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Contraction effects in ideal networks of flexible chains

G. Ronca and G. Allegra

Istituto di Chimica del Politecnico, Piazza Leonards da Vinci, 32-20133 Mileno Tialy

(Received 2 December 1974)

The mean-square distances between vatious points of regular Gaussian networks are calculated using
a new electrical analog and solving exactly a se: of difference equations both 'm two ard in three
variables through an appropriate Fourser lattice transformation. The results show that tie
mean-square radius of gyration of the network & of the same order of magnitade as that of a single
chain for metworks having a three-dimznsional comnectivity, while it increases bogarithmically with the
total number of chains for networks having a two-d mensional cennectivity.

The cooperative contraction arising in an uncon-
strained network of long, noninteractirg flexible chains
is likely to appear as unexpectedly large at least in some
cases. A particularly impressive effect has never been
stressed, although implicit in the results obtained by
James for the regular cubic network, ! namely tha: the
mean-square distance (msd) between junctions infinitely
far apart in the topological sense, is about the same as
the msd between adjacent junctions. This cenclusion
emphasizes the inherent limitations of the id=al network
as a model for real rubber, at least if appronriate
forces are not hypothesized to account for th? 2xc.uded
volume effects.’ Otherwise, the network would ccllapse
essentially to a single point.

In this paper we report a new theoretical approach
which allows evaluation of the msd between any pair of
junctions of an ideal regular network whose connectivity
is represented by a graph infinitely extended either in
two or in three dimensions (two-dimensional or three-
dimensional topology}. The noninteracting chains are
assumed to comprise the same large number of sgheri-
cally jointed links. Results will be reported fcr both
adjacent junctions and junctions far apart, for the three
cases of the square planar, the cubic and the tetrahedral
network, The contraction effect for pairs infinitely far
apart turns out to be essentially similar in both th2 te-
trahedral and the cubic cases, so that it seers to be
related to the topological dimensionality, rather than to
the functionality of the network junctions., Conversely,
the contraction factor for the single chain relative to its
free state is shown to depend from the functionality
only. In the planar case the msd between two junctions
tends to increase indefinitely with their topologica. dis-
tance, although with a slow logarithmic dependance.

Most of the present results are new, The present
approach will be developed in two theoretical s:eps,
First, an electrical analogy will be proposed as a use~
ful tool to calculate the msd between any pair of junc-
tions in a network of ideal Gaussian chains, Secord, a
new mathematical approach will be described, to ¢btain
results in a closed analytical form for a regular, infi-
nite network. It is based on a suitable Fourier trans-
formation, allowing reduction of a quasicycelie set f dif-
ference equations containing two or more integer vari-
ables to a set containing a lower number of variables.
In the last section, the numerical results will be dis-
cussed.
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THE ELECTRICAL ANALCG OF AN IDEAL NETWORK
OF GAUSSIAN CHAINS

Let a ckain consist of a large number n of spherically
jointed linis with a zero intrinsic volume and a length I.
If the end-10-end elongation vector with orthogonal com-
ponents (x, y, 2) is small compared to the full chain ex-
tension, its probability distribution is given by the
Gatssian law, '

Wolx,y 2)=(2n*/3) Pexpl— 2 («* « y?+ 2B/l . (1)

Let us consider two such chains comprising n, and »n,
links, respectively, and examine two separate cases
{(Fig. 1): The first one corresponds to having the two
¢hains in series, the second in parailel, For either
case we mzy easily derive the probability distribution
relative to the vector between points 1 and 2 (see Fig.
1) with components {r, v, z)

W}(x,y,z)=(cc-nst)£' J; L W, (e, 3, 2)

x u;a(x—x', Y=y, z=2')dx dye da’ (2)
W}I(x, Y, Z)=(COH5t’) Ian(x’ ¥, Z) u;z(xa ¥, Z)
Performing the operations and renormalizing, it turns
out that either distribution reduces to a Gaussian law

