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Numerical approximation of porous medium equation 1 -The porous medium equation in one dimension
Let us consider the Cauchy problem for the porous medium equation
' %=y, (@)eQu=Rx]0T[, I<w. (1.1)
Claudio Verd; (¥ u(.0)=uy(-) inR, (L.2)

where m > | is a given constant and g is a given (nonnegative) function,

The problem arises in the flow of an ideal gas in g hormogeneous porous
medium (which occupies the whole of R). Denoting by v the velocity, by p the

pressure and by p the density, the flow of the fluid is governed by
1 - The porous medium equation in ane dimension

Eguation of state : P=pyp® (a>0),
1.1-Interface tracking algorithms Equation of conservation of mass : kp, +(pv ), =0
1.2 - Fixed domain methods, Approximation of the golution (0<x <t sity )
k<1: porg ,
1.3 - Approximation of interfaces F Y
Darcy's law VU = —up,
2- The multidimensional case (v: viscasity of the gas; H: permeability of the medium) .
2.1 - An implicit nonlinear method By eliminating » and » and rescaling, we get (1.1), where m = 1 + o (m >1)
: . . i m m-—1
2.2 - Lincar schemes and u represent the (scale) densidy of the fluid. We call p= — u the

pressure and v .= =P, the velocity.

We suppose that at time ¢ =0 the fluid is contamed in the slaba, <z - %%
namely wu, is a nonnegative function, such that ug{z}>0 i zela, a,] and
wo(x} =0 elsewhere (we assume that u, is continuous in R).

We can write (U™, =(m u"‘"uz)z. Because m > 1, the diffusion rate of
(1.1}, fe, mu™"" vanishes where u =0; hence u(-,t) is supported in a finite
interval [s,(¢}),s,(£}]. This contrasts with the case of m =1 and (1.1) is the heat
equation. The functions z = 85;(t) (j=1.2) represent, the interfaces of the region
occupied of gas.

In many applications we have the more general equation
% = (B(u)), oo (B 1 (B(w)), (1.5)

where f: R + R, 5(0) =0, f(0)=0isa nondecreasing and Lipschitz continuous
tunction, and (b(ﬁ{u))land J (B(u)) represent convection and source terms,
respectively. Depending on the shape of 8, the equation {1.5) models varicus
Physical processes with phase change.

The constitutive relation corresponding to the Stefan problem is shown in

"o Figure 1.
V) Dipartimento di Meccanica Strutturale, Yniversitd di Pavia and Istituto Biw)
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This graph corresponds to processes of heat transfer invelving melting {or
solidification) when the liquid phese is allowed to move {b #0) and an internal

generation (or absorption) of heat is present {f #0). Here u is the enthalpy
whereas 8(u) is the temperature.

In any case, here we will dea} with the simplest case (1.1).

The problem (1.1), (1.2) can te reformulated in terms of ithe pressure

p=——u™"! which satisfies
m—1
p=lm-1lpp + () ng. (1.3
p(.0)=py(-):= T m7N) inR. (t.4°
m-1
The interface curves s; (j = 1,2) and the pressure p are connected by the

Rankine-Hugoniot jump condition [2, 26] (which are not part of the origina.
problem (1.1)}:

lim z ty=—-35,'(t}
x?sz(f)pz( } 2

inl
Im p (z.8)=-s () "0 .8
zis,(t)

s 00=a,, s,(0)=a, .

Since the function B(&):=&™, £ R* is degenerate, lhe solulions of
(1.1).(1.2) have a low regularity and must be understood in the sense of distr-
butions, as proposed first in [37:. So, we recall the concept of weak solution.

(P1) w=uwlz.t): Rx[0T]» R*is a weak solution of (1.1),(1.2) if
wel¥Q). (™), € LA(Qp),

and for all z £ H’(QT} compactly supported in R, z(-, T) =0, the followr
tng equation holds

[-uz, +(u™) 2 'drd= fuo(x)z(:,o)d_-: .
Rx0.T{ ‘R

Existence and uniqueness of Lthe weak solution was first proved in [37]. Tte
equivalence of (P1} and the weak formulation of (1 3),(1.4} is giveriin [1].

