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1. INTRODUCTION

1.1 The forehearth problem

In the manufacture of many types of glassware one of the u;Jt
critical phases is the heat conditioning of the glass after it has
been melted and prior to its forming. For many products such as
containers, tubing, lenses, light bulbs and tableware this conditioning
starts in a refining zone and is completed in a forehearth. If such
heat conditioning is not performed correctly then the glass product
may be defective in many ways, For glass containers Creen! liscs
possible defects caused by poorly conditioned glass as

"1. Hot glass can cause bent and choked necks, light shoulders,
mould sticking and heavy bocrtoms.

2. Cold glass contributes to checks, breakage, thin bottoms
and streaks.

3. Uneven temperature distribution causes light sides, heel
taps and bliscers.”

The avoidance of such defects together with mounting fuel costs
and the desire forincreased throughput indicate that thae correct
design and operation of the refiner and forehearth is of extreme
importance.

The number of forehearths feeding from a single refiner may range
from two to eight, a typical arraogement with five such forehearths
being shown in Fig. 1, A forehearth which is heat conditioning glass
flowing to a gob feeder is illustrated in Fig. 2. This "short forehearth”
is made up of two sections each of which is fired by a number of burners.
The first section is known as the cocling zone and is additionally
equipped with a wind cooling system. The burners of the second section, )
knoun as the heating or conditioning zone, are operated in such a manner
85 to equalise the temperature of the glass as it reaches the spout.
Temperatures of the surface glass are measured at two points along the

.

length of the forehearth with control of the outlct temperature being
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Fig. 1 - A general furnace configuration.
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Fig. 4 - View of a specific short foreheacth.

[
achieved by controlling the burners of the cooling and conditioning
zones §o that the two measured temperatures agree with two prescribed
temperatures. The control of the two temperatures is currently rapid
and accurate with two- and three-term control usually proving adequate.
However the two szet points, which ultimately determine the glass
qualicty, are set and adjusted manually and in consequence the overall
control of such a forehearth could be improved.

Indeed the statement?

"over a period of decades of experience, there have growm up
the best-known layouts for conditioning the glags"

indicates that tha basic design of forehearths is also heuristic and
confirmation that such layouts are the “best” is required.

In an effort to eleviate such problems, several wmathematical
models of the process of heat and mass transfer within a forehearch
have been developed. The flow of glass in an open channel was
considerad by Hearn and Booth?

who show that the assusmption that the

flow of glass is laminar is not unressonable. Benty" suggests that
such laminar flow, which implias a lack of mixing, is one of the basic
difficulties in balancing forehsarth temperatures. Duffin and

Johnson® were early workers in the development of suitable heat

transfer equations and produced relatively complicated models which,

when solved by finite difference techniques, gave reasonable

agreement with measured temperature profiles. Carling® has produced
further heat and mass cransfer equations and while giving good

agreement with measured temperatures, they are also extremely complicated.
Hamilton” has used the simplest 2DL model of Carling to predict
spproximately the optimum temperaturs profile of the glass as it enters

a particular short forehearth., This forehearth is pictured in Figs. 3
and & and is used as a standard reference for model verification
throughout this work.

Even this cimpler DL model demands quite

extensive computing facilities and can therefore only be used in



selective design studies and the need for a rapidly computable model
vhich may be used in an on-lipe control schewe is clear, One such
model, vhich also jncludes heat and mass balances in both melter and
refiner, has been reported by MeConnell and Goodlons. The extent of
this modal is such that all the individual partial differential
equations are descretized to give s lumped parsmeter model with this
discretization being particularly coarse in the forehearth.

While control of the glass surface temperature profile is at
present considered to be adequate, the same is not true of the overall
refiner/forehearth operation. Even in the more recent control lcheme&'g
which include extensive jnstrumentation to aid the forehearth cperator,
the operating set points must st{ill be set manually.

Thus a simple, though reliable, distributed parameter model is
required to verify the basic forehearth design and also to give effective
{nstrumentation of Forehearthe with a view to controlling the overall
heat conditioning process.

The structure of the distributed parameter model is crucial for its
potential use as the basis for an on-line control strategy. We shall
concentrate on a simple two~dimensional steady-state model. This model
will be used as a basis for tﬁe development of an on-line feedforward
control strategy vhich computes the glass surface temperature required
to minimise (with respect to the simple model) the deviation of glass
temperatura at the spout from a prescribed value for any given set of
operating conditions. The strategy has to be jmplementable on & micro-
processor based controller whose size and speed of operation will require

the development of a movel PDZ solution technique.

2. THE EQUATIONS OF A SIMPLE 2D MODEL

2.1 The equation of internal heat transfer

The construction of a typical short forehearth is {1lustrated in
Fig. 2 and the process of steady-state heat transfer in glass which
is being heat conditioned in such a forehearth is to be considered.
The variation of forehearth width and depth with longitudinal directiom
X will be accounted for and hence the model developed within this section
will be referred to as the two-dimensional variable boundary (2DVB) model.

The conduction of heat in the longitudinal and lateral directions,
X and Z respectively, is to be neglected since temperature gradients in
these directions are small when compared to the temperature gradient in
the vertical direction. An “effective conductivity”, which includes
both a conduction and a radiation componentll, is used and is considered
to be temperature independent. Such an assumption is not unreasonable
for opaque, i.e, coloured, glasses.

The tlow of molten glass through open channels of rectangular cross-

section has been previously studi¢d3

and the assumption of laminar flow
is extendsd to this model in which the width and depth of the forehearth
vary piecewise linearly with distance along the forehearth. Therefore,

extending the results for laminar flov in the rectangular chammel to the

2DVB model, the velocity profile ia given as

_ 3 M, 2
U(E,Y) = ———— 1-— (1)
20D (OW(X) D" (X)

With the assumptions outlined above, steady-state heat transfer in

the glass is described by the partial differential equation12

2

T
x i:f - U(X,Y) %% -0 2

The temperature variable is made dimensionless by the substitution
T(X,Y) - 'I'r

a({X,Y} = '-'."l'::-_—.rr— (3}



where T and Tr are constant reference temperatures, an advantageous
a
choice of T being the desired outlet temperature. Dimensionless lengta
r

and depth, x and y respectively, are introduced using

X L (%)
x=2 gnd y w2t
L D

where L is the length of the forehearth and Dqu is the maximum depth of
§lass in the forehearth. Equation (2) is then reformulated in dimension—

less form as

2

%8 30
__i - ll(x.y) Ix = 3 (5)
ay
3cM, D 2
f “max Y
H ) - 1- (6)
vhere =y KL OG) W(x) W, [ -2 mJ
c = glass specific heat
K' = glass conductivity
Hf = mass flow rate of glass
b0 =g,y - ER )
nax max

2.2 Boundary conditions

The three boundary conditions which are required for the solution
of the heat transfer equation (5) are provided by

(i) the inlat temperature profile
T(0,Y) = L(Y)

or  8(0,y) = p(y) (8)
(i) the temperature profile along the glass surface
T(X,0) =¥, (X)
er O8{x,0) = yl(x) {(9)
(iii) the heat loss through the bottom of the forehearth.
This latter boundary condition will now be considered in some detail.

The process of heat transfer in the refractory and brick is

strictly three dimensionsl and is therefore describedby a partial

10

differential equation itself. With the assumption that lengitudinal
and laterzl heat conductions are negligible in comparison to that in
the vertical direction then the above three dimensional equation
reduces (o one dimension snd acts a8 the third boundary condition of
the 2DVB model. The heat loss PET unit ares from the bottom of the

~

glass to the refractory is given by the Fouriar conduction lawd? 54
T =
- Kg il (X,D(X)}
and is assumed to be constant over the width of glass st some point

X« X;. Thus in equilibrium

- K % (X;,0(x)) = Kege (X1) [rex;,Bex;)) - Toa(X;)]
(10}
vhera T, (X)) is the temperature at the brick/air interface snd
Rerf(X;) is an effective conductance of the refractory and brick. The
specific form of Kope(X) will now be developed as & piecevise function
vhich varies as with borh the width and depth of the refractory and the
brick,

The process of heat transfer in the refractory and brick at the
bottom of the forehearth is simplified by neglecting both longituginal
and lateral heat rransfer. The equations of heat tramsfer ars then
two coupled one-dimensiona] Laplace equations from which the boundary
condition as posed in equation (10) is aasily derived. However although
the lateral heat conduction is explicitly neglected certain side-effects
of the overall structure may be accounted fo;. A cross-section of the
forehearth at X = X3 and an ap?roxination to such a cross-gection are
illustrated on page 11.

If the structura is approximated as shown then the equations of
heat transfer will 6till give the type of boundary condition required

by equation (10) while including some side-effecty.
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Consider then an elemental alice of the above approximation which

is of length éX and is taken at the point X = X).

WhalX1)

If Wg(X), Wrp(X) and Wpa(X) denote the widths of the glass/refractory
interface, the refractory/brick interface and the brick/air interface
respectively, then Wg(X;), Hpp(Xy) and Wpa(X)) are assumed not to vary
over the elemental distance éX. The following notation will now be
adopted
Y‘ is the distance from Y = O to the glass/refractory interface
Y. is the distance from Y = O to the refractory/brick interface
Ty, i# the distance from Y = O to the brick/air interface.

The thermal resistance of the refractory Ry(X;) is13

Y

1 rb ay

R (X1} = k_l'l rwes)
Yg

where Ky and A (Y) are respectively the conductivity and the cross-

12

sectional area of the raftacfo&y. Fow all widths vary piecewise
linearly with the distance, X, along the forehearth i.e.
R
Wrp(X) = iy ¢ vhX
Wop(0) = vBy + X
In addition, for this approximation, the widths of both the refractory
W (X,Y), and the brick W,(X,Y) vary linearly with depth Y. Therefore
W (X, 1) = wlawly

“b(xl,Y) - “g + Vg\’

and
A(Y} = Wp{Xy,Y) 6X
- (¥4 vly) 6x
Y.
. y {tb . ar
o Re(Xy) m f; JTB (qrﬁ + \rrl Y)&x
Y
1 rb
i ot 0],
4
and since H} - 2 (ig)‘-fwb )
T
L Ye - Yib Wrp(X;)
Re(X1) L3 ’ WS(Xﬂ = Wrp(X)) 10g [“S(x‘)
Similarly

1 T

rh = Yh.l Eb""'—L(x )
Rp(Xy} Kpk Wep (X1} — WpalXy) lota[urh(xl)

and the effective thermsl conductance Kggp(X;) at X = Xy is
Keﬁ(xll = [Rt(Xﬂ * Rb(xl)]-l [".(xl)sﬂ-l
vhere

-1 dr(X]) Wy (X1)
R (X)) 4R (X)) = Wa (K1) 8X { rx.r (Hs(x,) = W (%))

. Wep (X)), dniX:) W (Xy)
108 [“J’—f‘wgcxl D Kb (wrum—wh,(m

Hpa(X1)
" 1o%e [ﬂmxn])}
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where dy(X1} = refractory depth at X = X
dp(X;) = brick depth at X = X)

Therefore, the third boundary condition for the 2DVB model i
ZEBE) = kg0 [FEEm) - 1 ]
e AL off ’ ba

whera
a.(X) Wa (X) ey (X)
Fege () = ‘{‘Lxr‘ Vg - Wep(D - 1% ["am

-1
dp{X) Wo (X) Hpa (X) }
* Xy e X)) = Wpa (X) 108 [Hrb X

(11)
In the non-dimensional systew the third boundary condition is
Kg 39 (€,D(0) = v(x0) [0(x,D(x)) = Opa(x)] 2)
vhere
Yz(x) - - x-ft-(x) ‘13) .

