i,
INTERNATIONAL AtToMIC ENERGY ANukENQyY '”
A £ E————1%

UNITED NATIONS EDUCA TIONA Ly HUIENTIFIC AND CULTUR AR ORUAN IZAT10ON

INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS

34100 TRIESTE (ITALY) - 0.5, 58 - MIRAMARK - ATHA A COHTIERA 11 - TELKIPHONES: 22428 1/0%4/0/0
CANBLE: CENTRATOM - TELEX 4804962 - I

SMR.201/ ¢

SECOND WORKSHOP ON MATHEMATICS IN INDUSTRY

(2 ~ 27 February 1987}

INTRODUCTION INTO THE FUNDAMENTAL CONCEPTS OF LINEAR SYSTEM

AND CONTROL THEORY

PROFESSOR D.H. NEUNZERT
University of Kaiserslautern
WEST GERMANY

These are preliminary kecture notes, intended only for distribution ro participants.

Micsing or extra copies are available from rhe Workshop secretary.



A rather big part of the "sSecond Workshop on Mathematics in
Industry", organized by ICTP in Trieste during February 1987
is dedicated to system and control theory; this expresses the
conviction of the directors that this part of mathematijcs is
especially appropriate also for applications in industry and
economy of developping countries., To find a mathematical model
for a system (the economy of a country, the system consisting
of climate and agriculture, etc.), for which the internal de-
tails are not very well known, to control such a system is a
typical problem of identification and control of dynamical
systems. Many mathematical disciplines are included in this
subject: The "normal theory" of ODE's, stochastic processes,
rather special topics of linear algebra (especially for the
Kind of system theory which was developped by Kalman), con-
cepts of algebraic geometry (especially for nonlinear systems
and for identification). The applications, originally concen-
trated on electrical systems and economics, have now reached
almost all fields which can be mathematized; there is even a
philosophical view claiming that science is nothing else but
identifying mathematical models which approximate measurements
and can be used for prediction. We certainly do not want to go
5o far - but we believe that system and control theory is a
topic of rather high mathematical level, which very strikingly
can prove the usefulness of mathematics in almost all socie-
ties.

In contrast to the first workshop we have organized the system
and control theory part of the workshop in 6 blocks, which
are, besides the introductory ones, taught by specialists: For
modern topics in linear control (Knobloch), for economic app-
lications (Feichtiger), for nonlinear control (Isidori) and
for identification {Hazewinkel). The introducing blocks are

We all hope to be ahle to transfer our knowledge and experi-
ence to mathematicians who were mainly interested in the
"pure" side of our science, up till now. I personally believe
(and this is the main reason for me to codirect this workshop)
that the knowledge how to use mathematics for practical prob-
lems in a proper and responsible way gives the only chance for
mathematicians to help their societies in emancipating from
any suppression from outside; staying in the ivory tower does
not prevent scientists from becoming "guilty".

Literature:

There are many books on Control Theory - linear and nonltinear,
mathematically more or less rigorous, etc. In the introductory
block we concentrate on fundamental concepts for linear sys-
tems and use mainly the book of

H. W. [Knobloch, H. Kwakernaak: Lineare Kontrolltheorie,
Springer 1985 (KK)

Especially for the first lecture we refer also to a series of
articles

"From Time Series to Linear Systems", Part I,II and III, by
Jan Willems (JW), which appeared as a preprint of the Uni-
versity of Groningen, Dep. of Mathematics, pP.0.B. 800., 9700
AV Groningen, The HNetherlands (March 1986 - now at least in
parts also in Automata)

Literature for subsequent blocks, for example for nonlinear
aspects will be given in the corresponding lectures,



Chapter 1 : Dynamical Input/Output and Control Systems
(JW part I, (KK),p2-26)

Definition 1.1 A dynamical system iz a triple J := {T,W,B}.
where T < N is the time set, W the signal
space and B ¢ Wl gives the behaviour of the
system (JW, p.3).

Typically T = [0,T] or T = N or for time discrete cases T = 2+

or T = 2. W describes the nature of the signal and typically

we have W = N, B consists of those trajectories wi:T =W,
which are possible in the system.

Remark : There is no input/output concept in this definition;
W may however consist of input- and ocutput space and
B may consist of the pairs of input- and output se-
quences. In many practical applications there is no
natural distinction between input and output, since
there is no natural decision what causes and what
effects are. (Pollution problems, stockmarket}

Example (Leontlef economy): N products, which have produc-
tion rates xj,...,xyx: in order to produce one unit of the j-th
product one needs at least ajj units of the i-th product

(ajj : "“technolegy coefficients®)

n
==> (LE) xj(t} > } aijxj(t+1), tez;, or?
i=1

- (2, M, ‘5 I R 1 ! (LE) is satisfied }) =3 is a
dynamical system

Special cases: 1.) Autoregressive Models (AR), where T = 2
or Iy, W= M and B defined by
Ry w(t+l) + Rj-jw{t+l-1) +...+ Rowg(t) = 0
(Rg,...,R] are gxqg~- matrices) or shorter
R(z)W = 0 with R(z) = Ryrl+...+Ry 29 and
{zw) (t) = w(t+l) is the backward shift.
The time continous analogue is

R(%E Jw =20

i.e. a higher order oDE.

2.) Input/Output Systems (ARMA) ,
T=7Z,Wahd=nmypk=ygxy
P(z)y = Q(z)u (i/0)
If det (P) *+ 0, one may interprete u as
cause and y as effect

3.) Linear Control System: W = W@ x Rk,
w = (u,y) and zx = Ax + Bu, Y = Cx + Du
where x € M7, A(nxn), B(nim), C(kxn) and
D(kxm) .
The continous analogue is the time inde-
pendent linear system
(TLS) % = AX + Bu, y = Cx + Du
(but realize, that discretization of (TLS)
gives a control system with different A,B,
c,m

4.) The most general concept in this direction
is the concept of esystems with auxiliary
variables, where the behaviour B is defi-
ned as
B = { w:Ts M| 3 F: T A yith

R'(z)w = R*''(z) ]

t is called "auxiliary variable".

