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1. INTRODUCTICN

The purpose of this lectures is to give an efementary introduction to the
mathematical theory of optimal control and then to apply it to a variety of
different situations arising in economic applications. These applications
involve the cantrol of dynamic systems, i.e. systems that evolve over time,

1.1. The optimal control problem

We consider a contimuous Lime system with the time variable t. Iet x(t) be
the state vaniable of the system at time t, i.e. the inventory level at time
t. We assume that there is a way of cantrolling the state of the system. Let
u{t) be the controf variable at time t, i.e. the productian rate at time t,
Note that x(t} and u(t) are one-dimensicnal real variables.
The system dynamics is described by an ardinary differential equation (state
equation)

k(t) = fix(t),uit),t), (1.1)
where %(t) = dx(t}/dt is the instantanecus rate of change in the state variable,
and f is a given function of x,u,t.

If we know the initial vafue

X(0) = x, {1.2)
and the control trajectory u(t) over the whole planning interval [0,7], then
we can integrate (1.1} to get the stfate tnafectony,

However, not all trajectories (x(t) A(t)) are equally desirable. Denote by
Fix(t},ult},t) the instantanecus utility rate at time t depending on x(t) and
u(t). The objective functionat is the discounted utility stream

J = 6Te_rtF(x(t),u(t),t]dt v e Tgximy),m. (1.3)

-2~

In {1.3) r denotes the discaunt rate, and the function 5 gives the "salvage
walue" of the ending state x(T}.

The optimal control problem is to choose the control trajectory so that to-
gether with the state trajectory chtained by (1.1,2) it maxim{zes the cbjective
functional (1,3).

Usually in econamic applications it is reascnable to assume the control u(t)
a5 a piecewise continuaus functic:n”. Moreover, often u will be constrained:

utjen € R. t1.4)

Frequently, the control variables has to satisfy a path restriction depending
on the state variable:
gix{t),uit),t) z 0. (1.5}

For the present a control variable is called feasible if it is piecewise
cantimious and satisfies (1.4) or {1.5), respectively. Prablems with prescribed
control regions (1.4) are dealt with in sections 2, 3 and 4. In section 5 path
canstraints (1.5) are taken into consideration. There the more difficult case
of pure state restrictions is also treated.

1.2, les

Bample 1.1: Maintenance - Production Planning for Deterministic Deterioration

The purpose of preventive maintenance is to slow down the continuous deterioration
of machine's quality. Let x(t) denote the quality (resale value) of a machine

at time t. t is the age of the machine and T its sale date time. If we denote

the maintenance expenditures by u(t), the system dynamics is

Xith = —y{t) - s(t)xit) + glu(t),t). {1.€)

Here y(t) measures the rate of technical cbsolescence, §{t) the rate of attrition,
glu(t),t) is the maintenance effectiveness function (measured in dollars added
to the resale value per doliar spent on preventive maintenance).

) Thus, x(t) satisfies the state equation (1.1) only at those times t at
which u{t) is continuous. At discontinuity points of u(t) the differentiable
parts of the state trajectory are pieced together such that x(t) becames
cont inuous.
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1t is assumed that vy and & are nondecreasing in t, while glu,t) is concave
in u and nonincreasing in age t. Moreover,

utt)cne[0,n]  for all  te[o0,T). (1.7

The present value of the machine is the sum of two terms, the discomnted
producticn stream during its life, plus the discounted resale value at T:

5=l (0 - uiey]ae + e Te(my. (1.8)

An interesting extension arises if we assume that the production rate = is a
{secand) centrol instrument v. In this case the state equation (1.6) is
transformed to

%[t} = ~y(t} - s(thx{t) + glult),t) - hivit),t). (1.9}

Here h{v,t} measures the deterioration of the "state" of the machine by the
production intensity. It is plausible to assume that h is convex in v and
nondecreasing in t.

Example 1.2: Inventory and Production Planning

We consider the production and inventary storage of a given good in order to
meet an exogenously given demand d{t). Denoting by z(t) the inventory level at
time t and by v{t) the production rate the rate of change in the inventory
level is governed by

z{t) = v(t) - dit). (1.10}
The (pure} state constraint
x(t) 2 0 far all  te[0,T] {1.1M

is imposed, if the demand is to satisfied for all t. Moreover, it seems
reasonable to suppose that

0 < vit) = v. (1.12)

Let c(v,t) be the production costs and h(z,t) the inventory holding costs.
Then the task of the decision-maker is to minimize the total costs over the
vhole {given) planning interval, i.e. to maximize

3= -fMetvit), 1)+ hiz(e), 6], (1.13)
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Example 1.3: Optimal Capital Accumulatich

The following neoclassical growth model characterizes economic growth in an
aggregative closed econamy. The economy produces a single hamogenecus good
using the capital K as single production factor. If we denote by F(K} the
production function {(cutput) and by C the consumption rate, then I = F(K) - C
measures the gross investment rate. Assuming that the capital stock depreciates
at a constant rate §, the gross investment identity states that

Ki{t) = I{t) - sKit). (1.14)

Thus, (net) capital accumulation is that part of investment not used to replace
depreciated capital. The initial capital endowment is given as K{(0) = Ko'

The problem of a central planner who has authority over the entire econamy
during the planning period [0,T] is to choose a time path for consumption
such that the discounted utility stream

J= 5Te”“U(c(tndt + e k(T {1.15)

is maximized. The consumption rate is restricted by
0 s C{t) = F(K(t)) {1.16)

for any te[0,7].

1.3. Historical Remarks

Cafeufus of wariations: Newton, Leibniz, Bermoullis, Buler, Lagrange,

Hamilton etc., Valentine, McShane, Hestenes.

Optimaf controf theony: Pontryagin, Boltyanski, Gamkrelidze and Mischetikko (1962},
proof of the maximum principle (constrained control variables).

Dynamiz programming: Bellman (1957).

Tuo-person zero sum differential gamed: Isaacs (1965).

Economic applications: Evans (1924), Ramsey (1929), Hotelling (1931}, Connors
and Teichroew {(1967), Arrow and Kurz (1970), Bensoussan, Hurst and Nislund

{1974), Cass and Shell (1976), Sethi and Thampson (1981), Kamien and Schwartz
(1981).



2. THE MAXIMUM PRINCIPLE

In this chapter the maximum principle for an optimal cantrol problem in
standard form is introduced. First, the set of necessary optiiality conditions
of the maxirum principle it stated and illustrated by same simple exanmples.
Second, a heuristic proof using dynamic programming is given. Third, the

optimality conditions are interpreted econanically. Fourth, sufficient conditions

for optimality are discussed. Fifth, the standard control problem is modified
by including simple terminal conditians for the state variable. Sixth, we deal
with infinite time horizon prablems and stationarity. Finally, we sketch the
solution for free terminal time prablems.

2.1. Necessary Optimality Conditions for a Standard Control Prablem

Motivated by the discussion in section 1 we consider the following optimal
control prcblem in standard foam:

mex (3 = [T " xit) uit), v1at + e Tsixin), T} (2.%a)
u{t})

%(t) = £{x(t),ult),t) {2.1b)
x(0) = x_ (2.1¢)
uftlen ¢ K", (2.1a)

where x(t) eR! is the n-dimensional state vector and ultlc:Rm is the m-dimen-
sional control vector.

The right-hand side of the state equation (2.1b) £: K'x K®x R+ ®' is a
vector-valued function assumed to be continuously differentiable. The path
x(t), te[0,T] is called a state trajectory, and u(t), te[0,T] is called a
control trajectory.

Furthermore, the instantanecus utility (or profit) rate F: K'x F'x R+ R
is a continuously differentiable function, and the salvage value function
S: F'x R+ R has also this property.

Finally, the terminal time T is assumed to be given.
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ke define a feasible control to be a control trajectory u(t), te {0,T] which
is piecewise continuous and satisfies (2. id}. The prablem is to find a
feasible control u*(t) which maximizes the abjective functional {2.1a)
sibject to the state equation (2.1b), the initial condition {2.1¢) and the
control constraints {2.1d). The control u*(t) is called an oplimal contaol,
and x*{t), determined by means of the state equation, is called an cptimal
trafectony or an optimal path.

The cptimal control problem (2.7} specified above is said to be in Bofza fornm
because of the form of the cbjective function. It is said to be in the
Lagnange foam when S{x,T) = 0, and it is in the Mayen foam when F(x,u,t) = 0.
It can be shown that both the Bolza and the Lagrange form can be reduced to
the Mayer form. ‘The price paid for going fram Bolza or Lagrange to Mayer is
the addition of ane state variable and its associated differential equaticn.
Thus, all three forms of an optimal cantrol prablem an equivalent,

When no canfusian arises, we will usually suppress the time notation t, e.qg.,
x(t) will be written simply as x.

Using the so-called Hamilton funcition
HlX,u, 2, t) = Fix,u,t} + af (x,u,t) (2.2)

where AeR® denotes the costate variable, the main theorem of optirmal control
theory (far the standard problem (2.1)) is as follows.

Theonem 2.1 (Maximum princdple fon the standand probfem, necessany optimality
conditions),

Led u*lt) be the optimal control fon the prabfem (7.1] and x*|£] the cones-
sonding slate trajectony. Then there exists a continsous and piecewise
continuously digfenentiable vector valued function

MB = gt .., ;.n{tnen" 2.3

vhich 48 cabled costate on adjoint variable such that fon alf points te[0,T],
vhere u%(t) is continuous, the following necessany optimality conditions hold;

B (6, w0, A(0),0) = mx HiC(6), u A0, ) (2.4)
uefl R
M) = ¢ AfE) - H (0, u'ie), A, b (2.5)

MT) =S (x"(n), T, (2.6)
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Remarks: According to {2.4) u*(t} mist provide a gfeobal maximum of the
Hamiltonian Hi{x*,u,},t). For this reason the necessary conditions (2.4) -

{2.6) are called the {a) maximm principle. Note that beside of the Hamiltonian
maximizing condition {2.4) and the adjoint equation {2.5) the system dynamics
must be satisfied by x* and u*:

x* (k) = £{x*(t) u*(t),t} 2.7

x*(0) = x_. (2.8)
o

Usually we conceive x, u, f as column vectors. The transposition is denoted
by a prime. Let us define the derivative of a scalar function with respect

to a colum vector {the gradient) as a row vector. Furthermore, we agree that
the differentiation of scalar function with respect to a row vector yields

a colum vector. Taking into consideraticn that x is a colum vector and A

a row vector the state equation and the adjoint equation can be written as

x* = Hl(x*,u*,)«,t) {2.9a)
A= - H X% u*, 2, t) (2.9b)

(2.9} is a system of ordinary differential equations known as canondical system
(also called modified Hamiftonian aiystem).

(2.4) says that u*(t) must provide a gfobal maximum of the Hamiltonian
H{x*(t},u,r(t),t) for each time t. For this reasan the necessary conditions
is called meximm principle. The Hamiltonian maximizing condition (2.4) provides

u*(t) = ulx*(t),r(t),t) (2.10}
which is substituted into the cancnical system.

If the Hamiltonian is maximized in the {ntferion of G, then a necessary first-
order condition for a focal maximm is

Hu = 0. (2.4a)

If Hy 15 negative semidefinite for ued {for m = 1 this means that H_ = 0],
condition (2.4a) is also sufficient for the Hamiltonian maximizing condition
(2.4) .

-8 -

With the control variable so cbtained the n state equations for x depend

an the initial value Xyt and the n adjoint equations for  depend on the
terminal value A(T). Thus we have 2n differential equations with 2n boundary
conditions (n initial conditions (2.8) and n terminal conditions (2.6)). The
general solution of such a fwo-point boundary value probfem can be very
difficult. In certain special cases, however, the sclution is easy. Ore such
is the case in which the adjoint egquation (2.5) is independent of the state
and the control variables; here we can solve the adjoint equation first, then
cbtain the optimal control, and finally solve the system dynamics to get the
state trajectary. Gemerally, however, we have to determine m + 2n unknown
functions simcftaneousfy, namely u*(t}, x*{t), and r(t). For the solution
m+ 2n conditions are available, namely the maximizing condition (2.4) (or
{2.10), respectively), the system dynamics (2.7), and the adjoint equation
{2.5).

Essentially, the maximm principle permits to decouple the intertemporal
decision preblem into a series of prablems (2.4) holding at each instant.
Moreover, the state and the costate variables are cannected by the canonical
system,

Because an integral is uneffected by values of the integrand at a finite set
of points, the cptimal solution can be modified for a finite set of time
arquments without changing the cptimality {or feasibility] of the solution.

In most management science and econamic problems the dbjective functional

is usually formulated in money and utility terms. The future streams of money
ar utility are usually discounted. The Hamiltanian defined in (2.2) is called
cwrrent-vafue Hamiltonian. pefining the present-vafue Hamiltonian H as

¥ = e Trac,ut) + X xou,t) (2.11a)

the necessary optimality conditions can be stated as follows:
u* = arg max 'l:i, ¥ = -ﬁx, Y = e_rrsx(x"(T).T}- (2.11b)

Using the transformation
i = H expl-rt), ¥ = 1 expl-rt) (2.11c)

it is easily seem that the cptimality conditions {2.4-6) and (2.11b) are

cquivalent. One reasaon for using the current-value notation is that the

omitting of the factor exp(-rt) generates an autanamous cancnical system
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for autonom ous functions f. ¥ and 5. For such system the phase portrait
analysis provides a powerful tool to get insight into the qualitative behaviour

of the sclutions.

2.2, Elementary Examples

In order to absorb the maximum principle the reader should study very carefully
the examples in this section, all of which are problems having only one state

and one control variable.

Example 2.1. Consider the problem
i
Maximize {J = [ (-xXe]} (2.12)
0

subject to the state equation

X=u, x(0)a=1 (2.13)

and the control constrainr
ue 0O = [-1,1]. (2.14)

Note that T = 1, Fw -y, 5 = 0, and f = u, Because of the minus sign in F we
€an interpret the problem as being chat of minimizing the (signed) area under
the curve x(t) for 0 Tte<l.

Solution. First we form the Hamiltonian

H=-x+3u (2.15)

and note that, because the Hamiltonian is linear in u, the form of the !

optimal control is

1 if x>0

%

u (t) = undefined if ) = 0 (2.16)
-1 1f x <0

OF, in another notation

*
u (&) = bang[-1,1;}] (2.17)
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To find ) we write the adjoint equation

: ol
Am- 5t h A = s (m] =0 (2.18)

Because this equation does not involve x and u We can easily solve it as
ae) = -1, (2.19)

Ic follows that (t) = t-1< 0 for all tel0,1] and since we can set
*
u (1) = -1 (which defines u at the single point t=1), we have the

optimal control

u*(t) = -1 for tel0,1].
Substituting this into the state equation (2.13) we have

X = -1, x(0) = 1 (2.20)
whose solution is

x(t) = 1-t for tel0,1] . (2.21)

The graphs of the optimal state and adjoint trajectories appear in figure 2.1

*
Note that the optimum value of the objective function is I -—% .

1
*
‘/v/xm-l-t
0 1 t
-1 'LR(EJ-t~1

Fig. 2.1: Optimal state and costate trajectories of example 2.1
—
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Example 2.2, Let us solve the same problem as in example 2.1 over the
interval [0,2] so that the objective Function Ls
2
Maximize [J = [ (-xyad (2.22)
0
The constraints are (2.13) and (2.14) as before, Here we want to minimize the
signed area between the horizontal axis and the trajectory of x({t) for
0

t 2,

[{ AN

A

Solution. The Hamiltonian is {(2.15) and the optimum control is (2.17) as

before. The adjoint equation is
A=1, M2y =0 (2.23)

is same as (2.18) except T = 2 instead of T = }. The solution of (2.23) is

easily found to be

a(t) =e-2 for tel0,2]. (2.24)

Hence the state equation (2.20) and its solution (2.21) are exactly the same.
The graphs of the optimal state and adjoint trajectories appear in figure 2.2,

Note that the optimal value of the objective function here is J* = 0.
Example 2.3. The next example has objective function

1
Maximize [J = f {= % xz)dt] (2.25)
0

subject to the same constraints as in example 2.1, namely
$mu, x(0) =1 (2.26)
ueQ=[-1,11

Here F = -(1/2)::2 so that the interpretation of the objective function (2.25)
is that we are trying to find the trajectory x(t) so that the area under

the curve (1/2):(2 is minimized,
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A{t)=t - 2

-2

Fig. 2.2: optimal paths of example 2.2

Solution. The Ramiltonian 1is

n--%xzuu (2.27)

which is linear in u 8o that the optimal policy is
*
u {t} = bang [-l,l;X]. (2.28)

The &djoint equation is

A o= - -g-';' -=x, WI)=20 (2.29)
Here the adjoint equation involves x so that we cannot solve it initially.
Because the state equation (2.26) involves u, which depends on X, we

can't integrate it either!