‘Eq. (1)], with the following equivalent numbers of links
ef. Eq. (1]:

Ryt (in series) ,
' (3)
1 1 1
— = — +— (in parallel) .
Rep My M inp )

Equation {3) may also be written in terms of mean-
square distances:

<:"’z>u_r = (Tz)m'* (1’2>oa
1/{r s =1/(r ¥+ 1/(# Bps

This resul: suggests an electrical analogy inasmuch as
it reproduc=s the law of combination of two resistances
either in series or in parallel. Since the connection be-
tween any ¥o junctions of any network may be obtained
through a proper building up of elements associated
either in series or in parallel, we may generalize the
above result: In the absence of external forces, the
mean-square distznce between any two junctions of an
ideal netwc -k of Gaussian chains is equal to the equiva-
lent electrieal resistance between the two points, if
each chain is attributed a resistance R equal to its free

(4}
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FIG. 1. Arrangement of two chains in series (I} and ia parallel
(11).

mean-square length {»2),.

A mechanical analog has been obta:nei by James ia
terms of springs by replacing “electriczl resistance”
with “reciprocal of the force constant,” The electrical
peint of view may be preferred both because i does not
require vectorial quantities and because the mathemati-
cal approach to the electrical networxs may be more
familiar. However, an important mechanical inplica-
tion must always be remembered: Namelr that if R is the
equivalent resistance between any two junctions, an
average unitary displacement between them is ootained
by applying opposite forces equal to 3%#T/® along the di-
rection under consideration. Eiffects of differert forces
are superposable.

We want to stress that all the above implies that the
distribution function of the distance betmeen ary two
network points is always Gaussian,!

ILLUSTRATION OF THE MATHEMATIZAL METHOD
AND APPLICATION TO THE SQUARE NETWORK

As a first example we shall consider an infinize pcly-
mer network having a square planar topolozy (see Fig.
2). For this case and throughout the paper we zssume
that all chains have the same number of spherically
jointed links. This implies that all resistors in the
electrical analog have the same resistasce.

Let us associate each vertex with two integer vari-
ables (I, m) glving its position in the necwork, amd let
(7, k) and (», s} be two general vertices of the network.

The mean-square end-to-end distance of the correspond-

ing junctions can be evaluated in terms >f the ecuivalent
resistance between the two points, Denoting by v{{, m)
the electrical potential of the general vertex (L w), we
apply a current source [ to the vertex (;, ) and a cur-
rent source — I to the vertex (», s). The eguivalent re-
sistance can thus be written as

®f, k; 7, 8)=[v(4, B =-v(r, s))/T. {5)

The Kirchhoff equation for the network gives, ir terms
of Kronecker delta functions:

du(l, m)=v(l+1, m)=ov{l-1, m)=v{l, w +1) =20, m-1)
=IR[5(=7) 6(m = k) = 8(L =7} 6(m - s3] , ©)

where [ and m are integer variables rarging from -«
to + .

In order to solve Eq. (8) we shall maxe nse o: the
operational properties of the Fourier lattice traasiorm.

Giien an arbitrary function of integer arguments (I, ,
1, I:. satisfying a periodic condition on the variable ,,
i.e., fs+ N, L, LY=f(,, I3, I;), we define its Fourier
lattie2 transform with respect to I; as

F:Ch, Iz, ls)= Zf(ll’ lz, ls)ehlrl (l;=1, 2, . .,N) .
L33
The mtitransformation thecrem states that

'f:!“ '_2, l:)=N-1 Z F(qla ZZJ 13) e“"‘ltl

f
a=27/N, ..., n22/N), ..., N2n/N} .
The nsefuiness of the lattice transformation depends on
its operational proparties:
4. )—Flg.....)
-2 .. )~Flg, ... )etm

which may be applied to Eq. (8) to get its transform
with respect to It

2(2 - zosq)V{g, m)- Vg, m+1}~ Vig, m-1)
=R[e*5(m - k) ~ '™6(m - 5)] . (N

In order to get a transformable equation we must in-
trodi ze a periodic boundary condition over I. This can
be dene by wrapping the square network into an infinite
cylinder whose circamference contains N edges. Re-
sults for the infinite network can be obtained by letting
N go -o imfinity. Equation (7) is an ordinary difference
gqua.on whose solution bounded for m —+% can be easily
founc. We shal’ solve the problem for two particular
cases:

(1) equivalent resistance of the single chain;

(2) eqivalent resistance between vertices lying far
apar: on the same row,

Far the first case we may put j=0, 2=0, =0, s==1
in Eq. ¢7), getting as a solution for the infinite network:

[(2 - cosg)+V/(2 = cosg)*~1]™"
3-cosg+,f(2 - cosg)?=1

IR [(2 - cosg)+ /(2 - cosqgP —1]™"

3-cosg+/(2 ~cosg)i-1

Vig, m)=IR

form=0

for ms-1, (8}

I Jtiw

]
]

'y
HEH

¥I5. L. Current-source arrangement for calculating the equiv~
alent ~esistance between vertices (i, k) and (>, s) in the square
netwark.
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From Eq. (5) we get
®(0,0;0,~1)=[(0,0) ~ v(0, - 1))/1 . @)

Antitransforming Eq. {8} and making use of Eq. (9), we
obtain for the equivalent resistance of the single chzin

&=k/n [ 9
s T AT .[D 3~ cosg+ /(2 -cosgi-1
This integral is elementary, and its value is

®,=R/2 . (10)

This result was already obtained by Eichinger for the
general tetrafunctional network on the basis of scme
conjectures, 2

Proceeding now to the second case to be analyzed,
we put into Eq. (7) j=L, #=0, ¥=~L, and s=0, and
obtain

isin L

V(q, T?I) =IR ‘/(Z—TS(;)Z—I
-lmd
><[(z —cosgl+/ (2= cosqr)2 - 1] (11)

Making use of Eq. (5) and converting into an integral the
antitransformation sum, we get for the infinite network:

a2
2 *  sin“Lgd .
e == . 12
®(L, 0; =L, 0)== R L —~—q——q—(2_cosq)2_1 (12)
The evaluation of the integral appearing ir Eq. (12)
gives for very large L (see Appendix A)

®{L, 0; - L, 0)=CR+(R/m)1n2L, (13)
where C is a numerical constant of the order of unity.

We conclude that the mean-square distance between
far separated junctions in a network having = squzre
topology diverges logarithmically. Since lorg range
properties are presumed to depend only on topological
dimensionality? and not on the particular kind of con-
nectivity, we assume that Eq. (13) may be extrapolated
to all regular networks having a two-d-mensianal topol-

ogy.

NETWORKS HAVING A THREE-DIMENSIONAL
TOPOLOGY

Cubic netwaork

Considering at first the cubic network, we remark
that the msd between two general junctions (3, &, ¢#) and
(r, s, z) can be calculated putting, as usual, tao current
sources of opposite sign +7 on the corresponding ver-
tices of the electrical analog.

The equivalent resistance between the two junctions
can be written according to an extended form of Eq. (5):

R(j, &, £ 7, s, 2)={ol4, &, H-v(r, s, 2)]/1. (14)

For the cubic network we write the corresponding
Kirchhoff equation

6vlly, L. L)~ vt + 1, L, LY~ oll, -1, 1, 1)
@, L1 BY oy, -1, LY=v(y, L, 1;+1)
-v(i , I, I-1)
=IR[3(1. - /) 3(l, = k) 6(15 = ) = 8(1, - 1)5(1, - s)8(l;—2)] .

(15)
For threz-dimensional networks a convenient Green
function z{!,, Z;, 1,) may be introduced, which is bounded
to vanish at infinity.