This model is useful, if a clear distinc-
tion between input and output is not pos-
sible,

(Example: System = electrical circuit,

W consists of the voltage / current pairs
at the external parts, | of the voltage /
current pairs in the internal branches and
the relation describes Kirchhoff's laws
and constitutive etuations of the electri-
cal elements in these branches),

Remark : All models can be reformulated as (AR) - models.
Moreover, every (AR) can be described as (ARMA) ,
where w can be separated into input u and output y



in many different ways (which means, that causality
is also a question of representation) - but one can
ghow, that the dimensions of the input- and the out-
Put space are uniquely defined,

State space models can be defined also for general dynamical
systems

Definjtion 1,2 : state space system is a guadruple

1= {T,H,X,é where T ¢ R is the time set,
is the (external) signal space, X the sta-
te space and B ¢ (WxX)T gives the (internal)
behaviour; B has to satisfy the axiom of
state:

IF (1), x1(0)) and (wa(*), x3(:)) are in
B and for some t the equation xj(t) = x,(t)
holds, then the two behaviours concentrated
at é are also forming a behaviour

i.e. (w(+), ¥(*)) defined by

L -

(W1(t),x3(t)) for t<t
(wit), x(t})) = '

(wa(t),x2(t)) for tot
is also in B (any path leading to a parti-
cular state will be compatible with any
other path emanuating from the same state =
the past and the future are conditionally
independent given the present state).

Clearly: i given, I defineg by [T,H,B] with
B := [w:r + %W |l 3ax () : T3 x such that
(W(-),x(-)) e 8]
defines an "inducedn dynamical system, where B is
called the external behaviour,

If I is given and we find a i which induces }, one calls i
state space representation or realization of I. There arises
the natural gquestion of minimal realizations: for lipear sys-
tems this means: Minimal dimension of ¥. Willems has shown,
that for linear systems with T = Z or R all minimal realjza-
tions are equivalent.

All (AR} can be transformed into control systems: There exists
a constant nonsingular matrix T and (A,B,C,D), such that
R(z)T"lw = 0 is equivalent to the control system with A,B,C,D
and w = {(u,y)., T may be chosen such that D = g, Control sys-
tems with D = 0 are in this way as general as (AR)- models.

We have not yet defined linearity and similar notions in the
general context of dynamical systems - we have just considered
special cases, which will turn out not to be so spaecial as
they look like.

I = {T.H,B} is called linear, if W is a vectorspace and B is
a linear subspace of WT; § is called time invariant if T is
closed with respect to summation and if w(*) € 8 implies
(z'w)(-) eB forall rerT {(zTw} (t) := w(t+T}, such that

zl = z)

Willems introduces moreover the concept of completeness which
is important in his general frame work.

Definition 1.3 : 3 = {T,H,B} is called complete if the follo-
wing holds:
w{*) belongs to B if and only if each re-
striction of w to a finite interval
[to,t3] belongs to the restriction of B
on this interval
i.e.

W(') € B <um>
YOV s 1tg,ey) € B/ [to,ty]

for all -e<tgeti<e

Completeness means, that the behaviour at t = *e does not in-
fluence the gquestion whether a trajactory belongs to B or not.
(Thus, of B would be defined to be L2 if T = N or 12 of T = z,
then § would not be complete !)

More restrictive than completeness is the concept of finite
memory, if we consider the continous case T = B or N,:

I has finite memory, if there exists a 4 > 0 such that



W({*) € B <mm>s w(')/[r,r+A] e B/[r,T+A] for all r.

I has local memory, if the equivalence given above holds for
all A. Systems described by ODE'S are typical for dynamical
systems with local memory.

One can show, that many linear, time invariant systems with
local memory are really of the continous (AR)- form R( )w—
and consequently also control systems. As far as I can see

the question concerning the relation between general state
space systems and nonlinear first order ODE system is not com-
pletely settled. Before coming to this peint I just state one
of the main theorems of Willems for the time discrete case:

If T =7 or 2, and § = {T,hQ,B}, then I is (AR)
if and only if § is linear, time invariant and complete.

This tells us very precisely how general all the special cases
we have considered so long are. Since any (AR) can be trans-
formed in a control system, these are also describing all 1i-
near time invariant complete systems. Since discrete linear
systems are widely used in practice - and since the former li-
terature seems to indicate a kind of religious war between
different groups using different representations - the theorem
of Willems and the clearing of the relations between the mo-
dels are certainly worthwhile also for somebody interested
mainly in applications.

But now we have to come to controlsystems given by ODE'S of
first order. We start with a state space model in the sense
of Def. 1.2 and impose some assumption on B.

Definition 1.4 : A state space model with T = N (or an inter-
val of §) and W = UxY is called a general
control system if it has the following pro-
perties

1.) Toany t €T, x € X and u € U there exists
only one y € ¥ such that
(x,u,y) e B/

ity

(We dencte the so defined Y by ¥ = r(t,x,u)
and call the mapping r : TxXxU -+ ¥ the
outputfunction).

[
2.) Toany t €T, X € X and u(-):T»U there exists

at most one x(-}/..! such that x(é) =
trt

(x(-), u(-), (-, x(+}, u(-))) e 8

% and
[
t
(we denote the value x(t) of this uniquely
defined x(-) as

X(t) = s(t,t,%,u("))
and call s the state transition function;
by definition, s(t,f,%,u(-)) = % ).
Moreover s is supposed to have the following
properties
(i) 1f u(')/{to.tll = v{+) /[to.t1)
for all tg,,t) € T, te<t; then
5(ty,te,x,u(")) = s(ty,tq,x,v(*)) for all xex
(this property is called causality - Willems

defines this notion only for discrete linear
systems, eee [JW,page 19]).