The following regularity results are well known {see, e.g., [3, LB] and tte
references given therein). Assume the following hypotheses:

(HD) supp py=lo), ey, 2. 2,ER .
(H1) Ozplzi=M, VreR;
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(HR) [pg(x) —polw) <L, lz—y|, Yz,yeR.
Then the solution p satisfies
(R O=plz.t)sM, V(zt)eQ, (Marimum principle);
(R2) Bl m oS Ly (see[1]):
{R3) Ip(zt)-plz ) <Clt-t{¥% (seel19]);
(R4) Py = - —t—L (semiconuexity) (see[4]);
m+l ¢
(R5) “Pn( -C)HLI(R)- “Pg( -")HLI(R) = ti (Teywﬂﬁz"-"-g Eﬁe‘?t) (See [4]) .

Moreover, if we assume
H) (YL =-C,
then p salisfies

(R6) P >—C.

Finally, if pj is concave, then so is p(-.t). In this case p,, and p, are bounded
in L=(0).

The conditions (1.8) are satisfled by the unique solution of {P1) and the
interface curves (t, s, (¢)) and {£,s,(t)) are Lipschilz continuous and monotone

decreasing and increasing, respectively, [2]. It is proved [26] that there exist
tj'ao {7 =1,2) such that

s;(t)=0; fort E[U,t;] i s;(-) is strictly monotone for ¢ E]t;. oof |

The times t; are called waiting ftmes. Various estimates for wailing times are
known depending on the shape of initial pressure (see [26, 5, 10, 3]).

1.1 -Tnterface tracking algorithms

Because of the relevant physical meaning of the interfaces 55 (j=t.2),
their nurmerical approximation is frequently as important as the approxirmation
of the density u (or pressure p).

Fixed domain methods discretize equation (1.1) and provide a sequence of
discrete solutions convergent to the continuous density u (with a rate meas-
ured in some Sobolev space); then the discrete free boundaries have Lo be com-
puted a posteriori as level curves of the discrete solutions. Unfortunatly, it is
clear that not even a good approximalion of v implies an approximation of the

'
SJ- 8.
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Only in some particular cases we can expect to find interfaces precisely as
level curves of the solution [22, 33].

Nevertheless, for the problem in cne space variable, 'many authors sug-
gested front tracking schemes. These methods use a finite difference scheme to
discretize pressure equation (1.3), which is modified by means of a discretized
form of jump conditions (1.6) in order to track Lhe interfaces of the support of
pressure.

The idea of exploiting interface conditions lor computational purposes was
first proposed by Huber [23] for the one-phase Stefan problem (see also [17]).

Here we give a detailed description of two front tracking algorithms, pro-
posed by Di Benedetto & Hoff [14] and Hoff [21] (we refer to [20, 30, 41] for
other schemes tipically one dimensicnal)

Before doing that, let us introduce some notatior.

Let A and 7.=T/N {N integer) denote the space and time steps, respec-
Lively, and let
T,=th, ieZ, t":=nT, n=0,.N.

The approximations of p (=, "), 5,(t") and s,(¢t™) will be denoted by ' 5T and
Sg' respeclively. Moreover, we set

N N

PR YT Pl et ), sET() = D), (5=1.2),
n=lied n=1

where x" is the caracteristic function of the interval 1™ t* ] and @; is the hat

function of the node T,

Di Benedetio & Hoff scheme (Spy)

Denocting by ¢ >0 an O{h) viscosity parameter, the algorithm (S ;) reads as
follows.