_]3_

The way out of this dilemms is to use some Lintuition. Since we want to
minimize the area under (1/2)x2, and since x(0) = 1, it is clear that we
want to decrease x as quickly as possible. Let us therefore temporatily

assume that XA 18 non-positive in the interval [(0,1) so that from (2.28) we
have u = -1 through out the laterval., With this assumption we can solve (2.26) as
x(t) = 1-t €2.30)

Substituting this into (2,29) gives

A= let

Integrating both sides of this equation from t to 1 gives
1 1
[ Mndre [ (-ryar
t t

1
A(L) - A(t) = (r - % )
[ 4

which, using a(l) = 0, ylields

1.2 .1
A(t) = - 2 £+t 3 (2.31)

The reader may now verify that a{c) is non-positive in the interval {o,1],
verifying our ariginal assumption. Hence (2.30) and (2.31) satisfy the
necessary conditions. Finally yoJ are asked to show that they

satisfy sufficient conditions se that they are, in fact, optimal,

Figure 2.3 shows the graphs of the optimal trajectories,

Example 2.4, Let us rework Example 2.3 with T = 2, that is, with

objective function
2 1.2
Maximize {1 = [ 7 x*5de] (2.32)
]

with constraints (2.26).
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Fig. 2.3: Optimal trajectories of example 2.3

Solution., The Hamiltonian is still (2.27) and the form of the optimal

poliéy remzins (2.28). The adjoint equation is
A=x,  A(2) =0

which i3 the same as (2.29) except T = 2 instead of 1, Let us try to extend
the solution of the previous example. Note from (2.31) that A(l) = 0. 1¢

we recall from the definition of the bamg function that bang [-1,1;0] is not
defined, so that we can choose u in {2.28) arbitrarily when 3 = 0, This is
an instance of singular control. Let us see if we cam maintain singular control.
To do this we choose u = 0 when ) = 0. Since A(1l) = 0 we set wuw(l) =0

so that from (2.26) (1) = 0. HNow note that if we set wu(t) =0 for &> 1
then by integrating these equations forward from 1 to 2 we see that x(t) = 0
and A(t) =0 for 1 s < 2; in other words u(t) = 0 maintains singular
control in the incerval. Intuftively, this is the correct answer since once

we get x = 0 we should keep it at 0 in order tomaximize the objective

function J in (2.32).,
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In figure 2.3 we can get the singular solution by extending the graphs shown
. * *
to the right meking x (t) =0, u (t) =0 for 1 st 2.
Example 2.5. Our last example is slightly more complicated and the

optimal contrel is not bang-bang. The problem s

2
Maximize {J =] (2x - Ju - uhyae 2.33)
Q
subject to
x=x+u, x(0) =5 (2.34)
and the control constraint
¢ el = [0,2] {2.35)

Solution. Here T =2, F = 2x - 3u - uz, S=0 and f = x + yu,

The Hamiltonlan is

H= (2x - 3u - uz) + A(x + u)

= (2 + M)x - (u2 + 3u - hu) (2.36)
Let us find the optimal control pelicy by differentiating {2.36) with respect
to u;

g—ﬂ--Zu-3+A-O
u

80 that the form of the optimal comtrol is

u(t) = K_LE%_:_SL 2.37)

provided this expression staye with in the limits of Q = [0,2}]. (Note that
the second derivative of H with respect to u 1is azu/auz = -2 <0 =m0

that (2.37) satisfies the second order condition for the wmaximum of a Eunction,

We next derive the adjoint equation as

- BH .
Am-emt o M@ =0 2.38)
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which can be rewritten as

A+ w2, A(@2)=oO.

‘This solution of this ljinear differential equation

A(e) = 3 Gz-c - 1) . (2.39)

If we subatitute this into (2.37) and impose the (1 constraints, we

sea that the optimal control is

2 1f 22552
W) - a5 uf ogefto25c2
0 1f 2 -2.5<0

*
The graph of uw  appears in figure 2.4,

\
\ Z-t
e - 2.5
\ KL
\
) \
1
|
|
I
i
i
]
| -
I
0 t, = 496 t, = 1.08 2 t
1 2 -~
~
“"'\.
Tig. 2.4: Optimal control of example 2.5
2-
In cthe figure £y is the solution of e T _2.5=2 which is t, - 496
while t, solves e27® . 2.5 20 wvhich is t, = 1.08.
As exercise you will be asked to compute the optimal trajectory

1*(t) by plecing together the solutions of three different differential .equations.
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2.3. A "Proof" by Dynamic Programming

We shall now derive the maximum principle by using a dynamic programming
approach. The proof is intuitive in nature and is not intended to be mathe-

matically rigorous.

2.3.1. The Hamilton-Jacobi-Bellman Equation

Suppose V({x,t): Rnx :Rl+ Rl is a function whose value is the maximum value

of the objective function of the control problem given that we start it at

time t at state x. We initially assume that the vafue funciion vix,t) exists

for all x and t in the relevant ranges; later we will make additional assumptions

about v,

Bellman (1957) in his book on dynamic programming states the principle of

opLimal ity as follows:
"An optimal policy has the property that, whatever
the initial state and initial decisiecn are, the
rtemaining decisions must constitute ap optimal
(RS policy with vegard ta the outcome resulting from
the firsct decision,"
Intuizively this principle is obvious, for if we were to srart in state x
at time t and did not follow an optimal path from thereon, then there would
exist (by assumption) & better path from ¢ to T, hence we could improve by

following the better path from time t on. We will use the principle of

optimality to derive conditions on the value of function V(x,t).

x
V{x+bx,c+ét) \
Eag S Y - Optimal
Vix,t) T Path
x
t
[+] t t+5t

Fig. 2.5: Illustration of the principle of optimality
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Figure 2.5 is a schematic picture of the optimal path in state-time
space, and two nearby points (x,t} aod (x+h,t+h) where h is a small
increment of time. The value function changes from V(x,t) to Vi{x+h, t+h)
between these two points. By the principle of optimality, the change in the
objective function ts made up of two parts: first, the incremental change
in J from t to t+h which 1s given by the integral of F(x,u,t) from
t to t+h; second, the value function ¥{x+h,tth} at time t+h), The
curreit control action should be chosen within constraints £ to maximize the

sum of these two terms. In equation form this is

t+h
V(x,t} = max {I Fix(t),u(r),r]ldr + !
ulr )e) t !
teft,t+h) | .
Vix(t+h,ten] } {2140)
where h represents a small increment in t.’ Note that we assume for

simpl:city r = O.
Since F 1is continuous the integral in (2.407is approximately |

F(x,u,t)h so that we can rewrite {2.40) as ’

° i
Vix,t) = max  {F(x,u,t)h + vIx(t+h) ,e+h]} + o(h) (g.an
uel)

where o(h) denotes a collection of higher order terms in h. {By

definizion of{h) is a function such that 1im _c%}})_. = 0,)
h-0

We now make an assumption of which we will talk more later. We assume
that tke return function or payoff function V 1s a continuously differentiable
functicn of its arguments. This allows us e use the Taylor's series expansion

2f V with respect to h to obtain

v[xtteh) , t+n] = vix,t) o [vyitdk + v 0} ]h v o). (2.42)
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where V_ and Vt are partial derivatives of V(x,t) with respect to X
x

and t, respectively.

Substituting for x from (2.1} in the above equation and then using
it in (2.41), we obtain

Vix,t) = max [F(x,u,€)h + V(x,t} + Vx(x,t)f(x,u,t)tn + Vt(x,t)h] + ofh).
uell {2.43)

Cancelling V(x,t) on both sides and then dividing by h we get

0= max [F(x,u,t) + Vx(x,t)f(x,u,t) + Vt(x,t)] + gﬁbj (2.44)
uefl
Now we let h = 0 and obtain the following equation

0~ max [F(x,u,t) + V {x,t)f(x,u,t} + ¥V (x,c)] (2.45)
x | 4
uell

with the boundary condition

V(x{T),T) = S(x(T).T). (2.46)

This boundary condition 1s obvious from the fact that 1f we are at t =T
then the value function is simply the salvage value function.

Note that the components of the vector Vx(x,c) can be interpreted as

the marginal contributions of the state variables x to the objective function

being maximized. We denote this marginal return vector by an adjoint (row)
vector A{t), Fn, i.e.,

ale) = vx(x.t). (2.47{

From the preceding remark, we can also interpret ) to be the per unit change
in the objective function for small changes in x.| Next we introduce the

Hamiltonian

Hlx,u,Vx,t) = F(x,u,t) + Vx(x,t)f(x,u,t) (2.48)
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>r, simply

H(x,u,h,c} = F + rf, (2.49)
!

1
we can rewrite equation (2.45) as the follewing equation, called the.

HamifLon- Jacobi-Bellman equation

0 = max {H + Vt) < {2.50)
uell :

Note that it is possible to take v, out of the maximizing operation
since it does not depend on wu.

The Hamiltonfan maximizing condition of the maximwm principle can be
obtained from (2.50) by observing that if x*(t) " and A(t) are optimal

values of state and adjoint variables at time t, then the optimal control

u*(t) must satisfy (2,50), i.e., for all wu(t)el,
P X * - - * *
Hix (£),u (£), A(t),e] + ¥ (x (£),t) 2 Hlx (t),u(t), M(t),t] +

V:(x*(t),tJ. (2.51)
Cancelling the term Vt on both sides, we obtain
* * *
Hlm (t),u (€], A(c),e] > HIx (t),u(t), Nt),t] (2.52)

for all wu(t)ef.
In order to complete the statement of the saximum principie we must

still obtain the adjoint equations.

2.3.2. Derivation of the Adjoint Equation

The derivation of the adjoint equation proceeds from the Hamilton-
Jacobi-Bellman equation (2.50}. Note that, given the cptimal patﬁ x*, the
optimal control u* maximizes the right side of {2.50}, and its maximum value
is zero. We now consider small perturbations of the values of the state

variables in a neighborhood of the optimal path x*. Thus, let
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x(£) = % (t) + bx(t), (2.53)

where |I6x(t)|| < e, be such a perturbation.

We now consider a 'fixed' time instant t. We can then write (2.50) as

HEC (0,07 ()0, 00,00, 61 + ¥, (7 (0,0) 2 Alx(E),u* (62,9 (x(e),00,6] |

+ Vt(x(t),t).l {2.54)

To explain, we note that the left hand side of (2.54) equals zero. The right
hand side can attain the value zero only if u*(t) is also an optimal

control for x(t). In general for «x(t) ¢ x*(t). i.e., &x{t) # 0, this

will not be s0. From this observation, it follows that the expression on the
right side of (2.54) attains its maximun (of zero) at l;(t) - x*(t). Further-
more, x(t) 1is not explicitly constrained. 1In other words x*(t) is an

unconstrained local maximum of the right hand side of (2.54), so that the

*
derivative of this expression with respect to x must vanish at x {t); i.e.,
*
Hx[x(t),u (t),vx(x(t),t),t] + Vtx(x(t),t) =0 (2.55)

In order to take the derivative as we did in (2.55) we must further assume
that V is a fukce differentinbfe function of its arguments. Using the

definition of the Hamiltonian in (2.48) we obtain
+ +
Fx vxt'x + (vuf) + vtx =0 {2.56)
where the prime denotes the transpose of a vector.

The deriwvation of the necessary condition (2.56) is crux of the reason-
ing in the derivation of the adjoint equation. It is easy to obtain the
so called adjoint equation from it. We begin by taking the time derivative of

Vx(x,t); thus
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dv

dt xt XX £x

X (v, k) HV =V £) 4V (2.57)
XX

Since the terms on the right of (2.57) are the same as the last two terms

in (2.56 ), we see that (2.57) becomes

dvx
dt = - Fx N fox

Because ) was defined in (2.15) fo be Vx' we can rewrite (2.58) as

A= - Fx - lfx.

(2.58)

To see that the right hand side of this equation can be written simply as

—Hx, we need to go back to the definition of H in (2.49) and recognize

that Uhen'taking the partial derivative of K with respect to x, the

adjoint variables ) are considered to be independent of x. We note

’

further that along the optimal path, % 4is a Function of ¢t only. Thus,

Aow - H

[note that we have assumed for simplicity that r = 0), Also, from the

(2.59

definition of X in {2.47) and the boundary condition (2.46), we have the

terminal bcundary condition, which is also called the transversality condition:

_ 88(x,t)

M ax

= Sx(x(T).Tl.
x=x(T)

The adjoint equation {2.59) together with its boundar? condition (2.60)

determine the adjoint variables.

(2.60)
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2.4. Fconomic Interpretations of the Maximum Principle

Recall that the objective function (2.3) is

7= éTe—rtF(x.u.t)dt + Sx{T),T)

where r is the discount rate, F will be considered to be the instantanecus
profit rate measured in dollars per unit of time, and S(x(T),T} is the salvage
value in dollars of the firm at time T when the terminal state is x(T). For
purposes of discussion it will be convenient to consider the (one-dimencsional)

state x{t) as the stock of capital at time t.

In (2.47) we interpreted \(t) to be the per unit change in the value

function V(x,t) Ffor small changes in capital stock x. 1In other words - A(t)
is the marginal value per unit capital at time t, and it is also referred to
as_fhg_"pgigngqp_"shadou price” of & unit of capital. In particular, the
value of A(0) 1is the marginal rate of change of the maximum value of. [,
(the objective function) with respect to the change in the initial capital
stock, *6.

The interpretation of the Hamiltonian functiom in (2.49) can now ke

derived. Multiplying (2.49) by dt gives

Hdt = Fdt + Afdt
= Fdt + Akdt

= Fdt + \dx

where we made use of the state equation {2.lb). The first term F(x,u,t}dt

represents the direct contribution to J in dollars from time ¢ ¢to ¢ + dt
if we are in state x and we apply control u. The differencial

dx = f{x,u,t)dt represents the change in capital stock from t to ¢t + dt,
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when we are in state x and control u is applied., Therefore, the second

term )dx represents the value in dollars of the incremental capital stock, dx,
and hence tan be considered as the .inditect contribution to J in dollars.

Thus Hdt can be interpreted as the total contribution to J from the interval
t to t+dt when x(t) =x and u(t) = u,

With this interpretacfon of the Hamiltonian it is easy to see why the
Hamiltonian wust be maximized at each time t If we were just to maximize F
at each time t, we would not be maximizing J, because we would ignore the
effect of control in changing the capital stock, which give rise to indirect
contributions to J. The maximimum principle derives prices, the adjoint
variables ), in such a way that X{t)dx is the correct valuation for the
indirect contribution from the iaterval t to t + dt. As a consequence the

Hamiltonian maximizing problem can be treated as 2 static problem at each

instant- t; & In other words the maximum principle "decouples” the dynamic

maximization problem (2.1) in the interval [0,7] into a series of static
maximization problems at each instant t in [0,T]. Therefore the Hamiltonian
can be interpreted as a surrogate profit rate to be maximized at each time t.

The value of A to be used in the maximum principle is given by (2.59)
and (2.60), L.e.

i L} 9P A(z+ E); MT) = 5_(x{T),T).
X x

Rewrlting the equation as
- - d
r(Ade} - dj} = det (det) + l(fx tn

we can observe that along the optimal path the interest rate of a capital
unit evaluated by the shadow price X plus the decrease in the price of capital

from t to t + at, which can be considered as the mugdinal cost ef helding
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that capital, equals the manginal revenue of 4nveating the capital as is
evident from the interpretation of the Ham{ltoalan given above. The marginal
revenue, dec, consigts of the sum of direct marginal contribution, det,
and the indirect marginal contribution, lfxdt. Thus the adjoinr equations
become the familiar economic equilibrium relation:frginal cosf equals manginat

revenue,

Further insight can be obtained for r = 0 by integrating the above

adjoint equation from t to T as follows:

T
AE) = D) + [ H (x(1),u(r),7)dr
N t

T
= 5 (x(T),D +_[‘t H dr (2.61)

Note that the price A{T) of a unit of capital at time T 15 its marginal
salv;g; v;iué} 'éx(x(TL1?. The price A(t) of a unit of capital at time t is
the sum of its terminal price, A(T), plus the integral of the marginal
surrogate profitc rate, Hx, from t to T.

The above interpretations show that the adjoint variables behave in much
the same way as dual variables in linear (and nonlinear) programming. The
differences being that here the adjoint variables are rime dependent and satisfy

derived differential equations,

2.5. Sufficient Conditions

We next prove a theorem that gives conditions under which the maximum
principle conditions are sufficient {as well as necessary). This thearem Ls
important from our point of view since the models derived from many management
science applications will satisfy c¢onditions required for the sufficiency
result. As remarked earlier, our technlque for proving existence will be to
display for any given model a solution that satisfies both necessary and

sufficient conditiuns.!
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: . i 4] ..
We first define a function H: R x R"x m+ & called the max.dimdized

Hamiltonian as fallows:

#0(x,A,€) = Maximm H(x,u,h,t) (2.62)
uell

We assume that from this equation a function y = u* (x,h,t) is lmplicitly and
uniquely defined. Given these #ssumptions we have by definition,
0
H (x,h,t) = H{x,u*,A,c}. {2.63)
It ia also possible to show that

MG, hut) = B (x,0%,1,8) (2.64)
for all uel. To see this for the case of differeatiable u*, let us

differentiate (2,63} with reapect to x:

L T e e -~

du* ¢

o
Hx(x,l,t) - Hx(x,u‘,k,c) + Hu(x,uﬂbk,t)s;“, (2.65)

Let us look at the secomd term on the right hand side of (2.65). We must

show |
dut _
B (rpusn,0)0 - olf

for all x. There are two céses to consider: {i) Case 1; che unconatrained
global maximum of ¥ occurs in the interior or on the boundary of Q(r).
Here Hu(x,u*,l,t) =0. (i) Case 2; the unconstrained global maximum of H

ng

occurs outside of (. Here Pyl 0 because changing x does not influence

!
the optimum value of u. Thus (2.66) and therefore (2.64) hold.
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o Furthermore, since S(x(T},T) is a concave function, we have
We have shown the result in (2.64) for cases where u is a

differentiable function of x. It holds more generally provided 1 is appropriately S{x(T)},T) § S{x*(T},T) + Sx(x'('l‘).'l‘l (2{TY - x*(T}), (2.72)

qualified. or

Theonem 2.2 (Sufficient optimality conditions fon the standard

S(x*{T),T} - S{x{T),T) + §_ (x*(T),T) [x(T)-x*(T)| = 0. (2.73})
probleml. Let u*(t) and the conresponding x*{t}, A(t) satisfy the maxdrum ' X : ]

principle necessary condition [2.4-7) for all te(0,T}; then u® is an optimal Integrating both sides of (2.71) from 0 to T and adding (2.73), we have

conthol Af Holx,x,:l 44 concave in x foh each i, £ and Slx,T) is concave in x

* L *
Iy - ) + S [x (D), 1] [x(m-x ()] '
Proof. By definition ’

. ! 2 MM - M) - A@O-x @), @.1)
Hex(e),u(e), M), 6 < B(x(E), Xe),0. (2.67)

0 where J(u} L& the value of the obiective function associated with a control u,:
From concavity of H ', !