{ii) For any tg<tyc<ty, all in I, any % & &
and u(+}

8(ta,t1,8(t1,to,X,u("))) = s(ta,te, X, u())
whenever s(tj,tq,%,u(-}) is defined for i=1,2

{this property is called semigroup property -
and is much weaker than time invariance).

We go a little bit further, assuming that W = Rd = B0 x FK =

UxY, X= R, We call U the set of possible inputfunctions,
i.e.

U= {u(-) : T+ U: 3 x(-) such that (x(-), u{-),
£, x(), ue))) e |

Then 8 is defined on T x T x X x U and we will assume further-
on, that U consists of all piecewise continous functions on T.

Definition 1.5 : A control system is called d1fferent1a1 if

for all (t X, u(- )) erxixx U the mapplng



t -+ s(t,t,x,u(*)}
is differentiable at t = t,
(then it follows by semigroup property, that
is it differentiable at any point t).

— ds s . _ L)
Defining ac (t,t,x,u(-))/t=t =: f{t,x,u(')) we get

x(t) = s(t,é,i,u(-)) as solution of the initial value problem
X o= £(t,x,u(")), x(i) = ¥.

We assume finally that £(t,x,u{-)) depends only on u(t) and
that the initial value problem has a unique solution.

Our differential control system is then given by

.
¥ = f£(t,x,u(t)), x(t) = %
(5)
Y(t) = r(t,x(t),u(t)), where &% e k0
u{-) piecewise continous with values in M, y(t) e KK ang
f has a property which quarantees uniqueness of the solution.

Since we are dealing furtheron mainly with differential con-
trol systems, we shall skip the word "differential®. The only
alternative will be time discrete linear systems,

Leaving the paper of Willems does not mean that it is not of
interest for our subject. In fact the opposite is true:

It is dealing with what is normally called "identification",
what he calls modelling: Given observations, i.e. w(-), find
the dynamical system which (exactly or approximately) explains
the observations. But these parts of Willems paper are much
more than introductory lectures can cover - and will, at

least in some respects, be taken up by Hazewinkel in the third
block.

We go ahead with (KK).

We have already generally defined what time invariant, what
linear means (completeness is automatically given for diffe-
rential systems!) ;

Time invariance means : f and r are independent of t, i.e.

(5) reads as
(TS) % = f(x,u)}, y = r(x,u)
Linearity means: £ ana r are linear in x and u, i.e,

£(t,x,u) = F(t) [ . ] ., r(t,x,u) = G(t) [ z ]

where F is a (n,n+m}-matrix, G a (k,n+m} .

Splitting F into appropride parts, we end up with

(LS) % = A(t)x + B{t)u(t)
Y = C(t)x + D(t)u

or, in the time invariant case, with

(TLS) % = Ax + Bu
Y =Cx + Du

which we had already (and where D could be set to zero)

Now all our basic knowledge about ODE'S can be applied - for
example for (LS) (all stuff here can be found in any book
about ODE'S - we just remind you) :

We have to construct the transition matrix #{(t, 1), which is a

solution of
':: {(t,7) = A(r)#(t, 1), #(t,t) = E;, (=n-dim. unit matrix)
Then we get the solution of (LS} by

t .
x(t) = o(t,i)i + Jt (L, TIB(T)u(T)dT =: s(t,t,%,u(-))

If we have (TLS)}, then A(t) = &,
$(t, 1) = eA(t-T) Lpq

t
s(t,t,%,u(-)) = erlt-t) 3 , Ie eAlt-T)py(r)ar.

(LS) is as usually called stable, if the transition matrix
»
#(t.t) is bounded for t e [é,-). It is called asymtotically

stable, if lim ||+(t,£)|| = 0. There are many equivalent de-
tra

finitions: i(t,é) may be substituted by any fundamental matrix

t(t) and it is enough that the boundedness holds "at infinity®

i.e. in some intervall [ty.=}.

Asymtotic stability for example implies iim lfyl(t)~y2(t)||=0
e 1]

if IIC(t)II is uniformly bounded, the input is the same but
the initial conditions are different: The output forgets
slowly, how the system is started.

For (TLS) everything is simpler:;



(TLS) asymptotically stable <==> all eigenvalues of A have
negative real part

(TLS) stable <==> all eigenvalues of A have
non-positive real part and
the Jordan blocks of all
eigenvalues having vani-
shing real part are one-
dimensional (i.e. for
these eigenvalues alge-
braic and geometric multi-
pPlicity are the same)

We need a little bit more: If -for (LS)- |la(t,t) |l ae~Bit-)
for all é,t)é and some o,B only depending on A and if
IB(t)u(t) l{<k<e for all t then % = A(t)x + B(t}u(t) has
exactly one bounded solution xg(‘}, against which any other
solution converges exponentially.

t
(This selution is x5(t) = j ${t,T)B(T)u(r)dr )

We end this first chapter up with some elementary notions of
classical system theory - all for (TLS) :

We consider here only % = Ax + Bu, vy = Cx

We choose as input a periodic function: uit) = eiUtuo

(uy constant).

A bounded solution of the system then is given by
x(t) = (ivEp-a)~1Beitty, (check!).

Assume, that (TLS) is asymptotically stable, i.e. all eigen-
values of A have negative real part; then

lif(t,é)l| = ||eﬂ(t‘t}|| < ue'ﬁ(t't) and the bounded soluticn
is uniquely defined

t
x(t) = ( I eh(t=1) pelutgr j u,

Therefore we get, using this bounding scolution, which is
"transient", since all others approach it

3 t T
Y(t) = C(ivEy - A)~1 peltt = ¢ I ceM(t-T)peioTgryy,

-10 -
Using the abbreviation
H(s):= C{s Ep=-A)~lp (transfermatrix)
cehts  for 3o
and K(t):= (impulse response)
0 for t<o
then y{t) = H{iu) elvt Ug = I K(t—r)eiUTuodr.