2.3 The detarmination of the brick/air interface temperature

The chini:ion of the third boundary condition by equation (12)
implicitly sssumes that the non-dimensional temperature #4,(x) is
known at all values of x. The equivalent dimensional temperaturs
Tpa(X) is not readily accessible and therefora soma means is sought to
calculate Tpe{X} frow variables which =ay be measured. The development

of a suitable formla will then show the effect of such variables on

not only Tpga(X) but also all other temperature profiles within the glass,

Heat is lost from the outer brick surface to the air principally

by a combination of the non-linear processes of convection and radiaticn.

We therefore seek to equate this heat loss to the heat arriving at the
brick/air interfacs by conduction through the refractory and brick, and
thereby produce an expression for Tpa(X)}. The heat gained per unitc
area by the brick/air interface from conduction is

Koue () [T(LBO0) - 15,00] . (14)

14

where Kout {X) is deduced as

e _Jarm Wpa (X) Uep (X)
Kout (¥) { ke Wm ~ Up(X) 198 [wgcx) ]

dp(X) Wy, (X) Wha (X)
* Ky  Wrp(X) - Wy (X7 1%Be [Wrb(ﬂ]}

-1

The heat lost to the air by convection and radiation is dencted by
Qeep(X) and is given by

Qer(X) = C(Tpa(0-TL)/* o ca[(T,, (X)4273)% - (T=+273)4]

as)

vhere €, a convection coefficient, and ¢ the emissivity of the brick
surface are known constantsl? and o is Stefan—Boltzmann's constant,
Te is the ambient air temperature and is assumed to be independent of
the X space dimension. Thus equating (14) to (15) and rearranging
gives

Tpa(X) - TBM0) + [xout(x)]"{ccr,,,(x)-r.)ﬁf"

+ ae[m,,(xmm"-('r-+273)"]] =0
(16)

Therefore provided T(X,D(X)) and Ta are supplied then equation {16)
is a non-linear tquation in T}, (X). Typica} operating temparatures -
T(4,B(X)) have been previousiy‘cnlculcted‘. probable values for T,
are readily estimared and therefore eouation (16), which is rapidly
solved by a Newton-Raphson technique, provides values of Tpa(X) at
distinct X values zlong the length of the forehearth. The nature of
the above approximation and the shape of the refractory and brici will
in face give a non-feasible Ty, (X) i.e. it will be non-differentiable.
Hovever, the values for Tpa(X) will still be useful in that they
Provide extreme values for the brick/air interface temperatures with
the conduction in X direction actually causing » smoothing and

averaging effect.
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2.4 Summary of the 2DVE model

If B(x,y) is the dimensionless temperature of glass in the fore-

hearth then
320 ae
..7 - U(x.y) -a—‘ =0 (17)
3y
vhere
IcH, D -[1 52 )
U(x,y) = - (18
TKB L D(x) W(x) "m.x Dzm

and boundary conditions governing the process are

8(0,y) = uly) (19)
6(x,0) = 11(1) (20)
K 22 (x,D(x)) = v,(x)|0(x,D(x}} - 8 _(x) 21)
s 3y * YZ s ULX ba {

where u(y), 11(3), bu(x) are supplied temperature profiles and Tz(x)
is a piecewise function which represents the effective conductance of

bottom of the forehearth.

2.5 The optimal control problem

The optimal control problem can be broadly phrased as followe:
choose the surface temperature profile (i.e. 8(x,0) = yl(x)) and possibly
the inlet temperature profile (i.e., 8(0,y) = p(y)) soc as to minimise
the temperature deviation throughout the depth at the spout from some
required value.

Firstly we consider two criteria which measure the temperature

deviation from its required value (‘l‘r). Since 6(x,y) is dimensionless

temperature defined by

16

T("-Y) - T!‘
8x,y) = —F—
a r
we seek to keep 8(l,y) close to zero. One criterion vhich immediately

springs to mind is

1
2
E, lolﬁ(l.y)l dy

Thus given that yl(x) (which is accurately described by a quadratic in
x) and p(y)} (which is reasonably approximated by a linear function y)

are paremeterised ve have a parametric optimisation problem:

minimise BI with respect to the parameters which define

1, (x} and uly).

Unfortunately El can only be evaluated from a specified parameter set
following solution of the 2DVB model PDE. Thus if o denotes the set
of optimisable parameters and E{n) denotes the cost function to be
minimised then for any fixed value of o, a' say, E(a') is evaluated

by the following scheme.

1, o' defines b.c.'s vl(x), uiy)
2. Solve PDE for these b.c.'s

3. Manipulate pointwise description of 8(1,y) to create E{a').

The embedding of & PDE solution within an optimisation procedure
clearly prohibits this approach from on-line implementstion on the

grounds"of both microprocessor speed and memory requirements.



17

Hence we are forced to look at an entirely different approach
for the development of an optimal feedforward control strategy.
Specifically we shall develop a PDE solution technique in which the
optimisable parameters appear explicitly in an approximation to e(l,y),

and hence sxplicitly in the error function.

18

3. SOLUTION OF BOUNDARY VALUE PROBLEMS BY POLYNOMIAL

APPROXIMATION METHODS

We have previously outlined the requirement that it is desivable
to produce an approximate solution to the PDE (17) and associated
boundary conditions (19), (20) and (21} which explicitly contains the
optimisable parameters defining the inlet temperature profile (19) and
the surface temperature profile (20). We shall briefly illustrate &
class of boundary value problem solution techniques which may yield
such a solution. In the first instance we shall use an ODE BVP to
simplify algebraic considerations and shall then turn our attention to

the 2DVB problem,

3.1 A 1-D heat conduction probliem

Consider & thin rod whose temperature at one end (x = 0) ia 1'0

and at the other end (x = 1) is Tl' If the thermal conductivity of

the rod k depends linearly on temperature T e.2.
k(T) = k, + k, (T - Ty . {22)
then tha steady-state heat conduction equation is non-linear:
d dT
s [k('l') |~ (23)

Introducing the dimensionless temperature variabls

T(x) ~ ro

6(x) = W (24)

gives an equivalent probilenm

*
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Edi [(1 + a8) g—g-] -0 (25)
or
a%e  [ae
(1+.e)~—2+.[3; -0 (26)
dx

subject to boundary conditions
g =0 a(1) = 1
This non-linear problem possessss an analytic solution:
0(x) = [-1 + {1 + a2+ a)x};]h 21

which shall be used later for comparison of approximate sclutions.

3.2 Weighted residual methods

The central feature of the polynomial approximation methods is the

development of an spproximate solution of the form

B(x) = !E a, ¢.(x) (28)
joo 33
where *j (x) is & polynomial in x, e.g. a monomial xj. a Legendre poly-
nomial ?j (x) ste., Given that ‘B(x) satisfies all boundary conditions
then application of the ODE differential opevator to B(x) will yield
some function R(s,x), The unknown parameters {uj : § =0,1,...,M} are
then chosen to force R{g,x) to be "close" to zero over the domain of
definition: the marner in which this is done is dictated by the choice

of solution method. The function R(a,x)} is known as the residual

20

(function). Thus if x € 0 we generally force some integral of R{a,x)
over fl to zero. If Hi(X) is some weighting function we solve the set

of equations
L wi(x) R{a,x) dx = O i=0,1,...,M
¥

for the unknowns {aj s §j =0,1,...,M)

Collocation: wl(x) = §(x - xi) (xi € 1)
Galerkin: ui(x) - Oi(xJ
Least squares: wi(x) - —:-l (.o_l,x)

i

(note: if R is not linear in a then in this

case “i. is also a function of o)

Method of moments: uitx) - xi

The above methods are generally called "Weighted Residual" methods. 1In
all methods an incressingly accurate solution is sought by incrementing

M, i.e. the number of terms in the approximate solution expansion.

3.3 MWR solution of 1-D problem

Ve firstly consider imposition of tha boundacry conditions on the

approximate solution. We therefore require 5(x) to satiafy
70 =0, (1) =1

One obvious candidate is

_ M fo2
Fod =x+ | a0 - x) (29
j=o
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vhile a mors general expression is

M
Bx) mx+x(x-1) ] a ¢j(x) (30)
j=o J

vhere *j (x) is a j'b'h degres polyoomial im x. For simplicity we shall

use the first form so that a first order approximate solution is simply
- 2
0(x) = x + ao(: - x) (31
while & second order approximation is
- 2 3
9(x) = x + uo(x -x) + al(x - x) (32)

etc.