* *
Since x (0) = x(0) = x_ (the initial condition) and since MT) = §_(x (T),T)

. ) . ) *
H,O(x('_;)’ e, ) <o), lft).t)|+ Hox' (£)) KE),0 (x(8) = x (€D {2.68) _we have

*
thus from (2.63), (2.67) and (2.68) J(u ) > J(u), (2.7%)
*
BUx(t),u(t}, A(t),t) S Hix*(t),u*(t),AfL),¢) + Hg(x'(t),)«(t),t) xit) - x*(t)}. thus, u is an optimal control. This completes the proof of the theorem.
0
{2.69}) Q

The following conditions are easiear to check than concavity of H . If the

By definition of H in {2.49) and the adjeoint eguatlon Hamiltonian H is concave in (x,u) or if F and f are concave in (x,u} and if
A ¢ C,then the maximized Hamiltonian #° is concave in x so that the sufficiency

' . . . * *
F(x(t),u(t),t) + ;\(:)El_x(t),u(l:),t) < F(x (t),u (t),t} conditions of thecrem 2.2 holds,
* * . * blem les 2.1 and 2.2
4 MEYE@ (£),u (E),B) = A(E)(x(t)-x (&)}, (2.70) Example 2,6. Let us show that the problem in Examp

satisfy the sufficient conditions. We have from (2.13) and {2.62)
Using the state equation, transrosing and regrouping,

g% = - x4+ A

* * - x
Fix (£},u (e}, t) = Fie{e),ufe), ) 2 A(t}ix{t)-x {£}} ;

0
where uo ts given by (2.16). Since u0 {<s a function of A only, H

*
+ (o) (R{c) - k(L) . (2.71) 1s certzinly concave in x for each t and X (and in particular for
|
A = 1). Since 5(x,T) =0 the sufficient conditions hold.
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Remark 2.1. It can be shown that the cancavity of the maximized Hamiltanian 1°
follows fram the negative semidefinitencss of the matrix

2H _ 3%{ _ Hxx qu
b = 2 \u_ H
9 {x,u} ux  Cou
for all (x,u,A} with Hu = Q.
If DZH is globally negative semidefinite then this is equivalent with the
concavity of H in (x,u).
For X 2 0 the cancavity of H in (x,u) follows fram those of F and f.
Note that the negative semidefiniteness can be checked by the criterion of

principal minors,

2.6. Terminal Conditions

In our standard optimal control problem no condition far the terminal state
x{T} is imposed (free end state). In some applications (especially in the

- matural. sciences) the temminal state must lie in a target set. Thus, we modify
the optimal control prablem (2.1) by adding the following terminal state
condition:

Xj‘T) free for ] =1, «vu, n' [2.76a)
x5(M = xqu for i=n'+1, ..., 0" {2.76b)
T . "
XJ(T) 4 xj far j=n" + 1, ..., n. (2.?6C)
1

To state the necessary optimality conditions for the extended optimal cantrol
Prablem {2.1, 76) we have to define a {new} Hamiltonian as

Htx.u.A,Ao,t) = AFx,u,t) + Af{x,u,t),

vhere AO is a nonnegative constant. Note that the Hamiltonian (2.2) of the
standard preblem (2.1) arises a special case by setting Ao =1 (J\O = 0 leads
to a contraction; see (2.77)).

The case X =0 is denoted as abnormal case. Note that for A $ 0 the Hamiltonian
case be normed such that lo = 1. This case is called nowmaf. It turns cut that
if x{T} is not free, then the abnormal case cannot excluded. In principle,
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for each (econamic) problem should be checked whother A=V or not. (If it
tums out that Ao = 0, then the problem is badly specified and a reformulation
is pecessary. )

Note that a cantrol is now called feasibfe, if it is not only piecewise
continuous and uef, but it also generates by the state equation and the
initial condition a terminal state satisfying (2.76).

Theoner 2.3 {Mucimum principle fon the standand problem enfanged by teaminal
constnaints). Let u* and x* be an optimal solution of the coninol probfem (7.1,
76}. Then there <4 a constant A, 2 0 and a continuous and piecemise contanuously
differentiable costate function A(t]eR", such that

(i eft)) $ 0 for each te[0,T] {2.77)

and, besdides of (2.7}, the gollowing necessany optimality conditions are valid
for all points of contimwity of u*|t):

HIX* (£),u* (t) 2 _,A (£}, t) = max Hix*(t},u,A_,A(t),t) (2.78)
o Ueld o .
T A MY - H () u ) A ), - (2.79)

In extension to [7.6) the following transversality conditions hold e

= - '
Aj M = Aoslex*(Tl T} for jJ 1y eas (2.80a)
Rj(T) free for 3=n'+1, ..., n" {2.80b)
Aj{T} 2 Aonl(x*(T) «T)  with ! (2.80c)

]

[lj(T)vlonj(x'lT},T)][xg(T) - x';‘] =0 for j=n"+1, ..., n

Example 2.7, Solve the linear control problem

max 7% (-xydt (2.81a)
u o

X =u, x(0) = 1 {2.81b)
ue = [~1,1] (2.81c)

altermatively far the following end conditions

@ x(4) =1, () x4 1, (c) x(d} =1, (d} x(4} free. (2.82)



..31_
The Hamiltonian is
H==xx+ 2.
fo1 u

The necessary optimality conditions are

u = arg max H{x,u,:)

ue{-1,1]
i.e.
-1 <
u = undetermined } for » Y =10 (2.83)
1 >
A= -Hx = Xo. - 2.84)

(a) We first show that Ao = 1. Assume on the contrary AO = 0. Then fram (2.84}
follows A = const. Far 4 > 0 we cbtain from (2.83) u = 1 for all t.

This together with (2.81b) yields x{4) = 5 which contradicts (2.82a). For

} = 0 we get a contradiction to the non—-deceneracy assurption (2.77), Finally,
fram.. s <0.we conclude x(4) = -3, Hence, Ao &-1. In case {a) fram the ..
transversality condition (2.80b) we get no infarmation an A{4) {r(4) is free).

Fram the adjoint equation 5 = 1 follows
ME) =t + g, (2.85)

where the constant ceR is still open. For ¢ s -4 {2.85) implies i{t) < 0
for te[0,4), i.e. u* = ~1, Thus, fram (2.81b) we get according to {2.83),
x(4) = -3 contradicting (2.82a).

Analegously, for ¢ z 0 we cbtain a contradiction, since x(4) = 5.

For the remaining values ¢ {-4,0) (2.85) and (2.83) yield
u:{-—1 for 05t < |[cf
+1 fe] s ¢ s 4.

This implies x{4} = 5 + 2¢c. Then from (2.82a) follows ¢ = -2. This procedure
determines » and u according to (2.85) and (2.83), respectively, and by (2.81b)
the state path x:
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time interval 4 l X | )
{0.2) -1 -t t-2
[2,4) 1 t-3 t-2

For the following cases it also holds that Ao =1,
(b} From (2.80c) we cbtain
M) 20, x44) 21, A [x(4) - 1] = 0. (2.86)

Suppose that x(4) > 1. Then from the camplementary slackness condition

Al4) = 0. This together with (2.84), i.e. ) = 1, yields a{t) < 0 for tc[0,4l.
Then fram {2.83) follows u = -1 and (as above) x(4)= -3 which contradicts
(2.82b). Thus, x(4) = 1, and the solution described in (a) is optimal.

{c) M4 50, 1 - xt4) 20, A4 [1 - x{4)] = 0, If x{4) < 1, then 1 {4} = 0,
Thus, =1, » <0, u==~1, x = 1 - t, and x(4) = -3. Hence, A(4) = 0.
The resulting optimal solution is

time interval 1 4

I
[0,4) I -1 I -t l t-4

2.7. Infinite Harizon and Staticnarity

In many econamic problems there is no finite planning interval. Thus, we con-
sider the control problem (2.1} for T = =, It is assumed that the improper
integral converge for any feasible solution.

n many cases it turns oot that the optimal solution of an autanamous infinite-
time control prablem (x*{t) ,u*{t}} comverges for t+= to a statlonary point
'%,4). For finite but “long" time horizons T a similar cbservation can often

be made: the optimal soluticn lies "most of the time" "near” to the equil ibrium,

This equilibrium is defined by the requirement that all motion ceases, l.e.

== 0. Thus, [fc,ﬁ,i} satisfies the following conditions
Fix,0) =0
ri - H (x,0,5) =0 {2.87)

Hix,0,i) 2 H(x,u,}) for all uen.
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Clearly, if the initial conditjon xo = ;c, then the optimal control us(t) = g
for all t.

To state the necessary optimality conditions for infinite~time cantrol prablems
we need the Hamiltonian

H = AOF‘(x,u,tl + Afix,u,t} {2.88)

(see also section 2.6).

Theonem 2.4 [Maximum principle fon infinite time problems). Necessany fon the
optimality of a geasible pain [x*,u*] is the exdstence of a constant A, 20
and a continuous costate function A{t) such that

B At)) 0 for each tefo,=).

Momeoven, with the Hamiltonian (2.8K) the optimality conditions (2.4, 5) of
theorem 2.1 ane satisgied.

It is remarkable that for T = w there is generally ne transversality canditien
among the necessary optimality conditions.

The following example shows that the "limiting transversality" condition

lime ™5 = o (2.89)

o
representine the pendant to (2.6} is no necessary optimality condition.

Example 2.8,

max {J = émll—x)udt}

v

A

o
n

(1-x)u, %(0) = 0; 0 su 1.

Since F = £ we have

J = 6"’5(dt = lim x(t) - X(0) = x{=).

to

Therefore each feasible solution maximizing x(=), i.e. for which x{w) = 1,
is gptimal, Thus, e.qg.,

ur = /2 for te[0,=) (2.90)

is an optimal solution. It holds that 0 < x*{t) < 1 for te(0,»), and x(=} = 1,
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The llaniltonian (2.88) is given as

H= (J\O,A) {1-x}u.

For
Hu = (Aofkl (1-x)
follows
0 <
u = {determined } for H {=}o0.

u
1 >

For u* in (2.90) we have Hu = 0 for all ¢, and hence

Aty = -3 for tefo,=). (2.91)
Since {x_,3) f O the costate A(t} is a negative canstant, and the transversality
condition (2.89} is not valid (note that r = 0).

The present example illustrates the hecessity of considering Ao z 0,

Example 2.9.

max {J = 6wlu-x)dt}

s.t. i=u2+x,x(0}=0;0£us1.

If u { 0 in an interval of positive length, x{t) diverges exponentially to
*=, Since u 5 1, we then have J = ~=, Thus, the optimal solution is clearly

ur{t) = 0 for tef0,=).

The necessary optimality conditions are

H = }\o(u—x) + A(u2+x)
1] <

u = 4 undetermined } for Hu = Ao + 22u{=}0 (2.92}
1 >

h o= Ao - A.

Assume that )'o > 0. From u* = ¢ and (2,92) follows u* = j which is a
contradiction. Thus, the abnonmal case Ao = 0 prevails.
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The following theorem shows that a concavity assumption of the (maximized)
Hamiltonian with )o = 1 together with a limiting transversality condition
provide a set of sufficient optimality conditions,

Theonem 7.5 [Suff4icdient optimality conditions for infinite £ime probfems].

Let u*({t) be a geasible solution and x*(t) the corresponding siate path of

the optimal control problem (2.1} with T = =. Assume that there are funciions
At)e P such that additionally to (2.4, 5) the Limiting transversality
condition ’

1im ¢ 8 g0 [x(t) - x*t)] 2 0 (2.93)
t+o
L5 satisfded fon any feasible trajectory x{£). Then u*{2] .is an optimaf sofution
provided that Holx,l,.tl 44 concave in x for all (£, r{t}}.

The limiting transversality condition is satisfied if
each feasible path x{t) is bounded on nonnegative,

x*(2] 4is bounded, {2.94)
ALt &8 nonnegative and satisfies [(Z2.§9).

Note that {2.89) can replaced by the requirement that X(t} is bounded. If
any feasible trajectory is bounded then each solution which converges to an
equilibrium satisfies the limiting transversality condition (2.93). This
property is used in section 4.

2.8. "Free Terminal Time

Sane optimal control prablems require a similataneous determination of aptimal
control and terminal time. This prcblems are usually termed  free terminal
time problems, Such proablems cocour most frequently in the area of machine
maintenance and replacement, forest management, similatanecus optimization of
training and retirement age, etc. The necessary optimality conditions in these
problems include an additional thansversality condition which is expressed in
terms of  the Hamiltonian and the terminal salvage value function.

The free terminal time optimel control problem is

max [T " Fx,u,t0de + & s txem 1) {2.953)
u, T

subject to
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% o= fix,u,t}, x(0} = X, {2.9%b)

uefl, (2.95¢c)

Te following theorem states the necessary conditions. Here and in section S
we use the following notation

H*[T#*] = H{x*(T*) ,u* (T*) ,1(T*) ,T*) (2.96a)
S*[T*] = S(x*(T*},T*). {2.96b}

Theorem 2.6. Let u* and x* be an optimil sofution of the controf problem
12.94] An the optimal time inteaval [0,T*]. Then thene exists a continuous
and piecewise continuously differentiablfe costate function A t)cR" such that
with the Hamiltonian (2.2] the necessany optimabity conditions (7.4-5) are
valid. Mercover, the foflowing additienal thansversality cendition fon T to
be optimaf teaminaf time can be stated as

HA[T#] = rse[1+] + sa1+]. (2.97)

We now provide an econamic interpretation of (2.97). Consider for instance
the machine maintenance prcblem. If T is the optimal sale date”
is indifferent between keeping the machine for an additional 4T units of

time or selling it dT units of time earlier. The Hamiltonian represents the

, then one

profit F plus the (current) value

ATIR(TY = 5, (x(T), TI%(T)

of the change in the state variable (quality of the machine}. The term
Sp{x{T},T) denotes the change in the salvege price. The total of these two
quantities equals the interest on the serage value. Thus, the marginal return
from keeping the machine longer is equal to its opportunity cost.

bBample 2.10. Consider the following resource extraction problem

e 6Te_rt[p(t)u(t} - Clult), t}]at (2.98a)
u,T
x{t} = -u{t) {2.98h)

R To simplify the notation we suppress the stars indicating optimality.
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x(Q) = x> 0, x(T) =0 {2.98c)

uz 0. {2.98d)

Note that the terminal condition is equivalent to the path restriction x(t} z ¢
for all tc[o,T].

x{t) denctes the stock of a nonrenewable resource at time t, u(t) the extraction

rate, p(t) the given market price for the resource, Clu,t} the cost of extracticn.

Let us restrict ourselves to the case of a constant selling price, p = 1‘), and
to quadratic, time-independent costs, C = au2/2.

Since (2.98) is a prcblem with terminal conditian x{T) 2 0, the Hamiltonian
mist include AO {see (2.88)):

H = Ao(ﬁu-auzlz) - Au.
We first show that A, = 1. Aszume A5 = 0. Then by the non-degeneracy condition
{2.77) we see that

A f o, (2.99)
The adjoint equation is
A=, (2.100a)
Fram (2.80c) follows for the transversality condition

MT) 2 0, APx(T) = 0. (2.1000)
{2.99-100) yield

Mt} > 0 for all te[0,T). {2.101)
For Ao = 0 the Hamiltenian is H = ~-au. Thus, fram (2.98d, 101) we get

u*{t) = 0. (2.102)
Fram {2.100b,101) follows

x(T = 0. (2.103)

On the other hand, we cbtain fram (2.98b, 102} x(T) = X, > 0 wnich pro-
vides  a contradiction. Hence AO = 1.

The maximizing condition Hu = 0 yields

utel = [p ~ aqt)]/a. (2.104)
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The first~order condition for determining the optimal exploitation duration
T = T* {2.97), has the form (the star is amitted)

#Tl = wnp - au(m/2 - am] =0, (2.105)
Substituting A(T) from (2.104) into (2.105) yields

HT] = aum %2 = o
and so

ur (T} = 0. {2.106)
This together with (2,104) provides

A{TY = p. (2.107)

Solving (2,100,107} yields

Aty = pe Tt} {2.108}

Fram (2.98bc, 103) follows

X, = £Tu(tidt. {2.109)

By using (2,108) and integrating (2.104) we obtain the following equation
to determine the optimal planning period T*

PlrPs-14¢7FTh . arx . (2.110)

2.9. Exercices for Section 2

2.1. show that the Bolza, Lagrange and Mayer form of an optimal control problem
are equivalent (Hint: Introduce an additional state variable) .

2.2. Solve the following cptimal cantrol prablem
a) max 6T(x—u2/2)dt
u
subject to & = u, x{0) = X
b} What happens if we impose additionally u(t)eq = (0.1]?
.3. Solve n'axéT(x-u)dt, subject €0 % = u, x(0) = %, 05 u s 1.

-4. Using (2.11c) show the cauivelence of the optimality conditions in present-

value and current-value notation.



‘2.5,

2.6.

2,7.

2.8.

2,9,
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Derive the maximum principle by using the Hamilton-Jacobi-Bellman
equation for a positive discount rate r.

Prove the relation

M _ aH
el L S .
a ot T oM

what happens in the autonamous case for r = 07 (Hint: Calculate the
total derivative and use the optimality conditicns).

Derive Buler's differential equatim

. d . -
Fx(x,x.tl -a-EE‘*(x.X.t) =0

and the transversality condition

F)-((X(T] :"((T) JT) =0

fram the conditions of the maximum principle.

Show that for the exercices 1.2 and 1.3 the sufficient optimality conditions

are satisfied.

The following example shows that the concavity of H° in x can be satisfied

baut that H must not be cancave in (x,u)

max 6T(u2-x} dt

]

X =u, x(0) = xy

0zuz1,
Prove the above statement, and show that

u< }0 for [0,11]
1 for [™1,7)

is the optimal solution.

. Show that in the cases (2.82b) and (2.82c) the control prcblem of example

2.7 is normal {i.e. that 10 = 0 leads to a contradiction}.

. Solve

max 62(-x]dt

s.t. k=u, x(0) =1, x(2) 20, -1 7us 1.

~ 40 -
2.12. Solve the linear maintenance prablem {section 31.1) with the additional
terminal condition x(T} = Xp and x{T) 2 Ko respectively.

2,13. Prove Theorem 2.5.