(Spy) Let
pzoizpo(::l.), igZ; s?::al, sgzzazA (1.7
Forn=0,.N~-1, set
I'J‘::min[i':rﬁlés’l‘i. fg::max[i:xi+155:',“l. (1.8
and
d’;‘::z‘,?—s'l‘, dg.:sg—:c[;; (1.9)

n onalogy with (1.6} we compufe s™ ongd s3*1 from the equations

n n

P

Fid 3

s';” =8y 41 ——, s3Y =53 4T iy (1.10)
an a2

-8-

then we compute {p]*! iq““,‘. by solving the finite diffurence equation

1 n n n n n n
' -p n Py —RPI+R, Pivs "Pio1 12
3 alm—y +e + :
P n =] (pre) B2 (B P
finally for s}*! 25, <z, and T <z, 553" we compute pI'*Y from the
i L]
linear interpolation

[TRTY)

n:‘___sn-l-l s+l

nel o 1 n+l nvl._ 52 TF  na
Py T I —S“‘H p!? and FaN . S"+1—.’t p,rvit ' (112}
n M 2 :
respectively, and set p™*!:=D for z, 2 [s7*1 s3]
uel nel
! Lo ] L1 % "+
* — AN B B
Hdy odg l :
T : NI "
o J Mow | t
L b3 "
5 o) " S
Setting
a:=7/h?, Aozo=z Rtz (1.13)
{1.11) can be rewritten in the form
pt. —pP
Prtli=pl4[m - tla(pl+eld, pieal —‘f'—é_':'_]z. (1.14)

Remark that the difference equation (1.11) is not enforced across the inter-
Inces. The ‘act that d7,d} =h guarantees numerical stability in the computa-
tion (1.10).

Imposing the stability conditien
T<Ch? (Cdependingonm,M,LF and e), (1.19)
Di Benedetto & Hoff proved that
pr=0, WicZ, Usn<N,
fo that by (1.10) we get
st est emd sPta 57 .

Thus the support of the discrete solution increases monotonically in £. The fact
that z,—s3*1, 524! —Z, h insures numerical stability in (1.12).
i ]
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The main results proved by Di Benedetto & Hoff are the following error
bounds for both pressure and interfaces and the convergence for the velocity:

h,r_ ' Y
™" =P limg,= A7, (1.18)
piTop, in LP(Qn), Vpellw|, (1.17)
hoT_ ¥ 2 -
s} =550l ep s CR72. (5=1.8), (1.18)

where y depends suitably on m.

The crucial point in the analysis of the convergence of approximate solu-
tion and interfaces is that, owing to the presence of £, Di Benedetto & Heff are

capable to reproduce for the computed solutions the finite difference analog of
the basic estimates (R1)-(R8).

Hoff scheme (S,;)

Although very simple, the scheme (1.7)-{1.12) is of little practical! impor-
tance because of the usual parabolic stability condition for explicil schemes
(1.15).

Hoff [21] proposed a linearly implicit finite difference scheme for (1.3),

(1.4) which is computationally appealing, since he avoided that stability condi-
tion.

HofI's scheme differs from (Sp,) just in substituting {1.11) with the [ollow-
ing implicit finite difference equation

n+1

pr . —pt
it Eptm—tlapld, pi vav 4, pr 4o 2H—LE

(1.19)
This is a tridiagonal system of linear equations, and has a unique solution.
Under the rather mild mesh condition

T<Ch, (1.20)

Hoff proved the same convergence results (1.16)-(1.18) for both the sclution
and the interfaces.

1.2 - Fixed domain methods. Approximation of the solution

The previous front tracking methods are tipically one dimensional. Several
difficulties appear when one attempts Lo apply them to problems in more than
one space dimension. Here we describe two simple finite difference schemes
based direcily on (1.1}, (1.2), which can be easily extended to the multidimen-
sional case

Deneoting by u* the approximation of u(z,, "), we set

N
ub Tz )= 3 L ule (2)x(t)

n=lieZ

-8 -

Consider the following explicit finite difference scheme:

(5,) Lat :
1;.‘°:=u0(::‘-) , 1€Z: (121}
Jorn =0, ,N-1 compule;
uMtloyl = a4 (™), icZ. (1.22)
Under the assumptions {(H0)-(H3} and assuming the stability condition

72 Ch® (C depending onm and ), (1.23)

Hoft & Lucier [22] proved the following error bound for the solution
s ~u"-*uL_(Qr) < Ch?, {1.24)

where 7 depends suitably on m.