Io general the rasidual R(a,x) is given by

) 72
R{a,x} = (1 + af) d—g + .E‘i_:]
dx

and for numerical purposes we shall from herson assume the constant a

to be 1. Soms algebra then gives:
first order approximation:
] 2
R{o,x) = [1 + ag] + x[sao - SaJ + xz[GaOJ

second ordsr approximation:

R(a,x) = [2::0 + (1 - 9, = al){l * 1[600(1 may - ul) + 6::1]

+ 22 [5‘;‘2) + 1201 - oy - ul)] + x3[20u0u1] + :4[15aﬂ

2

Collocation:

Equations are generated by

1
J §(x ~ x.) R{a,x) dx = 0 i=1,2,.,.,M
o v

Por the first order aspproximation we collocate at X, = % and generate:
1+ 3, - 02/2 =0
[s] (3]

i.e. 2 ® ~0.3166 (the other root giving incorrect flux direction at
x=1),
For the second order approximation ve collocate at xo -% and

x - % and generate:

4 _ 16 -1 2 _ & 2
1+2u0+3u:1 37 %% 3% 37 5 0
Eu_:ia 12_332_0

by s o "% 3% 7Y
which, following numerical solution, give
8, = =-0.5992 , a, 0.1916

Galerkin

Equations are generated by
1
I ¥, (x) R{a,x)dx i=0,1,...,4
o * =

In the first order case we uge #o(x) = (xz =~ x) while in the second
order case wve uge #o(x) - (:n:2 - x) and ol(x) a (xa - x}. Much algebra

yields for the first order approximation
.
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264 12 2 2 96 2 333 2
__1._.1. _}_2_ 54240 ¢+ —a + a0 +Ta +tITa + == a.0
3 2“04'3060 0 0 5 1 5 %"1 "s g 351 70 01
20 2 3 3,9 3
+ Zola, +ra  tqzor =0
"'00--0.3262 7 0L 570 3H 1
- ay = =-0.6251 e = 0.1905
and for the second order approximation:
I S NS | L 8 2,1 .2, Method of moments
T 7% 0% %M 5% "% %" °
Equations are generated by
1L_ & 13 11 1 2.1 2
-3-3% " 10% 0% T s "0 1
I x" R(a,x) dx = 0 f®0,1,...,M
1]
"uo = -0.6558 o, - 0.2152
fhe first order approximation gives
Least _squares ) 2 2
2a° +Ja. -3 +1+a_ =0
Equations are generated by 0 0 0 0
=3 +1=0
1 3R < 0
o, (x,x) R(z,x) dx i=0,1,...,M
o 4~ -

- o, = -0.3333
The first order approximation yields
while the second order approximation gives
k]
IBuo Iooao 15 = 0

1+ 3(:0 + Sul =0
=g = ~0,4049

-;- + 2«0 + lml =0
while the second order approximation (eventually) yields
. 62 - o " -0.75 oy = 0.25
20 2
3+ 12u°+2loul M Za, + g Ay * G Gy
(Note: the linearity of equations is generated by coincidence in
+-9-u2u *-z-u3 +ﬁu3-0
5§%" 570 70 1 this problem).
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3.4 Orthogonal collacation N xj

General collocation methods involve arbitrary selection of 1 0.50000 00000

collocation points at which the residual is forced to zero. Such
2 0.21132 48654

points could ba chosen to advantage given some a priori knowledge of
0.78867 31346

the solution variation; however in general an arbitrary assignment

(such as equidistant points) can be improved upon. 3 G.11270 16654
0.50000 00000

The idea underlyi th 1 collocation is to approximate the
e idea erlying orthogona on 0 approxima 0.88720 83346

integral of the weighted residual by a quadrature rule. Thus

. i’ 4 0.06943 18442
J W (x) R(a,x) dx = | , ¥, (x;) Rla,x;) 0.33000 94783
0 je1 J ] 0.66999 05218

. . . 0.93056 81558
where "'j are quadrature wveights for collocation points xj. Tha method

then proceeds simply to force 5 0.04691 00771
0.23076 53450

R(g,xj) =0 i=1,2,...,M¢1 0. 50000 00000

0.76923 46551

vhere there are (M + 1) unknowns o and the xj'l have been chosen via 0.95308 99230

the appropriats (% + 1)th order quadrature rule. Thus an approximate

Quadrature equivalent of the original intagral weighted residual ig Gauss—Legendre collocation points on {0,1] (N £ 5)

forced to zero, Tha o collocation points are selected from quadrature Advantages of this method include the fact that collocation points

schemes which give accurate integral approximations for very few terms are prescribed; the equations to be solved by the unknowm parameters
in the quadraturs expansioca, Typically, the collocation points would 8 are easily formed (no integration to b performed); as in all
be chosen from the Causs-Lagendre quadrature rule which (on {0,1)) weighted residual methods, boundary conditions are often easily

yields points: included,

A potentially major disadvantage is that the order of the collocation
Tule is detarmined by the unknown Parameters, The accuracy of integral
approximation may then be quite poor with the resuit than the integral

weighted residusal may be forced closely to zero for various wk(x)
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weighting functions. {This latter point is particularly pertinent

when we come to application of collocation methods in two space

dimensions). collocation.

We shall now apply Gauss-Legendre orthogonal ecollocation to our
1-D heat conduction problem. We take the approximate expansion to

be equation {31} for the first order approximation and equation (32)

28

We now collect a set of numerical comparisons for th

We note that for a = 1 the true solution is

a(x) = -1 + (1 + 31()l

and for various values of x we have

for the second order approximation. (Note: in orthogonsl collocation

the "trial” or basis functions Pi(x) are often chosen as orthogonal

x
polynomials (e.g. Legendre polynul;lills on [0,1] could be used here)}}. 8(x)
Orthogonal polynomials recurrence relationships can then be used when

derivatives are applied and terms are collected. Additionally the x
resultant algebraic equations for w are usually better conditioned; 8(x)

this is particularly important for large M.

For the Eirst order approximation we allocate at x, = % and

generate

3
1+300—-uolz-0

=ay = -0.3166

while for the second order approximation we collocate at x, = 0.21132,

x - 0.78867 to obtsin

-5 2
1+ 1.2679n0 0.196231 + 0.3849a .0, + 1,685 x 10 "o,

+ o.a9aoui -0

1+ 6.7320a, + 10.196%, - 0.384%agu; - 1.7786 x 1072
- O.GGOTui -0

= a, = -0.7224 , o, = 0.2344

0.0

0.0

0.6

0.6733

0.1

0.1402

0.7

0.7607

0.2

0.2649

0.8

0.8439

0.3

0.3784

0.9

0.9235

0.4

0.4832

1.0

1.0

e various methods:

point collocation, Galerkin, least squares, moments and orthogonal

0.5

0.5811
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The Galerkin and least squares perform comparably and better than
the other methods. (A more global behaviour index, e.g. Jl B(x) dx
may be a better indicator of this). Orthogonal collocatio: is consid-
erably easier to apply than the latter two methods and also gives »

reasonable approximation.

3.5 Numerical implementation

While an increase in the model order involves littlé overhead
for the collocation methods, considerable extra analytic effort is
required for the integral methods. Since a numerical equation sclver
will be required for more sccurate {and larger order) approximations
a reasonable suggestion would involve computing the integrals, which
from the left hand sides of the equations, numerically. This approach

allows perfectly accurate higher order approximations to be computed.

3.6 Extended orthogonal collocation

The quadrature approximation
1 N
Io Wk(x) R{a,x)dx = j§1 wj k(x].) R(g,xj)

may only be accurate when N (the number of collocation points) » (M + 1)
(the number of parameters o). One method of forcing the integral of

the weighted residval to zero would be to solve the problem:

— k= -

. M N 2
min [0 'Zl v, k(xj) R(g,xj)

The clear disadvantages of this extended approach are the need to

specify the quadrature weights wj in addition to the collocation
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points x5 the need to specify the weight functions Wh(x) and the
potential scale of the optimisation problem. However, a reasonable

solution to the original problem with relatively few unknowns a,

3.7 Linear differential operators

The 1-D heat conduction problem used to illustrate the previous
methods was chosen deliberately to illustrate their poteatial
application to non~linear problems and to introduce sub-problems for
which optimisation procedures could provide sclutions.

1f, however, the original differential equation is linear then
the residual R(a,x} will also be linear in the unknowns o and all
methods (except extended orthogonal collocation) yield sclutions from

a {usually small) set of linear algebraic equatioms.

3.8 Least squares orthogonal collocation

We shall now derive an alternative algorithm which derives from
the least squares weighted residual method. This algorithm deals with
the problems of quadrature rule order and approximation expansion order
as reasonably distinct items,

The least squares weighted residual method is generally posed as

L
min J R (a,x) dx
T Ja -

vhich has, as its quadrature equivalent, the problem

| 2
i « R .
mé? 321 "J (g,x])
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An equivalent problem is then to solva the over-determined

equation sat (N > M + 1 in genaral)
&;R(g_.xj) =0 J=12,....%

in least squares sense for the unknowms a.

If R(a,x) is linear in 6 then the latter over—determined equation
set is itsslf linear in 4 and efficient methods of solution ars
available (e.g. Householder transformacion techniques).

If the weights "'j and collocation points "j are chosen via &
Gaussian quadrature scheme, then we shall call this latter approach

least squares orthogonal collocstion.

3.9 Boundary condition optimisation

An esgential feature of weighted residual solution techniques is
the explicit inclusion of one or more boundary conditions in the
analytic approximate solution. If such boundary conditions contain
optimisable parameters then this class of methods may yield spproximate
solutions which explicitly depend on such paraneters. We shall there-
fore turn back to the 2DVB model which governs the glass temperature
distribution and develop a wveighted residual approximate solution which

does explicitly depend on the surface snd inlet tempersturs profila

parameters,
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4. SOLUTION OF TRE 2DVB MODEL

4.1  Introduction

Observation of the equations which describe the 2DVB model and
the shape of the domain over which they are defined indicates that the
application of an analytic solution approach, typically separation of
variables or integral transforms, is not feasible. Therefore a
technique which will yield on approximste solution must be applied,

The major advantages of expressing the approximats solution as
& finite summation of polynomials are rapid simulation and the
potential of explicit optimisation of boundary condition parameters.
Such an approximate molution is therefore sought for the 2DVB

wmodel.

4.2 The general application of polyncmial approximacion methods.

The basic PDE to be considered has the general form
Z{e) = o (33)
where £ is a linear time-invariant partial differential operator defined
over some two-dimensionsl spatial domsin S. The PDE (33) is subject
to certain boundary conditions which make the problem well-posed.
An approximate solution 8(x,y) to the equation (33), together
with its associated boundary conditions, is expressed as
M
Bx,y) = y(xy) ¢ §-1 aj¥;(x,y) (34)
When the solution to ({33) is not known an interior method is employed.
The functions Y {x,y) and "j (x,y) (j =1, ..., M) are chozen so that
E(x,y) satisfies all the boundary conditions and tha constants aj are
determined in such a way that E(x.y) represents, in scme sense, an

approximate solution of the equation

* LB - o
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The application of the linear operator £ to 8 yields a residual
R{s,x,y) i.e.

£ [8] = R(o.x,y) (15)

Many of the methodes of polynomial approximation are contsined

vithin the method of weighted residuals {MWR). Generally, in the
MWR, the oy are chosen so that the residual is forced to be zero in
some average sense by equating weighted integrals of the residual to
zero. Thus the M linear equations

<wi,R(a,x,y)>; = © i =1, ..., H (36)
are solved to give the M unknowns 05, where the inner product <,>,

is defined by

<U,¥>p = I U(x,y)V(x,y)ds "
8

Since £ {s a linear operator

LI0) = Lhoter] + ] oitlvsa) 08
. L

Therefore

M
R(z,x,y) = PRolx,y) + ] ajRilx,y) (39)
i=1

vhere

R, (x.y) = £ [y, (x,y)]

Rjlx,y) = £ [#5(x,)) i=1 .., H
The a4 {j=1, ..., M) are solutions of the matrix equation

Aa =« (40
where the matrix elements are given by

xij = <wi.Ry>2

e; = -<wi,Ry>p

With the MWR as stated above there are three important choices

te be made:
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(i) the value of M,
{ii) the form of the basis functions v (x,y),

(iii) the form of the weighting functions wi{x,y},

All three factors influence the ease of computation of the 1 matrix
and e vector and ultimately the accuracy of the final approximate
solution.

