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~ ELASTOMERS .

What ts an slastomer?

It is a polymeric material capable of very large rescoverables

extensions. The commonest example is natural rubber, which aay be
deformed recoverahly by up to 1000%. This proparty , of large scals
racoverable extension, is by no means restricted to any ona group of
polymers although it is common to refer to certain polymers as rubbers
or wslastomers. Within a range of temperatures and/or states of
plasticization virtually any polymer may bshave as an elastossr. The
one common feature required for a polymer to behave as an sl astomer (s
that it should possess long chains and it is usual to consider an
elastomsr thersfore as a long-chain polymer in which the cnains are
cross~linked to each other in such 4 way as ta form a
threa-dimensional network, the knots of tha net being Fforssd by

persansnt chemical cross—links.

Now the normal aquilibrius state of a a long polymar chain is one of
®akimum entropy and this is achieved when the chain is in the form of
4 random coil. When this cail is stretched, that is, a strain ia

spplisd to the assembly of which it forms part the coil is extended

and the entrépy is reduced. It is this entropic force which is -

characteristic of rubber elasticity, and this entropic contribution tao
the slastic stiffrness may be present whenever a polymer is deformed.

Gualitatively it may be expected that the full sxtension to which an
wlastomer may be stretched will in soes way be dependent on tha mesh
wizep small meshas, carresponding to  hesavily cross-linked
maferial,being less extendabls than large open ones.This is in
accordance with experisent in that lightly croas-linked rubbers are
sodter and have a lowsr modulus than heavily vulcanized ones which are
quite hard. The madulus in fact is invarsely proportional to the
wocbacular weight{loosely the nusber of links)betwesn crosslinks and
tha final extension, or extension to rupture, simsilarly related.

I natural rubber the crosslinks are made in the wvulcanization
procass (Boodyear 1839) by which sulphur reacts with the polyisoprana
chain to fora a permanent chamical bond.Other chemical agents can also
form crasslinks betwsen the chains.Peroxides ara used for some
rubbers, particularly the silicone rfubbers, and radiation may also be
espl oyed. For any particular polymer there will ba several ways of
l:“l'!l crosslinking and the properties of the resultant material may
depmnd on the sethod used. As Flory states, vulcanizetion should be

regardad generally as a structural change and not merely as a result

of chemtcal action induced by a restricted group of chemical

substances.

He-s we shall mainly be concerned with the molecul ar weight between
crosslinks and not their nature or mechanism.When we discuss
the-acsetting polymsrs (which may also display rubbery properties)the
ﬁuturn of the crosslink will become important.It is as well to note
here, however, ‘hat in thermoplastic rubbers (e.g.8BS copal ymers) the
*crossliink® between the rubhery parts of the polymer {(polybutadiens in

-
the above example) is provided by tha glassy part (polystyrsne in

8BEB'.In such amaterials the “rubber” is deformable plastically when



e the glass transition of the crosslink and bacomes rubber)ike

.

un when cooled below this temperature.Such crosslinks are clearly

permanent and are not intended to be.

other type of crosslink is to be found in the entanglements which -

to be expected on any physical picture of long polymer chains,
led up in a manner resembiing cookad spaghetti or a tangled-up mass

string or wool.

b crosslinks, which are not parmanent ,can contribute to the

ffness of the polymer but in a time-dependent way, since they ars

ely to change their positions as a result of the internal stresses

deformations of the assembly of chains as the whole aans

oras.The effects which we associate with entanglements are

reforeistrain softening, the observed fall in modulus of & rubber
or tts initial itrain. and relaxation, the reduction in the stress
tained at any given strain as a function of time.

cent studies of entanglements have thrown light on these.

RMODYNAMICS OF IDEAL ELASTOMER

t was found as long ago as 1805 by Gough and later in 1859 by Joule

t the thermal properties of rubber differed from those of other
ids ihch as metals in that rubbers warmed when stretched

led  when

{and

relaned) and if heated while in a stretched state, for

nple under load, they contracted. This bahaviour was not axplicable

Iny satisfactory fashion unttl after the long chain nature of

rmaric materials became evident.This in turn did not becur until

r the 1920 when Staudinger proposed it. The idea took root only
vly 80 thit it was some time before the modern statistical theory

"ubber elasticity became wstablished.Meyer,von Susich and Valko in

" mocelling the po. . chain

-oqhent- is & good approximation to make provided that the

"wal]l rapresented by the Eaunsian

. they can sven move througn each other--the

1932 explained the trs-.oal properties of rubber as resulting from tts

long chain nature and .. 934 the first studies of the pdlyn-r chain

using stalistical methc.u wers carried out (Guth and Mark, Kuhni,
48 an assembly of freely jointad

length of

thé chain betwsen crosslinks is large compared mith the sagmant length

{large numd not mear much more than 38 though in practice it is

usually much greater’.in any case, as we shall see, we can always use

an idealised chaln witr equivalent random links to replace the real

For =smali strains, thet is, not much more than 1% or so chains may

be assumed to remain

form , derived from random walk

- atatistics.

We take the chain to nave n# links which ara freely jointed (that im,
so-called phantom chain)
and to be of wqual langth ;.

%ar this fresly jointed chain the probability P(ridxdydz that the

end-to .nd:v-ctnr‘: lies within the volume elament dudydz is
P(r)dxdyisz = (sfzml‘J“.up(-sr'fznl‘Jaxaydz esesanneil)

The praobability that I lies anywherwe in the sheil (g,r+dr) is found by

changirg te spherical poiar coordinates and integrating over the two

angles to achiwve sphericai symaetry. This gives
Piriar = agrtge (3/2?’!‘11')“.»«9(—31*‘/211!').................... 2)

From this probability distribution, sketched below

16 quasi-random configurations and these are
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we can find the most probable value of r -(an 13) = 1/b

and the r.a.s. value of r, (r"):l‘, where

sa

wrly = /r'P(rl dr
&

A

-
fP(r)dr

[
Now fP(r)dr = 4h’ /ﬁ'r' r"txp(-bzr“)dr.Put b* 2 =t, than we can use

gamma functions and find

iy o .
fP(r)dr -24?[:"- “at w2/ F3/21m1 and <r?> = 2002502y m3/2t
8 <rf> =)t

Equivalent random 1ink.

We can find the number and lengths of the links of such a chain if
we postulate althat {ts msan squarea length must equal that of the real
chain and b) that its overall length must also be equal to that of
the real chain, .

Following Treloar, let the actual moleculs whan stretched out

without distorting any bonds have langth L, and let its wean square

length be <r:>.

Let L, and (r:> be the corresponding values of the postulated randoa:

chain, which has n, links of length ly.We may equate the sean square
lengthe, giving

ord

2 8
.>-(r,,>-nl »

LA 4
and for squal overal! length we have L_-L‘- nele o

For given values of Lhand <r: > these two siaultanecus squations give
a

L 3
n.‘- Lb I<rh > and 11 - (r.‘ >/I.h .

This is the equivalent random chain.

Entropy of a single chain .

Ecustion (1) gives the probability that a chain starting at the

origin will end after n random steps in the volume slessnt dv =

' dutindz. Using the Boltzmann relation between entropy and probability,S

=& ln P, we can exprass the chain entropy as 8 = k (I1nt constant) - b"

rte In { dv)}.8ince the valume elasent dv is assumsed constant this can

be written

B Ckblrt e rirriiinrnnnet®

where C is an arbitrary constant. The maxisus value of the sntropy is
thersfore when the two ends of the chain coincide.

(Note, the probability distribution for r is not relevant here
becasse both ends of the chain are spacified not, as in the
r-distribution,one end fixed at the origin and tha other ranging
randomly in the shell (r,r+dr).

For the above chain, sketched below,we can write the Helsholtz free
aneryy,A=-THB, where 8 is defined in equation (3).Then, 1f work W 1is

done isothermally in displacing the end r to r+dr, wae have W=A and the

-force fsdi/drsdA/dr=TdS/dre2kTbir,
‘ B



he molecular segment may be looked upon as a Hookean spring. (Note, Ti

waver, that this analogy needs to be taken csutiously because it is .
ly wvalid in the Baussian regime which is restricted to very small

rains},

We can, following Treloar, go on to treat the slastic forces in the
res-dimensional network in a similar way to the individual chain.

assume a) N chains per unit volume,a chain being defined as the

gment of molecule between successive cross-links.b) The ARAN-SOUAr®

d-to-end distance for the assembly of chains, when unstrained,is the

me as for chains which are not cross=linked.This

is the “phantowm

ain" concept, ih  which avary chain acts as though it were fraa,
encumbered by its neighbours).

The network "knots” are embedded in & continuum which

undergoss no chnﬁqn of volume on deformation, that is

the deformation is "affine“or homogensous.

rat the deformation as pure homogenesous strain in which a unit cubs

Ao Ay

Thus an tndividual chain with its origin at (0,0,

forms (see below) into a paraslleliped with uld-l,.

ith A0, =

1.

1its end at r, = (Mg 1Yy 02o) will deform to a new position
..\,j..l,r; + %0 that its entropy will chanq- from
3= C - kbied Eh) +A% +Ma 2,

1 the change in entropy is thereforse

,
to s’ € - kp? 5,

' Fi 1
8 = kb IO« iyl A\ -0z2 3,

Now b = (SIZnIIﬂA is a function of chain langth. Assume for the

N

T. The dres energy A »<TAS is therefore

A8 = —lrc AL o
_7 Butfx: 4Sy¢: +iz: - S-rk.

presst that it is tha

wame for all the chains, then the total change

in sntropy per unit vol we is

‘muSy.’ +(A¢-t)$z." 1.

» and, since the choice of aXeR was

arbltrary, § x} = Gyre P2l et zszrf.
* L
Alloir. - Norh

Hence 48 =-kb N/3 ¢r * >r)\‘n+ )‘-31 = =172 Nk I)% I\’H-s:.

3

A =12 MT €\ )2 i;-;: and this 1s alsa, for an isothermal
deformation, the work donw yW.

He write G = NKT in tha dbove, where 8 is, as will be shown below, the

shear modulus and the expression for W is that for the stored elastic

*nergy or strain energy “unction.

Blnc- M is the number af chains Per unit volume, then if we write M,

as the molecular welght o such & chain,{.e. the molecular weight

betwesn cross-links, then N M‘/NA will be

ar N -?"nf"‘o

the mass per unit volumn.?,'

Then 8 -QN Il'l kT -9R1’lﬂc. Thus & is inversely proportional to the

aolecul ar weight between cross-1inks.
Some numbers.
B P
§ -2

A typical valus Jor B for a rubber is 18 N »

»T =300, say.
¥
So N =5/kT = 2,41 10

« Now k=1.38 1o

-f
Jd K
per cubic metre

F 1
$ & 1000 kg/m’ , Ny =6.62 16 per mole, hence M, =2490,

This could represent 138 CH; units or 37 fsoprene units.
Flory takes 5¢ to 100 units in a rubber between crosslinks,i.e. about
ie-4@ crn:-llnﬁ: per chain of 100 to 2000 monomer units,

A more correct(but still not wxact) expression for G is
B =

RT!F& (1- 2 M,./M), where M ia the chain molecul ar weight.This

-1y



is illvslrated by the figure (from Treloar, +ollowing Flory) showing

the linear dependance of 6 on 1/M.
&0

G(Nw?)

o)

a4 P

o 2 ry ] r 10i

M here has a value in the range 125008 tao 1000000, which, for isoprans
(M=4B8) implies 1838 to 14705 monomer units in the chatn.Now Treloar
shows that for isoprene the *quivalent randoa link contains 0.77 af a
monomer unit so that in this case the nusber nr to Put in sxpressions
for the r.m.s end-to- snd distance is 2408 to 19243.The randos 1ink
langth for isoprens is given by Treloar as 1, =0.352 X0.44 nm = &.)62
nm. Then <rt )‘- tn').él = 49X. 1462 nm. to 139X.142 nm.,that is, 7.9 to
22 nm.The size of the roiled up rubber molecule is therefora not
large. (Note ,these talculations are approximate only ‘since freely
r'.otatlng monhomer units have been assused, which is not the case in
practice).

Assumptions.

What have we assumad 7 1) The phantom chain, of course,also that the
presence of cross-links does not affect the behaviour of individual
chains.f¥ this more later.2) Sasll strains. We are still assusing that
Baunsian chain statistics are relevant whersas the assumption sade in
the derivation of the Gaussian chain was that steps in the random walk
wers equally likely in any direction. Clwarly 1¢ the chain 1is highly
extended this assumption is not reasonable and & different one aust
be made, Such :n snalysis of non—Gaussian statistics leads to the

Langavin chain, which givas better agresmant with experisent at high

draw ratios.

37 The palymer is still amorphous. It is known that crystallization

occurs at high extension.This in another factor to take into account.
Before comparing tha Gaussian/randos walk theory with experiment 1

want to outline briefly the fora of the strain energy function W

dar-ived from large strain theory by Riviin and aothers.

LARGE BTRAIN THEDRY,

Nhen di-«:u-stng large strains we use the stretch(or draw) ratio, ] »
rr.h.r than the strain e. is the ratio of strained length to
unstrained length so A = i+s, in tha case of uniaxial strain.

Fer hosogensous deformations the snalysis is simple. Assume principal
anes, than the coefficient of large strainf= o+ 1/2 at

-Xe1e1/2 A-11' wis2 ot

Sn)‘- 1+2f and this iw true for all strains, howsver largl.
Now for infinitesimal strains £ =e and we know that, for exasple, for
the strain o, in an {sotropic material we have

o, =1/E [1’.-\“%1-0“)]. where E is Young's modulus andY is Foisson’s
ratia.

Therefore e, =1/E[(1+7) - V1S, +9 RAMEHR
N in a rubber V=1/2 and taking +q +C, = 3 p we have

l'l =3/ (2€) N'”-p). (-1
When we consider large strains we use the lced per unit strained
area, t ,rather than the stress 9,80 that for example ta -ﬂ,'./l,}«'.
‘Rivlin proposed that, by analaogy with the oxpression (5) above we
should write
H2g = k"- 34E (£, -P), whers P is now a ‘hydrostatic’ term, but not

any longer equal to the sum of the stresses.

’ Y I Y
Simitarly x,-:veun -P), and A =3/ELt,, -P),



We can write G=E/3, mo that

F 3
t, 6N+ P

t, =86 MNer
9
t”-‘B A’i- P

Derivation of the strain energy function from the Rivlin theory.

3

Let the extension be }. » \‘,\.Th. stresses are tn = g ),1'4-

that the forces on sach face are

N R N 1 S L T W
tuhh = 6A L) s e )y A
iyl = 8 AN s R ) A

Now extend by d) ,d)\ ,d 3. The work done is

oM =t M\hdd o+ g AL a), + o hdh e P:u.\.f,\‘ml\zvdd,/ I
-Gt\d)&'-o- ),ldk-o-)'dk,]o Prak/y mlnl;’ +dX,/A,]

Integrating we have W = W, +6/20 0! X' Nase 10\ N

Now amsume W =0 when) =) =h =1, Then W, =-36/2, and
L
o= G20 Ns P«:-n

P
urely mthn'n'mtn:nlly we can show that the strain ensr

must depend solely on certain invariants of the strain, 1

are defined as follaws,

P, etg. co

= W, +ar2000e) ) 0]

gy function W

21,1, which

"

* rubbers)then )l\, b,

: .1' - A:‘# ‘:+l"", L -:\;,‘:4’“:4)“:,15' /\1‘ ":lb'

N_Lt.h. rubber s (ocunsressible(and this is nearly true ¢for all
and tha invariants reduce to two in numsber,
nu;llv:{-' and I& .