2.14, Determine the optimal extraction policy and the optimal terminal time T+
for example 2.10. Prove that 3o = 1 and that x{T* = 0.
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3. LINEAR OPTIMAL CONTROL

A control model is linear, if the Hamiltanian H is linear in the cantrol
variable u. Since Hu does not depend on u,we have

u <
uft) = { wndefined if o(t) ={=40. 3.1)
u >

Here uefl = [_u_,ﬁ] ., and o{t} = Hu is the switching function. A control which
Jumps from u to u or vice versa is called "bang-barg-cantrol®.
If the switching function

oft) = 0 for tc{11,12]

then u can take wvalues in the interior of (uu], and such a solution is
denoted as singufan sofution. In this case we have

olt) = &(t) =0 for tefry,1,]. 3.2)

3.1. A Linear Maintenance Model

The prablem of determining the lifetime of an asset or an activity simultaneously
with its management during that life is an important problem in practice. A
typical example is the problem of aptimal maintenance and neplacement for a
machine,

Consider a single machine whose resale value gradually declines over time, Its
autput is assumed to be proportional to its resale value. By applying preventive
maintenance it is possible to slow down the rate of decline of resale value,

The cantrol problem consists of sdmubiancously determining the optiml rate of
preventive maintenance and the sale date of the machine. This is an ptimal
control problem with unspecified terminal time.

A machine will be characterized by a state variable representing its quality
of service. We assume that this quality can be adequately measured in mmnetary
units. Let us denote its value at time t by x{t). The evolution of x[t} is
described by the following differential equation

X =-8x+u, x(0) = X {3.3)

vhere
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ue [0,u] (3.4
is the preventive maintenance mte (i.e. expenditures for maintenance), It
is assumed that for u = 0 the resale value of the machine decreases expo-
nentially.
Furthenore, let nbe the constant production rate in dollars per unit resale
value, and Sx(T) the resale value of the machine at the end of the planning
period T.
The present value of the machine is the sum of two terms, the discounted
Production stream during its life, plus the discounted resale value at T;

3= £Te_rt(nx—u)dt + e o, (3.5)

For the model parameters we assume that
5 <1 < gf(r+d). (3.6}

Considering (3.3) we see that the units are chosen such that the dollar value
of maintenance gets directly transformed into quality. It seems not un—
reascnable to assume that ane does not get back the full value of maintenance
expenses when an old machine is sold. The constant n measures how a unit of
quality gets transformed into ocperating receipts per unit of time. The costs,
reqardless of maintenance, are the loss in salvage value due to detericration
58, and the interest on the value of the machine, which is Sr per unit of
quality. Thus S < n/ (r+8) is a reasanable assumption, and 1 < =/(r+6) is not
an unreasaable one.

To solve the linear optimal control prablem we define the Hamiltonian
H=mx~u-+ ){-éx+u).

According to (2.4) and (3.1) the maximizing candition is

0 <
u{t) = 4 undefined } if afe) =41, (3.7)
a >

Note that the switching function is o = H, = * = 1. The shadow price of the
state satisfies the adjoint equation

Azorh - H = (£+6)d - x (3.8}
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with the transversality condition
MT)Y = 8. (3.9}

Since the Hamiltonian is concave in (x,u) the necessary optimality conditions
are also sufficient.

The solution of the linear inhamgenaus differential equation (3.8} with
candition {3.9) is given ag
__= (£=T)(r+d) n
A(e) (s —-—r”s)e ¢ - {3.10)
From (3.10) and assumption (3.6) follows that A < 0. We can therefore
conclude that there will not be any sinqular control for any finite interval
of time, i.e. » = 1 can occur at most at a single time 1. According to {3.7)

the decision maker switches from G to 0. Moreover, the switching time 1 is
determined by Alt) = 1. Thus, fram (3.10) follows ’

Tootred) = [n - siresy]elTTTHES) (3.11)

Definj.ngat'r‘--r.mseeﬂmtedoesnotdependinTandxo. 8 is given by

B S X A2 3.12
CER sy L = i (3.12)

Fram (3.6) follows that 8 > 0. For T > 6 we conclude fram b < 0

> 1 0zt<T-98
x(t) for
<1 T-8<t3ST.

This together with (3.7} and the state equation (3.3) gives

time interval ult) l x(t)
- ul -6t o
[o,1-0) u (xo- GJe t3
u - -8
{T-(‘.T] 0 [xo + %(edm‘ B)—H]c t

!

Note that for x,? U/4 the quality of the machine always decreases, i.e.
®it) 20 for tc[0,T).
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If, however, the planning period is not "long enough”, i.e. T £ 0, then
At) < 1 for all te[0,T]. In this case is does not pay at all to invest in
preventive maintenance:

time interval | u{t} | x(t)

fo.1) 0 xoe-ét

The above calculations were made on the assumption that T was fixed. To deter—
mine the optimal sale date we use the correspanding transversality condition

{2.97) far the Hamiltonian:
{3.12)

H = eSx{T) = mx(T) - w{T) + AT [u(T - sx(TH]- Sx(T) = [x ~ (c+8)S]x(T} > 0.1

Here we have used u(T} = 0, (3.9), and (3.6}. Thus, conditian {(3.12) can not
be satisfied for any finite T* > 0. Since T* = ¢ is also suboptimal, the optimal
planning period is infinite: T* = a.

3.2. Most Rapid Approach Paths

In the maintenance model of section 3.1 the Hamiltonian was linear in the
Tontrol u. The coefficient of u in the Hamiltanian could be equal to zero cnly
for isolated instants. In other preblems, the coefficient of u in H is equal
ko zerd over some period of time. During such periods, the control does not
affect the Hamiltenian, and therefare, the choice of u is not determined in
the usual way. In these cases the value of u is said singulan,

There is a class of autenanous problems with ane state variable and one control
in which the optimal solution is to approach the singular level of the state
Aariable as fast as possiblfe. This is called a moat rapdd approach path (MFAD).
Such behaviour is typical for many optimal centrol models being linear in the
eontrol but nonlinear in the state.

Be consider the following class of one-dimensional autonomous control models

max éwe-rtf‘(x,uldt (3.13a)

u

o= f(x,u),x(0) = X (3.13b).
(3.13c)

ue fu, ix} uy ()]

xe[x,x] (3.13a)
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with
Flx,ub = A(x) + B(x)¢{x,u) (3.4a)
f(x,u) = afx) + bix)¢ix,u), (3.14b)

where all functions, are assumed continucusly differentiable and b{x) + 0. The
state damain (3.13d) can be infinite, i.e. x = —= and/or x = +=,

To prove the optimality of the MRAP by using Green's thearem the aboue prablem
is transformed as follows.

Lorma 3.1, The class of optimal controf modeds defined by (3.13, 14) may be
wiitten equivalently as

max [“e"C (MG + NR]at (3.15a)
u

x(0) = x_, keR (), Xe[x,x], (3.15b)

where M(x) and Nix| anre continuously didfenentiable and the domain g depends
continuously from x. -

Proof. Fram (3.13b) and (3.14b) follows
o0x0) = [ - ax)]
' bix) !
Substituting this into (3.14a) we cbtain (3.15a) with

Mix) = A(x) - a(x)B(x) /b(x)

Bix}/bix) .

N{x)
Moreover we have

) = {atx) + bl e e fueu, (0 u,00]). o
(3.38) represents a problem of variational calculus. Defining % = v as new

control variable, accarding to (3.2) a singular solution can be calculated
as follows:

H

i

Mi{x) + Nix}v + iv
u=Hv=N(x} +A=0

N'(x)v + & =0 !

Qs
]

il=n - He = rh - M (x} - N'ix)v.
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Fram the last three equations we cbtain the following relation to determine

the singular solution x = x:

ik} = rf{x) + M'(%)

0. (3.16)

Definition 3.1. A most rapid approach path (MRAP) x*{t) to a given trajectory
%(t) has the property

[erit) - %0)] s et - Xit)]) for tefo,=)
for all feasible state trajectories xi{t}.

The following result shows the optimal ity of the MRAP to the sinqular solution
or to x, X, respectively.

Theonem 3.1 [MRAP theorem). Let % be the unique sofution of [3.16}. Assume
that singuban Level % is feasibfe, 4.ec.

Oct{X) , x < X < X.

Moreopen,

I(xl{’} 0 for
<

Finally, we assume that fon any admissaible state najectony x(t) it holds
that

S X<

(3.17)

EINE
AT

<X 3

. -rt % !
lime lxx(t'N(f;}dc : 0|L (3.18)

to
If there is a MRAP stanting .n x,, then this path is an optimif sofution.

1 13.17) has no admissible solution X and 1(x) < 0 fon abl xe[x,x], then the
MRAP 15 x .ia optimal, On the othex hand, &f T(x) > 0 for any xc[x,%], then the
MRAP o x is optimaf,

Remark. Condition (3.18) is satisfied if N is a negative constant and if any
admissible solution x{t) z 0. For a bounded state domain [x.x] it suffices

to suppose that N{x) is bounded. The proof uses that (3.15a) may be written

a5 curve integral and applies Green's theorem.

The philosophy behind the MRAP theorem is that it is optimal to reach the
singular arc (the "tumpike") as fast as possible., For an optimal control
probler (3.13,14) with finite time horizon and prescribed terminal state an
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analogous MRAP result is valid. If T is sufficiently large, then x is reached
as fast as possible. Moreover, the turnpike X is left as late as possible to
meet the terminal condition x (T} = Xpe However, if T is too short that the
singular Jevel x can be reached in time, the optimal path has still the proverty
that it is the nearest feasible path to % under all feasible state trajectories.

The MRAP theorem is illustrated by the following two examples.

Example 3.1: The Nerlove-Arrow model

The belief that advertising expenditures by a firm affect its present and
future sales has led to treat advertising as an instrument in building up same
sort of advertising capitaf usually called goodwiff. Furthermore, the stock of
goodwill depreciates over time because consumers “drift” to other brands, as a
result of advertising by competing firms etc. Let A(t) denote the stock of
goodwill at time t. Assume that the cost of producting one unit of goodwill is
ae dollar so that a dollar spent on current advertising increases goodwill

by ane unit. It is assumed that the goodwill stock depreciates over time at a
constant proportional rate 6, so that

A = a- &A, ALD) = Ao. {3.19)

where a{t) 2 0 is the current advertising effort measured in dollars.

To formulate the optimal control prablem for a monopofistic firm, we assume
that the rate of sales s(t) depends not anly on price p(t), but also on the
stock of goodwill A(t). Thus, s = s{p,A). Assuming the rate of total production
costs is c(s), the total revenue net of producticn costs is

R(p,A) = psip,A) ~ ci{sip,A)). (3.20)

The firm wants to maximize the present value of net revenue streams discounted
at a fixed rate r, i.e.

max {3 = " [Rip,A) - a]at). {3.21)
az0,pz0
Since the price p does not occur in the state equation (3.19), we can maximize
J by first maximizing R with respect to price p holding A fixed, and then
maximize the result with respect to a. Thus, the optimal pricing policy is
determined by static maximization, i.e. by max R(p,Al The first-order necessary
optimality condition is
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R =5+ ! =0
o s (p—c)sp (2.22)

yielding the optimal price pi{t) as function of A(t}:
p = pl(a}. {3.23)

Note that a sufficient optimality condition for (3.23) is the following
second-order condition

2
2 . .
spp < sp/s {3.24)

if we additionally assume a canvex cost function c(sl.

To calculate the optimal advertising strategy we consider the Hamiltonian
= Psip,A) - cls(p,A)) - a + A(a-6R).

The adjoint equation is

= {r+6)2 - (p—c')SA.‘ {3.25}

According to (3.2) the singular solution is determined by H =0, f.e. 2 =1,
and A = 0. Substituting this into {3.25) and taking into ccnsxderatlm {3.22)
we get for the singular level of goodwill

-

B
A WS, {3.26)

vhere g8 = SAA/S is the elasticity of demand with respect to goodwill, and
n=-sg pp/s is the elasticity of demand with respect to price,

The corresponding singular advertising rate is given by A = 0 as a = 6A.
Note that for iscelastic demand functions

5= YP""AB.- Y, n, B constant. (3.27)

(3.26) says that along the cptimal stationary solution the goodwill is a
fixed percentage of the return Ps. Thus, for the optimal advertising expendi-
tures a the same is true.

Applying the MRAP theorem 3.1 to this model we cbtain the followmg characteri-
zation cf the optimal advertising policy.
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Theonem 3.2 (Optimat advertising 4n the Nerlove-Atuow modef) . Assume that
for the nevenue dunetion

T{A] = max R(p,A) (3.28)
P

there exdists a value A such that

> <
AL =Yr+ & for A{=la, (3.29)

< >

Then the optimat advertising policy fon the control problem (3.19, 21) ia
{0 neach the singufan Level of goodwill as fast as possible. 1§ we assume
(Lo excfude impufse controfs)

0O<asza with 2> sA

then the following combination of bang-bang and singulanr ancs is oplimad ;

Fon AO < A
a <] -
at{t) = ¢° . for A*(t}{ }A. (3.30a)
a = A =
Fon Ao z A:
a*(t) = J ¢ } for A*m{’}ﬁ. (3.30b)
a = 8A =

Proof. The Nerlove-Arrow model fits into the class of models described by
(3.13, 14), where

MA) = #(A} - 6A, N(A} = -1; QqA) = [-6A,3 ~ .s;\].l

Because T = tN + M' = ¢' = (r+8), the level A defined by {3.29} is the sincular
solutian of {3.16}, Since (3.30} is equivalent to (3.17) and {3.18) is satis-

died, from the MRAP theorem follows the optimality of policy (3.30). See fig. 3.1,

Remark. The revenue function n(a) in (3.28) is obtained by substituting the
optiral price p = p(A) fram (3.23) into (3.200: #{A} = Rip(A},A). A sufficient
confition for {3.29) are decreasing marginal returns, »“(A) < 0. If R{p,A)

is jointly concave in p and A, then it holds that

i _ o2
TR = Ry, Ra/Rop < O-

Another application of the MRAP theorem is given in section 6.
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Case: A2 A

Case: A < A




3.3, Exercices for Scction 3

Sade LXEICICES TOL eoto—

3.1. optimal allocation between learning and earning (von Weizsicker, 196713
' The stock of human capital, x, can pe increascd by learning activities
u. Assume that x decreases at a constant rate § for u = O. Suppose that

the productivity wix)} of a worker depends on X as follows:

w> 0, w >0, W < w'? /u. {3.21a}

The earned incame per time unit which is used for working is assumed
to be explkt)wix), where k denotes the rate of technical progress. Assume
further that

w () > (p-&-kIwi0l), (3.31b)
where p is the discount rate. Furthermore,
p+ 5>k (3.32)

The prablem is to allacate each time unit (e.g. a working day} between
learning {investment in the human capital) and earning. The present-value

of the eamed incame stream over the life-cycle is
J= éTe“""’w(x) (1-ujat. (3.3%)

The dynamics of the human capital is as given as

X = =X + W, (3.33b}
Moreover, we must have

0sust. {3.33c)

Determine the optimal allocation pattem in haman capital by using the
MRAP approach.

3.2. Solve the Vidale—Wolfe model by the MRAP theorem:
max ) éTe-rt(nx—a) dt
% = cal(1-x} - 6x,

x(0) = X x(Th = Xpi xo'x'r‘m'”

[Hh]

D=act

3.3. Prove the MRAP thecrem by using Green's theorem.
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4, OONCAVE ONE- STATE-MODILS

, In many branches of modern applicatim—-orimtcd mathematics linearity does

not catch essential features of reality. Recently, in econcmics nenf.inean
modefs claim a growing interest. An important class of nonlinear optimal
control models are autonanous ne-state models with a Hamiltonian being
str.ctly concave in the control u. Furthermore, in many cases it is assumed
that the Hamiltonian is concave jointly in X and u. For this class of models
it is possible to derive by analytical means qualitative insights in the
optimal solutions.

It is important to note that the model functioms {utility, costs, production
functicn etc.) need not specified fully, but are characterized anly by its
{(first and second-order) derivatives.

4.1. The Model and its Necessary Optimality Canditions

We consider the following me-dimensicnal autonamols cancave control model:

mex {J = éTe-rtth.u)dt + e Toxim)} @.n
u

sunject to
% = fix,u), x(0) = Xy 4.2)

There are either no restrictions for the control u and/or the state x or they

are no active. Moreover, we also consider the infinite time horizon problem

max 1J = tg"".:.-“rtt*(x,u)dc} (4.3)
u

s.t. {4.2). We assume that the improper integral in {4.3) converges for any
feasible solution.

T illustrate this model we interpret the state variable as pollution level,
and the control as consumption rate. (A more detailed description and analysis
cf this polluticn-consumpticn model is given in section 2.}

F{x,u) is the utility implied hy the pollution and the consumption rate. It
is reascnable to assume that



Thus, the utility function is concave in {x,u).

The efficiency function f£(x (1) may be thought as the pollution control
It is supposed that

fx<0,fxx=O,fu>0,fuu20,fxu=0.

For a discussion of those assurption see section 7.1.
To ensure the nanlinearity of the control model, it is required that

Fuu + lfuu < 0.

Using Pontryagin's maximum principle the Hamiltmian isg
H = Fi{x,u} + xf x,u).
The necessary optimal ity conditions are according to thecrem 2.1

HU=FU+XEU=0

1 =n- He = (03 - F

AT = S, {x(TH. ;
Fram (4.7}, (4.4a) and (4.5} follows

A= _Fu/fu < 0.

Clearly, the shadow price A of the stock of pollution is negative,
Fram {4.4a), (4.5) and {4.6) follows

Hog = Fug * My, < 0.

Thus, (4.7) provides a unique maximum of the Hamiltonian H,
E\l.rthenmre'm.ﬂ. (4.5) and (4.10) imply

Hxxsﬂ,uxuﬁo

14.4a)

{4.4b)

function.

{4.5)

4.6)

(4.7)
(4.8}

(4.9}

{4.10)

4.11)

(4.12a)

{4.12b}

- 53 -

Let us first assume that there exists a whque stationary point (x,u,3)
which is determined by (2.89). To prove the existence of an equilibrium we

'need additional informations on the functions F and f.

4.2. Phase Portrait Analysis in the State-Costate Plane

The maximizing condition (4.7) provides a relation for the cantrol {consumption)
as an implicit function of the state {level of pollution} and the shadow Price.
We can visualize the system solved as y = u(x,x) with

Ju Hux L] fu
il 50,——3:=——-~H >0.‘ (4.13)
uu uu .

The level of caisumption is a nonincreasing function of the pollution rate.
Moreover, an increase in the shadow Price induces an increase in the con
sumpticn,

We now turn to the analysis of the {x,A) phase plane. By substituting u = u(x,)
into the state and the costate eqation we get

% = k{%,A) = f{x,ulx,1))
{4.14}

i(x, A)

i [z - f ()]s - Fybriatx, ).