Obviously the upper limit of summation M instrinsically affects
the accuracy of the final approximation. Small values of M are unlikely
to yield an approximation of suitable accuracy, regardless of the choice
of “j and wi. Alternatively, a large value of M leads to a great deal of
computation for the X matrix, the e vector and the subsequent inversion
of the X matrix. Convergence bounds do exist for certain classes of
but many are extremely conservative, leading to an unneccesarily large
value of M. Thus, a suitable value of M is usually determined by
numerical testing.

The basis functions ¥j (x,y) involve terms which impose the
boundary conditions exactly on the spproximate sclution and are usually
subject to the restrictions that they are linearly independent and form
a complete set. Apart from these requirements the choice of 7] (x,¥)
is free. Therefore the basis functions are often chosen to simplify
the computation of the X satrix and the e vectt:;r. Monomials give
particularly easy evaluation of the inner product integrals but they
are generally not favoured since the corresponding X matrix tends to
be il1~conditioned'?s16, Orthogonal polynomials, however, yield a well
conditioned & matrix and are therefore used in the majority of
applications of the MWR.

The particular method of the MWR to be applied is determined by

the choice of weighting functions w;{(x,y). Two of the most common
o
da;

which correspond to the method of least squares and Galerkin's method

forms of wj(x,y) are vilx,y) = = Rj(x,y) and wilx,y) = #ilx,y)
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respectively.

Once the value M, and che form of the functions "j (x,y) and
wi(x,¥) have been selected, the problem reduces to one of evalugting
the inner product integrals and solving the set of simultaneous
equations (40). If the linesr operator £ has an elementary form e.g,
constants or simple polynomials multiply the differentials, and the
spatial domain 5 is trivial e.g. [D,l] x [0,1], then the inner product
integrals can be generated by recurrence relations. Therefore, if the
original problem does not satisfy either of these conditions, an
attempt is usually made to reformulate snother equivalent problem
which does. The spatial domain § may be transformed typically by a
change of variables or alternatively by conforma] #mapping in two
dimensions. Unfortunately, however, either transformation will
invariably complicate the linear operator £ or the boundary conditions.
The linear operator itself may be reatructured but this should only be
done by 4 change of variables and not by spatially multiplicative
factors. This point will be illustrated by reference to the PDE
governing the 2DVE model, Ac first mighe, it {s tempting to mltiply
equation (45) by the non-zaro factor D’(:)H(x) to give a new equation

to be solved

2] = powe :—;; - 8[02(x) - y2] %?- -0 (41)
However, this equation still cannot be solved analytically, and thus
on substituting the approximate solution 6(:.;0) into equation (41) a
nev residual i(g,x,y) is formed and

Ka,x,y) - P2 (x)W(x)R(a,x,y)
Thus the residual from the original 2pve model equation hag been weighted
by a factor Ds(x)W(x) and this may yield erroneous results (c.f. Levy's
-ethnd”-m). Inpracticemany PDE's have neither a convenient operator
Lor spatial domain § and trans{ormations may not alter this situation,

the 20VB model being one such PDE, Suitable recurrence relacions may
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then be difficult, perhaps i.mpossi.ble, to generate and it becomeg
heceasary to evaluate the inner product integrals numerically by a
quadrature algorithm.

All the inner product integrals involve the integration of a
function multiplied by at least one basis function and thus any given
quadrature algoritha will require the value of such basis functions
at specified points. The advantage of using orthogonal polynomials
rather than monomials ag basis functions haa already been noted and
thus the evaluation of such polynomials must now be considered, The
most obvious method of polynomial evaluation is to simply multiply the
corresponding powers and coefficients together exactly as they are
written. Unfortunately such a method is both inefficient and may in

certain circumstances yield erronecus results. Typically the evaluation

of & Legendre polynomial on [O,l] of high order requires the mltiplication

and addition of terms of greatly varying magnitude and the accumulation
of error is significant. a second method vhich is both stable and more
efficient than the latter involves bracketing the polynomial and is
known as Horner's lchmw. However, such a scheme does not employ any
special structure which the MR formulation may possess. In particular
ths fact that each basis function, i.e. orthogonal polynomial, is
involved in several integrals may be further exploited. Thus, since
&0 orthogonal polynomial value at a given point is rapidly computable
from lower order orthogonal polynomial valuss at the same point, and
the same is true of their derivatives, then an even wore efficient
scheme could be based on the utilisation of such values. The adaption
of any quadrature algorithm to accomodate such features would become
extremely cumbersome and thus for problems in which the inner product
integrals have to be evaluated numericslly it is advantageous to seek
& method which is equivalent to MWR  and ig computat ionally more

*

efficient. Orthogonal collocation is one such method.
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The method of orthogonal collocation is derived by expressing

the inner product integral as a quadrature formula:
oji,R(a,x,y}>2 = l w;(x,¥)R(0,x,y)ds
s

= ’i‘q Wy v O, IR, xp0 7)) {42)
k=l
In the atandard application of the method, N, is chosen equal to M
and a solution of the equations
o, R{a,x,y)>2 = © iml, ..., K
in provided by the solution of the equations
R{a,xg,yx) = © k = 1, ..., Nqg (=)

The questions of the positioning of the collocation points
(%.¥y)s the number of such points Nq and the choice of the weighting
factors W, are all interrelated. These factors together with the
structure of the residusl R{a,x,y) and the shape of the domain §
determine the accuracy of the quadrature formula (42) and ultimately
the error in the approximate polynomial solution. In certain
circumstances, similar to those for which the inner product integrals
cati be evaluated by recurrence telations, the choice of Nq equal to M
implies that the quadrature scheme (42) {z exact and hence the results
from orthogonal collocation and those from the MyR would be
identical. When the quadrature formula is only an approximation, zs
would be the case for the 2DVB model, the choice Ny = M oay still yield
reasonable results if M is large. However, it is desirable to have &
minimal number of terms in the final approximation and for small
Nq {=M) the error in the quadrature approximation may be quite large; '
leading to the possibility of inaccurate results.

Thus, to accomodate both an accurate quadrature formula and the
desire to have a low order polynomial approximatiom, the value of Ny

must be greater than M, This will lead to a least squares problem as
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demonstrated in the next section,

4.3 Least squares collocation

It is now convenient to specify the particular form of MWR
for which an equivalent collocation technique is sought. The choice

of weighting function
13
vilz,y) = ag (a,x,y) “2)

gives the least sguares method in the MWR.  The argument against such
& weighting function is that it ofter leads to cumbersome equations“C.
Rovever, it will be shown in the subsequent development that the least
squares method has an equivalent collocation scheme which is extremely
versatile and efficient.

With v;(x,y) as given in equation (43) the basic problem to be

golved is

min ] R2(a,x,y) dS @)
a ‘'8

Applying the general quadrature formula (42) an approximately
equivalent problem is
Y
min § WR2 (o, %, %) Gs)
a kel
Clearly, the least squares solution of the Nq equations

Wy R{o,xe,7k) = O

5{? ajRy(xemy) = = M Rolxyuyy) s)
1 k = 1, .y Nq
will also be a solution of (45) and hence an approximate solution of
(a8). -
Thus the original least squares integral problem is now repored
as a least squares collocation problem which will be ghown to be useful

in determining values for Ng and M and will ultimately provide the
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approximate solution of the PDE.

4.4 Least squares collocation using Patterson quadrature

Consider the basic approximate solution
l M
6(x,7) = Y, (x,y) + 3_:-1 85¥; (x,¥) 47)
in vhich the upper limit of sumstion, M, is fixed, An efficient
quadrature scheme is required such that
(i) Ny is small, yer the quadrature formula is accurate
and
(ii) che computation involved in the scheme is minimal,
It is well known that the Gaussisn quadrature formulee satisfy the
firat requirement and within this class the Causs-Legendre formula
is particularly easy to apply since, in ome dimension, the collocation
points xy are the ferces of Legendre polynomials. Indeed it is thesa
points which often form the basis of orthogonal collocation,
Explicitly this quadrature formula is expressed as

1 n
Jf(x) dx = T wf(x) - 1, (48)
kel

where xp (k=1,2, ..., n) are the zeroes of the n~th order Legendre
polynomial Ph(x), on [p,l] and Wy (k=1,2, ..., n) are known constants,

If che n~th order approximation I, is not considered to be accurate,

then & higher order approximation Ing (n) > n) will have to be evaluated,
However, the zeroes of the Legendre polynomials of orders n and n; are

all differeat and hence f(x) has to be evaluated at ny new points.
Patterson20'2| proposed a new quadrature formula in which all the
quadrature points are recained and used in any higher order approximation,
This quadrature formula is only slightly less accurate than the
comparable Gauss-Legendre scheme and it has obvious computational

advantages. In practice, when determining the convergence of the *
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quadrature formula, n is usually chosen to follow the sequence
{1,3,7,15,31, ...}
i.e.

number of quadrature points _ E 2t~1

at r-th iteration =1

Thus the stendard Causs-Legendre scheme requires E 2t-1 additional
funceion evaluations at the t-th iteration, Hhilel;:ttlrlon quadrature
Tequires only 21 gimilar evaluations st the sape iteration. For
integrals in higher dimensions the differenca in the oumber of additional
function evaluations is even more significant. In twp dimensions, for
¢xample, over the square domain [0,1] x [0,1] the difference at the r-th
(r > 1) iteration is equal to the aumber of points at the (r-1)th

r=1 2
iteration i.e.|] 22-1|°,

t=]

Patterson quadrature points and weights therefors satisfy both
requirements (i} and (ii) and will now ba used aa the basis of the
ccllocation procadure, The points and weights are readily generated
by extending Patterson's ona dimensional integration routine once the
domain S bas been transformed to the square [b,l] x [p,i].