Then we have W = N(lI »I,) and the simplest form of this expression is
the so-called Rivlin nec—Hookean rubber

M o=C(I -3 = cc;}\."ﬂﬂ};—sa.
Iih may, of course aguste the constant C to B/2 in the Baussian form .
The next simplest “o-m of W is thae MOONEY-RIVLIN form .
‘Il - Cl (-3 +C, ii, ~F).Howevar,the miperisents of Rivlin and Saunders
suggested that w - CI (I, =3 + §(1,-3), would be a better formula to

use, where f is « «lowly decreasing function of I, . Sew

®.g.Treloar (3rd. «a...
{ Tha expressiont vor stress under large strain, expressed in terms of

the strain energy vunction, are
»

. &
I om by = 20N 'NJ‘L“'%E.IJ'.’M-%;:.’
L
t -ty =208 - «:‘,ﬁ,'g +H"a,£)

- - - l-— o &
Lt m by 2()\’ by ac“%g + ) %)

v
Thess reduce for simplé extension or compression to

t, - 200; - 12\ TR RACL
[} I‘
and for simple shear co
g a2 40
*) ¥ T, nbﬂ
14, now W = (:'t:!t =-3) - CL(IL*S), we have
£, 2(\,"— 1/ 3¢ « /) Cy), the Mooney equation, and

by ™ 2)'(::' +C, ).
Rivlin showed that IW was

[as

and Saunders roughly

o
va-ied with lz ;

constant, while OW

L



Let us look at particular cases of the simple Rivlin model.

a) ‘Uniaxial strain t =t = o, A=)= }‘.'-i
Then P = -8 = —gh%

t, = B -0 = BON=1/N), tsinca )l Len)
The stressG= tAh = ¢t /)= 8(A -1/ )1y

Fl
The strain energy function, W = szdl +2I\' ~3)

L]
b) Blaxial stratn. ), =d= 1/)f,¢, =0
[ & &,
6, = G = BN = B T1sh
1f the original thickness in the (23) Plane was d,
- - - ‘
thend = ¢, d,h= Bd, (1-1/46)

c) Pure lh.ar\- ) » k_-l, }s’-lf}\

o

Wae have t.“- 9, hance P-—G):'.
t, =BUAT=1/ ), q =B ), 170}

t, =6(1-1/ ) 19 =8(1-1/ 1)

d) In simple uh.art\ -l .\_-l. X'-IIA v the strain energy function 1is
172 6F , with Y= tange ) -1/}, .
In this case t = Bb’. that is, Hooke's law is followed, which is not

the case in any other typa of deforsation in rubbers.
> .

Coaparison with experiment.

In the figuresifrom Treloar! we have

aryYniaxtal sxtension b)Biaxial extansion, CIExtension and

comprassion(uniaxial),d)Pure shear, and o) An alternative

representation of a),b) and di.

e would conclude, fol lowing Treloar, that the Gaussian theory

describes the hehaviour of a real rubbsr to a first approximation N
sut only for small strains.This is still useful, howsver, in that many
applications of rubbar such as rubber suspensions in sator cars smploy
only small strains and the existence of only one constant,B8, in the
theory makes satters simple.

ODeviations from the ideal sxist and become important as the strain is
inaoreased.This can be seen in Fig.3.4 from Treloar.We can see that at
low strains the the stress falls below that predicted lfron theory,
while at high strains the reverse is true.For the latter case a
non-8aussian theory, the inverse Langevin theory, was div-luﬁnd by

Kuln and Grun, which is quite successful.

Inverse Langevin theory.

Kuin and Grun trested the distribution aof orientation of links by
usi g the asthods of statistical sechanics +The object was to find the
®0st probable configuration of a chain aof n links.

Choose one end of the chain as origin and use wspherical polar
coarusﬁatu.m: the ith link has nrunutionq o and, 1§ it were

randoaly oriented we would have the probability



sinf ofachrav
hat the link pointed in the solid angle (9‘-.5; +d8,° : Q'., Q’;#d 7.
Assume & uniform distribution around the z-anis, i.w., integrate

" @i. then . '

N 9{ ) = ulnﬂ'dﬂ 12, The total probability that there are n, chains

b orientation 6‘ ' Ny nt&l and so on is

ywhere Sn, = n,
LY

™
= Tt 8108 48> ‘gns
t
(na!)
e total probability of a state in which the projected length z -Sn‘.
o 9; lies between z and 2z + dz is the summation of products such ag

ver all possible sets of n  such that Snl. = n and

JL @ -jn!'_[['; cinnﬁ.dﬂ‘ )"Eg
t '

m

n’'l cosl= 2,
. 1

evaluate this as in statistical mechanics by taking the largest
m and maximising 1t subject to the two constraints above.
h\
' ! af ?
this term be W(z)= n! ?/_[(LanJuDJI g
2 Sy
n:!
J
ng Stirling's approximation for large n we have

|
n Wiz) = n°n-sn-9'—n-n-n- *+nilnn~-n.
z 5['1 t‘_ infd )) _,1 “J"_,J 1

o*

15

'

Applying Lagrange’s mulisplisrs, the condition for a maximum becomes

. .-.i- .xp(nld- (I,cnuﬂl-} -;;as.m &f d&t'

_m-fn :i and B e constants to be determined.

The cmit_ﬂ:aintzn;- n gives

n= ;‘Ef-xptl’l+[\ cos 3) sin0 9P = expyl utnhplﬁ

-
2

and the second cqpstralnt gives

.z - nﬂﬁs;ppf-xp( rcosﬁ) cosOmin® dP = n1 ({&)

whers P«p! - coth[;- 1/(> , the Langevin function.
Finall, we obtain 1n Wiz = n In (sinhf} f]%)—pzn + const.
This can be expanded to Q:ve the probability density
- & q L & + ‘
Intpir)) = conmt.-n¢2 ¢33+ T)" 4 44 (T ¢
P ey Zorg 350 Ut '

where W& Now equate the projection 2z of each chain with the mean
end-to—end vector r.(But see Flory).

Compare with the Gaussian

-3ty
In{pirt) = const. T(hb
Multiplying pir} by aFrior 4as for the Baussian chain gives the
probabiiity Plridr of . length 1lying between r and r+dr. The

comparison with the Gaussi«n is shown in the figure(Treloar &.3)

. The entropy and hence the force sxerted by a single chain are wesasily

calcula-ed as for the Gaussian.

For & three-chain model (one along each axis) Treloar gives tha force

-1 -

-
] -3
¢= NKT.3 n* :of)!-:—a - [l
LY 1\'_‘?"



- .
uhor.o{ is the inverse of the Langevin function with the expansion

j(x) - 3x+ix5+5f1us *'_s..’.'lx7+...
S 75 g75

For small values of therefore the Langevin sxprassion reduces to

fm= NkT(A-l/l’) as for the Baussian. .

The form of the force-sxtension curve using the wmquatiaon above ia

shown in the next figurei(Treloar 4.8)

The form of the non-Baussian curve reproduces quite well (and for
suitable choice of N and n,very well) the experimental -esults for

non-crytallizing rubbers(Fig 4.12,Treloar)

Discussion.

Both tha Gaussian and the inverse Langevin theories aim at a molecular
explanation of the observad mechanical properties af rubbers.
Phenomenological theories based on the strain snergy function suggest,
A% we have seen,that two constants C, and l:z in the strain snergy
function describe the data vary wall.

The Meoney squation is

t =201/ )¢, v g, 00

Now C, is identified with the shear modulus G=NkT from GBaussian
theory, but no simple physical explanation for C& sxists, although
many attempts have heen made to find one.

Treloar lists ‘ivc molecul ar explanations.

1} Non-Gaussian chain

/7

2)Iaternal snergy effects

a)Chain cntar-ql-ru;\ts

&) Irraversible effects(hysteresis)

5)Non-random packing.

The first has besn discussed above but has not been shown to explain Cz
The second cannot wexplain the dependance of l:‘_ on swelling.The
third,entanglements, will be discussed later. )

Irreversible mffects were proposed by Ciferri and Flory and may play a
part, ‘

though certain rubbers show deviations +rom statistical

behaviour without appreciable hysteressis, so the effect cannot be
Nl que,

hon-random packing, influancing the chain entropy,is likely to play a
considerable >art and recent theories, to be described, taeke this into
account.

Alternative forems of the strain snergy function have also been
rofossd and a wsuitable choice must suffice to oxplai.n all mlastic
bwhaviour. Howsver,this does not imply that a satisfactory wmolecular
suplanation ~ill follow and it is this that the recent tube or tunnet

sodels aim to pravide.



e connection molecular statistics

between and macroscopic

formation.

om the earliest days of rubber elasticity theory some model has had

* be proposed to sxplain how strass was to be transferred from chain

chain and, ultimately therefore, to explain the deformation

haviour of a solid bedy af rubber.This involves the concept of

bedding, that is ,the chain or Part of a chain has to be considered

embedded in a continuum which deforms according to the theory of

ssticity.We tacitly assumad in the Previcus analysis s coordinate

stem for describing & random walk.What is not clear is whether the

' coordinate system will do for all chains or whether wsach chatin

quires its own,

I¥f we take the origin of a chain and its end point after n steps as

ing embedded in a Qiven coordinate system then th._ intermediate

k8 in the chain cannot be sa embedded for i€ they were they would

/® to deform under extension just am the end points do and w0 a
siderable constraint would be imposed on the chaln configurations.

F svery atom were embedded in the continuum then i1f, for example, we

lied & deformation € = A.R to the continuum then every atom would

'e to a well defined Place.In this case some atoms would move more

n  their covalent linkages wouid allow and chain scission would

wur.Only if, as in a cryatal,the positions wers precisely defined

iid a deformation of all the atoms be describable by one,

roscopic, law)

-ansically (Kuhn and Brun} only the chain junctions were enbhedded,

t chains betweesn being considered as statistical variables.Even

‘®,hawever, fhere is a conceptual Problem in that if we define the

wtinuum  using the Junctions of any one chain then a spatially

Y

S

#ixed ones are embesuss in

neighbouring but topolac. cally unconnected chain will need another

continuum to describe o8 junctions. (ln the diagram the black and grey

junctlons lie on differ#nt chains.)

NS :
Jamws and Guth introduced the idea of fixed and free junctions.The

the continuum while the frae

-ljdn:tlnnl,uhich are onnected topologically,also move but it is their

siman posttions which ure embedded and fluctuations about thess mean
positions are held to b+ Saussian and not strain dependent.Because of
this the Lmnediate neignbours of & junction may change.

Flory considered tha: on straining only part of the change in the

snd-tc-end vector J arose from the affine deformation of the

junctions, the remainde:r coming from the fluctuation around the nean
positions of these junciions.In Flory’s view both the mean values f of

‘the individual chain vectors and the fluctuations Ar = r - T about

these means are Baussian,thus wWir:, the probability distribution for
fres chains is

Wiz = Xeprefides

Follewing

and is also Baussian.

James and Guth he takas F to follow an affine

deformation(that is, it 1s embedded) whileP(Ag) 1a
strain.It follows that “ne collection of nearest neighbours of a given

Junction will change witn wtrain.

|Tho w.antic fres energy Jor Flory's phantom natwork is
A ﬁg— L % S kT(I, -3) while for a real network, since movement of

nearest neighbours will be constrained he finde

ARy -f(l-—é)-:i-kﬂl‘ -3 -uf:u-;f' KTIn(v/v, ),

In this expression Vi, is by by

.pfi: the functionality of the

junctions (and must therefore be 2y, uhil.lgil the so-called cycle

independent of

1o



rank of the network, a term from Qraph theory meaning the nusber of
chains neesding to be cut to reduce the network to a tree.

These studies and many others have aimsed at explaining the L‘z factor

in the experimentally successful Mooney equation.However the proper

undarstanding of rubber elasticity at the solecular level must also

tnvolve the consideration of antanglemants which, at a7y rate for

short timas, must act 1like cross-} inks and geomstrical constraints

such as excluded volume which, by reducing the Nnumber af

configurations available to a chain, must affect itw stifénass.

Rubber elasticity using the tube model.

In contrast to the various modifications of the ’*phantom chain®

& 1 of rubbers in which the chains,between cross-links, are assused
to .ake dirsctions determined by a randos walk, Edwards and his

Co-we  &rs have adopted a wmodel in which the polymer chain 1is

constrained within a "tube’ formed from its neighbours. It is free to
wriggle (reptate-to use de Gennes taers) in the tubs but not to leave

it entirely aexcept by raptation along its length., The 1lateral

excursions of & chain are to be limited by the topology of thes tube
which allows small excursicns of a portion aof chain perhags, but never
the whole chain as in the 'phantom chain’ description.

In addition to this tubs mode]l Edwards has introduced the *path

integral’ method of

calculating the probability of any chain

configuration( and hence
-

on)., The power cf the path integral

ite partition function ,free anergy and so

mathod is that it allows the

simple inclusion of terms describing the immediate snvironeent of the

ol

Y

chain, that is, the constraints under which it lies.

To return to random walk theory for a -qmcnt; the considaeration of the
coastraints on a chain (sel f-avoidance, constraints of
ne: ghbours, valence-angle and rotational constraints) and the limits of
excursion of the random walk by the limited length of the chain are
cainbl. of baing handled by the statistical sethods, but with great
ditficulty.To take one examspleithe Baussian may be described using the

ditfusion equation, for the probability P(r) satisfies the equation

2
gr =p9P
ar

It is therefore possible to treat problems of the confined phantom

swith D = n1? /4

chain by seeking solutions of the diffusion esquation with suitable

boundary conditions({reflecting or abmsorbing boundaries, various
gecaatries etc.)
Homaver, a more general chain is not Saussian and so a statistical

wechanical trestment such as the inverse Langevin with prescribed

oundary conditions may be required.

Path integrals.

For a Gaussian chain in one dissnmion we have as the probability of
raaching Xz In 0 steps from x,
Plgx, ) = a/f expl-a® tn,~x 17 ,where a = 1/(2n1%)
Siwilar]ly
2 2
Pixya,) = a/fiF expi-a (¢, =x, )
Mow consider P(u,u‘).Ptx‘u| ), that is the combined probability of
goiag from x, to i. .
It is sasy to show .Ehat
P(u., X, ) = /’Plus Ry ).l"'hca x, ! dny y that is the combined
: + Log
prooability must be integrated over all possible values of the

interssdiate variable Ay



The thing 1is true genarally (Markov chatn) and we have, for N steps

n thrae dimensions

NA
5
Piryry) -'rf...fP(r“r._‘)P(li'r“)....P(r' r llrd (2

5 an example, if we assumed that each of our steps was a Gaussian one

hen for N such steps we would have
' S [
(r_.r;‘...ro) = { 1;’1 3 “pt-f\?‘T‘ zlr;. b A I

3 suppose each step is made smaller and smaller,but still Gaussian.

&N we can replace the sum by an integral, the difference L

e by
and the length | by S" the element of arc ot the chain.

r and up with

chp {- El d[’ldl } = Ptlrl), where [rl means the functional
iz} (E £

ntaining all the wvalues of r along the path.(Jv.ll how a

wmalisation factor).That in, we have now obtained the probability of

path ris).

fhe inteqral is known as a Wiener integral and is far more conveniant

1an the summation of individual path ateps.