To determine the stability properties of the equilibrium of the system (4.14)
consider its Jacabian matrix

% au N -,
FI STy 5ty ax £ )

. = = {4.15}
T A S I T
FESE Ty ety x fx'_qu aA £

The signs of the elements in the Jaccbian follow fram (4.4, 5, 13).

The sign of the determinant 4 of the Jacobian is negative'). Thus, every
Stationary point of the canonical system (4.14) is a saddle point. By a
cheorem of Gale and Nikaido (1965, theorem 7} it is also uni{que. The uniqueness
of the equilibrium may also be derived fram the shape of the isoclines (see
below) .

L Note that this follows withowt the assumptions (4.4b), since the term

quxulau/ax) (8u/32) cancels out.
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It is well known, that, since the Jaccbian matrix has a negative determinant
{and thus has one positive and ane negative eigenvalue), there exists a ane-
dimensional manifold consisting of all solutions that converge towards the
equilibrium. This manifold is called the atable path (it consists of two
stable branches).

To abtain informations on the shape of the solution trajectories of (4.14) we
cansider the isoclines % = 0 and A = 0. Their slopes can be canputed by using
again the implicit function thearem,

The % = 0 curve is upward sloping

dx _ 3%/ax
&, w0 (4.16)
x=0

Finally, A=0 decreases monotonically:

dax

— - - A/ 14.17)

5= al/al ~

The four isoclines divide the phase plane in four regions. The orientation of
the solution trajectories of the canonical system (4.14) follows fram (4.13).
Regions I and IV are traps in the sense that if any path enters either of
these regians, it remains there forever. Since the stable path can only lie in
reqion IT and III it must be dowmwand sloping; see fig. 4.1.

Note that the saddle point path in the {x,)) plane is horizontal if and only
if in (4,12b) the equality sign holds.

Fram {4.12) follows that the Hessean matrix

HH
pdi = | W (4.18)

qu Hxx |

is negative semidefinite. According to remark 2.1 (criterien of principal
minors) this implies the concavity of the Hamiltonian Y. Thus, the sufficient
optj.malit,:y conditions of theorem 2.2 are satisfied provided that § is also
canvex in x. For infinite time horizan according to theorem 2.5 the limiting
transversality condition must be established. According to the last remark of
scction 2.7 the saddle point path represents the optimal solution of problem
(4.1, 2) for T = =,

Fig, 4.1: (x,»)-phase portrait with downward sloping saddle point path

In words the abowve result in the infinite horizon case has the following
econamic meaning. If the level of pollution is low, then its shadow price

is camparatively high (note that ) is negative) . In the case of a high pollution

an additional unit of pollution is more detrimental. As time tends to infinity,
both the polluzien, x, and the shadow price, )\, approach their equilibrium
values. Furthe:more, this apprcach is monotanic,

The trajectories in the phase plane which are not identical with the stable
path represent optimal solutions for finite horizen problems. The solution
starts at the wertical line x = ¥, (initial value) and ends at the curve

S,(x) = i (transversality condition} which is a horizontal line if S(x) = Sx.
The longer the horizon T, the more the solution will approach the equilibrium,

4.3. State—Control Phase Diagram

Differentiatinc (4.7} locally with respect to time yields

- . s [ (4.19)
qux + Huuu + ful = 0,
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i.e. the following differential equation for the control u
u = -(me+fun/}-tuu, 14,20)

with from (4.2), and 3 frem (4.8). We eliminate the adjoint variable ) by
{4.10) and get together with (4.2) a system of differential equations for x
and u. The elements of the Jacabian determinant are given by

o _ % /
= fx< o (a), 2 fu>0 [b).‘ (4.21)

The terms 80/ax and 30/3u contain third partial derivatives of F and f. after
same calculations we abtain
(r—2fxlum+f H

i

= LXX .o ! {4.21¢)
{x,u) uu !
pD]
- =r=-£f >0, 4.21Q)
- - X
{x,u)

By miltiplying the terms in {4.21) on can see that the determinant of the
Jacabian, i.e.

(3%/3x) (3d/au) - (30/3x) {3%/0u)
evaluated in equilibrium(x,0) is equal to A (see section 4.2},

This shows, that the stationary point %,0) is a saddfe point in the (x,u)
phase plane. The stahle path providing the optimal solution for T = = decheases
monotanically in a neighbourhood of (%,0) .

Note that the saddle point path is horizontal if and anly if

qu =0 (at least for Hu = 0), and Hxx = 0. (4,22}

A more detailed analysis of the state-control phase diagram is given in section 7.1,

There, the question of existence of the equilibrium is also cansidered.

The saddle point property of a non-linear system of differentjal equations

as shown above by determining the sign of the Jacabian determinant is a focald
Property. In econamics it would be important, however, to derive globaf optimal
solutions. This can be done, e.g., by the following

Theonem 4.1

(Globak saddle point theorem) ler |x,3) be a saddle point of the canonical
diffenential equation systom and X, @ given (nitdiaf state such that the Line
X = x, caosses both {soclines % = 0 and & = 0. Assume that the negdion bounded
by (x,%), x - Xg» and the bot't isvclines has the following "triangular’ shape
li.e., the iscclines do not iitensect in (x,,x}}:

?A
Ir\'-‘-f
~ i=0
N_(/
“ \
AT | =
> 1
l /:/4 |
| PR x=0 |
L~ !
r |
"-{h-
X, X X

Then there exists a unique stasfe path Leading from x - x, to (X},

4.4. Sensitivity Analysis of the Equilibrium

We now tum to a consideration of the effects on the staticnary point (x,1)
of different values of the model parameters. e restrict ourselves to the
discount rate r as parameter.

The stationary point (%,0,3) iz defined by

flx,0) = 0 {4, 23a)
r- £ %0 ]3 = F, (X0} (4.23b)
(4.23c)

E () + J«futﬁ,ﬁ) =0,

3y the implicit function theoren the equations (4.23) determine three functions
X = X(r), U= Qfr}, and 3 = 3+, and for the derivatives it holds that
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0 fx fu aa/ar 0
- * a | & 4.24})
fx r Hx‘x qu I/ 3r {
" qu Huu u/ar 0

By calculating the determinant U of the matrix of system (4.24) we see that

= >0,
ﬂ1 Huuﬁ [

vhere 3 is the determinant of the Jaccbian evaluated in {x,}) which is

negative (see sectim 4.2).

Since 4, } 0, system {4.24) has a unique solution which can be calculated by
using Cramer's rule as follows:

0 fx f\.l R £ fu ..
EYI U [ U (R Wi S S (4.25)
ar A1 xR »u Huu':‘ qu Huu A X

0 Hx_u Huu

) i} fu ) 0 fu o
ax 1 s A = A&, {4.26)
—_ o — f -r X H = —— = . .
ar T ay | T a Hd 1 fe Hay s ‘

£,0 Hy

The sign of 3/ 9r is cbtained more simple by calculating the total derivative
of fix(r),G{r)) = 0. This yields

.?P‘.:-f_x£>0‘
ar fuar )

Thus, both consumption, pollution, and its shadow price move in the same
direction as the discamt rate. This makes ecanomic sense.

Finally, let us try an econamic interpretation of the equilibrium relations
{4.23) (see also section 7.1 for more econamice details). For this transform
(4.23b) by (4.23c) to

Fu‘=—fur-‘x/(r—fxl . {4.28)
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Consider a stationary pollution level x and the corresponding equil ibrium
consunpticn u. If we increase the consumption marginally for a time unit,
then F_ (x,0)measures the instantanecus gain in utility. On the other hangd,
the mamentary additicnal consumption causes an increment in pollution by
fu(;c,ﬁ) units. This additional pollution leads to a loss in utility,

~F e (%,0).

The trajectory % + éx perturbated at t = 0 satisfies the differential equation
(x+6x)* = f(k+bx,0}. By substracting 0 = x = f (x,u} we cbtaih as first approxi-
ma+ion ’

(6x)" = £ (x,0)6x, 6x(0) = £, (x.0). (4.29)
The solution of this linear hamogenous differential equation is

Sx(t) = £_(%,8) explf, (X)) !
Thus, the loss in utility stream is given (in first approximation) as

- — N " - = o F_(x,0)f_(x,0)
- Fresx ) - PG Jat= -£7e 7T, (R, exteyde = =X =

— . (4.30)
r fx{x,u)

Thus, (4.28) says that for a 'zmall' deviation of the statiomary solution the
instantaneous utility is equal to the present value of the loss in utility.

4.4. Excercices for Section 4

4.1. Solve the 'quadratic maintenance' model {compare section 3.1)

max {{Te ™ tme-u?/20at + €T Sx(T) ) (4.31a)
u

% = -6x + u, x(0) = X, (4.31b)
uzo. (4.31c)

Determine the optimal time paths., Moreover, carry out a phase portrait
analysis.

. 4.2. Carry ocut a phase diagram analysis for the concave one-state, one-control

model for (4.1-6) with the followine changes:

Px>o,pu<o,ffxxso,f 50, £50

uu

instead of



4.3.

4.4.

4.5,

Fx<0,Fu>0,fxx=0,fuu?0,fxu=0.

Interpret x as goodwill stock and u as advertisino rate (sce alsoh
example 3.1). This yields a simple non-linear advertising model (Gould model] .

Rework the von Weizslicker model for a nan-linear leaming efficiency
function g(x,u} with

g:O,qu>0.gx<0

guu<0,gm50,qux50
such that
X = —fx + gix,u).

Prove (4.21). sketch the (x,u) phase diagram.

Carry out a sensitivity analysis in the sense of section 4.4 for the
model described in exercise 4.2, Interpret. the results for the non-
linear advertising model mentioned there.

..6‘]_

5. DYNAMIC SYSTEMS WITH PATH OQONSTRAINTS

5.1. Mixed Inequality Constraints

‘In optimal control preblems that arise in the areas of management science
and econamics inequality constraints between the constrols and/or the state
variables are frequently encountered. Extending our standard model by in-
cluding these path restrictions as well as varjious terminal conditions we
consider the following optimal cantrol prablem:

may .cf’Te—rtF(x,u,t)dt + e Toe(m),m) 15.70)
u

% = fix,u,t), %(0) = L (5.1k)
gix,u,t) 2 0 {5.1¢)
a(x(TH, T} 2 0 (5.1d)
bix¢r),T) = 0, (5. 1€)

'Ihe.f-unctims F: Ranme->R, f: Rnxd“xa-bRn, g:RanI“xR+R5,
L]
a: " xR+t and b: B" x ® + R |are assumed to be continuously differentiable.
)

A pair (x(t},uit)) for tc[0,T) is called a feasible solution of the prablem
(6.1), if u(t) is piecewise continuous in [O,T] and both trajectories satisfy
the canditians (5.1b-e).

To assure that (5.1c) provides a (state-dependent} restriction for the cantrol(s)
{and not a pure state constraint; see sectian 5.2), we need the follawing
constraint qualification:

The matrix

ag]/au 9 « «» 0"

: : has full rank s, (5.2)
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i.e. the gradients agi/au of all active inequalitics q; - C(i=1, ..., 8)
are linear independent. Note that (5.2) is the usual constraint qualification
of the Kuhn-Tucker theory.

To state the maximum principle for the control problem (5.1) let us define
the Hamiltonian H, the Lagrangean L, and the control region @ as follows:

Hix,u,» ,x,t) = ) Fix,u,t) + !f(x,u,t), {5.3)
o o |

Lix,ueh o dons bl = Hixoud o hot) + pgixou,t) (5.4)

2{x,t) = {ujgxu,t) z 0}, (5.5)

Theonem 5.1, let u®*(t] and the corresponding state trafectony x*(t] be an
optimaf solution of the probfem [5.1). The negularity condition {5.2) is assumed
4o be valid fon afl Le[0,T), x = x*{it}, u = alx*{1),¢]. Then there exist a
constant A 2z 0, a contimous costate trajectony M2leR", piecemise continuous
mubtiplicaton functions nltlcR‘s, and constant multipliens aeR", geRY , duch

that I

(onlnu;(l.ﬁ) #— 0 for all t. ;

Moneoven, the golfowing necessany optimality conditions are satisfied for any
point of continuity of u*(t):

b

Hx*{t}) tu‘-(t'tloll‘t)lt' = max H(x“t)rurlolk‘t) tt)l (5.6)
ueR {x*(t) ,t)

!
L, (x*E) ur(t) ) Akt ,nie),e) = 0, l (5.7
ME) = rafe) - L e (e} ut(E) A A (E) ult) b, . {5.8)
uit) 2 0, withgix*(t) ,u*(t) ,t) = 0 (5.9)
MTH = A S O (T),T) + aa, (x*(T),T) + gb (x*(T),T) {5.10)
&2 0, aalx*(n),m = 0. (5.11)

Remarks. For the control prablem (5.ta-d) with nonactive terminal condition
(5.1d) (i.e. for free terminal state) it holds that b= 1 The abnormal case,
however, can not be excluded generally. The conditions (5.7), (5.9) are

known as Kuhn-Tucher conditions for the static maximization prablem (5.6).

The lagrange maltiplicator B, admits the usual interpretation as shadow price
in the sense that K; measures the marginal increase in the total profit rate H
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if the inequality constraint 9, z 0 is infinitesimally relaxed. Since this
relaxation can not decrease I, By is nonncgative. The second part of (5.9)
i.e. the complementary slackness condition CECH follows from the fact, that

a ncnactive restriction has no influence to the dojective H. The interpretation

of the adjoint equation

“j'if“xj*“ng' 3=1, ..., n (5.12)

is analogous to (2.59). The additional term ung evaluates the change in the
control region induceed by an infinitesimal change in the state variable.
However, it should be stressed that in the case of a terminal constraint
{5.1d) the interpretation of J\j as shadow price is only valid if the value
function is defined in a whole neighbourhood arcund the state trajectory.

5.2. Pure State Constraints

Cansider the optimal control problem (5.1} with the additional pure state
variable inequality constraint

hix,t) z 0, (5.13)
vhere the function h: F'x R+ K2 Is two times differentiable. let us

assume that (5.13) is of f{irst onder, i.e. the first total derivative of h
with respect to time,

k(xlul’t) = hxtxtt)f‘xlurt) + ht(xrt' (5.14)

oontains a control. Extending {5.2) we define the following consfraint
qualification:

/391/3u g1...0 0...0
g fou 0 ...g 0...0 " has full rank q + s. {5.15)
/om0 . 0 h...o0
\ . . . i
\ . ] .. ,
: ;
kg 0 L0 0. ..
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Whereas the weaker reqularity assumption (5.2) is always supposed to be
valid, the constraint qualification {5.15) is needed cnly for same of the
following results,

We need the following definitiom. If for € >0andat leastane i = 1, ..., q
hih((l’.]‘l:),'l.!—c) > 0, and hi(x(11+£),‘l‘1+€) = 0, then Ty is called entry time.
T, is called exit time, if hi(x(tz—cl,tz-:) = 0, and hi(x(rzﬂ:),rzﬂ:) > 0,

If h1(X{tl.1) =0, hi(x(-r-c),-r—:) >0, hilx{r+c),1+:) > 0, then 1 is denoted
as confact time. Together, Tye Ty and 1 are called junction times.

Although there exist various forms of optimality canditions, we restrict
ourselves in the following to present a brief introduction to the so-called
direct adjoining approach.

Define the Hamiltonian the Lagrangean, and the cantrol region as follows:

H= aF + ), | {5.16)
© i

L =H+ug*vh5 {(5.17)

Q0c,t) 5 (ueR|gix,u,t) z 0}.i {5.18)

The necessary optimality canditions of the direct method for pure state i
canstraints are contained in the followina

Theorem 5.2, let (x*(t],u*{£]) be an optimat pain for the controf problem (5.1, 2.5],
The regufanity condition [5.2) is assumed for all £c[0,T], x = x*{2), ue(x*{2},2).
Then there exist a constant i o & 0s a piecewise continuousty diffenentiabfe

adjoint function MtleR", and piecewise continuous muftiplicaton functions

uleR" and v(£)cRY. Moreover, fon each point o déscountinuity < ;e10,7) of

A{2) there is a vecton nit.JeRd of jump sizes. Finally, there exists constant
mttiptions ack®, 8eR’, yeR? such that

(AO.A.u.v.u.ﬁ,v,n{T1).nhzl,...l $ 0 forall t.

Then the §offowing optimality conditions hold for alf ¢ except at points of
discontimuity of u* and function times

u*{t) = arg max H(x"(t),u,)\o,l(t],t} ] {5.19)
el {x*(t),t)

L =20 (5.20)

i=or- L, i (5.21)
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pzo, g = o. (5.22)
20, vh=ol {5.23)
MT) = 2 _s*[1] + vhx[T] + aax[T] + Bb* [T} (5.24)
Yy 20, yh*[T} = 0 {5.25
az 0, na*[T] = 0. (5.26)

In (5.19.- 5,23) the arguments x* (), u*(t), ‘\a' ), uiz), vith, and 2
are to be substituted. The netation MR h;[ ] ete. is analogousty defined
to {2.96).

A and H arne piecewise continuous functions of Lime. AL puints <n which {5.13)

48 active fumps of the folfowing foam may occun:
M) =2l andg (5.27)
H[t7) = B[] - n{tth e [1] {5.2¢)
with ni1) 2 0 and n(1)h*[+] = 0. (5.29)

Here v (%) denotes the Legt-hand (night-hand) Limit.

In the transversality condition {5.24) it has been taken into consideration

that the path restriction (5.13) must hold also at the end point. This generates
a teminal condition (5. 14}, namely hix(T),T) z 0.

Ferark 5.1. Same further results are available for regufan probfems where the
maximization (5.19) with respect to v is unigue. (A sufficient condition for
the regularity of H is the negative definiteness of Huu.) In this case it turns
out that the cantrol function u is continuous even at the junction times.

Cansider pure state canstraints of first order and continuous controls. Assume
further that the constraint qualifications (5.15) is satisfied. Then the adjoint
variable x is continuous.