Assume that ths domain § has been transformed to [b.i] x [b,l]
and that the residusl defined over [0,1] x [0,1] isX(s,x,y). This
assumption is not restrictiva, as will be shown later. With the
order of approximate solutionm M and the collocation points and
weights specified, the number of collocation points ia determined as
folloﬁs. The parameters in the boundary conditions are inicially
assigned numerical valyes. Then the right hand sides of equations
(46) are known and this set of equations is readily solved by
recursive least fquares. Hence, for a given value of Nq - "qx' the
values ajf{i=l, ..., M) are evaluated without the need of an explicic

matrix inversion. The values of the reliduala<2j(xk,yk) (=1, ..., M),

jto(xk.yk) are atored during the process of the recursive least squares
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algorithm and the summation
Yy,
Ian]) - Z W R (o, X, i) %9)
k=1

is evaluated on termination of the algorithm. Ny, is then increased
to Ng, and the resulting aj(i=1, ..., M) are re-evaluated, again using
recursive least squares. Since Patterson collocation points are
employed, the residuals xj("'-k-!'k) (j=1, +.-p M) and R (xg,¥yy) need
only be evaiuated at & few new points with the previously stored
values being recalled within the algorithm. The relative error
between IM(qu) and IH(qu) is then used as a convergence criterion

for K,. Thus, if g is a given constant and

q
Iq(Ng, ) = In(lg,)
1“ qu \ < €¢ (50)

then Nq is set equal to qu and the process is terminated. The final

value of Nq is dependent upon M, a suitable value of which will now
be determined. M is initially chosen to be m; and the corresponding
Nq is evsluated by the scheme outlined above. M itself may be
incremented to a new value mz and the whole process of determining a
suitable Hq will be recomnenced. The incrementation of M is then

terminated when

(Ng{m,)) - N (m )] < ¢
I, (Nq(m, I‘"l‘lll P (51)

and the final value of M is chosen to be my. Thus, there now exists
a rational method for calculating appropriate values of the constants
Nq and M.

The method outlined above utilises a recursive least squares
algorithm which in turn requires that the boundary condition
parameters have been assigned specific numerical values. When a
cimulation of a PDE is required then all parameters will have values

and thus the above method will give an accurate solution without the

44

need to perform any direct matrix inversion. However, the real power
of the general polynomial spproximation method is that boundary conditions
may be explicitly contained in the final expansion and any subsequent
optimisation of boundary condition parameters may often be performed
analytically. The above discussion is still useful in this more general
context since if the unspecified parameters are given realistic values
then M and Ng together with corresponding collocation and weights are
generated., The over determined system that has been solved by
recursive least squares is of the form

As = °b 52)
where

Ay = WA Oy

cb; = MiK(x4.74)

i=1, ..., Ny
j=1, ..., M

and throughout the recursive algorithm the values of kj (x;,yi) and
hence ©Aj;have been stored., Thus the pseudo-inverse (cATcA)"1CAT can
be calculated and the vector of unknowns a is then expressed as a
function of the boundary condition paraseters by

a = (caTepymieaT <p (53)
This evaluation is further simplified if the boundary condition parameters,
i - ('-}'1, cens '\\"Nc) say, enter into the boundary ronditions only as
multiplicative and additive constants. Then the residual due to the

imposed boundary conditions may be expressed as

N
Rotxy) = {"1 £, 5 9 o4)
=

and hence
a = (CATCA)-I CATB£ (55)

vhere



45

Biy, = /ﬁ: 31("i-yi)
A
g, = )

i=1, ..., Ng
Lol i, Ny
The final spproxiwate solution is thus determined a3 an explicit

function of the parameters in the boundary conditions,

4.5 The treatment of non-imposed boundary conditions

For many models described by PDE's it may be difficult or even
impossible to simultanecusly impose all the given boundary conditions
on to the approximate solution. The effect of the non-impased boundary
conditions must still be included and should clearly influence the final
approximate solution. Two situations are likely to lead to such & non-
imposition

(i) there are a large number of boundary conditions,

(ii) one or wore of the boundary conditions is defimed aver a

complicated domain.

Consider firstly that only one boundary condition camnot be
exactly imposed on the spproximste solution, Let this boundary
condicion be of the form

Lofe] -t (s6)
where -f—h is a time-invariant linear differencial operator and f is
some function, both defined over a given boundary I'. The boundary
residual Ry(a,x,y), (x,y)el', may then be defined as

By(e.x,y) » £y[6] - ¢ (57)
The vector o must be found such that both the interior and boundary
residuals are simultaneously forced to zero. One obvious snd convenient

formulation which would achieve tlis is

min I B?(a,x,y) d§ +[ Rf (a.x,y)dr {58)
a ‘'S T

Once again, the equivalent collocation problem is sought and therefore
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{58} is reposed as
Nq . qu s
min I° W R2aaqaynd ¢ 1 Wy R2Guxg.yy) 9)
a k=1 =1

vhere the interior residual X and the boundary residual Rp are defined
over [0,1] x [0.1] and [0.1] respectively. Clearly, the least squares
solution of the over determined system
Al Ria,xgyy) = 0
kw1, .., Ny Oxgaye[0,1]x[o,1]
(60)
M Rplaxy.y) = 0

t=1, ..., By Xporye {0,1] (61)

The three constants M, Nq and Ny; and the associated collocation
points and weights must now be determined. Asbefore, M is given an
initial value m; and Nq{m;} is evaluated by the procedure described in
section 4.4. At the end of this process o will have a fixed value,
oy say. The same procedure isthen repeated to determinas Ngy (my), the
initial value of a being taken as a; with the residual Ry being
evaluated at various collocation points on [0,1]. When Ny is judged
to have converged a will have a new value, az say, which iz & solution
of (59) for the given M. M is then incremented and this whole process
is repeated. The convergence criterion for M is taken as the
error hetween two successive evaluations of the sum of rhe two total
residuals i.e. the function being minimised in (59). Tha method of
obtaining o as an explicit combination of imposed boundary condition
parameters is then also as previously discussed and will yield expressions
comparable to (53) and (55). Indeed, if any parametars in the non-
imposed boundary conditions do not multiply any function of B then it

is also possible to express a in tems of such parameters.
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Extension of this method to incorporate more than one non-

imposed boundary condition is trivial and a more general situatiom ay = initial p value for recursive algorithm
may also be solved. Consider a total of q non-imposed boundary nd = number of dimensions, ec convergence constant
conditions with residuals jkb(g,x,y) where (x,¥) € rj (=1, +.., 9}. I
Consider also that r =0 ﬁq -9 INU = -100, say
(i) the domain § is not readily transformable to [p,l]x[o,ll - I
. . r=r1+1, ﬁq = Nq, Iﬁq = Iz
but that subdomains 5y, ..., Sp; are individually I k|
transformable ﬁq - ﬁq + (zr-l)“d
and " ‘
(ii) the parameters which are involved in thebasic PDE vary ' celect (27=1)™ collocation points xp
within § but are constant within each of the subdomains . Select E @rnnd o n, collocation weights Wy
Spial +-+» Sp s I
Then, an approximate solution is provided by Evaluate j%(ik)--xo(ik) k=1, ..., (2"'1)nd
mnE lia?-(uxy)as- + E l igg(a,x,y)dr; { I
s, 1 L i P | 62) Evaluate i, Z;(x,), Mg Ry () Lt =1, ..oy ny

i=1l p,
} |

which is readily solved by extending the process outlined for one

Apply recursive least squares algorithm to determine
non-imposed boundary condition. The general outline of the procedure

is shown by the flow diagramsof Figs. 5 and §.

T 2
4.6 The application of least squares Patterson collocation to the evaluate lﬂq - E L1 [? Ejjaj(it) 'jao(lli]
t=1 j=1

2DVB model.

The 2DVB model provides a useful jllustration of the power and

application of the theory developed in Sectiom 4.5, Both che PDE (45)

and its associated third boundary condition (16) are defined over

non-regular domains, Moreover, the parameters involved in the terms

W(x) and D(x) vary over the spatial domain S, but are constant within N

tar

q " Ng» 2y "

each subdomain 5;, 52, 53, the domains being shown diagramatically in
Fig. 7. Therefore least squares Patterson collocation is immediately

Fig. 5 - Recursive loop 1 - the determination of a suitable Ng value.
applicable to the 2DVB model while other standard forms of MWR or

orthogonal collocation would not be.
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Fig. 6.

Increment M

I

Initialise @ : 0p = (0, ....., O)}T, say.

]

Increment region of interest : i = { + |,

Specify inputs to “recursive loop 1".

]

Apply "recursive loop 1" to give aj, the estimate of

& from the firsc i regions.

i > Total number of residuvals

Evaluate sum of residuals squared 1%

HO

= Recursive loop 2 - the determination of a suitable M value.
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53

8

L

7 - Domain definitions for the short forehearth

Fig.
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It is easy to impose the first two boundary conditions
8(o,y) = u(y)
g(x,0) = ¥y1(x)
onto an approximate solution. Thus, one convenient form of 8(x,y)

which satisfies both of these equations simultaneously is

" .
Bix,y) = v (x) 4 uly) = wio) + xy [ oty (x,y) 63)
k=1

As discussed previously, the choice of Legendre polynomials as basis
functions in one space dimension yields well conditioned equations
and therefore a natural choice for Yy (x,y) is a product of Legendre
polynomials. Therefore (88) is assumed to take the form
N
B(x,y) = vi(x) +u() ~ple) +xy [ o BjF
143k ®4)
where Fi(x), fj(y) are non-normslised Legendre polynomials which are

orthogonal on [0,1].

The interior residual is given by

az -
Rio,x,y) = :—yg-- U(x,¥) :—: (65)
where
g 2
UGxy) = 4505 [‘ 'ng(ﬁ]
and

- I M Dhax
. 7Kg L gy

in the nomenclature of section t. The residual R,(x,y) due to the
imposed boundary conditions is

L a2y ?
Rolxy) = o3 - U (xy) L

= W) - U (k)T () (66)

wherse

52
'-d_"-dz‘-i_
dy * dy? * dx
and Ul(x.y) = U{x,y) in zone t (£=1,2,3),

The contribution to the interior residual from 2 basis function
xyvk(x,y) = xy Fi(x)F;(y) is
LRy (x,y) = %21- [xvP; GF;(y)] - U, (x.3) 2 [xy?; (x)P; ()]
¥ 1 ax 1 ]
= 2P (0P (y) + xy By0F ()

-0, (x,y) I OF () + xoB; 0F (3)) ®7)
where the connection between i, j and k is inferred from the summation
(68).

Since the interior residual has different parameters in each of
the three zones 5;, $3, S3 it is necessaty to transform the integral
of residusl squared over each zone into the equivalent integral over
[0,1] x [0,1]. The most general integral is that over 53, the integrals
over S; and 57 being simplifications of it. Therefore the determinant,
Ja(x,¥), (i.;):[o,ljx[o,l]. of the Jacobian matrix is sought such that

a+bx
] 3p2 (a,x,y).dydx

x3
I 382(g,x,y)dy dx = I
S3 []

x2

11
- l J J3(%,5)%R2 (a,x,y)dydx

0’0
11 .