- is closely related to the path integrals introduced into quantiwm

rchanics by Feynman and was earlier applied to problems of Brounlln

nion and diffusion by Wienar.

‘o obtain a physical fesl for it , it may be useful to substitute

me t for the path element s, then the integral becomes

vi dt that i{s, enargy times time, or action , and we see the

finity with Hamilton's Principle of Least Action, Furthersore, in

s form it is easy to think of adding other types of esnergy such as

itential or chemical energy to the integral in order to take into

count  various constraints on the motion.This, in the pol ymer

intext, is what Edwards does in appiying the path

integral to
‘oblems of rubber elasticity.

U%,; supposerthat there is an energy of bending in the chain and the

ndom walk is duw, not to abrupt changes of direction, but to thermsal

25
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fluctuations of the potential energy of bending. Then, in addition to

the term exp( -3
¢

R |
-npl—?[(];;) dl—%f{dr)z ds 3 ‘ \

tc be the variable in the above this expression

(dg]z ds } we could have a term

and combining these we have

1f time is taken

cnﬁl-flul the Fokker-Planck equation for Brownian mation.
Chain interactions may be included by writing

;xn [ ’{(dr) ds - f} W1 r(: } - ris,) 113 ds ds& sy wherse W
is a nnt-ntlal energy of interactian.

In the Edwards analysiz it is shown that for small deformations fho
malecalar mechanism o+ atretching is dominated by the slippage of

chains {through esntanglements) whereas the stiffening at high

deformations is described by the tube concept (constraints on allowed

configurations),

Tonsrder the slippage of sntanglements first. Ball,Doi, Edwards and

Warnar obtained the formuia for fres energy

AZKT = «2'- Jz Z Lo (147N)

whera the 1.nr| the <three Cartesian stretches 3, l and 'q is a

Af (i
I+ ﬁ‘R;

measure of the freedom of an entanglesent to slip.

This formula was obtained 1n the following way.Buppose a cross-link to
be defined by the squation
:(lh) - {(:)) » whara { and j refer to diffsrent chains. Then the

free mnergy i
-Hijr

A = —kT In f TTltr s - res;r3e
14

understood to be

Pic} gt_q), the integral being

over all chain cmflguratimt.s [;tsii - ;(lj 1] e

N

74



the Dirac delta function and H is the Hamiltonian describing the
anergy of interaction between the chains and given by

H =¥ IJ.S ['r_ts;) - ;tlj):l dli dlj s the integrals here baing taken
over the range of interaction of the chains.

In the expression for A above Pir) is the Wienar wa have

integral
Ju§t intraduced.
When the cross-links are allowed to slip the product
T Stz(s;) - L(%;)] is replaced by *
T‘r Prris; + [ j‘_uj +T,01  and the guantities Z are variasbles
uh!cth smasure the sliding.

?nr full details the raferences should be consulted, the above outline

is merely to sketch the method.

at the beginning of

The resultant frees anergy is that quoted this

section.

targe sxtensions.

the tube constraint becomes moras important i:han the slip

Link.This can be treated by introducing an harmonic constraint 1into

the Wiener 1ntcPral. giving
ot - L [ aatriay - R(s2/13® 3, where L, is toe tube length
“/ = ' r it ! ¢
/between two cross-links, L (s} is the path of the chain and the tube is
" defined by R(sl/a).
its diameter is
<R(s1/8) - r(x11° >u 2t

In the figure below (Fig 2 from Edwards and Vilgis) the primitive path
-
in defined.

Flgars 2 Prioutrve puih model for 8 cramfinhad potymer chain, The
m-nm-mmhmmm“hilh
w-mdlhmhuhphunnlhrnh-m-nlhnm
ol The pulymer u grvon by l_huulil-uh:.u‘inn-lw
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[f it is 1long enough it can be modelled by a random walk with

wsnd-to-end distance
2
Ry = N"l =}! a,

rr

segnants and a the step lcngth.Lﬂ, the contour length,

whers N" is the nusber of primitive path

“hen, since the end-to-end distances of primitive path and real

polymer path are the same, we have

E 2

N, a" = N1® |, or a2/

L4

tCompare the equivalent randoa IHnk discussed warlier).

= NNo and LiL, = anl.

Edwards and Vilgis considaer the'slack’ in the chan and calculate the

probability of the primitive path. Thus, if there are N'PF regions of
slack sach with arc langth A; then the chain length L i
Ny,
L = Lrp + S‘A‘-_ s and the probability af the primitive path is
+

found to be

- 2
PiL,L__) = { oxpl -~ (L, “lpp? }
" —q—-—.—_’:._, e

4, (1-L,,)" 28,(1-T,,)

i 2
m.r-l.” -L-N"a. and A‘-all -8,
Tha free energy for this cross-link case is
. L 2 1 2
a-in‘£2(l-d DLK —umx-dé_)-u:
l' J‘E \l !
with cl » &4 measure of the inextenwsibility, = 1/a, It is about .1 for
commercial rubbers.
Ceabining N‘ cross~links and “3 slip links the expression af Edwards

and Vilgis for the total fres shergy is

AT = 4 uj-zif_:'i&_ - Ay (=LY

t-a* M
I3 )

(N =220

. ~ by (=S N)

There is good agreament with axperisent .
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NOTES ON THE FI1BURES

Fig.3.3 Wire wmodel f 1le0@

links of polymethylene.Links aet at
valece angle but pos’-:on on Circle determined by throw of a
die.Actisal conformatior .ne of & to the power 998 possible ones.

Fig S.Si Motermost .ikely postion for Gaussian chain is at the
origin.Fig 3.5b cf.Manweiiian distribution of velocities in a Qas.

Fig 5.1 Self-explanatary

Fig 5.2 Equation 5.3 roferred to is stress = Btl*lﬂr)

Fig 3.4 Curve (c) ts for stretch ratios of 5.5.Curve (b) s for

while curve (a) , which has e*xperimental points on
it, is for sxtension to break (and so dows not show recovery)Note the
appearance of hysteresi: as the extension is increased,

Fig 5.5 Obtainad &y inflation of rubber

sheet as in a burst

test.Strain ie neariyv un:form at the centre of the sheet.Contiruous
Curva corresponds to eguation:force = Bd.(l-lfh:)

Fig 3. & Sel f-explanatory

Fig 5.8 “Wide-sheat” method used to obtain pure shear.i.e.Extension
by constrained grips so that A=X ,h=1, N=1/4.

Theory gives stress =5\ -1/ )% ),6=0.39 N mm™

Fig 5.9 Self-sxplanator:

Fig B.10 Self-explanatory

Fig S.11 Plot of stress/2tA-1/%) against 1/) . Slope should be C,
and intercept should be C, + C, at 1/} =1,

Fig S.13 Sel f-explanatory,

Fig. 6.3 Comparison of irnverse Langevin and Gaussian theories
Fig 4.8 Force extension curve for inverse Langevin expression
Fig 65.12 Experimental test of inverse Langevin expression
tnon-cryszallizing rubber}

Fig 4.1 1boi and Edwards).Schematic tube model of rubber

Figs 1 and 2 (Bottlieb and Gaylord) Comparison of various theories of

rubber elasticity.
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F1G. 3.3. Formol 1000-link polymethylene chain sccording to the siatistical theory.
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probability of a given component of length in the x direction,
scgardiess of the values of y or z. Since

L) bl I
I exp(—b'y)dy = j exp(-b'z")dz =1;—. 3.7
the result is
p(x)dx = (b)) exp (~bx") dx. (3.8)
06}
o4}
plx)
nz -
-20 T 0 m 20
X
{n}
or}
06l 'Y
Ar)
o4}
02
00 e T0 ; 'S 20 )
L]

Fi 1.5, Dustribution (unctions: (a) plx) =constant Xexp (- b's"); (b} Plr)=
canstant X ¢’ exp (—b'r').
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r
Tensite or comprehensive force

—— - Yy -

Compression

F10. 5.2. Theoretical relation between force and extension (or compression) rasio
{eqn (5.3), with G = 1-0).

g
=
9
£
&
s =
R} Theoretical
£
U
Z 2}
e
2
g
~ 10
i 1 1 i ]
o 2 3 r
Linear exiension ratio, 4,
FiG. 5.5. Two-dimensional {cqui biaxial) extension. Comparison of experimestal

curve with theoretical form {eqn (5.7)) (G = 0-39N mm™).
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OF THE STATISTICAL THEORY a7

by
L=
T

ey
&
L4

(c)

\

3

Theoretical

Tensile force per unit unstrained area (N mm -?) (Scale for curve (a))
o
Y .

>

1 1l
| 2 3 4 S [ 7 [ ]
Extension ratio

[ 21]

Faci. §.4. Simple extension. Comparison of experimental curve with theoretical furm
feyn (.30(G = 039N mm ).
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Tensile or compressive force (N mm ")
!
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-32L
Fio. 5.6.

06 08 -0 |-2‘ 14 1-6 -8 20

Complete extension and compression turve. = Theoretical relation

{eqn(5.3)). Compression data from equivalent two-dimensional extension {Fig. 5.5).

”
”
12
Equi -1
extensi
&8
E
E
z
- Simple extension
I
< 4
= == Theoretical form {eqn {4.18),
with G = 039 N mm~?
' L
l"l) 1] 20 k1)

h-14

F1G. 5.10. Alternative representation of dats givenin figs. 5.3, S4 and 5.8,
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Extension ratio, 4,

Fo. 58, Force—extension relation for wide sheet (pure shear) compared with

theoreical retation f, = G{x, - 1/A}) (G =0-39Nmm ).
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1. 5.9 Re ation hetween shear siress and shear strain (curve (b)) calcutated from



9% EXPERIMENTAL EXAMINATION

$
o4 010 .
G * Natural rubber
> o Butadienc - styrenc
* * Butadiene - acrylonitrile
F 008 -
o
= 03 y
] ‘F‘ 0*06 -
g . E E
z
. [ o -~
-~
- ¥ =
- _; 004
!
4
02
002 |-
o
0-00 1 1 1 NoJ
1-0 o8 06 04 02
Volume fraction of rubber. o
0 ‘ i L 1 ) ous rubbers
09 190 _ Fio. 5.13. Dependence of comstant C, (eqn (5.25)) on v, for various rubbers.
¢ 06 07, 03 (Gumbeell, er ol 1953,)
F1G. 5.11. Mooney plots for various rubbers in simple extension. {Gumbrell, o .

Mullins, snd Rivlin 1953 )
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-~
&
T

e Claussian

Tensile force (N mm -9
s
L)

~
&

0
I )
Extension, ratio ' N~
F10. 6.12. Non-Gaussian force-¢xtension refats _ . _
ta) data, with NKT'=0-273 N s wqg oo {61 (6.15) fitted o experimen Fig. 6.1 (a) A strand in a rubber. A and B denote the crosslinks. (b) Schematic

picture of (a): the strand under comsideration is placed on a plane and the other
strands intersecting the plane are shown by dots. () The tube model.

20




1. Amorphous palymers

These poclymers have no form, as the nams amorphous implies. In
particular this maans that, as in an slastomer, the polymer chal.:s are
randomly oriented and at the the molecular level resesble cocked spaghetti,
for example. The bulk modulus of a polymer is determined primarily by the
van dar Waals interactions between chains and 30 has a value comparable with
that of a solid inert gas,

Table 1
Material Bulk modulus in GRa
Soltd argon 1.6
"  Xxrypton 1.8
Polyethylena L 3,5
PVC 5
Polyischutylene 2,5
Aluminium 73
Copper 138
Sodium chloride kv

By contrast the "other” modulus in an isotropic material, the shear modalus,

" dapends upon the detaitls of the polymer chain; its backbhone, the side groups
and the temperature and frequency of ssasurement, For any polymer the shear
modulus in _the glassy state is about 1 GFa, In a rubbery state, that is,

above the glass transitton temperaturs, the modulus falls by up to thres orders
of magnitude and the matgrial exhibits rubbery behaviour, in particular the
shear modulus then becomes” directly proportional to absolute tesmparature

just as in an slastomer,

In fact, abova ita glass transition temperaturs any polymer behaves
1ike a highly cross-1inked subber; the main contrast betwssn a polymer above Tg
and a true elastomer being the much greater axtensibility {which is of ccurse
inversely related to the degrees of cross 1inking) of the olnéonr.

What the cheatcal structurs of the polymer doss affect very greatly
13 the position of Tg., Thus in the substituted polystyranes and acryllcs the
position of the glass transition has been shown to depand in & consistant
manner upon the nature and number of the side groups or substituted backbone
groups., Some eXamples follow,

21

Table 2
Jolymer Tg ®a
Jolystyrens 100 H R r
s~methyl * 120 2
smethyl * 77
p-atayl 50
p~n-butyl 6 H
p-l.l-h.wl. - 27 0
p-n-decyl - 65
p-bromo 132 m
But R, = methyl gives T9 = 180-192 % p

Similar effects are found with the acrylate and methacrylate polymers.
Tha sffects may be qualitatively axplained in terms of yestriction of the
fresdom of chain segmants te rotate about thelir valence cones.
In the simple theories of rubber slasticity
C which lsd to predictions that the shear modulus
G = NMiT 1t was assumed that the linkages
could take up any oritentation {even including
ones which interfersd with the chain itself).
In any event an “equivalent random link" could
always be postulated if one took sufficient
{quite small numbers were necessary) “real® links to make an equivalent one.
when the rotation is heavily hindered by potantial energy barriers, however ,
sven thisassumption is disallowed and the restriction in configurations lsads
to a modulus considarably higher than that derived from the entropy of freely
rotating links. "

Full calculation of these woduli has not to date been found poseible.
They will contain not only sntropy-slastic but also enargy-elastic terms,

since the assumption made in rubber elasticity that the intarnal energy in
the sxpression

AA = AU-TAS
cemains unchanged is no longer trus when there are considerable barriers to
ratation,
Yiscoelasticity y

Measurement of any of the mechanical properties of a polymer, such as
modulus, yislds results which depend upon time {or frequency) and temperature
and, as we shall see latsr, upon orientation. It is usual to restrict studies
of the viscoelastic proparties of polymers to the 1inear region (strains up
to about O.1%) where supsrposition using the Boltzmann principle ts still valid.



This states that the stress O at time t 1s given by the entire
history of the material up to that time and is expressed in integral form

by the equation -
N o
a(t) = .LG(t—t) J.et;r)‘(; vees (D)

whers e(t) 1s the strain at time t and G(t} the time-dependent modulus
(here written as a shear modulus - but applying to any of the other moduli
of the material.

An analogous equation exists for strain in terms of stress, where
the kernel of the integral equation is now a compliance,

By using this squation, or by the use of simple spring - dashpot mode.s
of the behaviour of a polymer one may convert the data from stress-relaxat cn,

as creep experiments into dynamic - storage and loss moduli - and vice verms.

In present work at Bristol we have used modern computer technigues
to make this converston of practlcal use, providing dynamic 'spectra’ from
relaxation studies in times as short as 20 minutes.

