2 0 g2

Substituting equation (3.13) Into (3.10) and assuming dt/dz Is smal glves

a2r dr r PO
— 4= — =0 {3.74)
dzz ﬂl 2"0 4 L2
where the notation for w; has slightly changed being the quantty
v - v — Eg. evsluated on the axis.
The focal point of the lens systems corresponds 1o ihe first value of
zp for which r is zero. Thae chromaiic aberration ls calculated by the
elisct on zz of a small change In wg. For a perturbation where wg

increases by a small amount €. equation (3. 14) becomes

o) e
4t —p— = =0
2 wp * ¢ 4 |wg + €

expanding this equation in powers of ¢ gives o first order

NP E ENE )

It the trajectory Is of the form

r-r°+¢r1+¢2r2+...

than equating powers ol &« glves

PR RERE R SR B
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This equation can bs soived by the method of variation of parameters.
Consider first the solution of equation (3.14). The general solution can
be written as a linear combination ol two Independent solutions X, Y
passing through ths point 2g. with the condlions. X{zy) = 0. Xz = 1.
Yizg) = 1. Yizg) = 0. The focal point 2o 18 defined by X(zg) = 0.

Writing
ry = ald X(z) + B2 Y .
then ihe conditions for the varlation of paramsiers method gives

a'iz) X + g Y =0

1%
a'tn X'z + 8D Yoy = vy —~ + - — X {(3.15)
‘,s 4 ¢y
Here. the ray rg Is glven by ¥X{z)., see figure 3.5.
The radius of the aberration disc when z = 2, is juat
ry = alzp)X(zp) + B(zp)Yizp) = Alzp)Y(zg) . 3.18)
Solving for #' irom equation (3.15) glves
1 90
Alz) = 'r[ X 4 —— X]XIIXY - X¥) 3.1
2gf 4%
However
wl pl
x+ 120 2xao0 3.18
2 L] 4
o e .
v+l v s lyao (3.9
2 90 dp

Muhiplylng (3.18} by ¥ {8.19) by X. subiracting gives



33

integrating betwsen z, and z gives

0fZgp!
- XY - /
Yo

Thus equation (3.17) becomaes

. 1% x 1% o[ %0
l(z)-'ra‘sx “'0 "0“0’

and hence from equaiion (3.18). the radius of the aberration disc is given
by

ve Yizg) 2 ) . wvh 1
F IF 1o0x,178 X208 dz . 3. 20

ot 3 X9
itz %0 2 vf ]
A similar formula can be established for the radius of the spherical

aberration disc. This Is

1 I 2 . 1
g = Yz vdizy) 184 _[ wi [x4at® - 572 - Y 27
]
+ x0Tz (3.20

¥0

v
Equations (3.20) and (3.21) indicated that whalever the values of «. It Is
siway possibie to choose ¥ small snough so that fg < fg

A typical Hthography column s shown schematicaily in fligure 3.68. It

conslsts of a liguid melal lon source, an exiracior st a potential ditference
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of & kV and two lenses, ihe first controis the spread of the bsam and the
sscond lens focuses the beam 10 a poinl. The chromatic aberration of this
column has been calculated In various modes of operation but typically for
Vi =15 k. Vg » 30 W, Vg = 15 kV, then the focus occurs af zp = 457
mm. with a column demagnitication of .98, Cy = 2772 mm and Co = 52,4
mm. The spherical aberration coellolent C, and the ohromatic abarration
cosificient C, are defined by

,=C

—
¢ LY
g = Y(Zp)ICy »

The value of X.Y at the aperture are given by X = 34.7 mm Y = 1,18
mm. Further caloulations show that for a spol size limited by the size of
the chromatic aberration disc. of 10°% m at the focal point. the sperture
radius must be 2.8 x 107% m and tor a typical ion source which gives a
current density of 20 xA/si.rad.. the beam current at the point of Impact
with the sampls is .18 x 10712 4,

The ocorresponding radius of tha spherical aberration disc Is
« 10712 g, and only bscomes of comparable Importance with the chromatic
absrration diso when microfocussed spots of the order of 1077 m or targer
are required.

The currenis generated by this techniqus of microfocussing are
generally Insufticlent for large scals production of VLSI devices. since the
siching of the patierns wouid take 100 long. However, the fechnique has
potential for the manufacture or repair of masks or spacialist extremely
smali chip production.

Since ths chromatic aberration of the column Is the principie facior
which limits the spot size. a consirained optimisation problem was

formuiated In order to determine the oplimum condition for as small a spot
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as possibie conaistent with as large & current as possivle.