- J J R2(a,x,y)dydx (68)
0’0

Two simple transformations from 53 to [0,1] x [0.1] are

;. XX
X3=X2
Y % aebx
i.e. X = (13-’12); + X2 (69)

y = (a+tbx)y (70}
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e J3(x,y) = det —

4y

ax

£l

= det atb{xp+x(x3=x3)} bixy=xp)y
0 (23-x3)

Ce I3,y = (avdx) (x3-x3) G1)

where x is related to x by the linear transformation (69)}. The
corresponding transformations in zones S, and S; have an identical

form to (71) with

X3 *+ X3 X3 + x

X2 + x] X2 * x

b+ 0 b+ 0

s 0+ 4 in S, a + 4 insg )

S Bix,y) = diixpx) (73)
I(x,7) = dy(x;-xg) (7%)

The third boundary condition, which is defined by
Kg 3y x * v i:a-a"'])r-l‘.i(lt)

where the parameters in v2(x) vary over Iy (y=D(x)), but ars constant
within each subsection F14l2,T3, must now be accounted for. The
boundary residual due to the imposed boundary conditions is

"Rpo{x) = Ka'(y) -"yz(x)|_-“(x)"u(y)-u(o)-ﬂb.]y_bn(x)

(75)
while the boundary residual arising from the basis function
xy dp{x,y) = xyfi(x)ij(Y) is
™| - B. B: P H
Rok(x) = Kg[xF; 0F () + xyB; (0F} ()] y=Dg (x)
- nTZ(x)[xyPi(x)Pé(y)]y=Dn(x) (76}

where My, (x) and Dp(x) denote the functions vya(x) and D{x) in zomne

54
Fg{w=1,2,3). Each line integral is now redefined over [b,]] by means

of & simple linear transformation. Thusg

X3
J *RE (x,y)dry I IR (x)dx
I's Xz

1
J (x3=x2)? 3rZ(x)ax
4]

- Il 2 (x)ax ()
0
where
x = (x3=x2)X + x3
Identical tranaformations with the substitutions {72) also redefine

the integrals over T; and I'y.

The approximate solution of the 2DVB model is therefore given by

oA, .. 3o )
min } I J R (2,%,y)dydx + § J =28 (a,x) (78)
a =1 ‘070 m=l ‘g
vhere
X
Re BGED ] oGP - RGap (79)
i,j=0
i+j=k
W
Ry * /lpxa-) z o o) Aoy (X) = DRy (X) (80)
by
itjwk

L =1,2,3 ms= .23
and the Jacobians, residuals and transformations x + ;. y *; have all
been defined. Thus the 2DVB model can now be solved by least squares

Patterson collecation.
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4.7 Results.

Before considering the optimisation of boundary condition paramelers

the validity of the whole Patterson collocation technique must be
demonstrated. This will be dene by showing that when all the boundary
condition and PDE parameters are specified that

i) the solution converges for increasing M
and

ii) the convergent solution is correct.

Since the 2DVB model does not possess an analytic solution, the
accuracy of the convergent polynomial approximation can only be
demonstrated by a direct comparison with a solution provided by a
conventional numerical technique. A suitable finite difference
scheme has been produced by Whitfield for this comparison.

The dimensions of a specific forehearth, which is heat-
conditioning green glass, are illustrated in Figs. 3 and 4, while

all other physical constants are listed below:

K =6 wo! ¢!
8
S
c =B40.12 Jkg | °C
-3
p = 2350.0 kg m
X =154 ¥ wt ¢!
K, «0.3% ¥ ol ot
throughput = 23 Tonne /day

ie, M =0.2662 kg sec !
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Equations (11) and (13), which express the effective conductance
of the refractory at the bottom of the forehearth as a function of
the conductivicies K and K and the corresponding dimensions, are
extrenely cumbersome and therefore, with all the constants as supplied
shove, an approximation to Keff(x) was sought which could rapidly be
evaluted.

Quadratic polynomials i'_T.J_,(x) were derived for each zone i

(i = 1,2,3) via quadratic interpolation &s

'_11"" - (-2.196)L 81)
2y, (X) = (-0.7399 + 2.900X - 4.87025)L (82)
37y4(0) = (-0.08059 + 0.1009% - 2.33u5L . (83)

A further simplification of the third boundary condition was
achisved by assuming that the temperature at the brickfair interface,
Tbn' was constant and equal to 130°C.

1t has already been shown that the inlet and surface
tempurature profiles, which describe the first two boundary conditions
may be well approximated by a linear and a quadratic polynomial

respectively. Therefore u(y) and 7‘(x) are taken to be

ply) = mg ¢ uyy (84)

11(x) =Yt YTt 712‘2 (85)
the back-block and spout being convenient points at which to compare
both measured, finite difference and Pattersen collocation results.

For the inlet and surface boundary conditions as shown in

Fig..8, the collocation procedure described in section 4.6 was
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followed with the convergence constant £. 8et equal to 0.02,
yielding a relatively accurate quadrature formula. The number of

collocation points was found to be

N =49, N =7 in each zone for N = 2
9 ql

Hq = 255, th “ 15 in each zone for 3 ¢ N $<7 .

Convergence of the Patterson collocation technique is clearly
shown in Fig. 7 by the monotonically decreasing sum of squared
Tesiduals. Figs. 8 and 9 show that the approximate polynomial
solution does in fact converge to the finite difference solution
and that N = 6 provides an accurate solution of the 2DVB model.

With the value of N determined, a comparison of the temperature
profiles predicted by the 2DVB model with measured profiles is now
possible. On the short forehearth under considecration there are two
temperature sensors at distances Z.76m and 4.04m along the fore-
hearcth. The quadratic polynomial approximation to the surface
tezperature is determined by interpolation between the temperatures
at the two sensors and the projected surface temperature at the inlet,
Fig. 10 shows the agreement between profiles measured by Hamilton and
the 2DVE model when solved by finite difference and by Patterson

collocation with N = 6, Clearly the 2DVB model compares favourably

58

T
[

N . moximum polynemial degree in one spoce dimension

e

20~

vwith the messured values and aleo with other analytic models e.g.,

the model of Abbott and Whitfjield?2 or the 2DL model of Carling.

]
L=}
-

Sum of squared residuals

Convergence of the sum of squared residuals to zero with increasing order of spproximation.

Fig. 7
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5. OPTIMISATION OF STEADY-STATE FOREHEARTH OPERATING CONDITIONS.

5.1 The Ydentification of Control Parameters,

The purpose of the forehearth is to heat-condition glass which
has been melted down in & furnace so that the glass leaves the
forehearth with a uniform desired temperature and is then suitable
for moulding. Thus the temperature of the glass ar the spout is
Tequired to be a given constant throughout its depth. For a specific
forehearth and a fixed throughput of glass only the inlet and surface
temperature profiles may be varied to control the outlet temperaturs.
Indeed, the inlet temperature may also be predetermined by the
operating conditions within the furnace, leaving only the surface
profile as variable and this will itself be constrained by the
geometry of the cooling and conditioning zones. Under the assumption
that the inlet and surface temperature profiles may be adequately
approximated by a linear and a quadratic polynomial Tespectively
then in the most genersl operating situation there are four parameters
His Yyp0 Ty Y2 which may be available to control the outler
temperature. This follows since the further assumption that the injet
and surface profiles concur at X, Y} =« (0, 0 implies that By = Yype
If the inlet temperature is controllable at all, it is only to the
extent that its mean value may be varied vhile the shape of its profile
is fixed. Thus the difference in the temperature of the glass between
its surface and the bottom of the forehearth is amsumed to be a

prescribed constant ‘l'e and this in turn determines uy

. - L0, 9 - _© 0 6)

Temg - 'd—l?._—.rr-) B (87)
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and in general only the three parameters Yo' Y11* Yi2 will be

controllable.

5,2 The Development of Suitable Performance Criteria.

It is now required to cousider performance criteria which imdicate
the deviation of the predicted temperature distribution at the spout
from the desired value. Since the polynomial approximation method
yielded an expressionm for the inlet temperature as an explicit cambination
of the control parameters a general analytic performance critericn is
sought. Thus, in the non~dimensional co-ordinate system a suitatle

"eost function™ ia

1 2
c= ]0 wly) [’1‘(1. y) - 'rd] dy (EB)

and if the reference temperature in the non-dimensional temperatsre

variable is chosen as Tr - 'Id then C is simply expressed as

2t 2
Ce= [T. - Tr] J wly) |e(r, Y)] dy . (89)
0

Two specific forms of the weighting function w(y) will be applied,
The first is w{y) = 1, which is a Lengendre weighting on [0, 1] and
gives a strict least squares cost function. The minimisation of
such a cost function is known to yield an optimuwm profile with aa
uneven error distribution over the non-dimensional depth y. In
patticular, the errors tends to be larger at both ends of the
interval [0, 1] and this could lead to an undesirable outlet
temperature distribution. Therefore a second cost function whica
weights both ends of the intexval [0, 1] wore heavily than the

remainder of [0, 1] is alsc considered. This cost function has
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1
S IUEE?)

which is a Chebyshev weighting on [0, 1} and is known to yield a

wly) =

smoother optimum error distribution. Thus the following two cost

functions will be used

1
cost function 1 = (T, - 'rr)z J 02(1, y) dy (90)

0
1

2
cost function 2 = (T' - Tr)2 J £~£ll—xl—£f . 91)

0 {y(1 - ¥})

5.3 The Imposition of Constraints on the Surface Temperature Profile.

A range of operating conditions were investigated and it proved
necessary to impose one hard constraint on the surface temperature
profile. Specifically, if the temperature of the glass at its
sutface falls below 1060°C then a "freezing" effect, which is to be
avoided, ensues, The short forehearth under consideration has a
cocling zone which starts at the inlet snd extends to the back-block,
non-dimensional distance X, along the forehearth, followed by a
conditioning zone from that point to the end of the forehearth.

It is thersefore reasonable to assume that the minimum temperature
along the length of the glass surface will occur at the back-block.

In non~dimensional terms, the above constraint is then expressed as
0(!. 0) 2 eﬂ (92)

1080 - T,

where am - S (93)
A r

and under the further assumption of a quadratically distributed

surface temperature, the constraint becomes
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2
Tig ¥ Tip® * Ypx 2 e_ . (94)
Now, since the minimum of the quadratic polynomial
Yoo * VX by x°
10 1 12
occurs at

:. - - i_.-Y (95)

and such & minimm is sssumed to occur at the back-block, non~
dimensional distance Xys along the forehearth, then (95) simplifies

to
LT Rl 27,2x2 (96)

and (94 ) reduces to
Y0~ Yypx 3 8 (37)
10 1272 [ ]

which is clearly linear in YIO and Yy2-

5.4 Optimisation via Polynomial Approximation,

It is now shown that the boundary condition control Parameters
enter linearly into the approximate polynomial solution B(x, y) and
quadratically into the geceral cost function (89). Hence the
unconstrained optimisation of the general cost function eventually
yields a set of linear equations which are solved to give optimum
PATAmeLEX values.