First, however, let us consider a simple three-element spring dashpo—
model,

El E‘_
T 17
T~

If we analyse tha above model we £ind it satisfies the differential equatioss

v A n E1Vy. de , ge
E.. lt‘ + ,7 ('." :’)d-" 2"5.' "—"’;':,-“ R

Undar constant strain er e° the solution for stress is

= T + (T ~Toe) exp (-£/T,) '
oo EE) = v/e, = Eq +(Ey-Er) exp(-¢/T))

Ohese LA "?/(E.-ﬁ-E;) and €z , E, are tlhe

"12‘5.!:‘" o-o.A .Unfelnl(EA“ nnulu!i fosro,f'.‘m!.‘,

(D

Under constant stre: o =0, ve have
€~ Cug+ (2, - Coy)oep(-t/T,)
-th - .
v €o= (B, +E, T ad 7, = '7/5:
e

Note that , :F p although in both cases an axponential
relaxation occurs,

Dynamtcally, 1f an aiternating strain e = &, S wt
we find

in applied

o = A sia(wE+8)

will A -

=
2 + wixa

F Ay ]
© €&, T, (:.; whTNE
/ /

ami L,V = w(Tt,-7,)
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The behaviocur of the material is such that the stress increases with
frequency from a vatue KR, = €, & 11/7-',_ = € En

‘C:r'-l.'Aoo - el E‘ = e' E’U

|

with & transition a¢ the maximum v}alue of fu?
(l'lg- 1),

where L= (7 r,)-

In real polymers the transition from the low frequeney relaxed,
modulus ‘E e to the atgh frequency, unrelaxed, value EU takes place over
2 wider frequency range than that for the simple thres-slement model (amd
#¢ speak of & 'spectrux of relaxation times' instead of a singla one.

There is still, however, no fiacessary relation of these relaxation times
0 moleculay proceases actually going on in the polymer. '
Waing the Boltzmann superposition inteqral it is possible to derive the
dyramic storage and :oss modult, B' and E* (with &n3= €%/’ )
dirsctly from an cbserved atress relaxation wodulus B(t},



The relation is oy
E“(“)J = E !(u) +LE ,(U): €q + u.y( E@')—Eg)aexr(-fu)f)dt

] eess3)

Of course if as in the thres elemant modsl, the mathematical form of E(t)

is known, then the conversion to [ {U) is a trivial exercise in Pourier
transforos. In general, E(€) is not a known function and is usually
obtatnad sither in analogus form (a voltage on a racorder) or digitally.

1In either case the F.T, can be performed very rapidly using a computer

and a simple technique for superposing fast Fourier transforms.

An example is given in the figure (2).

Time-temperature superposition

We may also perform mechanical tests at different temperatures and it is
then found that there are useful relations betwsen tests performed at
differsnt temperatures and those at differant fregquencies. Qualitatively
high temperatures correspond to low frequencies and low temperstures to high
frequencies, provided that only one relaxation process is being considered,

It was realised many years ago that creep curves, for example, taken
at different temperatures could be superposed by shifting along the log time
axis by amounts which depended upon the activation energy of the process
involved, .y

This "tm-uqonéun' superposition is eastly understood in the case
of an assumed thermally activated relaxation process such as the "double
potantial well® in which an slement (chain segment or defect] is free
to move bDetween two sites of differing frees ensrgy over a freea energy barcier.

. . (rig, 3)
Lat U:j » Wi be the transitios
probabtlities, in the absence and
presence of stress respectively,
betwean sites ¢ amd j .
Then referring to the figure
where D 18 a constant,

@y : Daxp | (giTi)J

o - ver[- (4]

In the stressed state

e e - B - wen ()

and Ly simtlarty, te 0, o (34, JAT).
The rate equation is dN/4d¢ = —N, Wy + N, O

°
a* N:. -n we have

by . e COMETIAA
- m (wihoaJT(‘éﬂ,/lT) . u.fé\ﬂ‘./lﬂ)

Writing N, = M'f'll , N

rrom which we find no= N[ .ucrg-t/-c)J

viere T = (1/D') -0'1’ (Q”/"‘ T) eee ()

AH= 8- A, , d= D[ 1+ op VAT
Ve AI"A.‘!
and N,  is a function of A.,ﬂ, ,?Al and Sﬁ,t

The dependence of.the “"telaxation time" Z on the activation energy
barrier A |'( enables us to darive the simplest tine-temperature
supsrposition law, which ts found to apply at low temperatures for
polymers,

pParallel spring-dashpot model
Thé relation @(f) = _’S.u’[t- axp( ~¢fr3] .
holds for a combination of spring and viscous slement (dashpot) in parallel

under cresp conditions. Mers G~ is the applied stress and I, the
instantanecus compliance,

most

The time dspendent compliance 3(1.") is given by '

J®) = 3 [ - e - e/0)]



Suppose now that we have determined T (6 ) over a range of times at a

temperature T;, .

»

% T
39 3, [1- opz¢/z)]

Te T
with obvious meanings for J LU and TJ, + Now at a different
temperature T the relaxation time r %

therefore we have, taking logarithms

We shall have

is given by equation {4} and ¢

L (T/1,) = _AI?_! ( —ff_- -—;-z T

we write ‘E/C = ar . and then - :

ST.(EJ I.Toj/__ ©ep [—é/(t/t...)]

1°[1- wpCert/o)]

vhich we may write, putting tfz' d.r {_
]

T T.
S®©=T1 [i- ‘?xy(%'?f)]
But t:’e compliance at- E.o-pontura T would be given a
5 s 3TLi- epet/e)]
T To T ’
=3 T We T " (ty)
" 3.° 3.°

If the initial compliances _'3 i and 1 £
3 ]

have ,removing the primes N

370 = T (/e

1]

were equal we would

! wees (D)

that if
1§, the compliance at temperature T is the same as that at

t
emparature T, but for the reduced time f’/ 4 T-
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Using log ploti .. .ould merely shift along the log-time axis to give

j-r(.eojt) =z MYCZSJ(‘ "-"'(Od 1-.,-)

™he factor A. Ziusc from emplrical superposition in this way can then be

r

releted to the activit.un energy using equation (6), Sometimes vertically
shifting, to compensaie ‘or the differende between 3°T and "S;G sust
be done before the norizoutal shifting.

The energy barriec axplanation of viscoelastic relaxation processes
sat_sfactorily explsins cthe many processes, involving a single relaxation time,
which occur in polymer: st low temperatures.

Virtually all polymers with sufficlently flexible chains exhibit low
sctlvation energy relaxations at low temperatures such ag 150 K. These
relsxations are though: o be the result of partial rotation of segments of the
waia chain {or of sufficiently flexible side chains) ., Examples are to be found
in polystyrene (fig.4) and polyethylene (f1g.5), We shall also find them
in the thermosetting resins though usually at slightly higher temperatures.

The major reiaxation in all amorphous polymers however involves the
whale chain, not just a part of it and is assoclated with the large change of
modilus at the glass cransition,

This relaxation is not modelled by only one value of the relaxation time
nor can it be studie’ by the sizple time-temperature superposition we have just
outlined, If we do superpose creep data, for example, in the region of T;
and calculate A we find that a plot of A A, versus ‘/-r no longer
gives a unique value for AH . The interpretation normally made of the
betaviour of A, s&bove TA follows Williams, Landel and Ferry, based
on free volume thecries.

The MLF expreasion for 'e-\ 4, 1is

/6\ aq - - Cl C T-_ Tﬁ) Tven 8
T Syt T -Ts

where t’:1 and !:2 are universal constants and 'l" & teferance temperature.
The WLF equation certainly holds for a wide range of materials, shove “3 .
An example is shown in Fig. 6 for epoxy resin,



The glasa transition

A sehematic diagram of what happens at the glass transitipn is give: tn
{Fig. 7). The position of T_., and the density of glass obtained both depend
upon the rate of cooling. The glassy state is a time-dependent one, Yet
there is asymmetry as between heating and cooling. This behaviour suggeszs
that the rates of approach to and from equilibrium are in some way determined
by the actual non-squilibrium state of the material,

This type of behaviour is called 'co~operativet or auto-catalytic’,
It may bs modelled by supposing the rate of change of scientific volume is
proportional to the difference between the volume at & time t and the
supposed squilibrivm volume Vas . Thus AV : C(v- \{,o)

: ri;

V- V.o » cV‘_V.a) _m‘r (-L',/'C)
Several other mechanisme have heen proposed to account for the existence cf
Glasses of different spacific volumes, depending upon the rats of cooling.
The subject has a very large litsrature to which reference should be made,
Haward (1970), Xovacs, Butchinson and Aklonis {1977),

2. Semi-crystalline polymers

Large single crystals of polymers are difficult to make and a0 far
. have bean restricted to a narrow Class, the palyacetylenes and like materinls

which polymerize from monomer single crystals without apprectable change of
dimensions, e

Integrating, we £ind

Most of the polymers of practical importance, both synthetic and matorel,
consist of small crystals of dimensions less than 1 micron arranged in somes
fashion, usually disordezred in ap amorphous matrix.

The crystaliline regions may be of folded chain lamellas or of more
extanded chain fibrillar structure and the amorphous regions” comprise the
folded surface, the chains connecting crystal to crystal (and bearing load)
and the various lateral Tegions between crystals.

Only t{n certain, special, circumstances can the crystalline or the
amorphous regions be characterized well snough for a full undc'utandzng
of their properties to be geined,

In general, approximate models have to he set up which are capable of
analysis and comparison with expariment and these models will be refined
&8 analytical techniques such as X-ray and neutron diffraction, Raman and

10.

Infra-red spectroscopy and computer modelling become more refined,

r
Two-phase models

If we suppose the polymer to be composed of just two phases for
simplicity, the crystalline and the amorphous then close analogies exist
between seai-crystalline polymers and the man-made composite materials
such as fihre, particls and flake reinforced resins, A great deal of work
has been done in the last 20 yeras on composite matarials and much of this
is directly applicable to semi-crystalline polymers,

We have a fairly good understanding of the physlcal (mechanical and
slectrical) propertiss of composites with well-defined geometries and rigorous
bounds are known on the properties of composites with poorly defined or
random structure. Let us deflne these categories more precisely,

Nell-defined. Particles of fibrillar, spherical or lamella shaps in
ordered arrays in an amorphcus matrix,

Poorly-defined. Particles of irreqular shape in ordered arrays or randomly
dispersed in an amorphous matrix,

In one respect the man-made composites are better-coff than the semt-crystalline
polymers. In the min-made materlial the phyzlcal propertles of the components
are known baforshand, the choice of particle geometry is often allowed and

the dispersions in the matrix are, to some extent, controllable, Thus
frediction of overall properties is possible and the composites englneer

may "design for purposs®,

In the semicrystalline polymer, because we 30 not know the detalled
physical properties of the phases (crystals large enough to study are in gensral,
not avatlable) a full understanding of the properties of the “composite” is
not yet possible. In addition, we cannot except, in a few circumstances,
control the geometries and dispersion of the couponents in the semi-crystalline
PoOlymar,

In Bristol and elsawhers a great deal of study has been done on
Polysthylene and its crystal structurs in solution, in the malt and in the
80lid. With certain modes of preparation it has been possibis to make solid
materials with lamella crystals, with quasi-spherical crystals and with
fibrtllar crystals, Since this polymer is in wide use and since these crystal
furms are also found in many other polymers I shall confine the diacusaion of
machanical propertiss to this material,



First, however, some results from composites theories,

!
{4)  voige (uniform strain} and Reuss (uniform stress} bounds for arbitrary
gecmatry. (Isotroplc materials). If the concentration of material { with
bulk modulus Kl. and shear modulus 0.‘;1 is ct then the overall bulk 49:] .
shear moduli lie between the limits

K‘_ < Kv
whers K\f =C1K|+C2_K‘_ 6V;C'G‘+—Cl6‘_
ma 'kp T € /K, + GfK,

VGR = /6 + c"/gz

The values K,/ , 6 Y are called the Voigt bounds and assume that the
entire composite is uniformly strained throughout.

Dually the values Kg y Gp  (the Rouss bounds) assume that the
entire composite is uniformly stressed throughout,

Neither assumption can ba true in a composits since, because the indivistual
moduli differ there must be stressconcentrations at the boundaries of the
particles, Howeaver, it can be shown that the overall alastic moduli of
Any composite must lie-bHetween thess bounds on anargetic considerationm,

(11) Batter bounds have been found in the last 20 years or 30 by assuming
different states of stress in the separate phases, '

Bulk modulus. If 6| > 62  we have
b G- Ky + 3Kk, K
& 6, Kag +34,%, = ke

< LS8 RAKKL e
46,k 4+ BK K,

Shear modulus, 1f (% >6, and K, > kK,

Gz + <G| -62)¢,

< 6= 6, + (E:-6)ca (o)
5.6 (6 /6,-1)

I+ pu‘! (61/6; "')
where Cz is the concentration of phase 1 and

= _?_-_ i‘g")'
(" 5 y-—‘\JE -

In studies of partic’ reinforced epoxy resin Crowson found that the overall
moduli, K and G, wer: :ell approximated by the lower bound valyes in
the foroulae above.

1f we try te pply the above (and other) formulae to semi-crystalline
polymers we have o race the fact that neither the crystalline nor the
smorphous phase ia ¢rul isotropic and some aversging procedurs becomes
necessary.

Now given the elastic constants of & crystal and its orientation in
Space it is possiole to find space averages for the slastic constants using
the Voigt or the Aeuss scheme for example.

Suppose the .ryszal has elastic constants C:jk!. referred to its own
symmetry axes,

Then if the direction cosines for the transformation from the local
f{orystal) axes to the jlobal (material) axes are f'._;j (i,j= 12 u3)

we have, for the elascic stiffnesses In the global axes
i = Lo by Ly Ay ciihe
the summations over the suffixes <, b 4‘ . —( being assumed,as in

tenscr notatios.

Symmetry reduces the number of terms considerably and we shall later
See that in many practical cases a simple matrix notation eases the
calculations.

oy
Now if the ccystal- axes are aligned with respect to the global axes
a8 in (Fig. 8), wits the distribution function 1] ( 0, d, "f') we can
3efine the Voigt mean value of Al as

<Gl > = ;’/

2 b bt Sy <cite @ s-ododpty
J

- erealll)

1An exactly simtlaz expression will hold for the Reuss mean < q‘.,,. ’ff!f >

Por randomly orisnted crystals wa find, for example

<C|/,I,1'f - '%‘ [Cun +Cllu +C‘“3 + :i'(cma 4-6““-;-C“")4
+ %Ccl\n""c\lu +Cull..) ]

= ';{'EA+2344.C)

i2.



[ &
wLen 34 = €, + % + Gy .

"lb s Gy <y, + Cu
Yo = Cq *C‘ff e

lon
tants in the reduced notat
whers the O, ;  are the slastic cons

(sea Appendix).
The results for familiar wodull, for randomly oriantad crystals are,

(A -B+3e) A+2B)

Young's sodulus 'V - TYELET

A -® + X
5

Shear modulus

cv-'

Using the Reuss summation scheme

4

eg = 5 (3 A+ 28 )
fi /

/60 = LC4a'—~k8'+3")

;r\,: Su * S" + S‘,

wvhere

35'—" Say + 530+ Su

se’ = Se¢+ Sss + S

xt"u possible therefore, using one or other of these schemes and
the known slastic moduli of the crystal to calculate the overall modulus
for randomly orientad crystals.

For polysthylens, though no modulus other than that in r.hc c-axis
directicn has besen msasured (and this not all that reliably) calculations
have been made, notably by Odajima and Maeda, Using these values Odajima
and Maeda calculated !V = 15,6, z. = 4,90(observed 5.05) and

G, - 18.5, G " 1.93 (abserved 2.0) (Unita GPa).