Transfer matrix or impulse response give the transient answer
to the input signal. In a certain sense, H(iu) is the Fourier
transform of X (which exists, since all eigenvalues of A have
negative real part), such that the convolution with ¥ is
transformed into multiplication with H{iv).

The elements of H are rational functions of g8, the poles of
which are the eigenvalues of A. 8 - H(s) represents therefore
a meromorphic operatorvalued function, a subject, which is
very often studied in functional analysis nowadays (see for
example the books/papers of Gochberq).
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Chapter 2 : Controllability

Linear Systems

Problem: Which initial values (tg,i) can be steered into
X = 0 at time t;, if the control system is given (LS) % = A(t)x + B(t)u(t)
by

Let ¢ (t, 1) be the transition matrix for k= A(t)x.
{S) X = f(t,x,u} ?

tl

[] »

X € L{t,, t <mm> 0 = ${ty,to)% + I *(t1,t)B(t)u(t)dat
Search for (to,t1) (t1,tq) t {t1,t)B(t)u(t)

Litg,ty):= [ xem | 3 jeu: T [ulx = o } ty
(o t1) t1,tolY <> -% = I #(to, t)B(tiu(t)dt
to
% is called “controllable" to 0, if % e & L(to,t1) = ¢, . has a solution u.
t1>t, o
t1
If Ct°= Bt & t,, the system is called (completely) controll-~ Witgty): = I *(to, t)B(t)B(t)Te(ty, t) Tat pos, semidef.
able. to {Controllability granian)
Remarks concerning the nonlinear, time invariant case The&rem 2.1 (1) L(tg,ty) = Image of W(to,tq)
The system is % = f{x,u) and we assume £(0,0) =0 (1i) kernel of W(tg,t1) =
Then one may always choose t, = 0 and we write ¢, = ¢, = ¢,
Y ¥ i to O { xef® | xTe(t,,t)B(t) =0 « ¢t e [to,t] }

We have 0 € C.
Moreover: If X € C i.e.
0 = Ttl[ﬁ];‘ then each x* = Tt*[a]i € C (Oct*<ty) Proof Write E(t):= #(to,t)B(t) (nxm)., We have to show:

- - given y, there exists a uey s.t.
(Use u(t) = u(t+t*) as sucessful control)

t)
= G{t)u(t)dt
Consequence; C is (arcwise) connected Y Ito (Fhuee)
»,

t
C 3 <==>y € Image (W(tey,t;)) = Image f G{t)c(t)Tat
\\\\ to
N ‘ t;
~— xTH(ty, ty)x = f Hett)Tel[2at = 0 o>
to

(t)Tx = o v t e [to,t1] <= W(ty,ty}x = 0 (ii)

) t
Moreover: C open <mm> 0 @ interior of c. Now, let L= { yehn | Juev : y = I 1 G(tju(tiat }
to
Then: Image W(tg,t1) ¢ L : Choose u(t) = G(t)Tz =m>
£
y = I G(t) 6T(t)zdat = w(ty,ty)z e L |
t

(o]
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The statement is, that Image W(t,,t;) = L. If not, there must
exist an element x €@ kernel W(tg,ty) » L, i.e. a xefl with

But then

t; .
0 and x = I G{t)u(t)dt.
to

c(t)Tx

t
1xl12 = xTex = J 1T G(t)a(t)at
to

t
= I Y ey T aceyae = o
to

—> X = 0 == Tmage W = L

In the following theorem the soclution of the homogenous, ad-
joint equation % = - A(t)Tx (h.a.eq.) with the transition

matrix

Theorem 2.2

Proof:

1.

t(t,7) = #({1,t)T plays an important role

(LS) is complete controllable <=

t+2T #(71,t)B(t) doesn’'t vanish identically on

any intervall [tg,,«) for all z # o.

(i.e. y(t)TB(t) has this property for any nontri-
vial solution y of the h.a.eq.)

==> is simple: Assume that there exists a solu-
tion y and a tg, such that y(t)TB{t) = 0 for all
t » tg. Let x(+) be an arbitrary solution of (5)
for arbitrary uel. Then

S (X()Ty()) = 0 for t > to, i.e.

<x(t),y(t)> = <X, ¥> * 0 for all t, if<k,¥> + 0
=> x(t) # 0 for all t > % cannot be steered
into 0 w==> (LS) is not controllable.

<== is more troublesome. One shows (KK,p.33)

To any t, there exists a ti, such that for any
nontrivial solution y of the h.a.eq. the function
t + y(£)TB(t), telty,t;] is not the zerofunction.

- 14 -

2.) In [tg,t;] the positive semidefinite

matrix

W{to,t1} is even positive, i.e. nonsingular

(follows easily from theorem 1,(ii))

3.) Now, each el is in L(ty,t1): Use the control

u(t) = B(t)T #(ty,t)Tc, such that

t
- I 1 #(to, t)B(E)B(E)T #(tg,t)T
t

(=]
= W(tg,t1) C is fulfilled, if cC:
W(tg,ty) -1k,

Corollary: (LS) is controllable <==> For every to

1

there exists

a t;, such that W(t,,ti) is not singular.

Time invariant linear systems
% = Ax + Bu(t) (TLS)

Theorem 2.3 For (TLS), the space L{tg.t;) is independent of
(to:t1) and is given as the span of the columns

of the matrix K = (B,AB,...,AN"1p)
i.e. L(tg,ty) = Image K

Proof: (theorem 2

L(ty,ty) = Image W(ty,tg)
=> L = kernel W(tg,t;)
We have therefore to show
Wity t1)x = 0 <==> x & (Image K}™, i
Now W(tgy,t;) = 0 <ww> (theorem 2.1)
xT#(to,t)B = 0 ¥ t @ [tg,t,)

.1)

.e. xTK = 0

Since #(tg,t) = ePlto-t), this is equivalent to

xTeATB = 0 for to=ty < T <« 0 <>

xTAYB = 0, v = 0,1,2,.., <= {Cayley-Hamilton}

XxTAYB = 0, v = 0,1,2,..,,n-1 <>
xTK = o

Corollary : (TLS) is (completely) controllable e

rank K = n «<==> For any eigenvector
holds pTB *+ ¢

Proof (for the 2nd equivalence): “emxn;

p of AT

Assume that there exists an eigenvector p with

PTB =0, i.e. ATp = ap and pTB = 0

—
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pTA = opT and pTB = 0 ==> pTAB = 0 and
successively pTAYvB =0 v = 0,1,2,...