In order io introduce an implicit finite difference scheme, we write the
problem {1.1), (1.2) in a bounded space domain with homogeneous Dirichlet
conditions at the boundary. This is not rescrictive because the solution has
compaci support. Setting

BlE):=¢™ , teR* (or B(E):=ie|™', teR),

we look for the solution of the following problem

u ={fu)), . (z.tlelebix]0T[=:q,, (1.25)
u-,0}=uy(-) in labl, {1.26)
Fluda, ) =p(u)b.-)=0 in l0,7[. (127

Let h = L;':and let z,:=a+th, i=0,.. . [+1. The discrete problem reads

as follows:
(3,) Let

u‘o;zuo(:‘) , O=i<s]+1; (1.28)
fOTTL =0,1,...,. N-1:
Rkl n

uttleul = a 4, fuM), 1sisr, ugtl=uptl.=0. (1.28)

It is easy to see that (1.29) is a system of nonlinear algebraic equations
associaled with an M-function. This guarantees the existence and uniqueness of

the solution {38). For computing the discrete solution we shall use the following
nonlinear Gauss-Seidel method:



g~

{GS) Forn=0,. . N-1, we set 5‘““‘0:=u‘." and construct the sequence §P*1K
k=12 . defined by

420 B ) s ul o[BS AR ], 1sisl . (1.30)

1+]

It is easily seen that

> u:t+! .

ko

mareover, the scheme converges as fast as the linear Gauss-Seidel method for
the positive definite matrix

+1.k
&

14200 —q . . 0
—a 1+2a —g . G
0 T ~a 142a

1.3 - Approximaltion of interfaces

The question now is how to construct discrete free boundaries s;‘" which
approximate the s.’s. The problem is harder than the approximation of den-
sity, because the convergence of the discrete solutions could say nothing about
the behavior of level sets.

In [8], Brezzi & Caffarelli showed for the slationary obstacle problem that,
if the continuous and discrete solulions satisly a non-degeneracy property, the
error belween continuous and discrete {sought as boundary of the contact set)
free boundaries can be bounded in terms of Lhe square root of the L*-distance
between the solutions.

Non-degenerucy property means roughly that the solution leaves the free

boundary with a minimum speed or, in cther words, that the free boundaries
actually move.

In [33;, Nochetto proved error estimates for free boundaries, only assum-
ing to know

1. an LP-error bound for solutions (p < o):

T LIS ]
[ —w |‘LP(Q,.)gCh ; (1.31}

2 anon-degeneracy property for continuous solution:
meas ([0<u<e® |, Fi=<Ce, {1.32)

where @, :={u >0} is the positivily set and and F:= €@, N @y is the free boun-
dalr"y {hence, without using non-degeneracy properties of discrete solutions).
‘ For the porous rmedium equation, the non-degeneracy of the continuous
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solution is known under certain qualitative assumptions upon the data [5, §,
10]. Nevertheless, we cannot expect to get discrete non-degeneracy properties,
Besides, in more than one space dimension, IP-error estimates for solutions
are known, but for p <. Hence is very important the fact of avoiding discrete
non-degeneracy and L*-error estimates.

The cruciai point in [33] is to shift the level in the definition of discrete
tree bounderies F* T, namely, to define F™7 as o, -level curves of the discrete
solution, where

o, := Cth™/1+m] (o,:=C*"W ip=w). (1.33)
Namely, we define
Q':_'T :=[u“"’>ohi , F"‘":-:BQ:':"’ Ny {1.34)

This idea was introduced in [8]. Notice that F™T is easy o be computed a
posteriori without additional computational costs. Hence the interface esti-
mates (1.35), (1.37) are not based on front tracking, but on a trivial post-
processing of a numerical solution that may have rapidly increasing support.