In this material therafore as in the man made composits referred to

sarlier the lower bound (in this cass Reuss) seems closer to reality than

14,

the upper. The ph_ysl.cll interpretation is of course that a

state of uniform stress is wmoxe likely than a state of

uniform strain, though thers is no chvious rsason why this shodld be 50
and Lt 15 unlikely to be a genexral rulae.

1i1) orientation. ZExpressions for the overall alastic constants of an
assexblage of crystals of any orientation [ 2] [8, 9’_, W) will be
unwieldly, although straightforward to calculate if the form of _@ is
known. Cases whers the sffort is simplified are those where there is

4) transverse isotropy around the global 3'-axis (See Fig. 8). Then

both "} and are random variables and only O i
unknown. Such cases are common in the Practical situation of fibre symmetry.

For a detailed discussion the account in (Arridge 1985) is recommended
We find, for sxample,

™
L
<Cprrpy = Infs. 8 Jg[c"" * 80 B G 2y =G )s

& - &
350 Ery =T

— £ u,)J

and similar expressions for the other global slastic constants of which,
for fibre symmatry, thgre will be five.

o B(6)

lly-b. expanded in terms of the Legendrs polynomials

’Ph (tr®)  1n the form
$©).r S a. Pufn?) _
vhere o o

et [B(6) 6o ) 08 - 21 ¢ 000,05
— PR — »
3 Z
[]

It can be shown that, for Bechanical properties, only the even Legendre
polynomials L ’2 and P4 are needed and these can be found exparimentally
by studies of bizrefringence, xX-ray diffraction, n.m.r. or i{nfra-red or
Raman spectroscopy [see for example McBrierty and Ward (19681 ],



‘ the matrices for e c,’-u C Y and Ca o’ are
Suppose therefors that we know a , 4, and a,, Now terms in cos D . R
atn 9 or a combination of them can be written in Lagendre -polynomials : '_'< l‘—; _; .;% -Ti':_ r
thes, for example : .
: e v, > -% .2 2 -2 8
. 2 - \ 2 . - - - 2
26 O = FJE"%P'"%P# , S S
. . , 2 _
Hence the coefficients in the integrals for < C f 3 Ilf[; may aIl bae- . -—“5 ;—s o -1'5 _f.s J
written out in Legendre polynomials and we can then use the orthogonal ity
propertlu of thess polynomials namely o - . -
i .‘! L) 8 ~§&
TN 3 rz3 'S
f?@e)?rw)sqw= O, nin | , s L
‘ <€ > Je8 10§ g 1l i
= nem ¥ ¢ . B 6
Inet EXT I EYL YT Ji
For eumple the itntegral : . -
- r-‘é -é o & g
_ 2 q T 5 5
5.6dp 4‘“9"'5 9"'— Ple) : .
A : Le, g, > -6 & e & £
LY ;;5 3¢ res les
& o -ff -3z
becomes "?f{ > EYT '3',5-}
' Pa 9 . - -
N (R T SRR P 7 L o 2oz
2 j : 7 3 : 3o 5 & s s
[} ! —2 L
- AL A
= % 4+ Y 4+ 4 : L Ll ? 4. 106 e 73 IS
. s =13 2o ) - —& o .2 )
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For a random distribution =1, a, =

2 ™ 8 = 0, whila for ful} slignmet

Further details are in (Arridge 1985) with the matrices for < S- L
along the global 3'--;:.- a1, a

=5, n‘ * 9 Por an squatorial

and for a self-consiscent averaging scheme due to Walpole,
sheat a ’ l-s ’,/ ete, ' .
o - ) . = ) 'q": 8 :
z $11) Particular geometries.
We can set up & matrix formalism as follows, .
a) Ordered array of continuous fibres,
c 2fa,4, ¢)[ & + 0o &£ & Py
<Gy = { o 4 ") < 5 AT L This geometry (a common in fibre compasites and may apply in very highly
8 -z o "'3'.- "_‘L [ o-lanted semicrystalline polymers., There will be 5 slastic constants {f
s 3% "5 jex b

the array iy

1
-—

transversely isctropic. The most important of them are:
/
26 08 © 705 o




1 shear modulus and tha
the longttudinal Young's modulus, the longttudinal sl at

transverss Young's modulus,

nstants have been deriyed for warious

All agrea that, to &
!ﬂ, is given by the

formulae for all 5 slastic col
c:on-uctional ga-onr_rlu and for zandom packing.
good approximation the 1ongitudinal Young's modulus,
»rule of mixtures® as

Ec, = "E{- (<) En

where < is the volume concentration of fibres of modulus l! in a

matrix of modulus E .
The shesar modulus in §1¢mu tncluding the fibres (the longhtudinas

shear modulus) is well approximated by

(jvc) 6¢ + () 6~

(-e) Gg + C1r)6m

G,

[

\;lher. the symbols have meanings which are cbvious, For very stiff tibres

- j+ e
6, = = G

in & much softer matrix this reduces te

The transverse Young's modulus is wuch less reliably predicted,
One prediction (due to van Fo Py and Savin) is

2 4-(0’{_-4) G../Gq:.

VAP VI .
E B ") -c +cd,, 4Cf—c)(o!\¢-|) C../G;

T Em

te(1- 6~/ 6¢)
cvode 4 (1-c) 6/ 6

—

where d{: T 'B-L'\‘)f. )OL-»: 3-6 D,

The copolymer styrens-butudiene-styrens may be -xtrudnd' into &
quasi-single crystal structure with hexagonal symmetry, ‘rods' of
polystyrens baing eobedded in a rubbery matrix.

Arridge and Folkes studied the elastic properties of specimens of
this matertal and found good agreement with the predicted propertiss usixg
fibra composite théry (PFig. 9.

Zf

In certain circumstances a fibre composite theory for short fibres
is applicable to seml-crystalline polymers. A particular example of this
will be given in the lecture on oriented fibres,

3. Yield and deformation of polymers

This is almost & subject in its own right and we shall 4o no more
than rafer in broad outlines to it and to amorphous polymers only referring

the large scale deformation of ssat-crystalline polymers to the lecture
on fibres,

Amorphous polymers may be daformed in the glassy stats as well as in
the rubbery although fracture will normally occur at quite low strains
unless the deformation is in cospression or in shear, Then, as Roward

showsd, the deformation is always completely recoverable if the temperature
is raised above 73 .

Of course, many amorphous polymars such as the acrylics and styrenes
ars taken above 'r3 to be moulded into the required shapa by pressurs,
matched woulds or other techniques befors being cooled below '5 for
subsequent use.

The common vinyl long-playing record is an axample of this, If it
is warmad above about 80° 1t will collapse to its original size, Clearly,
then, the ssorphous material when deformed in this way will contain

considarable locked-in stress which may ba released when the material is
warned above 73 .

The magnitude of the stress will be relatsd to the extension by
equations similar to those for slastomers and this “shrinkage strass” can be
easily msasured.

Strain rate and temperature dependence of yield

It is found for many polymers (not only for amorphous ones] that the
vield stress at any one temperature is linearly related to the logaritha
of tha strain rate, (Flg, 10},

1

This behaviour may be predictsd from the Eyring theory of viscosity
applied to polymers, It is derived as follows. In a liguid every molecule
is considered to lie tn a pseudo-lattice of nearest neighbours. For shear
to take place a moleculs must move to an adjacent site distant, on average,

’A from the previcus ona. It must alsc move over the potential barriar

18.



set by its neighbours, Eyring's theory of activated complexes predicted .
that the rate of transfer was given by -
- R’ ~E/RT
K = A op(~E/RT)
where E, is the activation energy. (Compare the double potentdal

. i
well theory for relaxations given earlier.) An applied stress Z changes .|
the rate for forward motion to

’g‘ . #’J}T[-CEO“i{tXA),/'gT]

Eince work % rAY] is done on the moleculs. Mere A i3 croas-secticnal
area of the pseudo-lattice, perpendicular to the shear,

Hence 'g{ - ﬂ, b'f 1.-2:_‘!7: ¢+ where V-AA

The rate for moving back is

/P‘, s ’E| 4"1’ _&'{- 0 that the difference
of velocity s S - \g‘ _£U - J)J, ;.,;J zf/g,fr
and the shear stresa is

- S v where
C T Sl

}A is of the order of )\ in molecular dimensions so that we have

- = 27.(,&-3{ sz/.!ﬂ‘r)

This is the Eyring equation for viscosity. If we transfer it to solid
polymers we write

straln rite g = X - 22, &J(ZV/JJT) .
1

is the viscosity

when « is large wa can replace by the positive exponential, giviag

¢ - B opfev/dy

,g/(,r(.f./ﬂ,-) ,oT(tv/J k)

T = Eg + ’E_T /e\(é/‘ﬁf)
v v

A

sesa (12}

Taking logs

30

20,

For any temperati... .erefore "/ T  should be linearly related to the
logaritha of the .train rate, as in Fig, 10, d

Tha 'volume’ ¥ :n equation (12) above is called an activation volume,
In some studies of yi«id under pressure an additional pressure-relatsd
wlume term is added ¢o the arguasnt of the exponential, This has aided
the description of yteld in Polymers which cbey a Coulomb yleld criterion
rather than the van Mizes criterlon (in which pressure Plays nc part),

Craze (see attached sheets 1- 61
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Craze

Crazes in glassy polymers are crack-like defects which nucleats
and grow on planes of maximum principal stress. They are mt’tm cracks,
however, because they do not weaken the material either in modulus or
in strength, Elactron microscopy snd other technigques reveal them to be
reglons of wvoid separated by fibrillar bridges made from ortented polymer,

The volumes of the voids and the bridges are approximataly equml,

Crazes are important a} because when cracks do develop they do so
in regions of craze whare the fibrils have broken, Leading to cavity
expansion and to sub~critical crack growth, In the presence of solvents
and some gases craze nucleation, growth and fibril breakdown may ocour
at much lower stresses and these may lead to environmental stress cracking,

However, b} craze alsc has very useful features, It is responaible
for the high fracturs toughness o OFf most polymars (e.g, for polystysane
and PMMA as we showed beforel,

By deliberately inducing craze, for sxaaple at the equators of
inclusions of softer material (rubber-toughensd P5]1 the fracture toughness
of a given polymer may be much increased. '

Craze tip advance

At the tip of a craze the dimensions are very small ~ 10 nm and a0
high stressss are found because of this.

Two mechanisme !'un been proposed for craze tip advance,

al Nucleation of volds ahead of the crack in the triaxial stress
(dilataticnal field) that must exist thers, Thase volds lead to
stress-whitening indicative of their small size ( < 1y ] leading to

light scattering . They grow and aventually the regions batwesn slongate,
becoms fibrillar and draw producing orientation and therefore higher modulus
and strength eventually breaking leaving an oriented surface layer

on the crack surfaces so formed.

Recent {1977) work casts doubt upon the kinetics of such a prosass,
although it may still be correct, and a second mode of crate advance based
on meniscus instability has been proposed. In this mechanism (firet
proposed by G.I. Taylor to explain the bresk up of & menlscus) fingers
of craze advance Are supposed to occur with fibrils formed between the wabs
of polymer betwesn tha fingers.

The unpeeling of Scotch tape is used as an analogy.
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sure increment gained by the advance is



and this zust exceed | / R where T g the surface energy,

The minimum wavelength of the perturbation that can grow'then
comes out to be

s Lo
= Jh‘ o
/\"" élﬂl/du ’ .

and it can be shown that the fastest-growing wavelength A:. is ﬁ /\!

In practhl:al. materjals I\' iw about 20 nm and this is of tha right
dimension as observed tn the e.m. for PS.

Craze thickening can occur either a) by the fibrils drawing or
b} by their pulling new material out of the craze faces on efther side,

Measurements of the extension ratio N tn crare fibrils show that
A is high just behind the craze tip and lower near the crack tip as
would be expected by the latter mechaniam (b). .

AT D

Environmental snd air crazes behave the same way if the environment
diffuses fast (e.9. a gas), If tt 15 a solvent however or a plasticizing .
agent causing the crazing the fibril drawing mechanism a) may prevaltl,

Recent work by Kramer suggests that the maximum x for the craze
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fibrils is determinec by entanglements in the polymer and }‘hk z '6/1
where ‘ee 1% the sxtended length of chains between cross Links ox
entanglements and iz ths entanglement mesh size i.e, the RM5 length
>f the chain,

Appendix, The xelation between four~suffix and two-suffix symbols for
elastic constants.

The general tenscr equation expressing Hooke's law is G:J = c'l.lﬂi Q‘e
vith automatlc suamstion over repeated suffixes,

€y = Sijfe e

Woigt introduced & cecuced notation as follows,

The inverse of this is
e set of stresses V), 03, 7\ O3, 03,075 becomes
the set G'IU”,O“)G",‘G‘Sﬁ}

But the set of straina €, €, €,  2¢&, e, 2ey,

becones e,e.,,a_,j Q& Cs e

£ that e.9. Cun = €y , Cuzy 2%y , Ciray = CJQ—
. !

bt S, =5, , Suzy = -}_ Sie , Siayy » P S¢q

I1 general

Sab C a,b = J,.I.ws)

Sud (4 »2ees bt ds,Serd)

Saabt =
’“Sad e

bSaed = Seq (6.9 4,5 o §)
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Consider a volume v under shear stress ¢ in which there are N elements
capable of changing their position. Of these N let N? (i= 1, 2) be the equilibrium
numbers under zero stress conditions and N, the corresponding values under
stress a. Let w]), w;; be the transition probabilities, in the absence and presence
respectively of stress, between sites i and j. Then referring to Figure 3.9 we have

trepar[-(SG)} - eepen] (5]

where D is a constant.

*hea

Ay 1A

Figure 19,  The double potential well model.

In the stressed state

wyz=Dexp {-&%—#ﬂ}swh exp (~56A,/kT)

ind 0y, similarly, is given by w;, =w], exp(54,/kT). The rate equation is
IN\/di = ~N,cw,; + Nyw,;, and writing N, =N%+n, and N;=Nj—n, this
comes

, .
-5: = N{w?; exp(8A, kT — 84 /kT)~niw?y exp 54, /kT +w?, expdA, /kT)

“rom which we find

n=n,(l—exp(-t/t))

Fig 3

24

“tme and temperature cffects

o
-1F
I~y
8
= 2F
g..z n
/N
¥
_3 1 NN | 1 1 1
=200 -100 0 100 200
Temperature (°C)
Figeee 3.1.  The relaxation ‘spectrum’ of polystyrene.
rig b
a ' |b
oos} ' |
1
oo} ot '
1'] !
oo4f B
W, " !
ooz} ' " '
! H
o UL / 'ty
< OfF— " o [
© C
" oos} d
f |
006 1 | |'I\|‘lr |
004t N
[ ..""' "‘ it )
oozt . i s \ b
i o W S
.F“L."'i . “"

0 180 150 200 250 100 150 300 355
Temperature (K)

Figure 1 Loss factor 1an b in tension for four different atmospheres
(Drawn specimen, ercor bars represent extreme values). a, nitrogen;
b helium; ¢, argon; d, air

Fig 5



84 Introduction to polymer mechanics

ST
-0
Liquid
i
L}
-5 5
>
&
. s
& o experiment &
2 of ;
- :
* WLF equation ;
Tg. ng T9| Tn Tempercture
5 Figere 311  The dependence of T, upon cooling rate: 3 schematic diagram.
22 20 26 28 30 32 34 Fig 7
0007 .