Remark 5.2. In section 2.5 it has been proved that for a concave maximized
Hamiltonian and a concave salvage value the necessary optimality conditions are
also sufficient. This result remains also valid for optimal centrol problemns
(5.1, 13) with path restrictions and terminal canditions, if we additionally
assume that the path restrictions g, h, a are cancave in x and b is linear in x.
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In the case of infinite time horizon the limiting transversality condition
(2.92) provides an additional sufficient condition.

If H is not regular but £inear, then X is continuous at junction times

provided that the entry and/or exit is nontangentiaf, i.e., if k[t] <o
+

and/or k[t ] > 0.

5.3. An Example

We now give two simple illustrations of theorem 5.2. Further applications of
the theory provided in section 5.1 and 2 can be found in section 6, 7 and 8.

Example 5.1 (see also example 2.7)

max 4 (oat (5.30a)
= x(0) =1, (5.30b)
g = {1+tu,=u) z 0 {5.30c)

=xz0 (5.30Q)
b ==x{4) - 1z 0. {5.30e)

Because of the simple structure of this prablem, its cptimal solution may be
easily stated as follows (see also fig. 5.1}:

tine interval u x active
constraint J

[0.1) -1 -t 9, =0

[1,3] 0 0 h =¢

3,4] 1 t-3 9,0

r1=1 is an entry time, while Ty ® 3 provides an exit time. Clearly, (5.30) is
a first-order state constraint, since k = hxx = u contains the control u.

H=-x+ 3, L=-x+2us+ uy1ea) + o l1-u) v ¢ (5.31)

The necessary optimality conditions are as follows
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Lu =k + By = mgy = o, (5.32)
io= L= 1=y, (5.33)
ny 20, u i+ = o, u2(1-u} = 0, {5.34)
veo w=0, {5.35)
Atdy =Bb *yh =84y v20, vh=o. 15.36)

1)

Since the entry and exit is nontangential'' the costate is continuous also at

the junction times =1, Ty = 3.

Consider first the boundary solution interval [1,3]. Framu = 0 and (5.34)
follows Ky * By = 0. Hence, from (5.32) follows A = 0, and fram (5.33) v = 1.
Because of the omntinuity of A we have

A7) =23%) = 0. (5.37)

{5.35) implies that because of x > 0 it holds that v = 0 for [0,1). Thus,
according to {5.33) i = 1. This together with (5.37) yields x = t - 1. Since
u = ~1 we have B, = 0. Hence, fram (5.32) follows by =1-t.

Analogously we cbtain for (3,4] » = t - 3, My =0,my=t-3,v=0

Since for t = 4 the relation h > 0 is satisfied, from (5.36) we cbtain ¥y = 0.
Thus, 8 = ){4) = 1.

The multiplicator functions are collected in the following table {see fig. 5.1):

time interval A v IJ»1 : uz
[0, t-1 0 1-t 0
1.3 0 1 0 0
(3,4] t-3 0 0 t-3

R Nontangential means that k = hx)'( = u is discauntinuous with respect to 1.
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since H° is linear x, the sufficient optimality conditions are satisfied
and the sketched solution is optimal.

u #y
1 1
0 ! , —
3 4 1 1 3 4 1
-1
| x s
1 1
1 3 4 1 1 3 4t
I "
1 1

wJ
4
-4
~

_11

Fig. 5.1: Optimal cantrol, state trajectory, costate and multipliers for
example 5.1

Whereas in the preceding example no jumps in A occur, this is no more true
in the following example,
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Exanple 5.2,
min /% fugt {5.38a)
u [o]
% =u, x{0) =0 ‘ (5. 38b)
0sus3 (5.38¢)
h=x-1+ (222 0. (5.38d)

First we note that for r = 0 any feasible solution satisfying x(3) = 1 is
optimal. For r & 0 the following solution turns out to be optimal,

time interval u X
[0,1) 0 o
[1/2] 2(2-t) 1-(t-2) 2
(2,3] 0 1

(5.14) has now the form
k=u+ 2(t-2). {5.39)

In entry time T, = 1 both u and k are discontinuous, i.e. this entry is
hontangentiaf. On the other hand, u and hence k are continucus at exit time
T3 = 2, l.e. this exit is tangential (see fig. 5.2).

The reqularity condition (5.15) is not valid, since for q1 =y, 9, = 3-u
the matrix

dgyfau gy 0 0 1 u 0 0
¥g,/5u 0 9 0 ]=1[-1 0 3« 0
sk/a 0 0 h 10 0 x-1+(t-2)%

has for t = 2 the rank 2 (the first and the third row are linear dependent).
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-7 -
fu b uy My 2 0, wyu = 0, uy(3-u) = 0 (5.42)
2
vzO0,v[x=-13+ (t—212] =0 {5.43)
1 M3y = 0 | (5.44)
\ M2} =22y +n,nz0. (5.45)
» o o Note that accarding to the remarks at the end of section 5.2 the costate X
1 2 3 t 1 2 3 t is continucus at entry time 1y = 1. On the other hand, } can have a jump
of the form (5.45) at exit time 1, = 2.
P X 12 Por te(2,3] from the camplementary condition (5.43) follows v = 0, Hence,
3 because of (5.41, 44), X = 0. From {5.42} follows u, = © in {(2,3]. Thus, from
o {5.40} we get By =t
AY
1 \ L‘lthebamda.!ysolutimmterval[1,2]wehave()<u<3andsou1-"-u2=0.
!/ 2 3\ T 1 ? 3 T Thus, according to (5.40} A = 1, Hence, (5.41} yieldsr = v. For t = 2 we
1_({»_2)? dbtain n = 1. This shows that (5.45) is satisfied.
[9.1]: (5.43) implies v = 0. Solving {5.41) backwards with (1} = 1 we dbtain
A v : L = explr(t-1)}. Note that ) is continuous at t = 1. From By = 0 and (5.40)
follows By =1- explrit-1)} 2 0. In the following table the multipliers are
1 summarized:
r r_—l time interval X v [ 1)
1 2
= . o |
1 2 3 t 1 2 3 t
[0,1) e R S L
Fig. 5.2: Optimal solution paths for example 5.2 [ 2] 1 r 0 o
r
To apply thecrem 5.2 we consider the lagrangean (2'3] 0 0 1 0
L= -u+uepueuyBul ¢ -1+ (t-2)2]. 5.4. Bxercices faor section 5
5.1.
The necessary optimality conditions are sotve
1
Lu=—1+,\+u1-u2=0 (5.40) “‘3—"6“‘1"—

i=n—1.x=rx—v (5.41) subject to % = u, x{0) = 1, 0 s u s x.



5.2.

5.5.

5.6.
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2
max (-x)at
-

s.t. X =g, x{0) =1

u+i1290,1-uzd, xzo0.

2
.m(alxé(uldt

s.t.  (5.46bc).

Show that the sclution is not unigue,

+4. Rework example 5.2 will terminal time T = 1/2.

Solve example 5.2 with negafive parameter r.
Sclve the following linear optimal contral problem
min 263x1dt F
u
(%%, = %y 00b, (2, (0),%,(0)) = (2,0)
-2fusg?
X, 2 0.

1

(5.46a)

(5.46h)
15.46¢)

(5.47)

{5.48a)

{5.48b)

(5.48¢)
(5.484d)

This problem admits an interpretation as 'weak landing' of a rocket
{amitting the gravitation). X, measures the position of a particle ('the

rocket'), x2 its velocity.

(Note that the canstraint (5.484d) is of order 2, i.e.

the second derivative

of X, with respect to time, i.e. %, = £_ = u is the first which cantains

1 2
the control variable.)
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€. Optimal Economic Growth

6.1. The Neoclassical Growth Model

In any economy choices must be made between provision for the present (con-
sumption] and provision for the future lcapital accumulation). while more
consumption is preferable to less at any mament to time, more consumption means
less capital accumilation - and the smaller the capital accumilation, the
smller the future output, hence the smaller the future potential cansumption,
There are two extreme cansumption pelicies: “Live today, for tamorrow we die" ’
and the Stalinjist policy of consuming as little as possible today so as to
increase capital and the potential for future consumpticn.

The neoclassical growth model characterizes econanic growth in an aggregate
closed ecanamy. Aggregative means that the econany produces a single homogeneous
good, the cutput of which at time t is ¥(t], using two factar inputs, laber
L{t} and capital K(t), where t is assumed to vary continuously; closed means
that neither cutput nor input is imported or exported: all cutput is either
consumed or invested. If consumption at time t is C{t) and investment at time

t is I{t), then the income identity states

Yi{t) = C{t) + 1(t). (6.1)

Assuming that the existing capital stock K{t) depreciates at the canstant
proportionate rate a, the capital accumulation is governed by

K(t) = T(t) - ak(t). 6.2
Output is determined by the aggregative production function

Y = F(K,L).
The productien function is assumed to be concave in both production factors:

FK >0, FL > 0; FKK <0, FLL < 0. 6.3)

Moreover, F exhibits constant returns to scale, so, for any positive scale
factor r:

F(tK, ) = (F(K,L) = gy. (6.4)
In particular, choosing ¢ = 1/L:
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R QUEGE | S I S
y=1-= F(Ln) —E(L) = £kt {6.5)

where the per-worker quantities are denoted by the corresponding lower-case
letters, and the function £(.) gives output per worker as a function of

capital cer worker:

O YU T T
kepresgdirpy=g
Fram (6.3} follows
f'(k} >0, f"(k) <0 for k > 0. (6.6)

If we assume that the labor force grows at given expcnential rate p, L/L = o,
the investment identity can be rewritten as

- _d (K E kL
=8 {RY D _ Ry o - kp. (6.7}
k dt(L) L DL t-ck-ke

Fram (6.1, 5) we get the following differential equation of econamic growth:
k= £ilk) ~ ¢k ~ ¢, k(D) = LY (6.8)
where o + p = 4§, and ko is the initial level of capital per worker.

The economic objective of a central planner is assumed to be based on standards
of living as measured by consumption per worker. In particular, it is assumed
that the control planner has a utility function, giving utility, U, at any
instant of time as a function of cansumption per worker at that time:

0 = WHcle)).

6.2. The Ramsey Model

We first cansider a strictly concave utility function with

U'(cl >0, U"(c) < 0. (6.9)
Thus, the central planner is faced to the following infinite time optimal
control problem (Ramsey model) :

mx (" ) ae (6. 10a)
c

subject to the state equation {6.8) and the {mixed) path restriction

0sc s fik). {6.10b)
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In addition to (6.6) we suppose that
£{0) =0, £°(0) > r + §, £'{=) < §. (6.11)

To apply theorem 5.1 we define the Hamiltonian and Lagrangean as follows:

H

n

Uic) + x[ftk) - ¢k ~ <],

L=H+pc+ uz[f(k) -c].

The necessary cptimality conditions are:

Lc =Uc) - 2 + By~ By = 0, (6.12)
Aeni-n = [res - - uf" (k) (6.13)
4y 20, ue =0, (6.14)

13

Hy 2 0, u,[fk) - c] = 0. (6.15)

We [irst consider the .interion of the control regian (6.10b). From the cample-
mentary slackness conditions (6.14, 15) follows By = by = 0, and by (6.12)

A= Ue)., (6.16)
Differentiating with respect to time we abtain

_ U ic)
U" (C)

[t+68-fm]. (6.17)

We now analyze the canonical system of differential equations (6.8, 17) by
means of a phase portrait. Because of (6.11) there exists is unique equilibrium
point (k,c) defined by

£k} =+ 6] (6.18a)
& = £ik) - ok, (6. 180}
Note that (k,C} lies in the interior of the damain (6. 10b).
Defining
£1) = 6, £(K) = ok

we have ¢ < k <k < K< -‘ (see fig. 6.1). Note that k_ is those stock of
capital which can be sustained in the long-run. It corresponds to the maximum
sustainable consumption rate.



It hold that
al'c_ . 3R_ !
x -k -6>0 fir k-ckm,a—c--lcoi
aé u e 1
. I LI} Zl =00
: ak 8] acézo ]

Since the determinant of the Jacobian matrix is negative, (k,&) is a saddle
point. The saddle point path is upvard sloping. We denote by (k1,k2) the
interval in which the consumption path lies in the interior of (6.10b) .

Let us now deal with the possibility that the cptimal trajectory is on the
boundary of the admissible control region {6.10b),

It seems reasonable to choose

(a)

c =0 for k2k1, and c = fik} far kakz.

To show that this path satisfies the necessary optimality conditions we consider
an injtial stock of capital k(0) < k1 and set c¢(t) = 0. Fram (6.8) follows

k > 0, Let LB be the time at mj,chklt1l =k1. We assume that for t =z T the
saddle point path is choosen.

To show that the necessary optimality conditions are satisfied also for t < 1
we first state

1

M) = Uliep)) = o)., (6.19)

Fram (8.39) follows uy = 0. Hence the adjoint equation (6.13) ylelds

(a1}

A=[r+é-€mlrco

(b)

L . . Thus, A(t) > A1) far te[0,1,), and fram (6.12) follows
k; k kn K, k ‘ Wy =2 =UYO) > 0.
So the optimlity:cmditim {6.12-15) are satisfied. Note that in the case

U’ (0} =wthebcundaryamc=0c:annotoccur, l.e. ky =0.

Fig., 6.1: Phase portrait for capital and consumption in Ramsey's model

The isccline k = 0 is a concave curve crossing the origin. It reaches its For k{0) > k, we set ¢ = f(k), and k = -6k < 0. Denote by r, the time at which
maximum at k = k.« and meets the abscissa again for k = k. The & = 0 isocline kit,) = k). Again, for t z T, the stable path to equilibrium is choosen.

is the vertical line k = F.
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To show that the necessary optimality conditions are satisfied we note that
far t > T, the differential equation (6.17) is satisfied. Moreover, for
k = k2 the equilibrium path is steeper than the boundary ¢ = f(k), i.e.

dc dc

& e % S I (6.20)
point path
Substituting {6.17) into (6.20) we get for t - )
utelr e s - £ 0] > U tehE! )k, (6.21)
Fram (6.12) follows for tt:['r2 =Ty 12]
By = U'lc) - . 16.22)

Differentiation with respect to t yields for left-side limit 1;
ﬁz(rz) =y (cl‘rz))chz) - 1(12)-

Fromc = f(k) far t s 1, follows & = £'(k}k. From this, (6.13) and 16.22) we
obtain

Gt} = UME'K - (res—£')Y) ¢ p £
22 2 {6.23)

H

U"E'k - (r+6-f'JU" + (r+6)u2-|

From (6.21) and uz(-zz] = 0 we get |12(15l < 0. Thus, By > 0 for (rz-c,'l'z'. This
shows that the cptimality canditions (6.12-15) are satisfied.

Since at least for ko S k2 fram (6.12) follows A z 0, the Hamiltonian is cancave.
Since the function £(k) ~ ¢ in (6.10b) is concave in (k,c) too, remark 5.2 can
be applicated. The limiting transversality condition {2.93)

Lim e "6 ie) ki) - k* ()] 2 0

1s for the saddle point path (k*(t},r(t)) -+ (l:(,il satisfied. (Note that any
feasible solution k(%) is because of (6.8, 10b) nonnegative. Thus all sufficlent
canditians are satisfied, and the solution constructed above is indeed optimal.

Let us briefly interpret eccnomically the optimal interior solution. The
equilibriun {k,C) characterized by (6.18) represents a balanced growth path. Alang
it capital per worker and consumption per worker are canstant; hence total

capital {K = kL), and total autput (Y = Lf{k)} all grow at the same rate -

namely, the rate & of gwoth of the labor force.
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If k0 4 k, then c*(0) 1is optimaly choosen at the saddle point path. For in-
creasing t both k*{t) and c*(t) converge to (k,c), where the optimal consumption
rate increases with the capital stock. Above we have shown that for U' (0} < =
for a small stock of capital (k s k1) it is optimal to consume nothing to let
increase k as fast as possible.

6.3. A Prescribed Minimum Stock of Capital

Jet us now add the pure state to the Ramsey mcdel 6.8, 10) constraint
k z k. {6. 24)

Clearly, k, z k.

Define
H = Ulct + A[£(k} - 6k - c]
{6.25}
L=#+ue+n[ft) -c] + vk} .,
The optimality conditions of thecrem 5.2 are
LC=U'(cJ-1+u1-u2=O {6.26)
demen o= [res -] - uf) -y (6.27)
By 2 0 wc =0, u,[fk) - c] = 0 {6.28)
i
vz 0, vik-k} = 0. (6.29)

Since the Hamiltonian is strictly concave in c, it is regular. Thus, according
to remark 5.1 no jumps in ¢ and A can occur. Note that the constraint
qualification is always satisfied, especially at the entry time. Note further
that for the solution stated below none of the mixed control restrictions
€20, ¢35 f(k) and the pure state constraint k 2 k became simultaneously
active, For k z k the statements in section 6.2 remajn valid (v = 0).

We proceed as follows. Ye try to find a path starting in k = ko which remains
in the feasible dagmain and satisfies the necessary optimality conditions.

To this end we intersect the k = k with the k = 0 curve and consider the
trajectory leading to (k.c) {see fig. 6.2}.



- 80 -

' C
: ! -
b "
i i
o !
37 !
" X
) 4 :
E ///I ''''' — -, Ill
/7 \'\_'
.// ' E\\kzo
, I ' ' .
I : > -
k k k, k

Fig. 6.2: Sclutien trajectory for the Ramsey model with prescribed minimal
stock of capital

For k = ko we choose the consumption rate at this trajectory. Proceeding at
this path the point k,c) is reached in finite time. Furthermore, for te[t,=)
we set ct) = c.
For t < 1 the necessary optimality condition are clearly satisfied. For t z T
fram {6.26) we conclude » = U*(c) (since By =By = 0. We set X = 0 in (6.27)
and cbtain because of k > k and (6. 18a)

v=[r+s-fulue > 0.
Note that at time 1 the adjeint variable A is continucus. Thus, the necessary
conditions are satisfied for t 2 1 too.

Since k and A are bounded for the trajectory so constructed, the sufficient
conditions are satisfied and the solution is optimal. Note that all other
trajectories are suboptimal or infeasible.
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6.4. Linear Consurption Utility

Consider the case of constant marginal utility of per-capita consumption,
U{c) = c. This yield the following control model

rt

max (e cdt {6.30a)
(o4

k= £(k)- ¢k - c, ki0) =k {6.30b)

cscsfk). ‘ {6.30c)

In (6.30c) we suppose a minimm Consurption rate c » 0.