We define g as the bounded solution of the equation
Celly, L )~ g+ 1, L, LY =gy~ 1, 1, 1)
=8, Ll Iy =gy, 1= 1, L) = g(ly, I, I,+1)
-8y, I, - 1)=IR6(1,)6(2, )5(15) . (16)

Applying a triple lattice transform, the solution of Eg.
{16) can readily e found:

g(ll! lz: I:i)
IR -/2" e-i'atlpczfz":s's’ d d
_1617*./-_[ 3 - cosg, - cosg, - cosg, 92445
¢ (17)

In terms 2f g we may express the general solution of
Eq. (15)

e(ly, I, 53)=g(ll‘j’ To—k, I3— f)'g(lr' ¥, =5, ;- 2) .

(18)
To compute the equivalent resistance of the single chain
we may ciose j=0, k=0, t=0, =1, §=0, and z=0,
Substituting Eq. {18) into Eq. (14) and making use of Eq.
(17) we ezsily find

®(, 0,0; 1,0, 0)=R/3 . (19)

The msd between junctions far apart can be calculated
ifweput;=0, k=0, r=0, ¥=M,, s=M,, and z=)1,
where M;, M,, and M, are large integers.

Applying Eq. (.8) we let M,, M,, M, go to infinity,
and observe that the following limiting result holds:
limg(M,, M,, M;}=0, as M, 2,5—+=. Therefore we get

®R.=2g0, 0, OV/T. (20)

Equation {20) holds fer all kinds of three-dimensional
networks and will be used again in this paper. For the
cubic network we obtain

®R.=8], (21)
where 3 is given by the following integral

1 daq, dg, dg,
8= gf 3~ cosq, - c05g; — cOSg,

This integral has been evaluated by Watson. % It can be
written in terms cf elliptic integrals of the first kind,
ie.,

B=2%/%50 pLK(po)K (p3)/ 7
where

pe=("3-v2)2 V)

b= 03+V2)2-VT)

pr=V1-p}

J. Chem. *hys., vol. B3, No. 10, 15 November 1975
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ATTIN

CUT TN

FIC. 3. Cross-sectional view of the cubrormetwork Soitne vicin-
ity of the boundary.

D p=y1-pf
Numerically 8=0.505462. ..

£quation (19) has been obtained by Uames' iton, who
also gave 0.5 as an approximate valaeifiorichelfiertua-
tion of the distance between junctionsiremte fxom. ane
another in the network.

In the general case the integral appearing id Bq. §17)
cannot be calculated 'analytically. Mewvertheless we b
tain quite easily in some specific casi

g1, 0, 0)=£(0, 1,020, 0, s D= HRIzEEH . (@22)
Let us now investigate the influence:di border: cffects.
We shalli calculate the msd between junezrizns Iviwg far
apart on the boundary of a very large rubic netwaork,

In Fig. (3) a cross section of the netwrirk is represanted,
in the vicinity of the free boundary iy=0. |Dendrimg by
gy'l1s 1s, 13) the Green function of the protlem definad by
Eg. (16)1and the boundary condition

Sgally, Iz, 0) = gl +1, I, 0} = gy{l; -1, &.)0)
"'gb(ll [ 12'*' 1: 0)—35(11, lz- 1: 'D‘:‘-‘@'ﬁ'(_f1, .l: ] IU

i =IRE(1,)8(1,) (23)
we obtain the msd bétween remote benmtlaryijuuctions
from Eq. (20)

®,. = 2g,(0, 0, 0}/ . K24}

The problem for g,(!,, Iy, I} is defined over ithe hatl
space 13> 0, but can be artificially exbended owear the
whole space without violating the boundary conilition 23},
ifiwe add a fictitious current source !loczted wl point
{0, 0, =1). Thus we obtain g,(0, 0,.0):=gK), I¢} 1) +g(C, 0
+1)=IRIg-%). From Eq. (24), we gat anilast

Ry = R(23-3)=0.677501.. . R (28)
It is easy to show that the mean-squams Cistamnze be-
tween one junction at the interior andmme dying o the
boundary tends to the limit (&, + &,..) 0= ai higth kqpo-
logical distance.