Figure 18 The logarithm of the shift factor ay plotted against 1000/ T for sormalized complance
data. Also shown is the prediction from the WLEF equation relerned (o T,

Fig 6

35



1 ey
Figwe 40 The relation betwesn local (1, 2,3) and globel {1, 1, ) axes of reference. E sob
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If we know the orientation function ®(8.4.¥) of the crysial elements i g !
in the global axes then cslimates of the overall elastic constanis can be ’ \
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Flbres *

Although we shall matinly ba concersned with the Sypthetic fibres i
this lecture it is as well to put them into context, since it {- fairly
recently in history that they have been ¢treated, whersas the natural fibres
have been in exiatence for thousands of Yeatrs. Natural fibres consist

to cling togather sufficiently stxongly to make a thread,

The mechanical propsrties of fibrxes of this form will always be
inferior in respect of modulus and strength because of their sfiort langths
although the individual fibre may have very good properties,

Tabla
inly of {GPa})

iy Cell length (nm} Cell dia, (ym) Staple tength (nm} 8,G, Modulus/ Strength (MPa)

a) the carbohydrate group Cotson " 1835 20-10 15-35 1.53-%,55 5,9-10,8 250-780
cotton, jute, flax, hewp and ramis, based on cellulose, Fla» 6-70 15-20 300-1000 1,50 U-48 490-980

b) the protein group, which includes silk,wool and tha connective Bengp 20 20 1200~ 2000 1.48-1,49 » = €70
tissues of animal life, which involve collagen in fibrous form. Jute 1.5~ 5 20-25 up to 2000 . . LA 390-780
Callulose has the basic structurs Ramie 50-250 17-64 1-500 1.53-1.55

’" EH OH

-~y
It is therefors highly stareospecific and the chains are stiff
and extended.

It is highly crystalline and this, together with the stiffness of
the chains themsalves leads to a relatively high Young's modulus,

Th&d molecular weight in native cellulose (cotton, flax wood celluloss)

varies froa 300000 to over 106. Native fibrea are made of highly crystalline

elementary fibrils, some 50 to 100 R wide aggregated in microfibrils about
250 R wida.

Regions of maxisum cmulunl.ty APpear to ba about 300-600 R leng,

The un.lc cell has four anhydroglucose residuss with a repeat distance of
0.3 A but with a lateral size which depends on the type of celluloss,

Cotton, jute, ramie and flax all consist of short fibyes of
varicus lengths. Thelr Processing into textile fibres involves the
operations of spinning, drafting atc in order to cause the short fibres

3k

There is interest currently in the propertles of chitin, toc he found
in the shells of various Crustaceas, and some fibres based on this material
It i» not & true carbohydrate but is largely a
poly-N-acetyl-D~glucosamine.

H.0H

: i

? \ / 0\
/ \ H

have been spun,

- H I'I-lZO(ZI'I3

Fibres derived from c-u.ulou

Cellulose esters (usually nitrates or acetates) are important,
Cellulose acetate is dissolved in acetons and "dry~spun" by extrusion
into warm air or a precipitating bath to glve acetate rayon, This is &
commonly-used, fairly cheap fibre used in textiles,

Molecular weight 100000 8.G, 1.28-1,32
" Elastic modulus 300-450 kgf/mm® (= 2,9-4,4 GPal
Tensile strength 16 kgf/mm’ - 9 when wet (157 MPa-88)

Regenerated cellculoss from ester hydrolysis in the viscose process was the
earliest artificial fibre made originally (1678} by Swan in order to carbonize
for the early electric light bulb filaments and only later turned into
4 textile fibre by Courtauld and others.

Purified wood pulp or cotton waste is converted to alkail celluloss
by caustic soda, dried, aged and then blended with carbon disulphide
to form cellulose xanthate. Eventually this is spun into a sulphuric acid
bath to form the viscose fibre, It is still widely used as a textile fibre,

8.G. 1,51
Elastic modulus 7.8 -~ 8.8 GPa
Tensile strength 230 - 130 WPa



The protein fibres

The important protein fibres are silk and woocl. In wool protedn
the polypeptide chains are of keratin and this can take two configurationa
a4 folded chain called the d-helix and an extended form urmed’ the
B-configuration. The transformation is reversible in the presence of wazes
and explains the long range elasticity of animal hairs,

In changing frow the 0-helix to the f-extended form the polypiotide
groups alter their linkages from within-chain to between chain,

In the Q-helix there are abeut ) amtno acid residues per turn and
hydrogen bonds between CO and NH groups on different turns, In the
B-extended form the structure is planar, the CONH linkages sxtending
sldeways between adjacent chains.

4
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The polypeptides thus closely resemble the synthetic polymers -
the polyamides (nylons} in their CONH group interactions.

Wool fibres are, of course, of limited length and must be spur into
threads to make useful textiles, S8ilk fibres are much longer and caa ba

classed as continuous, even though several are usually twisted togather to
form threads.

. Table ‘
M., . 8.6, Mofulus (GPa) _Strengtn (MPa) Staple lengty
S1lk 84,000 - 50,000 1.36 6.9 - 9,8 340 - 590 2500 m.
Wool 60,000 - 80,000 1.31 0.9 - 2.9 150 - 196 25 ~ 200 mm,
(leas when wet
{ ~ BOW))

It is worth at this stage trying to understand the modulus and
strength of the natural fibres before noving on to the synthetics wh-ch,
by and large, have been daveloped as substitutes for them.

The origins of the stiffness of a given fibre ars

a) The intrinsic stiffness of the chain

b) The degrea of orientation of the chain

€) The “"concentration” of chains within the cross section of the material,
that is, to what extent the materlal is compoaed of single cryatals ant
what their concentration within the fibre may be,
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Considering slastic moduli first, the figures for flax, hemp and
Juts are as high as 49 GPa, -or nearly a quarter of the figure Jor steel.
This is & resvit o ti: high degree of crystallinity in these msterials
and the stiffness of the eellulose chaln. Elastle modull as high as this
have only recenily been achieved in synthetic polymers such as the
aromatic polyamides (Kevlar and similar materials) and by newer methods
of producing pelvethylene.

Bimilarly ss regards strength which for the cellulosics approaches
750 MPa, a fiqure row exceeded, of course, by the newer synthetics,
[Bteel can be up to .5 GPa (100 ton steel)].

The task of ths polymer chemists was to produce reproducible,spinnabie
and preferably more ralinbl; alternatives to the natural fibres and this
they have done and are continuing to do. Our understanding of the
physical properties of all polymers in fibrous form and otherwise has,

in consequence, beer greatly increased.

The uses of fibrous polymers depend strongly on their properties.
As textiles the natural fibres fulfil most of the requirements although
the poor strength of soms, particularly when wet, has meant that synthetic
alterndtlves are to be preferred. In general the synthetlcs offered
cheapness and some improved proparties over the natural fibrea, The
search for new textile fibres seems to have come to an end and the three
in common use: polyamido, polyester and acrylic ars not likely to be
superseded, Tha cuncentut.l.on of affort in textile uses has been on the
development of blends of natural and synthatic fibres,

It is in the non-textile uses of fibres that recent development has
concentrated. The interest in cowposite materials in the last 20 years
has lpu.g_red study intc high modulus, high strength fibres and their
uses in composites. -

I the highest modulus s sought together with the highest strangth
then a single crystal of the stiffest polymar chain, fully aligned in
the fibre direction is required, The relevant factor determining both
modulus and strength is then the "molecular cross-sectional area", that is,
the mean arsa perpendicular to the chain axis occupled by any individual
chain,

Vincent (1972)compared these areas for a number of polymers and
calculated the number of bends per unit area so that a comparison could be



made with measured tensile strengths, His results are shown in Figs, 1 & 2,

To calculate molecular area Vincent used the zelation *

weight of repeat unit

molecular area =
sample density x length of repeat unik

The correlation in figure 2 ia
critical strength ll.l/lzl = 35.8 x number of backbone bonds per mmntnz

Ir we take, as the load to break a carbon—clrbon bond, the figure
6.1 x 107 ll (Kelly) then Vincent shows that thn coefficient in the above
correlation should be about 6000, some 160 times greater than the Eigure
found. This may be due to the fact that the measured values were on
isotropic materials but it may also be a consequence of fracture processes
in polymers not being fully understood,

Vincent's results have been discussed because they illustrata the
importance of the packing density of the load bearing slements in a polymer -
the backbone chains. Ons of the tasks of the fibre maker is therefore
to align the fibres of the given polymer as sffactively as possible
avoiding entanglements, regions of poor packing, voids and so on.

Supposing the goal is that referred to earlier - the single crystal,
perfectly aligned array of chains. How may this be achleved?

1] The concept of the single crystal s unlikely to ba achleved in most
polymers bacause the .-:hluty of chains with flexible linkages fs such
that entropy is always saximized and an ordersd arcay can only be attained
by reducing this entropy.

If, however, the inittal polymerization is done on a single monomer
crystal of perfect alignment then the dasired state can be achisved,
This has bean done for small samples, though not yet for continucus fibres,
using the polydiacetylenss and similar matarials by Baughman et al, and
Galiotis and Young.

The teasile modulus can reach valuss of 65 cPa and steangth over 1.5 GPa,
the modulus perpendicular to the fibre axis being cmtd-ruhl:y amaller,

The general polymerization reaction is (fig. 1)

R—(=(—(=(—R —» (—C=C—¢C

Galiotis and Young studied the symmetric dlacetylene deriyed from
2, 4 ~ hexadiyne - 1, 6-diol with -

Il
R = “5“1"0—(—2—(2“5

The monosar was synthesized and purified and fibres grown from
various solvents. These fibres were effectively single crystals of
10100 s in diameter and up to 50 mm long, They could then be polymerized
by Y-rays from 60(:4:) or by heating at ao°c.

The tensile modulus increased approximately linearly with volume
percent polymsr conversion.

2} Bince in mitu polymerirzation so far only sesms possible for a limited
number of monomers the naxt best method is to orlent on existing
polymerized material sc as to obtain the best properties,

How in crystal physice the problems of crystal slip have been studied
intensively and are well understood so that we know, for example, the
effect of drawing by yield of wmetal crystals such as in copper or stesl.
Dislocations freely move in the crystals until arrested by impurities,
grain boundaries or ptls-ups. Thus yield is sasy £0 begin with until
work hardening occurs > _With proper control of rate and temperature,
however, good orisntation can ba achieved and high strength as tn
drawn steel wire, for example,

R,
— Blip
el
’ I‘ et Dislocation
t [




Elastic moduli and strengths of some wires {Felly)

*
Tensile strength {COPa) 8,6,

Material Modulus (GPa)

7.9
Stalnless steel 200 2.1

18Cr 8Nt 0.8 Mo

Tungsten 44 .8 :g.:
Molybdenum 138 g . : : :9
Graphite 480 5.9 2 e
Stlica 72 s'g s
Boron {on W) 379 N 2]
Nylon 66 4.8 1.0 1'5
Flax 24-48 0,5~1.0 .

{The last two have been included for comparison with the inroganic materials.)

For strength and stiffness therefore, the inorganic materlals have
many advantages. The reason for their high mcdulus and strength is,
of course, the strong bonding combined with a much higher packing density
than can be achlieved in a polymer. Thelr disadvantage is the higher overall
density {with the exceptions of silica and boron) resulting frow the
high atomic welght.

Tn polymers the carbon-carbon bond gives high stiffness and strength
but this is confined to the chain backbones, the lateral bonding being
much weaker. The exception is, of course, graphite where a two dimensional
hexagonal array of carbon atoms exists, so that conditions approximating to
isotropy exist in sheets but the bonding is pcor in directions perpendicular
to the sheets. Thus griphite may slip easily (and sc be a useful lubricant)
but 1f oriented in a fibre direction in some sort of scrolled structure
can glve the stiffness and strength referred to in the table.

What is the mode of deformation of the seml-crystalline polymer
therefore when it is drawn past its yield point?

k) Draving of polymers in the solid state

Until the devalopment of nylon and polyester polymers the two methods
of fibre making were wet-spinning and dry-spinning. These have both besn
briefly raferred to already, Thay both involve extruding & liquid throwgh a
fsplnneret either (wet-spinning]l intc a coagulating bath - this is used for

viscose rayon or into warm air (acetate rayon},

In these cases the fibre i» formed into its final state by reaction
with the liquid or by removal of solvent, Any orientation of the molecules

produced will be by flow in the spinneret,
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The pelt-spinning - pylon apd polyester - the molten polyner is
forced through tie aj..nneret, producing a certatn amount of or}unuuon
and the threads toole” in air before being wound up,

The apun yar: .= azarly isotropic in properties {though some spin-
induced orlentation puy be present]) and in this form is of relatively
low modulus and yield etrength,

Its structure consists of a randomly oriented array of crystals in
an a-orpho;.- mateix. If the fibre is now stretched it draws, uguvally at a
'neck'. by an amounc. A, depending on M.W. and temperature, of up to 5,

The resulcling sarn has high wolecular orientation tmparting both
stiffness and mtrength,

This drawiig process which follows the spinning stage is the hasls
of the successful nylon apd polyester industyies,

Until quite recentiy the nature of the drawing process remained
unexplained except .n « gualitative way,

As & result of thesa recent studies notably by Ward and his assoclates
nt Leeds it was fourd that the previous 'limit' of draw ratte of about 5
Was not & natural one, and that draw ratlos of up to 30 could be obtained
in certain polymers (polyathylene, polyoxymethylene and polypropylene) .
™he additicna}l orientation resulting from this higher draw ratio producing
gher elastic moduli. rig, 4 shows ths increase in modulus, with draw
ratio to be nearly linéar and simply related, irrespective of sample
molecular weight, morphology and drawing characteristics. The importance
2f molecular weight and inttial morphology (spherulite size and perfecttion)
were that they affected the drawing process in that diffarent speeds or
“emperatures become necessary in order to obtaln the optimum draw ratto,

It'app-u-ed that the overriding factor was the deformation of the
mon-crystalline material,

Por high molecular wetght polymers molecular entanglements are the
predominant feature and morphology plays a minor role. For low melecular
weights the reverse is :rue, Similar work was done &t Bristol on the
¢rawing of polysthylene and polypropylene and the ptctura soon amerged
that drawing of solid Polymers tnvolves two stages,

8} The break-down of the origtnal lamella crystal structure, which is

mrdomly ortented, into a fibrous atructure,



This corresponds to the industrially sstablished processes. to
drawing at A neck and to the Liaitation of drav ratioc to a figure of
about 5, This figure was shown by Peterlin to be necessarily related
to the break up of lamellae Fig. 5.

(3) The plastic deformation of the fibrous structure. We will Oiscuss

these mechanisna ssparatsly. It was known from the early years df synthatjcs

that draving improved the orientation as maasured by optical birsf:iingeace
and by X-ray diffraction. (The former measures all the orientation, tha
latter that of the crystaliine part only.}

Attempts were made to account for the increass in Young's modulus
in the fibre direction by t.hll‘orhnutlon effect using simpla models

(originally due to Nuhn and Grun) of the affine deformation of the two-phase

material (crystals in an aporphous satrix), While this model accounts
qualitatively for the increass in modulus it could not, in low demsity
polyethylens, account for the fall in modulus at low draw ratios whtch
preceded tha increass. Only when orlentation distribution functicns derived
from X-ray and other studies wers used could the increased modu-us be
quantitatively related to orientation. (See e.g. ward 1983 and Pig, 6],

As to the nature of the first stage of drawing and the reasons for
neck formation, the apparent "natural draw ratio® and the M.¥,, temperaturs
and rate effects involved there are many theorias,

The processes bt howsver be very much as visualised by Pecerlin
namely that the folded-chain lamellae in the melt-crystallized polymers
are pulled out into microfibrils during the drawing process. (Fig. 7)
Paterlin studisd the daformation of single lamellas and demoasiTazes
in this figure how microfibrils may be formed from sections of the lamslla,
unfolded in chunks rather than as single chains.