=> PTK = 0 ww> rank K < n ==> 7TLS is
7 not controllable.
M<==": We show : If rank K < n so that xTK = 0
has nontrivial solutions, then there exists an
eigenvector p of AT with pTB = 0.
xTK = 0 ==> xTavR =0, y = 0,... =m> xTak = o
i.e. with x also ATx is a solution. The subspace
{ xehn | xTg = ¢ } is not empty and invariant
under AT; it contains therefore an eigenvector
p of aT,
Since pTK = 0, pTB = 0 holds.

1.) We have considered only unrestricted con-
trols, i.e. we assume only piecewise continuity
for u. If we accept only restricted controls and
assume that u has to be in

Up:= { u(+) ; tuj(t}1 <« 1 for 4 = 1,...,m and
all t }

then controllability with respect to Uy is a
stronger property.

The following theorem can be proved (see for
example MS,p.34)

(TLS) is controllable with respect to Up <mm»
rank K = n and Re » < 0 for each eigenvalue

of A.

The corollary may be interpreted as follows:
(TLS) is not controllabkle, if there exists an ei-
genvector p of AT with pTB = 0. If we take

V= phia= { xemn | pTy = g . then V is invariant
under A (pTax = xTaTp = oxTp = 0) and moreover
range B < Vv (pTBy = o ¥ yehn

One can easily verify, that (TLS) is not con-
trollable, if there exists an A-invariant sub-
space of dimension less than n with range B ¢ V:
If one adapts a basis of M to y and V¥, A gets a
matrix representation
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A= l A, A, ] b dinm v
]

and B gets a representation

_ B, b dim v
B‘[O]

(TLS) reduces to

k1 = Axy + Apaxy + Byu
k2 = Apaxp
vhere x = [ X1 b dim v
x2
Since the equation for X2 is not depending on u
and x) we get a solution

t
x3(t) = eAlltil + j ehra(t-m) AyaeP2274; X2
o

t
+ I ehll(t'r)alu(r)dt and
o

xX2(t) = eﬁzztiz.

The control doesn't influence x3(t) at all;
therefore L(0,t) can at most consist of ele-

]
%
ments [ i; ] with %3 = o0,

Turned around: peints, that can be reached star~
ting at % can be written as
x(t) = ng(t) + v

where Xg(t) is the point reached with zero con-

trol (u = 0) i.e. x4(t) = Tt,ol0l % and vev.

n-1
It is clear, that v = I Image (AVYB) has all
v=0

properties; if rank K = n, then dimension v = n
and we have controllability, since V is the
smallest subspace which has these properties,
It dim V < n, one can show that really any
point of the form Tt,ol0l% + v with vev can

be reached from %. The affin linear manifold



3.)

Theorem 2.4

Proof:
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Xo(t) + ¥

is the reachable set - a concept which will be
generalized to the nonlinear case in the lectures
of Isodori.

There is a different characterization of con-
trollability, using a linear feedback, i.e. in

assuming
u = - Fx, F (mxn}

(TLS) ==> & = (A - BF)X
How can the dynamics of this system be in-
fluenced by the choice of F?

(TLS} controllable <==> To any real normalized
pelynomial of degree n there exists a (mxn)
matrix F such that this polynomial is the charac-
teristic polynomial of A-BF.

"<e=" Assume, (TLS) is not controllable, then
there exists an eigenvector p of AT with pTe = 0
=—> (a-8BF)Tp = aTp - FT(pTB)T = aTp = op

=> o is eigenvector of A-BF for all F ==>

the characteristic polynomial has the zero a for
any F.

Me=>" uses the theory of normalforms {chapter 3).
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Chapter 3 : Normalforms (KK, pP. 41-54)

Consider only (TLS) % = Ax + Bu describing a mapping
u —— x
We may transform the input u and the state vector X in
order to get a simpler structure for the matrices A,B.
Transformation of the state (here:= output) space x = Px' ==

k' = P lapx' + p-lpy
Transformation of the input space

U==RK + Qv s>
X = (A - BR)x + BQv

Remark : In an input-output system of the form

¥ = Ax + Bu, y = Cx
we may change the matrices A,B,C without transfor-
ming the input- and the output space but only by
transforming the state space x = Px': we then get

%' = P~lapxt + p-lpy

y = CPx!
and the same input-output behaviour is given by
(P~1apP, p~1B, CP) as by the original triple (A,B,C).
This will be used in the lectures of Hazewinkel.
In the context of this lecture, where we allow trans-

formation of input and ocutput, we accept transforma-
tions

a8y = pla,m | PO

Since we allow rather many transformations, the set of equi-
valence classes is relatively small, and each equivalence
class is characterized only by few numbers. This is theore-
tically valuable. For practical purposes, the restricted
transformations (Q = I, R = 0}, where the input and ocutput
remains unchanged, are more useful; we denote the most simp-

le forms with respect to this equivalence "Identification
normalforms",
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Easy: If (A,B) is controllable, then also (A',B')
Problem: Find P,Q,R such that A',B' are as simple as possible.