The diamond network

: All vertices belonging to the diawwomd wetwostk lie :on
the lattice points of a cubic lattice ihawiing:its: apnstant

4107

equal to a/v3, where o is the length of the tetrahedral
edge. From a geometrical point of view the vertices of
the tetrahedral network may be conveniently placed in
two classes A 2nd B (see Fig. 4). Each vertex belong-
irg to one clase is surrounded by four vertices belong-
irg to the other, Values of the potential referring to
vertices belonging to either class A or B will be de-
noted ty u and 7, respectively. In order to calculate
the Green functions g, and g, of the problem we put a
positive current source [ on vertex {0, 0, 0)€A. The
Eirchhoff equation for the general vertex splits into a
system of two distinct equations, one for each class of
equivalence:

4g:;(llz i‘2: 13) "'ga(l:-ly lz‘ 1! ls— 1)

—guili= 1, Ll L1} g (ly+1, -1, I+ 1)

"'gu:ll"'l: 12+19 13’1):0

4g"(ll, lg, ls)"'g‘,(ll_-i- 1, lz+1, 13+1)
"gt':ll"'l) !2- 11 l3- 1)_gu(zl-1! Zz+ 1, ts-l)

=g =1, -1, la+1)=IRﬁ(l1)5(la)5(la) . (26)

Denoting by G,and G, the triple lattice transforms of the
Green functions, we obtain from Eq. (26)

U= (3 — cos2q, cos2q, - cos2qg, cos2q;

- cos2q, cos2q)t IR
11 4] @7)

Vig) = U/a[e!areeres) 4 g (a1mez )y ol lemarme)
returre]

From Eq. (27) we may calculate the msd between adja-
cent junctions for the diamond network, obtaining as a
result $R, as Zor the case of the square network. It is
interesting to calculate the msd between junctions lying
far apart. From Eq. (20) we get: ®.=2g,(0, 0, 0)/1,
where 2¢g,(0, 0, 0)/1, denoted by nR, is given by

FI1G. 4. Two geometrically nonequivalent vertices in the dia-
mond network.

e, Prege., Vil B3, Wo. 10, 15 November 1975
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dq; dq; doy
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ar
i dn 1
an= (8r) fu 3 - cos2g, cos2q, ~ €052q, cos2g, ~ 0524, OS24,

After a change of variable we obtain

T
ip- 1 ff d¢yde, do,
23 J3-cos¢,cos¢2—cosq&lcos%-cosézcos%

This integral has also been evaluated by Watson, * wao
gets

1= 3[r(1/3) /2" r*
Numerically
®.=Rn=0.896441---R . 29)

A GENERAL RESULT FOR THE SINGLE CHAIN
COMPRESSION FACTOR IN ANY REGULAR NETWORK

In Fig. 5 two adjacent vertices P, and P, of a rezular
n functional network are represented. In order tc cal-
culate the equivalent resistance between the two ver-
tices, (i.e., the msd of the corresponding chain), we
put a positive current source / on vertex P, and a nega-
tive one — I on vertex P,. The equivalent resistanze be-
tween P, and P, is given by [»(P,) — ¢(P,})}/I. By making
use of the superposition rule we consider separate’y the
application of the two sources. Application of the single
current source I to vertex P, gives rise, for symmetry
reasons, to a current //» flowing from P, to P,. Tke
induced potential difference is 4v'=RI/n. Analogously,
the single current source -/ located at the point 7; in-
duces a potential difference Av''= RI/n, Summing the
two contributions we evaluate the singie chain equivalent
resistance

®,=(2/n)R . 130}

THE RADIUS OF GYRATION OF AN INFINITE
REGULAR NETWORK HAVING A
THREE-DIMENS{ONAL CONNECTIVITY

The radius of gyration of a system of N ejqual m=ss3
points is given by the Lagrange formula