To determine the optimal solution we use the MRAP-thecrem. It is easily seen
that problem (6.30) has the form (3.13, 14, 15}

Mk} = fik) - 6k, N(k) = -1 {6.31a)

a) = [-ek,£k) - sk - c], k 2 0. (6.31b)

The singular solution k is soluticon of (3.16)
Ik) = MK +M'(R) = £'(K) = (r+6) = o. {6.32)

This shows that the equilibrium in the linear case {i.e. the singular solution)
coincides with the stationary solution {6.18)) of the nonlinear mdel. To
apply the MRAP-theorem 3.1 we first cbserve that {3.16) is satisfied because
of £" < 0. Moreover, (3.18) is also true,

Denote the stationary consurption rate as & = £(k) - &k, Clearly, we assume
€ 5 & Ths, Oen(k), i.e. the equilibrium can be sustained by an admissible
control c. Hence, thecrem 3.1 brovides the optimality of the following most
rapid approach trajectory:

c ke [k, k) {6.33a)
cit) = ¢ & for {k = k {6.33b)
flkit)} k> k, | {6.33¢)

where k denotes the intersection of & = 0 and ¢ = c:
£(k) - 6k = c. (6.34)
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In (6.33a) it has been taken into consideration that for k < k no feasible
solution, i.e. no MRAP, do exist. Even by choosing the minimum consunption
rate ¢ the stack of capital is exhausted in finite time. After this time
nothing can be consumed which contradicts to {6.30c). The gptimal solution
is sketched in fig. 6.3.

Fig. 6.3: The optimal consumption pattern for the linear Ramsey-model with

minimm consumption rate

It tums out that the long-run equilibrium is the same in the linear and in
the nonlinear model. However, in the linear case the stationary point is
reached in finite time, while faor a strictly concave utility function the
convergence is asymtotic.

6.5.

Exercices for Section 6

6.1.
6.2.
6. 3.

Solve the Ramsey model for a minimm consumption rate ¢ > 0.
Analyze the Ramsey model with a convex-concave utility function.
Formulate and solve the 'vampire problem' (Martl and Mehlmann, 1982).

Rich Rentier plans to retire at age 65 with a lump sum pension of kg
dollars. Rich estimates his remaining life span to be T years and he wants
to consume his wealth during these T years in a way that will maximize

his total utility of consumption. Since he docs not want to take investment

6.5,
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risks, he plans to put his money into an insured savings account that

pays interest at a continuously campounded rate of p. If we let the

state variable be the capital stock k at time t and the control the con-
sumption rate foomulate an optimal control model using an utility functions,

a) U{c) =&, b} Ule) = lne.

Sclve these models. Discuss possible modifications {berpuest functions,
terminal constraint kit} 2z k'r' maximal consumption rate ¢ 2 cit), etc.}.

Capital accounulation and environmental control. Cansider the following
extension of Ramsey's model (sece section 6.1)

F(K) =C+ I +A,

where A are the abatement expenditures. Capital produces not only cutput
but alsc pollution P (in form of emissions). Pollution may be controled
by abatement activities. Thus

>0; P, <0, P, >0.

P = P(K,A} with PR >0, P AR

KK A
Assume a utility function U(C,P} of form (7.7} (discussed below in more
detail). Then the following control problem arises:

max 6“’e‘rtucc,p(x,m )dt
C,A

K=PFlK) - 6K-C- &
Ct0,A20, FIK) ~C=-Aaz0.

Carry out a phase portrait analyse. Use theorem 5.1 for a camplete solution,
Campare the optimal consumption pattemrn with the Ramsey model.
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7. POLLUTION CONTROL

The improvement of envdzommental quality has becamne an important cbijective

in the framework of ecanomic and social policy not anly in the industrialized
world. It is often claimed that some of the goals of econamic policy are in

a Lrade-off relation, implying that better levels of one goal variable must,
cet. par., be "paid for" by lower levels of another, In this section a central
issue in pollution cantrol and econamic activity is studied, namely the pure
consumpition- polfution trade-o0ff. This model can be extended by including also
the accurulation of capital. Using the capital stock as (single) procuction
factor the produced output can either be consumed, invested or used for abate~
ment activities, i.e. for emission control (see exercise 7.5).

7.1. Conswmption-Pollution Trade—off

In arder to focus an the pure consumplion- pollution trade-off, far the present
we assume away prablems of capital accumilation, natural resource exhaustion,
population growth, and technical progress. Thus, it is supposed that there is
a fixed supply of factor inputs which produce a fixed amount of output in
each period. We may think that a policy of 'zero' growth in cutput has been
decided upon by the central decision—makers. ’

The decision dilemma is as follows. The society derives utility from consumption

hut in cnceming output, pollution is generated which yields disutility, By
foregoing present consumption the amount of pollution in the future may be
reduced,

Forster (1977) considers the following model. The fixed autput produced in each
time period is depoted by Q. This output is allocated to consumption L or to
pollution control A such that

0=C+a {7.1)

The stock of pollution, P, increases as a result of the consumption Process.
1t seems reasonable to assume that the flow increases at an increasing rate
with respect to consumption. Thus, we suppose that there is a convex pollution
rate of consumption E{C) such that

E(0) =0, E'(C) > 0, E"(C} > O for C > 0. (7.2}
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Furthermare, it is possible for the camunity to slow the accumilation (or
hasten the decline) of pollution by devoting some expenditure to anti-
pollution activities. The amount of pollution cleaned up will be a function
3 of the amount of pollution control expenditure A. This function satisfies
the following conditions:

G(0) =0, G'(A) > 0, G'(A} < O for A > O, {7.3)

The net contribution to the flow of pollution is measured by the polluticn
control function

Z(0) = E(C) - G(DC)
being convex in the consumption rate C, i.e.
2°(Ct > 0, Z°(C) > 0. (7.4)

Thus, the society gains in a fwo- {odd manner by pollution control. First,
with more antipollutien control expenditure more pollution can be cleaned up.
Secondly, since the cansumptian level is lower, less pollution is being
generated.

(7.2, 3) imply that there exists a (unique} level of cansumption, C,+ vhich
will just sustain a clean environment. It holds that 0 < CO < Q, and

2(C) 0 for cicC. (7.5)

[s]

VitA

Moreover, we assume that the stock of pollution is subject to natural decay
at a constant expanential rate «.

Thus, the dynamics of waste is governed by the differential equation

P = 2{(C) ~ oP. (7.6)

Furthermore, it is assumed that sccio-ecancmic welfare is measured by a
strictly concave utility function of aurrent consumption and the cuwrrent stock
of pollution. Far simplicity, we restrict ourselves to separable (additive)
utility functicns U(C) + D(P) such that

u'(c) > 0, U'(C) < O (7.7a)
D'(P) < 0, D"{P) < O (7.7b)
{U is the consumption utility, while -D is the disutility due to pollution}.
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The aim of the central Planning authority is to maximize the discounted
flow of utility. In order to give consideration to generations not yet bom,
the time horizon is left infinite. This yields the following cptimal control
problem with P as state and C as control variable:

max e oo » o ]ae (7.8a)
B = 2(C) - oP, PIO) = P {7.8h)
0zCcsQ {7.8c}
P:O. {7.8d)

To solve problem (7.8} we consider the Hamiltonian and the Lagrangean

H

UC) + D(R) + a[z(C) -~ aP)

L=*H ¢u1c+u216—cl + wP.

The necessary cptimality conditions are (see theorem 5.2)

LC=U'#kZ'4u1-u2=O (7.9)
A=rh - H, = (r+a)) = D' -y (7.10)
My 20, u,C o= M) =0 (7.11)
vz0, vP =0, (7.12)

It turns cut that the limiting transversality condition

lim ey « o (7.13)
Lt ‘

is satisfied, Thig together woth (7.4, 7) establishes the sufficiency of the
optimality conditions,

Clearly, the costate A of the pollution is (as shadow price) negative.

Note that a phase portrait analysis in the (P,)) plane has been carried out
for this model in section 4.2,

Furthermore, the constraint qualification (5.15) ig satisfied (provided that
the cantrol constraint {7.8c} and the state constraint (7.84) do not becamne
active simultaneously}, i.e. the matrix

_8'?_
1 ¢c 0
-1 0 8¢
' ¢ 0

(7.14)

U o o

has the rank 3,

Since the Hamiltonian is reqular, the shadow price i is continuous alsoc at
junction times (see remark 5.1},

Let us consider at first interior solutions with respect to (7.8¢) . l.e.
By ®py = 0. To carry out a phase portrait analysis we differentiate (7.9}
with respect to t and eliminate i and » by using {7,10) and (7.9). This
yields

¢ = 2'[(z+a)U'/2' + D' + v]/um-urz gy, {7.15)

For P > 0 we have v = 0, By using standard phase plane techniques we cbtain
the state-control diagram as sketched in fio. 7.1.

; p'q’
\ _""
E- -\—'b—--——-— : —;_:—-—---—-——-
€ X

P (b

—
=]
—
-
v’l .
O

Fig. 7,1: Phase partrait for Forster's model (a) for a positive long-run
steck of pollution,(b) for a clean stationary environment

o}
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The equilibrium (B,&) defined by P = & = 0 characterizes the lang-run be-
haviour of the optimal solution. The conditions on € and P in equil jbrium
are {campare also section 4.4} :

Z{C) = b (7. 16}

zté)n(ﬁ)“ (7.17)

v = - r+a

{7.16) says that in equilibrium the amount of new pollution generaled, 2Z(C),
is just equal to the amount which decays away, of.

The left-hand side of (7.17) is the dnstantaneous gain in utility from additioral
cansunption. The numerator of the right-hand side is the loss in utility causec
by an increment in consumption. This utility is lost berause additional

pollutian has been generated as a result of the momentary increase in con—
auption. If the pollutim does not decay then this loss in utility mast be
endured forever. If however, the pollution does decay at same positive rate,

the loss in utility in any period will be less. The present value of the
forgoing measure ig the right-hand side of (7.17).

Let us now turn to the optimal transitory solution optimal consumption path tha-
lies along the saddle point path which is downuwand sloping. fig. 7.1 shows

that for pollution levels “small enough® it is optimal to choose maximal
consumption rate, C = Q, whereas for P 2 P, it tums out that C = 0 is optimal

{if we assume U' (D) =°~,the1C>0a.ndP2=m).

The optimal consumption Pattem is as follows: There is a unique long-run
optimal stationary consumption rate ¢ which is above the pollution-neutral
<cansuption rate C For P < P the optimal consumption rate C > &, vwhereas
in a "polluteg" envircmﬂ-:t the optimal conswmption is "low”. In the first
case C*(t) gradually decreases and P*(t) increases; for P > P the optimal
paths show an opposite hehaviour.

Until now we have silently assumed that in the long-rin it is optimal to live
in an envirawment which is polluted to a certain amount P > ¢ {(given by
(7.16, 17 and sketched in fig. 7.1(a)}. From (7.8b) and (7.15} we see that
this situation cocurs if and anly if the following condition holds

Z' CID (0) |

u' (CO, > e - (7.18}
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Thus, if starting with P = 0 and C = C the marginal consumption utility
exceeds the present value of the disutllity stream 2' (ColD (0)) induced by
the additionally consumed unit, then it is optimal in the lang-run to consume
Co> C,- This leads to b = 2(€)/a > 0.

Finally, let us consider the case that {7.18) does not hold. Then the isoclines
P-O ¢ = OhavenointersectimforP>0 C > 0. Since the staticnary
pollution level P would be negative, the pure state constraint (7.8d) becanes
active for any initial state P > 0. To canstruct the optimal solution also

in this case we determine the mtersectlm of the isocline P = 0 and the
restriction P = 0, i.e. the point {0,C l Let us cansider the path running

into this point (see fig. 7.1b}. The cptnnal solution is given by this trajectory:
starting from a given initial pollution level P the correspondina consunption
rate is to be choosen acvording to this tra]ectoxy Having reached (0,C l at
time 1 the clean environment is maintained by C = C, for t z v.

Note that the optimal consunption rate lies befow the pollution—neutral con—
sumption Co' which is in this case optimal in the long-run.

The main result is that a certain pollution level ar a pristine envircnment is
optimal according as the trade-off relation (7.18) holds true or not.

7.2. Exercices for Sectian 7

7.1. a) Carry ocut far Forster's model a phase portrait analysis for the (P,C)
plane. (Reconsides also section 4.3, where a brief introduction into
the state—control phase plane was given.)

b) Analyze the case that the cantrol constraints {7.8c) becames active
(see fig. 7.1a). (Hint: campare section 6.2.)

7.3. Carry out a sensitivity analysis for the equilibrium with respect to the
cleaniny rate o. Show that oC/da > 0.

7.4. Analyze Farster's model for the case, wher in the long run a clean
environment is optimal {campare Fig. 7.1b}. Determine the multiplier v,

- Consider the following extension of Forster's model analyzed by Luptacik
and Schubert {1982):
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max gue-rtU‘CnP]dt (7. 19a}
C,A
K=F{K - 6K -C - A, KIO) = K, : {7.19b)
P = F(K) ¢ e ,C+ egk - GIA) - aP, P(0) = Py (7.19¢)
Az O i {7.194)
Pz 0. {7.1%e)

Additionally to the model of Forster (1977) the capital accumilation by
investment is included.

U(C,P) is strictly concave utility function in C and P with UCP s 0 (see
also (7.7).

(7.19¢} arises fram (7.6) by replacing Z(C) through

c.'F(K] + c2C + 5:3K - G{A),

Here F(K) is the GNP produced by capital K, 5 is the emirsion rate
refecting a part of technology which is used to produce F{K}. The
emissions generated by consumption are described by €qe Third, the de-
preciated capital stock has potentially harmful effects (e3). A denotes
the abatement expenditures, and G(A) measures the effectiveness of thesc
expenditures (G' > 0, G" < 0, G{0) = O}.

(7.19b) is the usual capital accmmlation dynamics by investment
I=F{K) ~C-aA.
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8. INVENTORY AND PRODUCTION PLANNING

Many manufacturing enterprises use a production-inventory system to manage
fluctuations in consumer demand for a product. Once a product is made and
put into inventory it incurs inventory holding costs of two kinds: first, the
costs of physically storing the product, insuring it, etc.; and second the
carrying charges of having storing the firm's mney invested in the unsold
inventory. The advantages of having products in inventory are: first, they
are immediately avajlable to meet demand; second, by using the warehous to
store excess procuction during low demand periods to be available during high
demand periods, it is possible to smeoth the production schedules of the
manufacturing plant. This usually permits the use of a smaller manufacturing
plant that would otherwise be necessary.

8.1. The Arrow-Karlin Model

We remember to the notation used in example 1.2
z{t) = inventory level at time t (state variable)

vit}

H

production rate at time t {control variable})

d(t) = demand (sales) rate at time t (exogenously given, assumed to be

positive and continuously differentiable).

We assume Linear inventory holding costs and convex production costs, i.e. the
cost function occuring in (1.13) are assumed to be time-independent and are
specified as

clv,t) =c{v) with c(0}) =0, ¢c*' >0 for v > 0, c" >0 8.1}

h{z,t) = hz. (8.2

The task of the inventory-production manager is to determine a production
path such that the cost functiomal

§let « nzac (8. 3a)

is minimized, where the following stock-flow differential equatirn is to be
satisfied:

t=v-4d, z{0) = Z, ¢ 0 {8.3b)
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Moreover, we stipulate that no shartage can occur. Clearly, the production
rate is nonnegative:

z20, ve . {8.3c)

Before we start to analyze this inventory problem by using the maximum
principle we state the following result

Loma §.1. Fon z, < rld(t1de it hotds that z(T) = 0. 1§ the opposite 4 tue,
then viz) = 0 fon te[0,7].

The necessary optimality conditions are according to thecrem 5.2

H= - = hz + Avq)

L=H+pv+ vz {8.4}
v = arg max H

vz

Lv=-c'(v)+).+u=0 (8.5}
A=-Lo=h-y (8.6)
k20, pv =0 i 8.7)
vz, vz=49 i (8.8)
MT) =y 20, yztT) = 0. (8.9)

Since the Hamiitonian is strictly concave in H, from remark 5.1 follows that
both the production rate and the shadow price ) is continuous. Note that the
constraint qualification {5.15} is satisfied, i.e. the matrix

1 v 0
10 2
has rank 2 provided that v and Z are not simltanecusly equal to zero. (In

Lemma 9.4 it will be shown that this case can not occur. )

Since the Hamiltonian H ig jointly cancave in (z,v), the conditions {8.4-9})
are sufficient for optimality.

We first consider the case of an ampty initial inventory:

z{D) = o0, (8.10)
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We now need the following definition. A boundany sofution intenval [11,12]

is defined by z(t) = 0 fr t,E[‘r].Iz], Ty = 0or zir,~¢) > 0, and LT

or z{iy*+c) > 0 for small € > 0. For an {nterioh solution interval (t1,t21 we
have z(t} > 0 for tc(t1,t2j, 1:.I =0 or z{t1) = 0, and t2 = T or z(t2) = 0,
Next we study interiory ani boundary solution intervals.
Lemma £.7. In interion sofation intervals the optimal production aate v ia
mnd it hokds

vit) = )7 0t @.11)

where A, 44 @ constant to be determined depending on the interion sofution
interval,

Proof. Let ‘trtz' be a time interval for which an interjor solution path
z > 0 is optimal. Fram (8.10) follows z(t.ll = 0. To quarantee z(t} > 0 for
=t + ¢ we must have i(t;} 20, ie.

v(t]) z d(ty) > 0. (8.12)
Fram (8.4, 5, 7) follows the following relation between the optimal production
rate and the shadow price » of the inventory:

v=20 for X £ c'(0} (8.13a}

v>0, A=c'(v)] for A>c'(0). {8.13b)
Fram z > 0 and (8.8) follows v = 0. Hence, because of {8.6) ,we cbtain i = h,

A =X + ht, {8.14)
o

Fram (8.12, 13) follows A(t1} > ¢'{0). Thus, because (5.14) we conclude

MMt) > ¢'(0) for all te[t,,t,). Fram {8.13) we get v > 0, and (8.11) is valid.
O

Lemma 8.3, 1n boundany sofution intervals the production nate meets the demand:
vit) = d(t) > 0. (8.15)
Morcoven, it holds that

h & dtie"(dit)). (8.16)
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Proof. Let [11,12] be a boundary solution interval. Thus, z{t} = 0, and
2(t} = 0, i.e. (B.15) is valid. This together with (8.7) yields p = 0, and
fram (8.5) we cbtain
y = e d). (.17
Differentiation with respect to t yields i = ¢"(d)d. From (8.6) follows
v=h-1z=h-c"idd. {8.18)
Since v 2 0, we dbtain (8.16). -

Fram Lemma B.2 and B.3 we get the following result.