In this modsl the fibrils are not extended-chaln crystals but
resesble the slipped-disc model of yteld in metals (Fig. Bl.

{b) The plastic deformation of the fibrous structure must then jnvolve
some prosess that converts the microfibrils into larger fibrils with more
perfact orientation and batter crystalline parfection. Here, agxin,
there are varicus interpretations,

In Peterlin's model the fibrils slide axially, in so doimg unfolding
sections of previously folded crystal and creating what he tarms taut

tla molecules. Such an increase of connections bstween blocks and
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reduction of folds enhances the axial force transmisalon pex unjit axea

of fibre cross-section, that is, At jncreases the modulus, The total
nunber of taut tie moleculea pep amorphous layeu is approximately a linear
function of draw ratto.

In Ward's model the ultra-drawn polymar is consldersd as composed
of stacks of crystallites bridged by crystalline material (Ptgq, 9] or,
squivalently, as a continuous crystal with periodic regions of disordar,
The high machantcal stiffness of the saterial is then attributsd to the
crystailine naturs of the bridges rather than ss Peterlin proposes, tie
molecules. The Ward model is made qualitative by a pathematical model
similar to that of Arridge and Barham,

In Arridge and Barhsn's model the increass of modulus in the second
stage (termed by thes "post-neck drawing®} is assumed to be due to the
greatar reinforcing efficiency of the crystalline fibrils as they draw,
Arguments from fibre composite theory are used, supposing the drawn
material to behave like an aligned short fibre composits in which crystal
fibrils are embedded, in a softer matrix (the amorphous material], The
choice of this model was prompted by observations by Barham of the tensile
propertlies of high-drawn polysthylens above the melting point of larmella
material showing that a crystalline phase existed in a rubbery phase
which exerted a retractive forcel.

Using shear-lag theory the tensile atzess in the proposed fibrll
is given by i

T= cc,E_F[,_—

whers C- is the concentratlon, t' the fibre modulus, L the langth
and 8 is constant despanding on ths modulil of fibrii and matrix, When
a fibre is smbedded in & matrix and the entire composite stretched one
of thres things way happen.

LJ p(x - L/Z))
ek pr/2

al The matrix may extend slastically constraining the fibril to extend
plastically, This provides a model for viscoelastic deformation,

B} PBoth matrix and fibril may daform plastically and yleld it the same
strain, This is the model for drawing,

¢} The matrix may flow over the elastically deformed fibril, This would
result in a permanently deformed material but one in which the stiffpess
was unchanged.
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Model D) was shown to raproduce satinfactorily the cbaeryved chqnq-
tn modulus of polyethylens and of polypropylane (Fig, 101,

tntil the microstructure of ultra-drawn polymers can be unequlvocauy
revealed the precise nature of the drawing processes, both neck and
post-neck will be a matter for conjecturs.

b

4) Orientation produced in the solution: gel spinning,

From 1976, when Zwijnenburg and Pennings first announced thetr
production of fibraes of polyethylena with elastic moduli of 100 aPa,
there has been intense activity in the study of solution grown polymer flbres.
The initlal studies involved rotating a Couette viscometer rotor in a
selution of & few per cent of the polymer and drawing the fibres off from
the surface of the rotor of the viscometer, In the course of tima,
following work at Bristol by Barham and Keller and at the Dutci State Mines
by Smith and Lemstra, it was established that the ability of soluttons
to form fibres was reiated to their ability to form gels and that the
fibre formation in some way resulted from the deforsation of the gel
by stretching,

I shall summarize this work using Barhan's 1982 paper, to which
relerence should be made for further details and for accounts of the
ezriler history of gel drawing,

Gelation can be-produced in high M.W. polyathylene (and in othap
polymers) by stirring solutions at #levated temperatures and thepn cooling
them to room temperature, for example, solutions (0,75% w/w } of the
high molecular weight Polysthylena Bostalen GUR ware made using xylene,

The solutions were stirred for 10 minutes in the Coustte viscometer
at 60 rpm and at 115°c. The stirred solutions were poured intc trays
to cool, whereupon gel sheats were formed,

Thin strips of gel could be cut from these shests and drewn by a
simple winding apparatus working in hot xylene,

When the desized draw ratio had been reached the apparatus was
removed from the xylens, the central portion of the drawn gel fibre
removed, clamped in a frame to prevent shrinkage and dried,

The draw rati{o of the gel was measured by two methods 1] as the
ratio of dry welght per unit length of drawn fibre to that of the undrawn
and 2} from the speed and time of drawing,
were possible, depending on temperature,

Draw ratios of up to 175

g2

12,

The elastic odu.as of the drawn gel,

The modulus facr:ases steadily with draw ratlo, the rate of increase
However, ft also
In figure 11 the dependence of

Falilng off as the muximum draw ratio is approached,
Jepends upon the driwing temperature,
Bodulus on temper«i:re is shown, It makes no difference how the fibres
are pade, whether directily from the gel or by tha original Pennings

surface growth metu.cd,

Rature of the fiores and a model for the tensile modulus

All the fibres, no matter how prepared, have a shish-kebab microstructuge
chought to be as skeccnad in figure 12 and supported by electron micros-ope
and shrinkage studies.

The fibres prepared at high tamperatures have high tenalle moduldi
and long crystals in tas shish-kebab cores.
Zibre composite interpretation, the longer crystals being more effective
ceinforcing elements than short ones.

This suggested, once again, a

. Barham used the data for 26 independent pairs of modulus and
eryatal length values vo that the simple shear-lag model that the modulus
8 given by

(i~ Glod
o (- =5

vy,

E = +C3

fn wdch ¢, , C/. and C-_‘ ars constants,

The goodness of fit of the model is shown tn fig, 13 and suggests
that the concept of crystalline ragions in the shish-Xebab acting as
meinforoing elements in a matrix consisting of platelet mrgrowth- and
Cther amorphous material is probably correct.

The structure of the gal before drawing

This is thought to be rather like a swollen rubber with the solvent
emerting a pressure upon the entropy-elastic network, preventing collapse.
Ti¢ cross-links in this "rubber" wers postulated as reglons of micro-
cTystallinity at points of entanglement, containing about 20 chains.

Now in a simple rubber the mtress at extension

e o = NAT(N-1/32)

vhere Ns is the number of network seqments per untt volume, Applying
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this equation to the measured
values of str
a8 at 100V extension () = 1} will then be & function of tha lengths of these crystalline regions

which act much as reinforcing fibres in a covposlte, .
Gal-drawn polysthylens fibres are now in commerctal production,

Barham found values for N
as & function of the
. te
Measurement, e

This varled from 66 x 10°} per a’ at 96° to 1,0 x 1021 at 116%, )
Fibres from liquid crystals
The exploitation of prisntation in forming high modulus fibres from
polymars such as polysthylens has restsd upon the flexible nature of the
polymer, Polysthylens by ite very composition is the most flexible of all
polymers (assuming that branching is minimal] and so may, in principle,
be "straightensd out® vary sasily. (Practice ts more difficultl) Once
straightaned out it may again in principle, crystallisze in the fully
axtended form to make & fibre of maxteum bonds per unit czoss sectional area

s A further deduction from the network model ta the maximum draw ratio
- ch is the ratfo between the length of fully extended chains of 1ink
sngth £ and the r.m.s, value in the coiled up state

L]

This ratic %
. 'I'ILL 1‘!\‘ .z T hﬁ

where n_ is the nusber of tren)
aquivalent random link
points in the network, ' " Cronatiin

Values of
A-“ could be found from experiment and hence n
.

ded
uced. Knowing the length of the equivalent randon link, L
polyethelens, & figure darived by Plory as 13 nm
or

the chain can be found as
Vo AR V)

The number of junctions per unit volume
as ! /(1._“ ﬂ‘)5

It was found that the

(to use Vincent's concept once move) ,

The theorstical sodulus attainable in polyathylena was already shown
by Prank to be of the order of that of dismond and estimates of woduli
vary from 250 to as high as 380 GPa,

+ for
the r,m.s, length of

Experimental values depand upon tha teaperature of measuresent
(sitnoce, s in the bulk, wiscoslastic sffects are prasent} but a figure of

288 GPa was attained in 1979 and higher figures are not unlikely.
of flexibility allowing

nj may then be calculated

Polysthylene therefore wins on both counte:
arientation, by drawing or by flow in & solvent, and of minimal cross-
" mectional area, allowing cloae packing in the axtendad chain.

ratio N /N.  was always abo . apd
ys ut

each segment must end in a Junction :hcj " e
[l

numbe tion
must ba at least m./uf or 20, " of misculen in & June

An alternative ‘royte to high modulus and high strangth is to start
with & stiff backbone chein in the first place, This routs has bean
pursusd for over 20 years satnly by incorporation of phenylens groups
in the main chain, but also by building in & "1adder" structure into the chain.

The molecular weight be
tween croms-link
was: not unreasonable, "o e gl chovan daree,

The nature of gel drawing, in Principle,

as follows, e spossss to be

Polymers containing the phenylens linkage in the para-orientation

PFirst
St & gel must be ande for the Polymsr in question, by dissolving tt Ry havs comacting Him e

and processing i
- - ,:g! t by stirring and by thermal trestment so that & stable
pens ormed, which i1s in effect a swollen rubber, —to—o- ' TN , = ’

Thin "rubber®
WAy then be drawn either wet or by dry to'a draw ratio

which depends
et P Upon temperaturs and concentration and upon the numbe
ctively freely rotatable links in the chaing "

el H=N— ele.

The final
fibre consists of tight bundles of "shish-kebab® fibrila
»

the e
ngth of the highly crystalline portions of which will dape:

conditions of manufacture, N -

The final modulus and strength of the fibre

and most of the polymers exhibit ltquid crystal bshaviour in solution.
This makes the spinning of them into useful fibres moras difficult than



is the case for melt-spun fibres, since solvents suitable for

spinning
have to be found,

L

The moat successful of the aromatic Polymers to date has been Kevlar

which is an aromatic polyamide, with an elastic modulus of about 120 GPa
4nd a tensile strength of 3-31.5 Gpa,

There are a large number of such aromatic polymers which have basic
structures such as that of poly (p-phenylene terephthalamide) epD-T

%

° Y\
4 C N>:\®\N\.,/\ C\G“N/
W !

and poly (1,4 benzamide) PBA

1
N
| E—@_c\

In solution thess polymers form nematie liquid crystals, that is

crystals in which the molecules are oriented in a parallel fashion but

in which their ccnu-erot gravity are random,

”' I
'ul ,II’ ‘

is an external orienting force the symmetry axis of
{the axis along which the molecules are alignsdl is in a random direction,
In the spinning process therefore ordering in the fihre direction is
necessary if the material {s to develop the
Possesses in the backbone chains,

Unless there such crystals

stiffness overall that it

Such polymers are called

rigtd-rod polymers because their chatns are
not flexible,

The study of the thermal, mechanical and other properties

13

arf = PO yioers =8 vary active at p:escnt and a number of
cnctp'tl have been ar E:ﬂiﬂq to Cn“l‘ the t.heoretlclm to mdﬂr!tﬂlld them,
new C A

Further reading
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Ultra-high modulus fibces (A. Ciferri & I.M, Ward .
(1979, #pplied Science Publishers, London]

ribras, Pilms, Plastics and Rubbers
iw,J. Aoff amd J.R. Scott eds,
1971, Butterworths, London}

strong Solids. A. Keily, Ird ed, 1986
{Clarendon Press, Oxford}

Mechanical propertiss of solid polymers
1.M. Ward 2nd ed, 1981 (Wiley, London)

£ 1 r dyramics
T e ¥:° Doi and §.F. Edwards (Clarendon Press, Oxford 1986)
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Figures

Molecular cross sectional area.

Critical tensile strangth and pumber of honds/n.z
for 13 polymers, L

Modulus vs draw ratio for a variety of linear polyethylens

samples drawn at 75%,

Structural formula of polydiacetylena.

Change of slastic modull of polyethylens with increasing

draw ratlo.

Schematic model for conversion of lasellas into
microfibrile (Peterlin).

Schematic model of chain slip and tilt as lamella
transforms to fibril (Peterlin).

Schematic model of Peterlin for shearing of fihrils.
The crystalline bridge model,

The change of tensile modulus as a function of
post-nack draw ratio.

The maxisum modulus of gel drawn filbres as a functlon
of drawing temparaturs,

Schematic model of the structure of shish-kebabs.

The tensile modulus of gel drawn fibres as a function
of crystal length.
(Line from shear-lag theory}

.y,

Table P Molecuisr cross-sectional aren
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| | | F1G. I1. Schematic model of transformation in a necking zone of stack of paraliel
| 2 3 4 5 tumeliae into a bundle of aligned microfibrits (fibril) (Peterhn®®). The final extension
Draw ratio of lamellac yiclds a finitc length of fibril.
FIG. 6.3. The changs of the elastic moduli of polyethylens with increasing draw ratio.
(Raumasn and Ssundess 1961).
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Mechanical Properiies of Fibrous Structure 293
]
b
lomelie mecrolibrils lomalia
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A p/p vl /Agy

F1G. 10 Schematic model of chain slip and tilt in a horizontally strained lamella
leading 10 separation of folded chain blocks: (a) the partially unfolded connecling
chains yieki intrafibrillar TTM which are preferentially located on the outer boundary
of blocks and, hence, of microfibrils { Peterlin®”); (b) the accommodation of blocks
from a wide region (w) of lamells inlo one single microfibrit requires a wider
separation of blocks which wre originally adjacent in the lamella. Hence the
connecting TTM have to pass more than one amorphous layer. (Peterlin.'")

Fig 7

LS.

74

2% A. Peterlin

Q . b

i M

FiG. 1. Schematic model of shearing and displacement of fibrils (a) and
microfibrils (b) dusing plasiic deformation of fibrous structure (Peterhn**®). The
arrowe in (a) show the axial component of displacement according 1o affine
deformation of centre fibril focations. The length-to-width ratio of fibrils and
microfibnls is drastically reduced in order 1o make the schematic sketch possible on
the limited space of the drawing. The extension of length AA’ in (b) corresponds to
the emension of interfibrilar TTM by shear displacement A/ of adjacent
microfibrils. '

Fig 8
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Thermosets

The thermosetting polymers differ from the thermoplastics in that,
as the name jimplies, they are set by temperaturs and are pot plastig, .
This means that once the polymer has been formed (usually by the reaction
of two components) it cannot he wmelted and reformed inte another shape .
Polymers of this type were historically of importance befors the therao-
Plastics and are widely used in the electrical industry as Insulating
materibls,

They have something in common with the elastomers in ~hat they are
thres-dimensionally cross-linked networks which are, in genaral, amorphous
and they show glass-rubber transitions, normally above thei= working
temperat:ure range.