Theorem 3.1 A controllable system given by (A,B) with A nxn,
B nxm and rank B = m (mcn) is equivalent to
(A',B') with the following structure:
There exist numbers nj«nz«...<np, n+...+np = n

such that
0 o .
o 1 M O Y
A' = " and B' = o 0 :
1] Ing . 3 ¢ [+ mtny
PO 0
0 o 1 j. np+..
+ny
01.
with Jny = .« . 1 | njxnj.
. 0
Remark : oOnly the numbers nNi,...,npm are therefore characte-

teristic for a certain equivalence class; they de-
fine the "structure of the system". (A',B') are
called "general normal forms"

Proof for m = 1 : B consists only of one column b and
K = (b, Ab,...AP"1lb) is nxn and regular
(controllability).
We first use only the transformation of
the state space : We shall find a regular
nxn-matrix P with

o, 1, 0
—1 = " . N -
PTiAP 0 0o * 1 and
~%p... T%n-1
0 where «g,...an_) are the
p-lp = . coefficients of the charac-
6 teristic polynomial
1 Mitan a0l | +ag of A.

(We see, that P does already the full job - almost: Q,R must
work to let ay,...,up.; become 0; this normal form is impor-
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tanz for the case, where only the state space is transformed
and will appear again in the Hazewinkel lectures)

We zonstruct P = (py,...,pp) with
o o 9

P o T = AP, P - =b
01 o
SXQ... —Op-q 1

i.e with py = b, ~agpy = AP1:, P1%1Pn = AP2,.e...
Pj~ojpp = Apj+1, j=1,...,n-1

==> Pn = b, Pn-1 = («n-1I + A)b, pp_3 = ap_ob + Apn-y
Py = ab + Apj

The last equation Ap; + wgb = 0 is a consequence of the
others:

Apy + agh = A{m;b + Aps) + agb = .., .,
= AMb + ap_3AR~1b +...+ «gIb = p(A)b = 0

according to Cayley-Hamilton.

Form > 1, P is not uniquely determined and one needs a more
general construction. We sketch only the main step in order to
show where the characteristic numbers Nl,e..,Ny come in.
Let B = (by,...,by) and B:= [By,...,bg]l ¢ A" be the m-dimen-
siomal subspace of KN spanned by the columns of B.
The smallest subspace B' of KM, invariant under A and con-
taiming B is the whole M, since (A,B} is controllable and
rank K = n. Now the numbers ni,..,np enter the game:
Thera exists a basis ¢3,...,¢p of B and numbers ny<hz<. .. «<ny
with nj+...+ny = n such that [ Ajci, O0«<j«<nj-1 } form a basis
of BY = N,
One jets this basis by starting with an arbitrary one, for
examile with bi1,...,bp. Some of the Abj,...,Abp may be ele-
ments of B, some are independent; by changing the indices of
P1,...,by one gets a basis

(by,...,by, Aby,...,Aby)
for 8 + AB = B;. In changing the numeration of by,...,by
one qgets a basis
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(by,...,bm, Aby,...,Aby,A2b)1,...,A2by)
of B + AB + A28 = B, .

In this way one may continue, constructing bases for B3,...
until By = M and everything is finished. One gets ClseessCp
just as a reordering of bi,....,bp and the numbers ny,...np
just by counting the elements Ajci.

It is clear, that each Anici is not an element of the basis,
but a linear combination of all basis elements. One can con-
struct a new basis c'j,...,c'y (by inverting an upper triangle
matrix) such that again { Ajc'i, l€34ny, i=1,...,m } is a ba-

sis of M and moreover Anic'i is a linear combination of all
basis elements Ajc'i with j<nj-1,

AlMicry = - ;i ahi=v zj,y with z; , e B, i=1,...,m
v=1

To go from by,...,by to €'1,+.4.,C'p means only a transforma-
tion u = Qv of the inputspace, i.e. BQ has the columns
¢'y,..,C'y. Therefore we write bj instead of c'j again.
But we are not ready: We want to find a final basis of
8! = fn . Pl,lr----P1n1-°°-qu1-~~°menm
with Pi,nj = ki, Pjj - Apji,Lj+1 € B and Apj,1 € B for
i=1,...,m, 3§ = 1,...,n4-3.
This basis is easily constructed, if we use

: nj
A"lbi = -1 aMi-u Zi,p ¢

v=}
- ni=i-v ...
We define Pi,nj: = bj and py 4: = ami jbi + 3 Ali™d yzi,u
v=]1
The matrix P = { Pl,l-----Pl,nl:---:Pm,lva,nm ) is nxn and

not-singular,
Defining A'' = P~1AP and B' = p~1B (9 =1, R = 0) one gets
an equivalent system and the "identification normal forn"
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ny nz Ny
010..0
fassneas ny
0..01 0 0 0
ﬁ**ﬁt**ii**ii*ﬁﬁi*ﬁ
AVt = 010..0
T !‘I2

0 0..01 o 0

* & & & * * & % % * h * Rk X kX & &

0110..0

Ceeeaeas np
0 0 ° Jo'll0'1
‘i******-********i*

B' as in theorem 3.1.

The asterisks in A'' denote arbitrary numbers, which, besides
N1s-++,/Ny, are characterizing the identification normal form.
If we denote by aT the i-th row consisting of asterisks, i.e.
the njy+...+nj-th row vector of A'' then a simple final equiva-
lence transformation

u o= - aI-x + v

gives the general normal form (A',B') defined in theorem 3.1.
This proves the theorem.

Remarks: 1.) It is enough to prove theorem 2.4 for general
normal forms - which is almost trivial.

2.) One has the assumption rank B = m, which is not
really a restriction: If rank B = m'<m, then
B = B'Z with B': nxm', Z: m'xm and rank B' =
rank 2 = m'. Our system is controllable if
and only if % = Ax + B'u' is controllable ~ the
reduction to the case rank B' = m' is therefore
easy.

3.) (3.1) has moreover the assumption, that (A,B) is
already controllable. There are alse normal
forms for noncontrollable systems.
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Corollary : A general linear system can be transformed by
x = Px*, u = Qv into a system
Aq *
k' = : x' o+ [ Bél ] v
a Ay

where - (A1;,B;1) has identification normal form
- the number of rows of A;; and By, is
equal to rank K

the system %3 = A11x; + Bjju is con-
trollable.
- Image K = {(xl,xij | x3 =0 ]

The proof of this corollary is simple, if we start with B =
Image B.