Minimisation of Chromatic Abecration Cosfficients
First equation (3.14) Is ftransformed using the substitution

1/4

A = reg’ %, giving

. 12
Lo N ] (3.22)
PO

Equations (3. 18) and (3.19) can then be written as the set

dx
__.l =y (m)
dt

dxp s (412
-2 (b
o lo[ ]" b

(3.2

d
% Xy (c)

dx, =12
4 3 fu
o - - Ta-[;]xa (£ 1)

and Co = x5(T) . where '

hal s

dat 1.4&'

with the initial conditions

1 Q12
xg¢THfu 4 (m [E] t®)

4 i (0)
6l0) = 55. x(0) = 0. x(0) = u'(0} = uz(0): xy(O) = 2

4
wtm

and boundary conditiona

Isto) = 0
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and constraint 0 < u(t) < 55 .

In the set of squations (3.23). the variabls z is replaced by t and
$o by u. The focal point t = T is prescribed 10 be 480 mm. The
optimisation problem ia 10 minimise xiglT) (Lo, C.) sublect to cerfain
constraints on the axial potential (¥(1)). The constraints on the axial
poteniial were lormulated so that the column was consisient with 1) an
initial bsam accelerator, 2) an objective isns. 3) a projection lens and
also that the potential ditterence In the system was isss than 60 W so that
Insulation breakdown did not ocour,

The shape for the axial potential is given in figure 3.7. together with
a definitilon of the adjusiable parameters. The shape for the anial
potential u(t). is assumed 1o consist of straight iine, quadratic and cuble
Segments. One of the consiraints xy(T) = O was added 1o the objective
function as a penalty function. This was becsuse most of the optimisation
mathods tested. do nol handle non-linear aquality constraints. The

objactive function eventually chosen was
F = [xstTilz + w{x,(n}e
where W was a sultable weight. taken as 10.000 in this problem.
The problem thus becams the minimisation of F. subject to
l-l-!oho: la-"l > 0; Ia-lz)o: “.-’3’0:
0 € hy €55 0¢€ hy < 55 Xg. %y. %p. Xy, Ny 3 O

A Bunge-Kutta mathod with fixed step length was used to intsgraie the

equations.
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Besuits 2. Rosenbrogi’s Method of Aolating Coordinales

Three ditterent oplimisation methods were used. Two were direc!
No. of Funclion

search maethods due to Box and ~Rosenbrook. The third was a Evaluations 100 200 300 400 500

N method. The results were all caiculated with starting values
quasi-Newtan "9 X1 ~0. 0008 |-0.00021] 0.00002| 0.00005 } -0.00085
1 = 10.0. xy = 20.0, = 80.0. xg = 410.0, x, = 450.0. hy = 40.0,
o %o ' ? s 4 ! X5 ~8. 60078 | -0. 07047 | -6.8858)0 | -6. 86407 | -0. 813038
hg = 35.0. Other starting values were also Wried. but gave no drastic

F 44. 03807 | 44. 4007 | 44. 43318 | 44. 410180 44. 7750862

improvamant 1o the resuits.

The resulis presented In the foilowing tables are based on values of Number of orthogonalisations for 500 funciion evaiusticns wers 6.
xg (and hence F) where the facior of ¥§ In 3.23 (e) has besen omitied. For the best resuit of F = 43, 7750882 at

Xg = 19.98. xy = 20.37. x, = 50.78. xg = 411.20.
1. Quaat Newton

Ny = 440.24. hy = 40.38. hy = 35.48

No. of Function
Evalustions 100 200 300 400 500
A.__Tha Msthod of Hox
x 0.0038 0.0001 { -0. 00004 0. 0001 0. 0001
X5 ~4.7432 |-4.7522 | -4.75113 | -4.7507 | -4.7307 No. of
function ’
F 23.9473 |22.5847 | 22.57%4 | 22.5708 | 22.5708 evaluations | 100 200 300 400 500 800
Xi 1. 8029 0.0278 0.0278 0. 0028 0.0102] 0.0120
This method used 14 funciion evalualion 1o approximale the gradient veoctor
X5 -9.3084 | -10.8215 | -10. 6215 {-10. 8808 ]1-10. 8387 | -9. 8260
by finite~ditferences.
F 35017.93 120. 53 120. 53 113. 88 107. 92 97. 90
The best value of F = 22.5706 was attained when
xg = 0.0, x; = 19.86823, Xp = 60.0, xy = 421.50 The best point oblained by this method afer 600 function evaiuations

oocurred when F = 97,99 at
Xy = 44980501 hy = 30. 04308, hg = 34,0738

g = 20.4), x) * 49.87. xg = 111.30, iy = 361.50,

Ng = 419. 55, h‘ = 37.70. hz = 33.42

it can be seen that the quasi-Newion method oulperforms the direct

" mathods on this problem.
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The conclusion to be drawn from this Is that the chromatic aberrailon

the Ilenses |s minimised when the column operaies In the

non—-bsam-crossover mode, where the #irst lens produces as near a paraliel

beam as possible.
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A schematic diagram illustrating the ercsion of a two

Figure 2.1.

dimensional surface contour.
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Figure 3.7. The axial potential variation for the colummn of figure 3.6.