(s%)=N=2 ; (rZ), 131)

" where (7)) denotes the msd between points 7 and j of
- the system,

For N>1 Eq. (31) may be written in the more suitable
form

(sH=10rTY, (32)

averaging over { and j. Identifying the material pcinis
with the freely jointed links of any ideal network, the
above equation may be written in terms of equivalent
resistances as follows:

(s%=1&, . (33)

In an infinite network, the overwhelming majority of
pairs (7, j} refers to units which are very far apart.
Therefore the average indicated in Eq. (33) may be par-
formed on a convenient subsystem consisting of two far

(28}

separated chains C; and C,, where unit 7 belongs to C,
ard unit jte C;. Let P, and @, be the junctions con-
nected by chain C;. Analogous meaning is given to P,
and; @, {Fig. 6).

Let then @, {o,) represent the fraction of the links
contained within the chain, connecting vertex P,(P,;)
with the ith (jth) unit, Equation (33) can be recast in
the form

(sH=iRlay, @); O0<a<1, O0<ap<l.

We define Jy g{a) the value of the electrical potential
induced at th2 source point by a current source I in-
serted into the chain at a distance o from one vertex.
S:nge units 7 and j lie far apart, source I located at i
does not induce any sigrificant electrical potential at
point j, and vice versa, so that we obtain:

Rlay, a)={gla)+gla,)]/T=2g{a)/T . (34)
Ttus we get: (s®=g(a)/I.

For a reguiar »-functional network we get {see Ap-
pendix B)
gla)=g{0. +IRx(1 - c)(1~2/n) . (35)

We observe tiat g(0} is nothing but 3/®,. Averaging
Eg.1(35) over o we get

(sH=3@,+#[2 - @/n)]R . (36)

It:may be interesting to point out that the term depend-
ing on (1 -2/a) in the above equation is due to the larger
fluctuations of the points located in the interior of the
chains compared to those of the junctions. For the cubic
network (n=8) we get (s%).=0.36384.-- (%),. The
aralogous result for the diamond network (n=4) is

1s®,=0.83155 .. (#2), .

CONCLUDING COMMENTS

Pg¢rhaps the most general conclusion to be drawn from
the above resalts is that the mean-square diameter of a
freenetwork with a large number N of identical chains,
which depends linearly on N if their connectivity is
topoiogically monodimensional, ® increases with 1n{N) if
it is.two-dimensional, and is independent of N for a
three-dimens:onal network. Although our results have
been obtained for regular networks only, considering
that different types of network symmetries have been in-
vestigated, we may reasonably extrapolate the above

FIG. 5. Curremt~source arrangement for calculating the single
chain equivalent resistance in a generzl n-functional network
hawing a regular connectivity.

J. Chem. Phys, ‘vol. B3 No. 10, 15 November 1975
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F:G. 6. .Current source I located at port:#
a fractional distance @ from junction P,

msidiz thalchdinat

conclusion to irregular networks as vedll, provided their
structure is statistically homogenenusithzpugheut, Tl
assumption made by Eichinger, thatitisinrens-square
rydius of gyration of any retwork witl itetrfatunetional
crosslinks is much larger than that 6l ¢ ing.e chaid, ¢
is therefore incorrect, and also hia hypolhesis ithatiit
increases with In(N) is valid only fon petworks withltwo-
dimensional connectivity.  On the conenary, swe ishow
that the density of a three-dimensierdl frae metwork: in-
creases linearly with the number of khgirs containe
therein,| without approaching any themmocynamis. Limit,
A physically acceptable model of a rad. amorphous nei-
work may be based on a Gaussian networkioniy under the
condition that the excluded volume forues are efither
taken into account explicitiy or tentatimelyistmunted,
An example of the latter possibility: isilthe asgumpiion
made by James! and Jameb and Guth’#hat semeof the
crosslinks are constrained to lie o thy sirkcewt .
parallelepiped. These authors have sitowr that the
mean-square fluctuations of the distanzes batween the
crosslinks from their average valuss 4toinotidepend on
the dimensions of the parallelepiped. "We avant kn point
out, in this connection, that the constuaints cormespond-
ing to any point of the network beiny; ifwzed: mzy be eusily
accounted for in our electrical analpziny: simply con-
necting to the earth the corresponding)points of the elen-
trical ndtwork. It is thus evident thatihe pgrivatent
resistance between any two points, i.(i g, , ithe nean-
square fluctuation of their distance} teiidsito depregce
the more, the closer they are to the fixed points;,