Under assumptions (1.31), (1.32), Nochetto proved the following error esti-
mates in measure for the iree boundaries:

meas (@ AQLT)<CAP/IM] (g CpT/s ip=w). {1.35)
If we require the stronger non-degeneracy property
3 §D<u<e'iCS“(F):zf(z,t)EQT:d((:,t].F}(CcI, (1.38)

and suppose that an £™-error estimate for solutions holds, then we have the fol-
lowing error estimate in distance lor the free boundaries;

e Sepere(F). {1.37)

For porous medium equation in one space dimension, if we assume that
uo(x)‘a_-C;m%[:—a.jlv[m"], vzela,a,l, (1.38)
=]'
then there exists a positive constant 7 such that [5]
pls;(t)-(-1¥ z,8)>C2, wi>0, 250. {1.38)
Clearly, (1.39} entails the following non-degeneracy properties:
meas ({(z,8)€ Qp: 0<u(z i) <e M-l g (1.40)
and
tzela,a,l: 0<u(z, b) ce/lm-1l) CSeels (N U S sy}, wed0.  (1.41)

" Any error estimate for solutions gives rise to an error estimale for
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interfaces. For instance, Ior the scheme (Se) we know the error bound (1.24)

for solutions; hence we can define

shTi=

h, ~ )
: alut">CRT{N @y

and conclude that

< cprtm-11 (1.42)

Heh, T
i85 "= 851l o, my =

Hofl & Lucier [22] oblained an estimate for inlerfaces similar to (1.42) by
using different techniques. They avoid the non-degeneracy property, but it is
not evident that their approach may be applicable to several space dimensions

2 - The multidimensional case

Let < R® {d > 1) be a bounded domain with regular boundary and 0< T <=
be fixed.

Consider the problem 4~z
u, = AB(w)  in @po=0x10,T[, (a‘jg! 3‘;5) (2.1)
w(-,0) =ugl) 1m0, (2.2)
Blu}=0 on a0, {2.3)
where u, is a bounded (nonnegative) function.

Since § is degenerate, the solutions of (2 1)-(2.3) must be understood in tte
weak sense.

(Pd}) wu is o week solution of (2.1}-(2.3) if
welHQ N HWO T HTYR)) . Blu)e LHO T HAAQ),
ul O =ugy.
and for a.e. t € 0,7{ and for all z € H] (1) the following equation hoid

<Y >H;(m+fv5(u)r\72 dr=0. (2.4)
1]

Existence and uniqueness are well known for (Pd) [4, 25, 37] (see also [3,
27] for a detailed description of regularity results). In particular the maximum
principle helds and we have the following globa! regularity:

(R7) il Blug e HI(O) then w, e L™(0,T, H- 1) and Alu)e L7(0.T; HION N
HYO,T, L3)).

The holderianity of density w was proved in [10]. Some regularity proper-
ties of the interface F are also known In parlicular [4], the set
0{t)=f{ze0:u(z.t)>0] expands as ¢ increases, Lhis expansion is strict after
& possible waiting Lime, which is related to the shape of u, near Fy:=a0 (0).
More precisely, assuming

.12-

Foe C?, uy(@)2Cd(z, F¥Im- pez, ze(0), (2.5)

then Q1 (¢) is strictly increasing at £ =0 (and for all ¢ >0, of course) [10, 28). As

a by product of the result in [10], we have the following non-degeneracy pro-
perty {see also [33]):

2-o 1

meas ([0<u<e ¥ ™ nft=t )sCE)e, TiE>0 (2.8)

(0<a < 1: Holder exponent {10, p.375)]). In particular, for d =£=1, Lhe assump-
Lion {2.5) reduces Lo (1.38) and the non-degeneracy property (2.8) is replaced
by the stronger one {1.39) [5]. These authors expect this property to hald even
in more than one space dimension. '

2.1 - An implicit nonlinear method

Since we shall use finite element methods for discretizing problem (Pd}, we
recall some notation and well known finite element properties.

Let § be a decomposition of 0 into closed d-simplices of diameter
bounded by A (so A stands for the mesh size).

Let us set (1, := |4 5 and suppose for simplicity that 0= Q,.
Sel

We assume that
the family {8, 1, is reguler [11, p.132];
namely there exists a positive constan! ¢, independent of A such that
hg=c,0,, VS5€ES , Vh>0,

where hg and o, denote the diameter of the simplex 5 and the radius of the
largest ball contained in S, respectively.

We introduce the space of the discrete functions we shall use in the sequel.