Stabilization of (LS)

Definitjon : We call (LS) "stabilizable" if for each (to,i)
there exists a control u such that the solution
of % = A(t)x + B(t)u(t) with x(ty) = X tends to
zero with t-e,

Remark: A controllable system is always stabilizable: Steer
it to zero during some finite time and continue with
zZero control. Stabilizable is therefore weaker than
controllable.

Theorem 3,2 : (LS) is stabilizable ==> If y(t) is a nontri-
vial solution of ¥ = - A(t)Ty, which is boun-
ded, then y(t)TB(t) = 0 from some ty on is im-
possible.

Proof : Assume, there exists such a solution y with
y{t)TB{t) = 0 for ti>tg. Then, as in the proof of
theorem 2.2 we would have

< x(t),y(t) > = < ¥,y(tg) > for tartg
Since x(t)-+0 and 1y(t)l1<=, there exist (ty) vex
such that

< x(ti),y(ti) >+ 0
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> < X,¥{to) > = 0 ==> Not all ¥ can be steered into
Zero ==> (LS) is not stabilizable.

For (TLS) also sufficient conditions are possible,

Theorem 3.3 : (TLS) is etabilizable <==> If » is an eigenva—

Jue of A with Re » > 0 and P a corresponding
eigenvector of AT, then pTB * 0.
See (KK) page 56.
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Chapter 4 : Observability (KK p.57-72)

We consider again

(LS) % = A(t)x + B(tlu, y = C(t)x,
but now consider also the output relation y = C(t)x and
assume, that the output is known; that means: We have informa-
tion about x in form of C(t)x. Since € is (kxn) and generally
k<<n we have a rather incomplete information about x, which we
want to control or stabilize.
Can we guess x from y? Can we even observe it indirectly, at
least in the limit t + « ? We call a method, which "recon-
structs" x from y, a "dynamical observer" and we shall descri-
be this concept in this chapter.
If we cannot reconstruct the whole x, i.e. X1,44-,Xp, then
maybe at least some components or functions like <c,x>

for certain vectors C € M; we then speak of "reduced ocbser-
vers",

Definition 4.1 : (LS) is called reconstructable, if for all
te and all u e U two solutions x, x' of
¥ = A(t)x + B(t)u coincide for t « tg if
Ct)x(t) = C(t)x'(t) for t « tg.

Remark : (LS} is reconstructable, iff C(t)x(t) = 0 for t « to
and ¥ = A(t)x implies x(t) = 0 in t « tg. Therefore
the control {(and B) doesn't influence reconstructa-
bility.

Theorem 4.1 (LS) is reconstructable <=w=> % = A{-t)Tx+c(-t)Tu
is controllable,

Please realize, that (LS) is reconstructable, iff C(t)x(t) can
not vanish identically in any intervall (==,ta), 1f x(t) is a
nontrivial solution of % = A(t)x;: that means, that C(~t)x{-t)
may not vanish in any [tg,=). But x(-t} is solution of

¥ = ~A(-t}x; this is the homogenous adjoint equation to

% = A(-t)T + c(-t)Tu which is controllable according to theo-
rem 2.2 iff xT(-t)e(-t)T = (c(-t)x(~t))T does not vanish in
any [tg,=).
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The theorem establishes a duality between reconstructability
and controllability and we can transfer theorems for control-
lability in those about reconstructability.

The corollary of 2.2 tells you for example, that (LS) is re-

constructable, iff for every to there exists a t; such that

ty - .
I #(to, t)C(-t)Te(-t) #(to, t)Tat is really positiv defi-
to

nit where ; is the transitionmatrix of % = A{-t)Tx, such that
#(tg,t) = ~#(t,t,)T.
This is equivalent to (-tg =+ tj,-t; + tg)

t1
Wx(ty, tq) := I O(t,tl)TC(t)Tc(t)i(t,tl)dt >0

to
and we get x(t;) from y and Y as solution of

t1
We(tg,t1)x(ty) = It #(t,t)c(t)Ty(t)dat -
: Q

tq t
I #(t,ty)Te(t)To(t) [ I #(t,T)B({TIu(r)dr dt.
to t1

In the same way we get reconstructability criteria for (TLS)
X=Ax + Bu, y = Cx
(TLS) is reconstructable <> rapnk K* = rank (cT,ATcT, ..,
(An—l)TcT) =n
<w==> for any eigenvector p of A there
holds Ccp # 0.

In the general case, we can find a basis in AN, such that
with respect to that basis

Ko |
A, ¢+ €= {C11,0)

where %3 = A3)¥;, y = C31x; is reconstructable. The dimension
of ¥ is r = rank K».

A
gy
AZ!

Remark : If (TLS) is not reconstructable, there exist x £ 0

with [ Io
to-ty

which is equivalent to xTK* = 0 <=m> ceAty = 0 v t

eATteTeeAtye ] X =0

These x form the non-reconstructable subspace;
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one gets the state of the system by observing input-
output up to an element of this subspace.

We introduce now a weaker concept

Definition 4.2 : (TLS) is called discoverable, if for all x
in the nonreconstructable subspace the rela-

tion 1lim ety = ¢ holds.
t=

Remark : Discoverability means that the uncertainty about the
state dies out:
Let x(t) and ;(t) be two solutions belonging to the
same observation y, then x(ti-x(t) + 0 for t o+ =,

Theorem 4.2 (TLS) is discoverable <> Any solution of % = Ax
with Cx(t) = 0 ¥ t tends to zero With £t 4+ = cmm>
For any eigenvector p belonging to an eigenvalue
@ with Rea > 0, Cp *+ 0.