As a final comment, let:us point oul ithzt the proct,
given in Eq. (30), that the mean-square distancs between
adjacent, crosslinks of any:regular #-fnctional ntiv:ork
is 2/n times the value for the free charn, isiremarkably
simple. ; We believe this to be a partimhlarly meaning-
ful example of the usefulness of theleketricil. andlog,
inasmuch as it lends itself to quite symmetriztal pic-
tures in terms of potentials and currerits, saviiding ve-
course to vectorial quantities, such aiiforces. amdidis-
placement vectors.

APPENDIX A
‘The evaluation of the integral

T

i 2
Lgdq

L =2 ’rrj =2 .-

’ 0] ;;(2 ~cosqrR -1
for veryilarge L may be performed d¢isserving that the
denomingtor is singular for ¢g=0. T the wiczmity of =D,
wé have [(2 - cosg)’ - 1]~ "1 W may wewrite § as
Jy+dJy, where

r
CJ =2/ J sinfLg{[(2 - cosg)® — 1]“¥% « ¢*"} dig
0

JE Cheem, Phys., 'Viol, 63, Yo,
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Jy=2/% L sir*Lg/qdq .

The _ntegrand of J, is a regular function of the argu-
ment ¢ in the interval G 7 7, and therefore, substituting
sinf Ly with its ayzrage value 3, we obtain in the limit
for L=

lim lelfﬂj'{[(z ~cosqf-1]"%-1/g4dg=B,
Lex 0

which iis a numeri-al constant of the order of unity,
After an elementa-y change of variable, J, becomes

2rL

Jy=1/7 J; (L = cosx)/xdx .
From the definition of the cosine integral we get

Jy=y/m+ln(2ri)/n— Ci(2nL) /7,
where !y is the Eul2r-Mascheroni constant.

In the limit for =ery high L we obtain

Jp= 1/ My +Inn)+1In(2L) /%

and, putting C=EB-(1/m){(v+In7),

LmJ=C+11/1
Lwue

“In2L),
which gives exactl; Eq. (13).

APPENDIX B

Let P and @ 2e two adjacent »-functional junctions
isee Fig. 6). A current source [ located in S at a dis-
tance & from P wi.l induce a potential ¢(P) in P, Be-
cause df the reciprocity theorem this potential is equal
to the potential localized in § when we place the current
source in P.

Therefore we ohtain
v{P, =gl0) - aRl/n .
Denoting by /; and /, the currents flowing, respectively,
in PS:md @S, we get for the potential at the source
point S;
gla)=g0) - aRl/n- aRI, (starting from P},
gll-a)=g@0)- (1 - o)RI/n+ (1 - a)RI, (starting from Q) .

Since g(o) must be equal to g(1 -
relationship I1+ 1, =1, we get at last

gla)=g)+IRc(1 - a)(1-2/n) ,
which is Eq. (35).
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An approach to rubber elasticity with internal constraints
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The effect of configurationa! hindrances in umwollen rubberlike networks is taker into account by
assuming the existence of a proper correlation between the macroscopic defcrmation and the rms
fluctuations of the network juacticns ulong th: various directions of space. Following Jumes and Guth's

approach, some junctions have been

Exed 3t the surface of a proper sarallel:piped in onder 1o avoid

caliapse of the network, and the a30ve correlation & expressed through the introd actior of appropriate §

functions into the configurational
Flory-Hoeve-Ciferri are obuained
macroscopic stretch ratios. This assumption
the junction fluctuations incresse without hmin
proposed where (i) the average ms fMuctuations
theory, and (ii) the rarios between the rms
correaponding stretch ratios as in
least to some extent, the so-cailed