My =ty Y5 is constant forall S€S§,{; (2.7
Vh:=ExEC°(ﬂh):x|51'.sf.inem’fara.u. Ses, i, (2.8)
V:=ixe¥,:x=00n 80} . (2.9)

We denote by <-,- > the inner product in L*(). The corresponding discrete
inner product is defined by ‘

X7 :=s€z% { I, (x¢) dz , (2.10)

for any piecewise unifermly continuous functions y and ¢, where 11, stands for

the local linear interpoiant operator. Notice that the previous integral can be
evaluated easily by means of the vertex quadrature rule, which is exact for
piecewise linear functions [11, p.182].
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It is well known that <-,- >, is an inner product in V, which satisfles [39,
p.R60]:
[l fey = <x X0 S ClixIZ, . xe Yy, (2.11)
where C2 | is a constant independent of h.
Approximalion properties of discrete spaces {2.7)-(2.9) are well known [11).
The Tollowing error bounds takes into account the eflact of numerical integra-
tion:
<X P> —<x.p>, 1 SCh VX @ gy VX EEV, {2.12)
<X @ —<x, > | < Chzlivxi\Lz(n)iJVsc}iLz(n) C Ixpel, . (2.13)
We now introduce the discrete projection operators:
LPprojection Py L)~ M, vzel¥Q) <Ppzy>=<z.9>, VyeM,;
LZ—projection PVn.: LEQ) » vz e L), (PVAZJP =<z, x>, VyeV, :

W
H'—projection E : H1(Q) » V0, Yz eHi (), <VE, z,Vx>=<V2, Vx>, vye Vo
h - 0 h ) ' RE s >

A -

The following approximation properties hold:
Nz =Py zlly = CR izl . O=s.rt, VzeH(Q): (214)

Hz—PthHH,,(msCh"*‘HzHH,m), O=s.r=<1, VvzeH({l); (215

Hz—Ehz!!H,m)sC‘h"’HzUH_m}, Osssr<2ra1, VzecH(Q)NHMD) . (2.16)

We shall use only continuous piecewise linear tunictions and piecewise con-
stant functions, because the low regularity of the solution of the porous
medium equation does net justify the use of higher order elements.

In general, we do not require quasi-uniformity of the family ESh },. namely
that there exists a positive constant ¢, independent of h, such that
hscohy, VSES, , Yh>0
Thus local refinements of the mesh are allowed.
If we assurne that S, is of acute type, namely:
the projection of the vertices of any d-simplex S €5, onto the hyperplane
conlaining the opposite face lies in the closure of this face,

then the following discrete mazimum principle for the Laplace operator [12]
holds:

let e V., attain its maximum at the internal node z and let X; € ¥, be the
corresponding basis function. Then

{VX‘ijE‘U,

- 14 -
In 2-D the acuteness of the mesh means that internal angles of any trian-

gle of the decomposition do not exceed n/2.

Let 7 and X be the dimension of ¥y and M,, respectively; denoting by § x i

and by Hak if,l the canonical bases of V,? and M, respectively, we define the
following malrices

M= i Xy >y, !!J_, . (diagonalized mass matriz) ;

Ki={<Vx, Vx;> 1] ;... (stiffness matriz) ; (2.17)
Pi=t <xi'v1:>!if-1.fa=1 .

Moreover, given ye ¥, and ¥ € M, , we denote by x and ¥ the vector of the nodal
values of x and the vector of the barycentral values of y, respectively.

Now, let us introduce the discrete problem. The usual technique consists in

discrelizing problem (Pd) by means of backward differences in time and %
piecewise linear finite elements in space.

(P ) Let
U= Py“uo;
Jorn=1, N, find U € V,, such that g(U™) € Hy (1) and

-1
Jr-ur
T

X>+ <VB(U™).9x>=0, wyxeV?, (2.18)

Other choices of U° are possible provided w, is smooth enough; for
instance, if u,€ €%0), then we can choose LP:= Iywy (I, stands for the linear
interpolant operator in V)

Because of the nonlinearity of £ it is difficult to compute the integral
<VA(U™}, Vx> in (2.18) exactly. Funclion B(U™) is then replaced by its interpo-

lant 7, B(U™). Moreover, a lumping mass is usually emploied in order to diago-
nalize the mass matrix.