Remark : The very often used term “observatibility" is defj-
hed in the same way as reconstructability in Def.4.1
- besides the fact that you look into the future
and not into the past; i.e. equal in- and output for
t > t; implies equal states for t » to - and this
for all t,. So ane way convert the one to the other
by transforming t + -t; for (TLS) both concepts are
equivalent.

We now come to what is called a "dynamical observer" - and we
restrict ourselves to (T1S), where observability and recon~
structability means the same - namely the controllability of

the system % = ATx + ¢cTu. We use now the ideas of theorem 2.4
feedback.

Theorem 4.3 (TLS)} is discoverable <m=> 3 (nxk)-matrix F such

that all eigenvalues of A-FC have negative real

part.
(TLS) is observable <m=» Tq any real normalized

polynomial of degree n there exists a (nxk)-ma-
trix F such that this polynomial is the characte-
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ristic polynomial of A-Fc,

Definition 4.3 : A dynamical observer is a (TLS) with ipput
(u,y) and dim X = n, defined by
2 = Az + Bu + F(y - cz)
where F is an arbitrary (nxk)-matrix.

_u Sysiem Y

la Observer p—nw— 2

[ 3
g

Try to find F such that z approaches x
(independent of initial conditions)
z is called "estimator" for x. F amplifies
the output error y-Cz.
The estimation error e(t) := x(t) - z(t)
fullfills the equation

¢ = (A - FQ)e

Corollary: (TLS} discoverable <mss 3 (nxk) F such that e(t)-0
for all initial values of x(+) and z(-).

We come to the final point: Reduced observers for (TLS),

z doesn't estimate x itself but only some linear functions
<c,x>., Without any further assumption about discoverability
etc: Which functions can be estimated? There exists a recur-
sive scheme: It constructs 2 sequence (Cj) of linear subspaces
of X, CgcC1¢..., such that for all ¢ e €4 the functionals
<C,X> can be assymtotically reconstructed.

Theorem 4.4 Let C; = image (CT) and Cf = Cj-1 +
[ c(i,l),.__'c(i,ri)] where the vectors cf{i,J)
are constructed in such a way that there exist
¥ij € €, Re ajj < 0 with (AT - ajy E,) cfi.d)
€ Ci.y, i=1,...,p,j=1,...,ri
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Then there exists an observer who reconstructs asymtotically
the functionals
x+<clid),x> xex

Proof : Elements in Cj_) are linear combinations of vectors
clv,#), 1cvei-1, l<ucr, and of vectors of Co, i.e. of
the row vectors of C. Therefore

, i-1 ry
ATc(i,j) = “i,j C(il]) + I I Bi,j,‘),u clven) o
v=1 p=1
Y (1T €
I 1 clr with € = :
=1 3T c(k)
or L. i-1 r
() c{i,3)Ta uijcfl'J)T + 1 EU Bi,j,v,u
v=1l =1

v

C(“f")T-P 1(i'j)TC

1i,5,1

e M and %i,§.8i,5,0,u€C
14,3,

with 1(j 4) = l

The ckserver is then defined by
i-1 r,
(%) Bgi,5) = %3 24, 9) * T I By, Z(v,p)
v=1l  u=1
T, . (i,9)7T
+ 1¢i,5) ¥ + c(1.3)Tpu
or, by ordering the scalar function Z¢i,j) into a
vector z
2 =12z + Ly + Bu

Where A is a lower triangular matrix with «ij as dia-
gonal elements.

We have to show: For arbitrary u(-) e ﬁ, x{") solu-
tion of x = Ax + Bu(t) and z(*) solution of

2 = Az + Ly(t) + Bu(t) with y(t) = Cx(t) the diffe-
rence o, §)(t) = z(j, 4)(t) - <cli. I}, x> i=1,...,p,

j=1,...,rj
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decays exponentially for t -+ =,
If A(*) =(b(1‘1)(°),...,b(1'r1)('),...,b(p,l)('),...,

°(P:rp)('))’ then

A = Aa
(Realize, that t(j, 4)(t):= <c{i,3), x(t)> solves (*4)

S < el x(t) > = $e eltidTgqey = i i) Tyqey =

et NTiaxct) + Bucey) @) ajyetdiTe(ey +

i-1 r
I b Bi,i,v,,C0r 1 Txqr) + 174, 4)Cx () +
v=1 =1

cti:3}Tpu(t), such that for
the vector ¢ gathering <c(i,J) ,x(t)> in an appropri-
ate order the equation

T o= Af + LCx + Bu = At + Ly + Bu holds:
4 =z - ¢ gives the equation 4 = AaA )
R has the eigenvalues «i,q which have negative real

part ==> A(t) tends exponentially to zero with t - .
This is the statement.

Tie theorem is constructive but does not characterize all
fanctionals discoverable by observers. For this purpese it is
batter to use the normalform given above with

A= [ Ay, O ] « €= (Cy13,0), where the (1,1)-systen is
A31 AII

reconstructable. Since the control is not of importance for
the reconstructability, we put u = o.

Moreover, Aj; is assumed to be a diagonalmatrix diag(hiz,hgg),
where Aj; consists of all eigenvalues with negative real part:

% = R1y %1, ¥ = C11 %3
%] -
X,

We can write <c,x> as <C1,X1> + <Cp,%3> + <Cj3,X3>.
We want to describe all c with

X : =
+ [ x: ] + Az1 x3, dim x) = rank K=,

23

A7, o©
0o A
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y{t) = 0 ¥ t ==> lim «c,x(t}> =0
t+e

Since the (1,1) system is reconstructable, y = 0 implies
X1 = 0; we have to care only for

]
[=]

lim (<ez,x2(t)> + <e3,.%3(t)>)
t+=

with %3 = Ajpxy, &3 = A§2x3. For this c3 = 0 is a necessary
condition. One concludes, that cz = 0 is necessary for the
asymtotic constructability of <c,x>.

This functionals are "caught" by the algorithm described in
the proof of theorem 4.4.

This ends the introductory bklock on control theory. Examples
are provided in special tutorials.