Lemma §.4. The optimal production nate is comtinuous and positive at any Lime,

1§ an interion interval lz,,tz} succeeds Lo a boundary inteaval, then hy in
(8.11) may be specified, and it hofds that

vit) = (c')—.'[c'(d{tTJl +h(t—t1l!.‘ (8.19)

Proof. Fram Lemma 8.2 and 8.3 follows v > 0 far £c[0,T). Thus the constraint
qualification (5.15) is satisfied. Thus, remark 5.1 is applicable, and v
and X are continuous, lLet ty » 0 be the begin of an interior interval.

Then by a continuity arqument we have

c'(d(t1)} = At (8.20)
Note that t1 - € lies in a boundary interval in which (8.17) holds. Using
(B.20) in (B.14) we cbtain Ay = c'(d(t1)} - ht,. This provides (8.19).
In a special case we can give the optimal solation.

Theorem §.1. Suppose that (8.18) hotds fon any te [0,7]. Then the production
meets fust the demand, i.e.

vit) = dlt), z(t) =0 far tc[0,7]. {8.21)

Proof. lLet us consider policy (8.21). Then fram (8.7, S) follows (8.17). Fram
the adjoint equation (8.6} we get (8.18). Thus the necessary and sufficient
optimality conditions (8.4-9} are satisfied provided that {8.16) holds. Note
that because of (8.17) and z(T) = 0 the transversality condition (8.9) is
also satisfied. ]
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The more interesting case that (8. 16} does not hold glabally is treated
in the following theorem.

Theonem §.2. Assume that thene is an inteaval ln,.ozl' in which (6.16) doea
not hofd, i.e.

h < dit)e"(d(t)}  for all telog o). 8.22)

Then theae exists an interval t.t,,tzi 2 lcr,ozl with interion sofution. The
boundary points are determined by

£ t -1 '

f7afe)de = r(e’) T(x +ht)dt, {8.23)
Yy ty o

io = C'(d(t1li - ht.I falls t1 > 0, (B.24)
Ay =< (d(t2)1 - htz falls ty < 'r.1 (8.25)

Proof. Because of Lemma 8.3 and {8.22) there is no optimaly boundary solution
in {u.l.azl. Thus, their exists (t1,t2) including (01,02) with interior
solution (ses fig. B8.1).

L v.d

1
'
; + - + ¥ + 1 —_—
iI‘l d; 0'2 12 'l«‘ U1 02 12 t; 01' ﬂ;=t;=T t
) 2 oy : o
| 1 . | ]
i J : [
| | . 1 1
[ [
i 1 [
| ]/\L A
t ‘r'z t, : B t;:T t

Fig. 8.1: Production smoothing in the Arrow-Karlin model
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Fram z(t1l = z(tz) = 0 and (8.11) follows (B.23). For t.l > 0 or t2 < T,
respectively, fram the continuity of v (Lemma 8.4) follows

vit) = (') O she) = die)| for 1= 1,2,

This, establishes (8.24, 25). So for any interior interval there are three
relations to calculate the three unknown quantities t1,t2, AO. 0

Remarks. Equation (8.23) says that in (t1,t2) the areas below the curves d
and v are equal, i.e. the sum of the marked areas in fig. 8.1 is equal to zero,
if we pay attention to the arientaticn.

Relations (8.24, 25) mean that both at the begin and the end of an interior
interval the production just meets the demand provided that befare or after
that a boundary interval occurs. So the entry and exit is tangentjal {see
fig.8.1).

Note that the optimal productian policy is a ‘smooth' version of the demand
trajectory. 'Peaks' of the demand are pulled down, while 'valleys' are filled
up. An optimal productian/inventary policy is characterized by a trade-off
between constant production with large fluctuations of the inventory and
synchronous a production rate being synchronous to the demand without any
inventory. By differentiating {8.11) with respect to time revals how the cost
structure influences the productive rate:

¥ = hie)™ " = nse* > o,

The optimal production rate increases over time alang interior intervals. The
higher the inventory costs, the more the productian follows the demand. On

the other hand, the increase of marginal productian cost has a smoothing effect
to the rate of production. In £ig. 8.1 we have considered the case of

quadratic production costs civ) = av2/2. Now {8.11) has the form

vit] = vyt ht/a (8. 26)
with v, = AD/a. Relations (8.23-25) for the calculation of t1, t2 are
t h 2.2
t{ dit)at = vou:z-t.l) + E(tz-t1' l (8.27)
= digg) - ht,/a f {B.28)
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for i = 1,2 provided that t1 >0, l:2 < T. Note that the inventory t in (t1,t2)
is given by

2(t) = Ale,) (t-ty) + S(e-e ) - ._!:dmm > 0. (8.29)

Finally, we determine the decrease in costs by production smoothing for the
interior interval (t1,t2) of fig. 8.1. For this we campare the accumlated
production and inventory costs in (t1,t2), for the curve v(t) in fig. B.1
with the 'unsmoothed’ production rate ¥(t) = dit) for telt, t,). The savings
in costs are

t a b
e/ (e /2avi /2-ha)at = § et vi-2m) at
1 Y
(8.30)

)

t t
=2 fztd'-w+2vé1dt - avz =2 fztwd)'dt > 0.
2 t1 t1 2 t.|

Here we have used (8.26), partial integratien for fozdt, z(t,] = z(t,) =0
and £ = v - d.

The results discussed above describe the structure of optimal production
Pattems. They also allow to construced a geruand algorithm to calculate
optimal production policies for given demand functions. Following theorem 8.2
the basic idea is to chcose a boundary solution as long as an interior
solution &t any time 1 would lead to a positive inventory for all te(r,T].

8.2, Optimal Pricing and Production in an Inventory Model

We consider a monopolist who controls a stock of inventory, denoted by x(t),
by choosing the production rate, u(t), and the price, p(t),at every instant
te{0,T]. The sales are given by a demand function f(p,t) for which we assume

fp(p.t) < 0, {8.31a)

2
£ o, . ). .31
ppPrt! < 26,0,0%/£(p,0) (8.31b)

Condition {B.31b) states that the marginal revenue MR = p + f/f 1 is an in-
creasing function of price, i.e. a(MR)/ap > O.

n Note that MR is the marginal revenue with respect to the cutput £, i.e.

= (3/3f) (pf), where p = p{f,t} is the inverse demand function for each t.
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If the production exceeds the demand then the difference between the suoplied
cutput and the demand is added to the inventory. Otherwise, the excess demand
is taken from the inventory. Thus, the dynamics of the inventory level Seing
the state variable is governed by the following differential equation:

x=u-fip,t). (8.32)

We suppose that the monopoly faces a strictly convex nonnegative increasing
production cost function c{u) with

c'{0) =0, c'"fu} >0 for u> 0, c"fu) > 0. [8.33)

while other models impose a nonnegativity constraint for the inventory, we
allow for backloyging:If the inventory is exhausted and an excess in derand
occurs, the resulting shartage 1s backlogged and, as usual, penalized with
shortage costs. By h(x) we dencte the inventory cost (for x 2 0) and shartage
cost {for x < 0}, respectively. We shall consider continuoisly differentiable
and strictly convex cost functions.

More specifically,
h{o} = h*{0) = 0, h"(x) > 0. 18.34)
Note that this implies that h'(x) 2 0 for x % 0.

The chjective of the menopoly 1s to choose the controls u und p in order to
maximize the present value of its net return discomnted at the rate r over
a given planning period [0,T]:

rT,

mx {3 = (T [pf(p,t) - c) - hin]de + e Tax(n) $8.35)

p.u
subject to the system dynamics (8.32), a given initial inventory lewvel

x{0) = X, 2 0 and the cantrol comstraints plt) z 0, u(t) 2 0. The parameter S
denctes the salvage value of cne unit of inventory. We shall also consider
the case T = = in vhich there is no salvage value.

Thus, the firm is faced with a continucus-time nanlinear optimel control pro-
blem with one state variable, %, a two controls, p and u.

We now solve this problem by applying the necessary and sufficient cptimlity
conditions of Pontrjagin's maxcimum principle.
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befining the current value Hamiltonian as
H = pf{p,t) - clu} ~ hix} + A[u - £ip,t)] (8.36)

the set of necessary optimality conditions is as follows:

p=20 if & s f(O,tl/fp(O,tl, {8.37a)

A=p+ f/fp if x > f(O,t)/fP(O.tl (8.3T)
and

u=0 if xs 0, (8.38a})

A=c'{w) if a0, (8.38b)

A=ra+ h'ix), {8.39)

AT = 8, (8.40)

Hence, i(t} is the current value abjoint variable measuring the value of an
additiomal unit of the stock of inventory along the optimal path.

{8.37) and (8.38) say that the Hamiltonian is maximized with respect to p and
u. Note that boundary solutions are possible since A can became negative" .

If f{O,t}/fp(O,t) = -=, then the price is always positive.

It is easily checked that the Hamiltonian is glchally maximized with respect

to p and u if (8.37) and (€.38) are satisfied, since Hyy © 0r and

Huu = =c"{u) < 0, (8.41a)

H_ = 2f = 0. 8.41b
. pt PNE <0 for B =0 { )

The values u and p maximizing the Hamiltanian (8.36) are, because of

ux
maximized with respect to u and p we dbtain:

‘H = Hy = 0, independent of x. Therefore with H° denoting the Hariltonian

., =H_ =-h'(x) 50,

R This can be seen by econamic reasoning. Assume, for instance, that there
is an upper bound of the demand functiom: £(0,t} s M. Then x(T) 2 X, - ™,
and for X, > ™ it is easily scen that the value of the cbjective functional
would improve if X, would diminish (provided that the terminal value § is
not too large). This is because the choice of the time paths of the cantrol
variahles being optimal for X, would still give a feasible solution and the
inventory cost would decrease,
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i.e. the maximized Hamiltenian #° is cancave in the state x. Thus, the opti-
mality conditions are not anly necessary but also sufficient (see theorem 2, 2},
For the infinite horizon optimal control prablem, i.e. for T = =, the trans—
versality condition (B.40) is replaced by

Lim e "5 6} [x(t) - x*(t)] 2 0 {8.42)
t+o

as a part of the sufficiency canditions. In (8.42) the functions A and x* refer
to an optimal solution and x denctes any other feasible state trajectory.

Fram now anwards we assume that the demand does not depend on time explicitely,
i.e. ft = 0, and fp may be simply denoted by f'.

Equating (8.37b) and (8.38h) we cbtain an implicit relationship, u = uld, for
the control variables in the interior of their admissible damain. The dariva—
tive is

3—‘; = (-££%/8'Y /e () > 0.

Thus, the two controls show a dynergistic effect with respect to the change
of the inventory level in the sense that an increase in producrion causes an
increase in %, and this effect is reinforced by an increase in price. In
other words, alang the optimal Path the price and the cutput rate influence
the state variable in the same directian,

The next section provides an optimal steady state solution and a phase portrait
analysis for the case of strictly convex inventory and shortage costs.

The equilibrium defined by =1i=0 characterizes the long-run behavior of

the cptimal solution. Denoting the equilibrium values by hats, the following
relationships are easily obtained from (8.32)}, {6.37)

U= EE, ke £EI/E (D) + P (8.43a)

ey

=ct@), i = ~h' (&) /r. {8.43b)
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Under reascnable assurrptims” it can be shown that there exists a unique
solution of (8.43). If, however, the shortage cost function hix) is ‘almost
linear*, then x might becane —w,

The equilibrium conditions can also be interpreted econamically. It is in-
teresting to note that x < 0, i.e. that a stationary level of shortage occurs.
This is in accordance with ecanamic intuition: Assume, on the cantrary, that
X > 0. Then it would be better to choose 4 = 0 for some time interval [0,¢]
as long as x(t) > 0. For te[0,t] both hix) and c{u) would be smaller than in
the equilibrium. For t > t the zero inventory could be maintained by choosing
the old equilibrium controls & and p. Thus, the steady state with & > 0 could
not represent an optimal solution, since the modified solutien described
above would yield a higher aggregate profit.

In what follows we shall derive the properties of the optimal transitory
solution,

By using standard phase plane technigues we cbtain the state—costate diagram
as sketched in fig. B.1. The details are amitted here.

The solutions represented by solid lines in fig. B.1 refer to the case of
§ = 0. By (8.40) we have A(T) = 0 implying that the trajectory ends an the
abscissa. In most cases the optimal inventory decreases monctanically. For
large shortages, however, 1t may be optimal that x increases initially.

A
R These assumptions are, e.g., f(=) = {, h'{~) = ~, existence of p

maximizing pf(p). Thus, p satisfies B + £(B)/€'(H) = 0. Since accarding

to {8.31b) p + £/f' is an increasing function and (8.43) implies

P+ £()/£'(H) > 0 it holds that § < p. Thus, the equilibrium price exceeds the
Price maximizing the instantaneous turnover. Since the equilibrium price
correspands to the gptimal price in the static prof it-maximizing prablem,
(8.43} is the well-known order relation between the return-naximizing and
profit-maximizing prices,
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\
X
s
~ p=0
e I

f(ol/f'(ol u:p:o b

N A=0

Fig. 8.1: The state-costate phase diagram in the case of strictly convesx
cost functions

In order to derive the state control phase diagrams we employ (8.37) and {8.38).

Thus, far » > 0 we have the relationships (8.37b} and (8.38b) which are
mmotonic increasing. Therefore the saddle point property

is carried over fram the (x,) diagram to each of the state control diagrams,
and fig. 8.1 provides also pictures of both phase speces (x,u) and (x,p) for
u>0andp> 0. For A < 0 and X <« £{0}/£'(0) we have, respectively, u = 0
and p = 0, i.e. the sclution lies on the abscissa,

In fiq. 8.2 we show how the (x,u) and (x,p) diagrams can be derived from the
(x,3) phase diagram graphically,

Far 5 = 0 we have p(T) = B (see footnote at p. 101 and u(T) = o,

Let us now describe the behavior of the optimal solution in the case where
¥, and T are sufficiently large.
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Fig. 8.2: The graphical derivation of the state-control diagrams.

Phase 1. At the beginning, i.e. for ts[o,t11, when the inventory is mach
larger than required, the shadow price A has a negative value, A < £{0)/f'{0}.
In this situation the high inventory costs make it optimal to decrease the
inventory as fast as possible. This is done by producing nothing, i.e. u = 0,
and giving away the product, i.e. p= 0.
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Phase 2. When the inventory has fallen to a 'reascnable’ level, i.e.
te[t1,t2], we have 0 < A = £{0)/£'(0). Then it is optimal to charge ¢ positive
but low price in order to deplete the stock of inventory quickly whike earning
same return. Since x is sufficiently large, it is still not cptimal to
produce anything.

Phase 3. As soon as the inventory has become sufficiently small, the optimal
Production becames positive and increases in order to cawpensate a part of
the detmand rate. The optimal price is positive and gradually increasing.

Phase 4. In this phase shadow price i, production u, and price p decrsase again
to get a higher instantanecus profit. The induced increase in the shartage cost
hix) in the future can be accepted since the remaining time period is very
short.

For the case of an .infinite honizon, T = =, phase 4 does not oceur, i.e. phase
3 lasts farever. The trajectories x{t}, A(t) ¢ P(t}, uit) converge to :heir
long-run staticnary values, In other words, the solution for T = = is given
by the saddle point paths in fiq. 8.1 and 8.2. It can be shown that the
'transversality conditicn' (8.42) is met').

To conclude this section let us finally consider a case where there exists nc
equilibrium. Assume that h{x) is ‘almost linear' as, for instance

hz[a{ex/a—ﬂ - x] if x50,

hix) = {8.44)

hyfbe™P1) +x] i x: o0,

with a, b, h, h, > 0. If, €.g., a =1and h, < ri then for x < 0 the % = 0
isocline is given by

b= -h'{x}/r = (1-exlh2/r < k.

0 Since the stable branch {(x*{t},A({t)) canverges to ()},i), it remains to

show that {x) 1im e "“x{t) z 0 is satisfied for every feasible x{t). Note
t4m

that {8.32) and {8.31a) imply that %(t) z -~ £{0) so that (*) is clearly
satisfied if £(0) is finite. It can be shown that if f{0) were infiiite,
every x(t) viclating () would yield a value of —= far the abjectiva
functional,

= 105 ~

Thus there is no equilibrium point and for T = = the solution satisfies
Mt} « hz/r and A(t) -+ hzlr as t + o,

The proof that the transversality condition (8.42) is met in this case,
although x*{t) + -, is almost identical to that of the linear model with
h, < ri.

8.3. Excercices to section 8

8.1. Gmsider the inventary model with linear production costs and linear
inventory costs:

max [—f(cwhz)dt} (8.45a)
v

z=v-d, 2(0 =z, {8.45b)
0svsv,zz0. (8.45¢c)

Show that the optimal pelicy is given as

o z, - Dit) 0zt <1
vit) = . 2(t) = far (8.46)
d(t) 0 1s5ts TJ
where the time 1 is defined by
= ¢T - I
Dir) = édtt)dt =z (8.47)

How changes the optimal solution, if we assume that the terminal inventory
stock has the unit value S?

8.2. solve excercise 8.1 for a general inventary cost functiom hiz,t) > 0
for z > 0 and h{0,t} = 0,

-8.3. A firm has received an order for S units of product to be delivered by

time T. It seeks a production schedule for filling this order at the
specified delivery date at minimum cost, bearing in mind that unit
production cost rises linearly with the production rate and that the
unit cost of holding inventory per unit time is constant.



- lue -

8.4. Carry out the phase portrait analysis of the model presented section
8.2.

8.5. Introduce a state constraint x z x with x > x. Solve the model and
discuss the solution.