Thus we formulate the following discrete problem.

(P, . et
= P&uo N
Jorn =1, N, find (U* B")€ V, x VO, such that
B =L p(U™) {2.19)
and
-1
<-U3;Un—,x>h+<va“,vx>=o, vxgvf, (2.20)
T
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Equation (2.20) can be wrilten in matrix form as follows:
MU + TKB* = MU (2.21)

it is easy to see Lthatl (2.21) is a system of nonlinear algebraic equation associ-
ated with a continuous and uniformly monotone cperator; this guarantees
existence and uniqueness of the solution [38]. We can use a nonlinear Gauss-
Seidel method for computing the discrete solution.

Stability {in particular, maximum priciple, assuming the triangulation to
be of acule type) and several error estimates for the solution have been proved
by many authors for algorithms of that sort {see, e.g., {40, 24, 31, 34, 35, 18,
43])

We point out that the use of numerical integration makes the scheme easy
to be implemented on a computer and does not deteriorate its convergence
properties (see [35, 16, 431).

Setting

e (£):=Bu(t)-8", e, (t)i=ult)-U", fort g™ U], 1sn=s N, (2.22)
for algorithin (B, ) it is known that [43]:

legll e s CRYE.  lle,li < Cchl/lmal (2.23)

L¥Qp) L™*(Qr)

{choosing T=Ch).

Due to the low regularity of the problem, the numerical approximaticn of
(Pd) is usually carried out by using a preliminar regularization procedure which
consists in replacing g by a funetion with minimal slope £ >0 {&: regularization
parameter), namely:

B,():=max(e [£, 1™ )sign(8) . £€R. (2.24)
Then the regularized problem is discretized in space and time as in (Ph',}
For the approximate solutions of this scheme it is known that [33]:

HEbHL‘(QT)ﬁ chlmstyzm HeuHL"‘”(Q,)S Chi/m (2.25)

(choosing 7= Clh[m”v"‘, £= Czh.[m‘”/m), which are slightly better than (2.23).

Moreover, il non-degeneracy properties for continuous solutions are known,
the previous estimale (2.25) can be improved. For instance, in the one dimen-
sional case, assuming condition (1.38) for the initial density w, the non-
degeneracy property (1.40) holds; hence we have the immproved estimates:

Metha(qr)scn%’[am-’l, |reu-\!4,,+,wr}scn“m”["‘”m’*"” {2.26)

(choosing T= Clhim/[fim—l]' €= Czh‘z[mA]/[BmAl])

Ciearly, the consideralions of section 1.3 provide the following error esti-
mate for free boundaries:
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meas (@, AQHT )< CAAm-IV[3m-] {2.27)

In more space dimensions, recalling the non-degeneracy property (2.8) we
get the following error estimale in measure for {free boundaries:

meas ((QAQET)INTE>4,])SC(E)AT, (2.28)
with ¥ depending on n and o.

2.2 - Linear schemes

In section 2.1 we presented the usual technique to spproximate problem
(Pd), which amounts at each time step to solve a system of nonlinear equations.

In order to avoid this nonlinearity, it is not recommended to discretize
equation {2.1) explicitly ir time, namely:

¢ U=UM s b cva (U™, x> =0, (2.28)
T

because of the well known restrictive parabolic stability condition T< Ch?,

which forces in using too small time steps (this is too expensive, expecially in
many space dimensions).

However, when dealing with nonlinear problems, one usually tries to linear-
ize them so as to take advanntage of efficient linear solvers. Standard tech-
niques consist, for instance, in rewriting (2.1) as Iollows:

u =V (B(u)Vu) (2.30)
and discretizing it by means of the scheme
—pym-l
<=V o+ <g(un ) v0m, 9> =0. (231)
T

Alternatively, by introducing the functions y:= A~! (B possibly regularized
as in {2.24)) and & := §{u), equation (2.1) can be rewritten as:

7(b)h, =Ab (2.32)
and can be discretized as follows:
_‘) Bﬂ_Bn—i
T

<y{B" X+ <VE™ Vx> =0, (2.33}

The success of such tricks relies on the smoocthness of the solutions u and
b = f(u}. Consequently, it is not a priori obvious that these standard techniques
for mildly nonlinear parabolic equations apply in our contexl, because (Pd) is
just a low regularity problem.