They may be regarded mechanically as perwanently cross-1:nked rubbers, *
with a very smsll molecular weight batween croas-1inks, in the glassy stats.
They are, therefore, normally brittlse, with fajling strains of a few par cant
and may only be made tough by the inclusion of flexible links in one or
both of the constituent monomers, or by incofborating a soft esergy-absorbing
phase ih the bulk, This is done, for example, by aixing rubber latex into
the composition before curing.

Thermosets are, however, much stronger than rubbers ard much atiffer,
because of the high cross 1ink density, They also, in the case of epoxy
resing, contain An abundance of polar groups making them very good adhasives
and facilitating their use as the matrix for fibre composites Isince they
bond well to the inclusions).

The commonest thermosetting resins are the polyeaters, the spoxides
and the phenolics, all of which are widely used by themselves or in
combinstion with reinforcing siemsnts such as glass fibre, carbon fibre
or the newer high modulus organic fibres such as Kevlar. Ir the older
applications of phenolics (historfcally the first thermoset, Bakelita,
named after its inventor, Baekeland) Natural fibres such as cotton were masd -
to make reinforced boards and rods for electrical spparatus,

Apart from additives used for reinforcement various fillers such as
mineral clays, tale, stlica flour etc, are often added to thermosets
in order to reduce the cost of the moulding.

50

These are msce by reacting unsaturated dibasic acids with Alhydric
alcohols and Aissc. 1ing the mixture in usually ptyrene monomer, The
proportion of styy .ov oo resin ta 1:2, Other diluents: viny) acetate,
toluene, methyl weihacrylate and diallyl phthalate, The mixture is

pelymexrised by hes: or a peroxide catalyst to form a cross-linked structure
Trus

0. 0 o
Y,
N/ N\ +  HOCH.CH.OH
. / 22
teck

mateic anhydride ethylene glycol

i i
~= HO{CH3),-0~C-CH=CH-C -0 {H_

dissolved in styrere CH=CH

If this ethylene glycol maleats is heated with styrene, catalysed
for example with benzoyl peroxide, copolymerization proceeds to give a
three dimensional scructure roughly representable as follows

!
-CHZCHZ*DO((H -CHCOOCH 2CH,00CCH-CH-C00~

CGHS-CH EH‘(GHS
CHZ CHz
l_..._,-_._l‘_.ln L_.-I____Jn
—CHZ( H200C“CH“ CH-COOCHZCHZUOCCH—CH'C 00-

+



A very large pumber of variants an the above theme ara poesible by using

different acids: adiptc
sebasic
ate

or different alcohols and

different monomers, as follows,

a) Choice of glycol
1} The longer the chain length the more flexible the cured polyester.

2} Oxygen bridges in the glycol increase tha vatsr sensitivity
B of the polyester. e.g, the ethylens glycol sariss

sthylens glycol HUCH2CH20H

hepta~sethylens glycol HUCHthz‘OCHzc HZ’SOC HZCI-I20H

the latter is already giving a wlur-nolublé_gpl.yuur resin when cured.
Bence to produce a cross linked polyester of sinimum water absorption
propylene or higher glycols are used

.9, H0C3H60H

bl Choice of acid
Fumaric acid and maleic acid are the commonest,

both HOOCCH=CHCOOH (cis : maletc

trans: fumaric)
Other dibasic acids can be used,

) Modifying acid

The acids in bl are unsaturatad and hence react rapidly and give
a rigid structure.

Mcdifying actds, which are more satursted, such as adipic, pimslic,
sebasic etc are added to slow down the reaction and, if thay are of
long chain length, to give flexibility

adipic HOUE[[HZII'CDOH
pielic " " {5 methylenes)
sebasic " " {8 " )

etc. ”

d) Choice of monomer

Styrene is the usual chpice on grounds of price and avatlability,
However,

methyl wmethacrylate, ethyl acrylate, acrylonitrile

vinyl acetats, diallyl phthalate, trisllyl cyanurate etc are used,

) Catalysts are usually peroxides such as benzcyl peroxide
2, 4, dichlorobanzoyl percxide,

They are usually in pasts form with an inert material such as dimethyl
phthalate for safety,

Accelerators such as dimethyl aniline or ccobalt naphthenate are used
to promots reaction at room tamperaturs.

Because of the largs number of formulations of polyester resins it is not
possible to give unique values for physical propsrties, Rowevar, wost
will withstand temperatures up to 350°C or sidghtly higher but
depolynmerize and break down at_‘i- zoo°c.

Tensile Strength 70 MPa
modulus 3.5 gGPa
8.G, 1.2-1.3
Epoxy resins

The simplest is spichlorhydrin and bisphencl A,
There ars also: epoxy novalacs and cyclealiphatics,

i)
2CHCHOHCL  + nHO-O—?OOH
0 me
epichlorhydrin bisphenol A
mle
~——= CH_CHCH -0 O—( O(H_CHCH_ O
\Y 2 | 2
me
n
- me

—Q—i—@—ocggncuz



Epichlorhydrin and novalac

bisphenol F idenlised novalac resin
H -
Otﬁzc\H}Hz Otﬂz? 2 CHZ%I/,HZ
0 !
- CHz Hz

Cycloaliphatics

D@CHZ 00cC RCOOEHZ\O>O

These are scme of the resins

They are cross 1inked by any of three methoda;
%} Self polymerization,

2) Linkage of epoxy groups with aromatic or aliphatic hydroxyls,
3) Cross 1inking with hardener through various radicalm,

The common hardeners are amines or acid anhydrides,

Amine cures

0 H
(/ \
-GN, o (=T wrre C=N—C~ (= C~um,

and reacts with ancther
» OH

|
e T | Y o Y

epoxXy group

H oH OH OH OH
G — Ol

H

52

Since both epoxy and amine are polyfunctional a highly cross linked
structure is generr:ed,

Arhydride cures

0 GH
-w-c—-c/<' | am C—C~0—( vunn
1" 20 v wwlw — L M
.-c—-c\o )
LI )
0
1
——— Wi (o— (—0-—C memn
w(.__ﬁ_o_..[—-.? -
0 OH
We can alsc have salf-polymerization
Ok 0 OH
| /\
Wn [ anm o (= s e e [ —0—(—( v

80 tha: both ester and ether linkages can be craated,

Common amine hardeners ara:

sthylene diamine (EDA}
diethylene tri amine {DETA)}
triethylene tetramine (TETA)
m-phenylenhe diamine



Common anydr ides: phthalic ,.,

waleic ,,, 8ilicones use the
dodecenyl succinic ,., O—Si-O 1inkage
etc, )
that is they are inorganic polymers.
Resins have molecular weights A 300 - 5000,

They can be rigid or elastomeric,
Propertiss of the cured spoxies

Prepared by a) hydrolysis of dimethyldichlorosilane, followed by oxidation
b) Co-condensation of dimethyl dichloresilane

o 25 s silicen tetrachloride,

Modulus 1.5 GRa

5.6 1.1-1,2 . ) Methylation of silicon tetrachloride )
N . N followed by hydrolysis
They will withstand temperatures of about 150 - “onc' but have Ty, a) and b) provide close control of the final composition.
depending on choice Of resin and hardensr *v 120%, Yo
i i + 2
mas  x(CH_ ) SiCl_ + yCH, SiCl
Phenolics ( 2 )2 5 9 3 2

Liberate water on polymerisation which fpoxies or polyssters 4o mot.
Phenclice thersfore Iequire Pressurs moulds to prevent foaming, Their -
advantages are that they sre usable up to 300°C. + wHC!
— ¥
Tensile strangth is good, , H -
1-0—8i—0— §i-—-0-Si-—0-
Condensation products of phenols and aldehydes

e.g. £6l-g0H +  HCHO(formalashyde)

a
3 0-Si—0
-4 0—Si — 0-5i-0--5i—0—
OH H H H I I
N vl
H H H\O\ L “v
OH . o me -0-Si-0 Mrkage provides heat sesiatance, siliconss
e -0-%i-0—
The phenols are linked by methylens bridges, As the moleculs size grows o
the formaldehyde may form bridges betwean varicus parts of the glant can be used up to 500°C.
moleculs which is thus rendared hard, infusible and inscluble. The reaction

mechanical rties
is controlled by catalysis so that moulding is possible, Phenolics T rature dependence of the

t which more
Ars the cheapsst of the thermosets. § shall confine the discussion to the epoxy resins abou

Tensile strength 60 MPa is knc than for other systems. resin
Modulus 3.1 GPa As for most bulk polymers the slastic modulus of & cured GP:"Y " tare
$.G. 1,30-1,32 decreases as the temperature rises until at the glass transition teunpe

&+

thary is a rapid fall to a rubbery sodulus the value of which d.w“d’ upon
- astoner
the temperature and cross-link density just a8 for an el ]



Fig, 1 shows the temperature dependence, for the xesl part of the
modulus, for the commonly used diglycidyl ethex of bisphenol A,

There are, assoclated with the fall of the storage modulus, reglons
The highar peak is associated
with the large scale vibrational modes allowed in the rubber state, the ‘
lower ;;enk with limited range vibhrations,

of energy absorption shown in Fig, 2,

The position of Tg may be lowersd by the use of mors flexible units
either in the resin or in the hardener, while it may be ratsed by the
reverse procedura; for example Ty for the epoxy novalacs is higher than
for the bisphenol A type, because the novalac chain is more ‘rigid than the
chain which incorporates ether linkages, The more flexible hardensrs
could be the higher amines (diethylene trismine rather than ethylene diamine,
for example) or anhydrides which have flexible linkages,

The concentration, V. of network chains in a thermomet mand the
By n
molecular weight, Mg,between cross Links can be calculated from the
modulus G in the rubbery state by the relations

G- ~RT, M -¢fv

vhere G and ?
well above Tg.

ars the shear wodulus and density measured

Hc is usually of the order 200-500 and V Jias between 2x 10"3 and
s x 1072,
Below the glass transitions epoxies and the other thermosets have

shear moduli of the order of 1 GPa like all glassy polymers,

The f.‘utlﬂ process

Epoxy resins, iike other two-part thermosetting systems, form a
three dimensional cross 1linked network by the successive bonding by
chemical means of the two constituents.

In the liquid state the molecules of resin and of hardenar are
very wobile and the primary stage of curing is rapid. However, as the
molecules interact their oobllity is reduced until the ‘gel state* s
reached, at which about 70% of the material is reacted. In order to
promote further cross linking the temperature must be raised to increass
molectilar mobility and enable the less probable links to be made,
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This is illustrated graphically by the *cold setting' epoxy resins,
that is the anine-cured resins which gel at room temperature,. The
material at this stage has becoms solid, but is still brittle and weak ,
Its Ty 1s at, or just above, room tempsrature, On warming above this
tenperature curing will proceed until Tg has risen to be new temperature
and 30 on until a temperature is reached at which the material would degrade,

“Thers are many physical properties other than Tg which ponitor
the state of cure. Chemical methods include equilibriua svelling,
sol-ge_ analysis and solvent analysis., The first is done above Tg and
can aflect the state of cure {f it is not complats, Sol-gel analysis is
only satisfactory up to the gel point and solvent analysis .in the solid state
is lim.ted by the aviiisbility of & suitable solvent,
of cure, moreover, long immersion times in the solvent are needed.

For high degrees

nfra-rad analysis provides a quick and accurate test of cure
provided the chemist:y of the reaction is f&;_l’y understood since several
compet_.ng mechanism: uire often present,

Fhysical test sethods are used after the gel point and one of the
most wi:dely used meticds is the heat distortion test.
are two major deficienciess-

However. there

8} 1in a chemically -eactive polymer tha reaction proceeds as the specimen
is heated in the test, so the heat distortion temperature measured is
not thet of the original.

bl The test is deatructive,
Suxface hardness tests have heen used to monitor cures (Barcol test,

hot needle test} on epoxy, polyester and phenolic resins,

Elactrical resiatance has also been used, Por epoxy resins differential
scanning calorimetry nas been successfully applied to determine cure and
has corfirmed that Tg rises to the cure temparaturs whereupon further
reactian ceases,

The state of cure affects mechanical properties not only brittleness,
an aspact of fracturs toughness discussed below, but also the dynamic
elastic properties,

Mechanical relaxation studies of part—cured resins have proved quite

sensitive to the state of cure, particularly in the low temperature region.
E



As shown in figure 2 there are two main regions of energy abscrption
and both are affected by the atate of cure, The higher temperature peak,
being associated with the glass transition, moves up in temperature as
cure proceeds but is insensitive to the later states of cure wheress the
lower tempsrature transition remains quits sensitive (at least for
aming-cured resins).

Figure 3 shows how the relaxation at -?o°c changea with the
temperature of cure. (In each case the sample wvas held for 2 hours at
the curing temperature), The corresponding changes in the storage moedulus
are shown in the next figure (Fig. 4) showing that there is a claarly defined
change of modulus both below and above the transition and l:I:l opposite sense,
the modulus below increasing while the modulus above decreases as curs
proceeds.

The explanation of these changes lies in the molitlity of the
hydroxy-ether linkags N

—CH2 CHOH (Hz 0—
which is developed as cure proceeds so increasing the sobility of the

network and lowering the modulus above the temperature of the relaxation
for which it i3 responsible,

Etudies of the relaxations in anhydride cured resins have besn made
by Ochi, Iesako and Shimbo in recent years,

In thess systems the ether linkages formed with anine hardeners are
absent and the low temperature relaxation is due to the diester linkeges
formed by the reaction of the anhydride groups with epoxide or hydrosyl groups,

Structural schemes near the cross linking points are 1llustrated
in Figure &.

Ochi et al. found an approximately linear dependence of the tensils
impact strength om the area under the low temperature relaxation peak,
that is, & dependence on the intensity of the secondary relaxation.

This increasing toughness, as measured by impact strength, of the
dlassy epoxy when the low temperature relaxation becomes more and more
ioportant 1s in agresment with the observations on sany thermoplastics,

Thus it is often (but by no means always) found that a polymer ls
bﬂt&h below Tg if there is no secondary relaxation and, conversely,
if as in epoxy resin there is an appreciably large secondary relaxation
then the polymer has toughness,

e

However, the definition of toughness as being fracture strength
in an impact test is not vary reliabte, Better definttions involving
the concepts of fracture surface anargy and taking into account the pode
of fracturs have been developed but will not be discussed here, They
come under the general heading of fracture wmechanisms,

Further reading

Books

G. Lubtn (E4.) Handbook of fiberglass and advanced plastics
composites. (Van Nostrand-Rhetnfold 196%)

g
B. Les & X, Neville, Handbock of spoxy resins
(McGraw-H11l 1967}

_’GE!‘I

R.G.C. Arridge & J.H. Speake
Polymey, 1), 443-454, 1972

M. Ochi, H. lesako & M, Shimbo ’
J, Poly. 5ci, (Poly, Phys, ed,) 22, 1461, 19684
J, Poly, Bci, (" » ") 24, 215, 1271, {1986}
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Fiqures
rig. 1 The shear modulus of cured epoxy resin as a
function of temperature,
Frig. 2* ‘The loss factor, tan 8,of epoxy resin. ' '

rig. 3 Changes in the low temperature relaxation
as a function of cure.

Fig. 4 The change of shear modulus at low temperatures

as curs proceeds. . g
(%]
Fig. 5 Dynamic mechanical properties of swine apd -
anhydride cured epoxy resins. % M
rig., 6 Structural schemes near cross links. €
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Dynamic mechanical properties of cured epoxide resins.
Curing agents : (@) OPDA . (O) PA , Epoxide resin : Bisphenol Structural schemes for the crosslinking points.
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