The basic approximate solution of the 2DVB model is given by

least squares Patterson collocation as

-— N — —
8(x, y) = Ty} + uly) = p(o) + xy . );' a F, (x) Pj(y)
»J=C
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N
where I' denotes that the index k within the suzmation sign
i, =0

is chosen by

N I 0y0yeeeyl; i+ =g

n=0,1,,..,N

o is the solution of the linear equations
Ayrag ragtlaala vas]e
R LT 1] Bl LR W

vhere A', Az. ‘3' A‘,‘. As are matrices generated by the collocation

procedure and
T
em= [B,v". 5,7,2. 1, Pis Yo LITL 112]
Consider optimisation of the keneral cost function (89) with
respect to Bir Yyge e Y2 i.e., both the inlet and surface profiles

are unconstrained. If ‘i denotes any one of these parameters then

the optimum with respect to 9] is givea by the solution of

1
3 2 =2
3, [(Ta - T Jo uly) 6°(1, y)dy] -0 ,

Thus if T‘ is chosen as a constant independent of L TRITY Tie Ty2
thea the required solution is that of
! = 28
lﬂ(y) 0(1. }f) ae (‘I S’)d!‘ =0 0 (98)
) %y

The following definitions simplify the notatrion

CF T (4)
I'F () LRGN

38
E.(y) = (1, y) =y+y
! g i,j=0

_ N
38 - = (5)
£y(y) = T‘E“' ¥) =1 +y i,}-o P (1) pj(y{.Gk
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= N
. 08 . s (6) u)}
() By, (1, y) 1’yi.3);-o P (1) Pj(y){ck + 8,6,
G) =1, y) =1+ lf'F(I)F(){G(D+BG(”}
Eﬁ)' 3712 v Y ’-j_j-()i jy k 1%
N
. L P )
By =y i.JZ-O P (1) Pj(y) G,
vhere
(m) 'fl: 1
¢ - A, + AB +AB] [A +AB]
k N e g T, e T T,
Me (H+ 1)K+ 2)/2
and

! 1
A, + AB. + AR ]
1 271 371 ke
denotes the element in the k~th row and the %-th column of
P -1
I:A| + Azsl + AJBJ
and a similar notation holds for [A& + ASBJ .

Then (98) has the general form

4 1 1
jzltj lo w(y) Ej(y) Ei(y) dy = = Jo wiy) Es(y) Ei(y)dy (99)

and optimisation with respect to any combination of the g is
attained by solving the corresponding set of linear equations
provided by (99). The Hessian matrix should also be proved positive

definite to guarantee a minimum of cost function,
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The restriction on the surface temperature given by the constraint
of gsection 5.3 is applied by first performing unconstrained optimiszarion
of the parameters Yyt Tig* V2 if the inlet temperature T{0, 0) is
not specified, or similar optimisation of Yi1r Y92 if T(0, 0) ie
specified. If the resulting optimum parameters violate the inequality

constraint (97) then the equality constraint

2
Tio = Y92%2 = Bn (100)

must certainly be satisfied. Thus (9B) yields the substitution
Yo, m ey -0 (101)
12 F 10 m
*2

and the problem becomes unconstrained optimisation of a quadratic
cost function and hence the optimum parameters gsubject to the
inequality constraint (92) are also found from the sclution of a

set of linear equations.

5.5 Results.

The theory outlined above has been applied to the forehearth shown
in Figs. 3 and 4 with green glass constants as previously specified.
Following section 4, the highest order of Lengendre polynowmial in
the basis functions was chosen to be N = 6, the difference between
the inlet temperatures at the glass surface and the bottom of the
forehearth fixed at T, " 80°C and the required temperature at the spout
vas taken to be 'I‘d = 1100°C.

For the standard throughput of 23 tonne/day the unconstrained
surface and inlet profiles predicted by the analytic formulae were

found to be physically unfeasible, Thus, for a throughput of

¥
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23 tonne/day the inequality constraint (92) which guarantees a
realisable profile, must be imposed. The resulrant optimum surface
and inlet profiles, together with the predicted back-block and
spout temperature distributions, are shown graphically in Fig. 11
for both cost functions. Both sets of profiles compare favourably
with thoss Hamilton obtained by numerical experimentation |,

The optimum distributions at the spout aleo illustrate the
applicabilicy of the Chebyshev weighting which defines cost function
2; the large error at the bottom of the forehearth with the Legendre
weighting producing an undesirable deviation from the required
temperature at this peint.

The most feasible range of inlet surface temperatures is
1200°C - 1300°C and the effect of constraining T(0, 0) to lie within
this range wvas investigated for throughputs ranging from 15 tonne /day
to 33 tonne/day. With the inequalicy constraint (92) imposed on the
optimigation of the surface profile, the variations of cost function
2 with inlet temperature T(0, 0) are shown in Fig. 12. The graphs
clearly demonstrate the importance of wmaintaining T(0, 0) at the
optimum value., This is particularly true of the higher throughputs
for which the large curvature of both cost functions indicates that
A small step awvay from the optimum T(0, 0) will lead to & considerably
poorer outlet profile, The &pproximately constant level of optimum
cost function values in Fig. 12 itlustrates another, less obvious,
fact, i.e. an increase of throughput from 15 tonne /day to 35 tonne /day
will yield the dame quality of glass output provided that the respective
T{0, 0) optims are maintained,

A numerical optimisation of the boundary conditions based on
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the finite difference scheme has also been performed to verify
the results produced by the polynomial approximation and to
illustrate typical computational requirements. This technique
involved the optimisation of the cost functions with respect to
the boundsry condition parameters, such parameters being adjusted
by the Fowell method . Each update of the parameters requires
a re~evaluation of the cost function by & new finite difference
simulation and, as Table 1 shows, computation time increases
tapidly with the number of optimisable parameters.

With reference to Table 1, all off-line computation is performed
in simulation | and for a specified structure such s simulation ia
only required once. Optimisations 4, 5 and 6 are a little misleading
in that they appear to indicate an incresse in computation time for
4 decreasing number of optimisable parameters when applying the
polynomial spproximation; this is simply due to the functioning of
the computer program which requires more input/output for an
increasing number of constraints.

In several situations, e.§. the overall refiner/forehearth
operation, wany more than three parameters may need to be optimiged
and the classical approach of toupling a finite difference with
numerical optimisation would be impracticable while the polynomial
approximation obtained by least squares Patterson collocation remains
entirely feasible.

+ Table 2, showing storage requirements, provides a further
illustration of the applicability of polynomial approximation once
a single least squares Patterson collocation solution has been

performed. .
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Table 1

A comparison of CPU times (secs) for various simulations
of the 2DVB model and optimisstions of boundary temperature

T4

Table 2

Computer storage requirements (K bytes) for least squares
Patterson collocation and finite difference solution of
the 2DVB model with boundary profile optimisation.

Least squares Finite difference
Patterson collocation

Overall simlation

and optimisation 68K 12K

Sioulation and
optimisation for a 8K 10K
specified forehearth

profiles,
Simulation/ Least squares Finite difference
optimisation Patterson collocation
1 299.041 1.033
2 3.415 1.033
3 1.127 1.033
[ 1.528 1.630
5 1.500 21.156
6 1.429 93.076
Simulation/ Description
optimisation
1 Simulation, with output, for specified forehearth
structure, glass constants, Ih. and boundary
temperature parameters. Patterson collocation
procedure has ¥ = 4.
2 Aswuning simulation 1 hag been performed once, this
is a simulation, with output, for a change in the
parameter B'.
3 Assuming simulation | has been performed once, this
is a simulation, with output, for a change in any
of the boundary temperature profile constants
Hor 20 Yi0* 71|n Ty2°
4 Optimisation with surface profile constrained, inlet
temperature profile specified: 4 | parameter optimisation.
5 Optimisation with surface profile constrained, Te specified
4 2 parameter optimisation,
6 Optimisation with aonly 'l‘e specified: a 3 parameter

optimisation.
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5.6 Conclusions.

We have presented a technique to solve & specified type of
FDE by producing a closed form approximation with explicit boundary
condition parameter dependence. The general application of this
collocation technique is based on the use of Patterson quadrature
points and weights and is therefore more efficient than other
collocation schemes which would typically use Gauss-Legendre points
and weights. This additional efficiency is produced by the retentiom
and re-use of previously calculated collocation function values if
collocation at a certain number of points is not considered to be
sufficiently accurate.

With the determination of collocation points and approximation
order complete, the Patterson collocation technique provides a
closed form spproximate solution to a given partial differential
equation. Therefore simulation of the system governed by the PDE
is particularly easy, requiring little computer time or storage and
optimisation of imposed boundary condition parameters may be
performed snalytically. Thus, even for complicated DPS's defined
over non-regular domains, feedforward control parameters may be
predicted with a relatively small computing effort.

A practical spplication of the method to the heat-conditioning
of glass in a forehearth has been illustrated. The 2DVE model of
this process was not amensble to solution by standard MWR techniques.
However, the least squares Patterson collocation approach was
successful, the convergence to the correct solution with increasing
order of approximation being demonstrated by comparison with a

finite difference solution.
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Several optimisation studies have been performed. One such
study confirmed optimal profiles Hamilton 7 obtained by numerical
experimentation vhile another showed that a greatly increased
throughput was feasible without imparing the quality of the glass.

The computation times and storage shown in Tables 1 and 2
{ndicate that the spproximate solution of the 2DVB model obtained
by least squares Patterson collocation can be readily incorporated

into an overall forehearth control scheme as feedforward action.



77

6. THE DISTRIBUTED PARAMETER SYSTEM MAXIMUM PRINCIPLE:

AN _INTRODUCTION,.

Many enginaering systems sre distributed in nature and are

only accurately described by one or more partial differential

equations. Thus the state variables which characterise such systems
are not only functions of time but are also functions of one or more

spatial co-ordinatea. We shall now consider optimal control of such

systems. Recollection of the structure of the optimal control

solution for lumped parameter systems indicates that optimal comtrol

of distributed parameter systems is far from trivisl. Indeed in
most physical situations we must question whether or not the
input /output problem is truly distributed or whether it is in
practice mlti-inwtlmlti-—output. If this were the case the
additional complexity of an internally distributed model may nat
be of any real additional benefit end a lumped (though potentially
large order} model may be more appropriate.
Butkovuki.iu-zg.liutkovskii and Lernerzawere early workers in the
formulation of optimal control solutions for distribucted paraneter
Systems. Several other problems have also been considered by
various authors though there are few Teports of practical

implementation.

6.1 Optimal control problem formulation,

We shall consider s spatial domain § with boundary an and
any point within the domain being represented by an m-dimensionat

spatial co~ordinate vector
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_z:r - [zl,zz....,z.] .