So the question is how to linearize (Pd) properly.

In [15}, Douglas & Dupont introduced the following Laplace-modified for-
ward Galerkin method:
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m-yml
T

<

X2+ <a (U VU™ wys 4 A v - "7 9x> =0, (2.34)
where the stabilizotion parameter A is chosen so that
A> —;—ma.:r(a.) . (2.35)

Douglas & Dupont proved the stability and convergence properties of this
linearized scheme for regular nonlinear problems u, =V {a(u)vu),
a(u)za, , >0

In the same spirit of the Laplace-modifled forward Galerkin method, we
consider the following discrete-time linear scheme:

< E:;Uil,x) + VAU ), Vx> + A<V U - U] gy =0, {2.38)
which can be equivalently writlen in the form:
(C) et
Uo = Uy (2.37)
Jorn =1, N solve
<8, 2>+ ATVO™ V2> = <BUM ) 2> . wa € Hy () (2.38)

and compute

U= ety @"_“%&“;‘)__ (2.38)

This scheme was also suggested by semigroup theory {(C,) is a particular
nenlinear Chernoff formula) and was first used in numerical analysis of singular
parabolic problems by Berger, Brézis & Rogers [7] (see also [42, 28, 38 It is
also connected to the discrete phase relaxation scheme proposed in [44].

The algorithm (C.) gives rise actually to an effective and simple numerical
scheme after discrelizing in space; namely, the variable 8™ is approximated by

continuous piecewise linear functions and the variable U™ by piecewise con-
stant functions:
(Ch.r) Set
U= W, %o (2.40)
forno=1,. ,,N,ﬁnd(m,@)“)auh x V2 such that
<8",x>h+AT<V®“,V)(>:<,B(U"'1],X>, vxe k2, (2.41)
and
P"AG“ ~B(U™Y
A

Ut = pml 4

(2.42)
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kwm)
the diserete problem (Ch.-r) can be equivalently w‘ritlen in matrix form as fol-
lows:

By setting 5™ := ﬁp((}:)w,‘ and noting that Py.x= )Sx(y,)v, for xe ¥,,
k=l

(M+ATK)®" = PRr-? | (2.43)

n - Un-l
= 8" () -8(Up™ .

k=1,..K. 244
x {2.44)

Sincz A:=(M+ATK) is a symmetric and positive definite matrix, the linezr
system (2.43) has a unigue solution. (2.44) may be regarded as an element-by-
element correction, which takes the nonlinearity into account.

The crucial point in the performance of the methad is the efficient resolu-
tion of the linear system (2.43). A Cholesky factorization of the matrix A is
recommended whenever the band-width is small. Indeed, since the matrix A
remains unchanged at each time step, the factorization is made only once at
the beginning. Nevertheless, when the use of an automatic grid code is

In [36] (see also [44]) the stability of the scheme (Cp. ) in reproducing the

basic estimates of solution of problem (Pd} is shown under the foltowing condi-
tion on the relazalion pararmeter A:

AxL,, (2.45)

where L, is the Lipschitz constant of B (resiricted to the interval
[—JluoliL_(m,ffuolll__(m]}‘ In particular, the mazimum principle holds assuming
the acuteness of the finite element decomposition.

Several error estimates in energy norms for both variable w and & =8(u)
were proved. In particular, setting e (L) =Alu(t))-am, Eejtn-tm, len<s N,
the estimate

/2
leg !l xiq )= Ch (2.48)
holds with a relationship between h and + depending on the regularity of initial
data.

Remark - The algorithms discussed in sections 2.1 and 2.2 can be applied to

very general nonlinear (possibly singular) parabolic problems; two-phase Stefan
problems are included.
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