At any point in time t the state of the systea is denoted as a

vector function

x(z, t) = xl(z|....,zm, t)

lz(z',...,zn. t)

xn(z' seeaZ o, t)

while a distributed control vector is denoted

E(Ea t) = 01(11,...,2., t)
uz(zl, sl )

ul_(z1 vereaZy, t)

where z € 11 in general, though the domain of the control vector
is often the boundary 31 or some subregion thereof. We shall only

consider distributed parameter systems of the form:

ax ix ax
F-_{ z, t, x(z,c), ?Z-I'“"a_t-"”'
K L}
¥x
M k k LN ] E(,E_‘t)
3z ' dz 2..... 0z ™
1 2 [

@
with K = I ki’ being subject to appropriata initial and boundary
i=1

conditions. Prom this point we use the notation
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X x(z,t) IR " nlz,t)
a
K - k k k
2 3:'3: 2....3z“
1 2 m

[+ ]
for all Kk, k.,e..,k_ Buch that ] k, = K. We therefore have
L L L™ o L

system equations:
ax(z,t) 2" x(z,t)
—— £ [_z‘. t, x(z,t), —_“—K— . _11(5,:)]

subject to initial conditions x(z,t ) = x (2z) and conditions on

aK-l x aK-Z x ”x
- ' - praey A" 2 X
alk 1 ail( 2 iz

at t_and 39.
[+]

We wish to find an admissible control vector u(z,t) which
minimises the following cost function for fixed initial time LA

and terminal time tf:

J = Jn E[!"_(_E' tf)' tf]dn
te 3‘ x{z,t}

+ J J £ [_z_, t, x{z,¢t), — R E(E-t)] dan 4t .
t ‘a ° 13

Without proof (which is via variational calculus not dissimilar
to the lumped parameter Hamiltonian development) we quote the
solution as:

Define a Hamjleonian
# -f + Pl £ .

Then the Hamiltonian (partial differential) equations are:

.

Ix

Z Wk

"5 L

R x|
at 31 azl( K

"
and the optimal control u (z,t) obeys

lo"(z,)) ¢ H#ule,0))

for 211 admissible u(z,t). i.e. _\;(_z_.t) mimimises the Hamiltonian.

When the set of admiesible controls is unbounded the latter statement

yields the requirement that

3

Boundary conditions for Hamilton's partial differential

equations are supplied by the physical problem boundary conditions

and
3 - plz,t)
=lt=t, tet,
and
21 A .
W |k
azx
- _z_ean,:-:f
Exaﬂle.

Consider a one dimensional heat diffusion system:

. 2n, g
= G- [L] Xy » HaD)
pc 3:2 pc
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LW - .
vhere the medium has temperature x(z,t), conductivity k, density
A
P, specific heat ¢ and u(},;) is the heat supplied pPer unit volume.

A normalised equivalent of this ptoblea is then

2
ax _ 3'x
3T = —5 + ulz,t)
at azz

which is subject to initial condition

x(z,0) = xo(z)

and certain boundary condicions, here for simplicity,

2 (0,6) 20 and L (z,,0) =0 .

Suppose that we wish to find a control signal u(z,t) vhich
minimises:

1 tf *e 2 e ,
J = 7 J J x“(z,t) dz + r J wi{x,t) dz| de
o o o

vhere te is fixed and r is o relative weighting parameter. The

Haziltonian for this problem is:
1.2 1 2 32
H "X s FTru +p ——; +u] .
9z

Therefore Hamilton's equations are:

x 321 +u (state)
at ;:7
and
%% L (-1)2 -—32- —--3-2&— (co-state)
az 3{2_5}
3:2

(thexre being no other derivatives in z)
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i.e.

2
p,._,.3p
ET3 2

az

Since the control ia unbounded we have optima] control given by

Hence the overall optimal control solution is given by:

ax dx
—a — 4y
e "2
subject to
x(2,0) =z (; 3% (0,8) = 0, E .t =0
» a?
ac - C X" ;:%

subject to

P(S.tf) =0 %5 (0,t) = g; gs ('e't) =0

where u(z,t) = = % plz,t) .

Thus in contrast to the lumped parameter situstion where
Hamilton's equations yield coupled ordinary differential equations
in the distributed situation we have coupled partisl differential
tquations. The open-loop cptimal control is now derived by

linking the state, co~state and optimal control equations. Thus

plz,t) = - ru(z,t)

and hence from the co-gtate equation

2
du 3 u
FaTTxrree

z

N3
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Thus
2 k)
3x  _du 37
rT—x +r
13 3!:2 azzat
and
azz 3:23t az“
and the state equation gives
It 3z
or
& 2
T 2—% -r 2—% +u=0
iz 3t

vhich is a linear FDE and may be tackled by separation of

variables. The requisite initial and boundary conditions are:

p(z.tf) =0 -

2
o 0,) «0 -

%E ('e‘t) =0 =

4

x(z,0) = xo(z)

ax
3z (U.t) =0

x
a_z (‘ent) - 0

4

There is little to be

separable solution at this

optimal control u{z,t) is derived from a PDE which is subject to

u(z,:E) -0

3
-a% {0,t) = 0
du

e (ze.t) =0

3y a2

T (2,0) +r —-% (2,0) = x_(z}
FH

azu

33u
3zt (0rt) + =5 (0,8} = 0

3z

3 u "y
2ot (ze,t) + ;;3 (ze't) =0 ,

gained in detailing the variables

stage. We do however note that the
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initial conditions at z = 0 and z = z, and terminal conditions
at z =0 and z = z,- We therefore have a spatially distributed

two-point boundary value problem.

6.2 Spatial discretization.

An approxipate finite dimensional state space problea can
be produced by discretizing the spatial variation of the distributed
state(s). There are several schemes to achieve this though in this
exposition we shall simply choose a finite difference approach.
We shall also consider a problem in which there is only one
distributed state, Therefore consider optimal control of the

latter one dimensional heat conduction system:

2
x _ ax .
E A

3z

subject to

x(z,0) = xo(!)

ax

32- (U,IZ) =0

ax
37 (ze,t) =0 .
Consider the spatial domain equally divided into n divisfons:

Az

2 23 D T T T S, z

Then

bz = ze/(nvi)

and we dencte the temperature at any point £, by

x(zi,t) - xi(t).
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A central difference approximation to the second derivative

term gives
a2y X80 = 2x,(t) + x4 ()
7 () 2
FT) (Az)

and hence at each point z (i »1,2,...,n) ve have

x; .00 - 2x, () + % ()

(nz)z

ii(t) - + ui(t) .

The boundary conditions at z = 0 and z = z, give

™ x (t) -x (l:)

Ty (0,t) =i-—A-=—-—- =0 - l:o(t) - x'(t)
x (r.) - x (&)
-a—‘(: ,t)u———A‘—-——-O-o x 1(!:)-:“(:)

and hence we have that the temperatures within the domain are

governed by a set of n equations

7 [xz(l:) - x‘(t)] + u1(t)

x,(t) - 2, (t) + x (t)] + u,(t)
(2)? [3 2 1 2

Me aveanvs

(t

3 [xn(f.) - qu_'(t) + xn_z(t)] + un-i(t)

n-1

(az)

ke 3 e KON ) IS

We therefore have a classical constant coefficient state-space

systen description
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(Az)z

msassstanae

and B = In the (nxn) identity matrix, The cost function in the

distributed problem was posed as

f [ ze
J --;-J J xQ“.:) dz + 1 J uz(z,t) dz| dt
o o o

which, replacing the spatial integrals by a quadrature rule,

is adapted to

t(f]8 2 1 2
J -EJ ): q x;(t) + ¢ I roou(e)| de
) im] i=]

The simple traperzoid rule gives

1 .
q!-qn-ri.rn'fﬂ' and qi-ri-A: (i=2,...,0-1).

Hence we can express J in standard (LQP) form:

t
J'"I [ (t) Q x(t) +u (t) Ru(t)] de

with
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- - 1
Q=R = Az % 0 0 ..... 0O 0 0 T2 L] Jnx(z’tf) $(z,2") x(z',tf) dz de’
0 1 0 .. ¢ 0 0 0 ’ tf
o o ) 0 0 0 + %J J j x(z,t) Qlz,2') x(z',t) d=z dz' + RJ uZ(z,:) dz| dt
PR o a'n Q
. vhere S{z,z") and Q(z,z') #re positive semi-definite for z and
. z' € 0 and R is a positive constant. To obtain a symmetric
1} 0 0 ... 1 0 [+} ’ : . X
Riccati type equation we form an augmented cost function:
0 0 0 ..... 0 1 0
1
6 0 0 ..... °o o 3 itz ln L, x(2,t0) S(z,2") x(z',t,) de d2'
- - t
1 [ f 2
+ il j J x(z,t) Q{z,z"') x(2',t) dz dz' + RJ u (z,t) dz| 4t
o [T It ]

6.3 The optimal distributed linear regulator problem.

{z,t) % (2.t} + ule,t) - 2% (2,0)] ¢
np ' 7 (z. , 5z (o z

—

+
We shall use the one dimensional diffusion equation to az
illustrate the derivation of distributed linear feedback control 32 3
+ I p(z',0) |55 (2.t + ulz',t) - 3% (2',6)] dz’
laws. Thus we again focus on dz t
t 3 loplel =0 ' which gives rise to an associated Hamiltonian

and # - 1J J x{z,t) Q(z,2%) x(z',t} dz dz'
3 32 2 20
s (2,t) = ;-z-;» (z,t) + ulz,t)
a1 J J R ulz,t) ulz',t) dz de'
where 2 a’n
[s:(:.:) - g—; (z,c)] -0 . 2
ze0, +3 L plz,t) -:-;-E {z,t) + ulz,t)]| ds
zez
[ 3
2
x{z,0) = xo(!} . * %J p(z',t)[a—;- (z',t) + u(:',t)] dz' .
1} az

Here we seek a control u(z,t) to minimise the quadratic index By applying the maximum principle and then assuming that the

of performance: co-states are formed by a feedback of the states, i.e.
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plz,t) -J P(z,z',t) x{z',t) dz°
]

plz',t) -J P(z,z',t) x(z,t) dz
Q
we evolve a control law:

uz,c) = - g I P(2,2%,t) x(z',t) de'
a

from 3#3u = 0. Much algebra then shows that the function P(z,x',t)
sactisfies the (Riccati) partial differential equation:

2 2

A I -1 J
t—m+—— -1 P(z",x',t) P(z,2",t) dz"
% az 3:'2 4]

+ Qlz,z') =0 .

The associated boundary conditions are

B P(z,z',t) - -:{ (z,2',t) L]
z2=0,
=z
e
B pzt,z,e) - 28 oy -0
z z'=,
ztmg
e

P(z,:'.tf) = 8(z,z') .

Ad in the lumped parameter situation this problem has to be
solved off-line in backward time before replay in real-time.
Hovever even the off-line solution is non-trivial, with an integral

term mignificantly complicating the Riccati partial differential

equation.

t.
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