INTRODUCTION

The theory of rubber elasticity developed by Kuhn, !
James and Guth, ** Wall, * Flory and Rehrer,® and oth-
erz® is based upon the network riodel of Gaussian chains
devoid of intrinsic volume and incapable of any sort of
entanglements (the so-called “phaniom” network). Al-
theugh this model proved to be extremely useful in view
both of its simplicity and of its sufficient adherence to
reality for many purposes, James and Guth? pointed out
thet it suffers from a serious inadequacy, namely the
network is bound to collapse to an :afinite density if a
proper set of forces is not simulated to account for the
excluded volume effects. As an examgle, for networks
with a three-dimensional connectivily and characterized
by a regularly repeating topological structure ("regular”
networks), James? and the present authors? kave shown
that the mean-square distance between any two network
jurctions is of the same order of magnitude as the mean-

uare length of the single chain cornecting two neigh-
boring junetions, if ng external forces are applied,
TLere can be no doubt that an analogous conclusion
should apply to irregular networks as well, if their con-
nectivity is three-dimensional and the parameters de-
8cribing their topological structure have the same aver-
age values throughout.” In order to avoid the collapse
of the network, James and Guu postalate that a proper
number of junctions are consirained to lie at the surface
of a parallelepiped.? James and Guth’s treatment leads
to the conclusion that (i} the fluctuations of the junctions
in space are unaffected by the state of strain, i.e., by
the dimensions of the parallelepiped, and (i) changing
any edge length of the Parallelepiped by a given factor
leads to a corresponding change of the average coordi-
nates of al! the junctions along the same edge (affine
transformation),

The two above conclusions, correct as they are from
the mathematical standpoint, do irvolve some problems
when competition for gpace among the chains is consid-
ered. It is the purpose of this paper to reconsider the
statistical theory of rubber elasticity with the aim of
taking into some account this aspect. We want to stresg
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part.tion function. Results identica’ with those previowsly armived at by

Sy msuming that the rms fluctuation componen's tramsform as the
cznnot hold under high deformations Secause it implies that
with the deformation. Therefore an intermediate model is
of the junctions are irdepondent of straim, as in James-Guth
imean square) fluctuations are eqaal 10 those between the
Florv-Hoeve-Ciferri theery, The imermedinte mdel can expiain, at
Mocney =ffect. It is also shown that the relation

-18tn(a/T¥/aT )y = dInr 5,/ d T is valid for James-Guth theory oaly.

Lat in. the Jollowing we will deal exclusively with un-
swollen networks, where the steric constraints mutually
exerted among the chains are strongest, due to the ab-
2ence of the dilwent, As for highly swollen networks, it
15 well krown that both the James—Guth? and the Kuhp..
Wall-Flory—Reiner”** approaches are in satisfactory
azreement with experiment. They both lead to the same
S:ress--strain relation, which in simple elongation reads
f=coastx (A ~2"), X being the axial stretch ratio, *

Perhaps the most significant attempt to account for
tre dev.ation of -he observed stress at moderate elonga-
tions from the iceal behavior (which we will refer to
henceforth as the Mooney effect, ® see Fig. 1) in terms
of the packiag forces is due to DiMarzig, ? He shows
‘that the packing entropy derived from a simple cubic
lattice model of :he network leads to an additional stress
term which s atle to reproduce qualitatively the shape

ZUF T T T
kg, em?

K THEORETICAL

12+ .

. / EXPERIMENTAL

18 / -

0 1 1 1

1 F] k] [3 A S _
FIG. 1. Typical plets of Btregs va elongation for 2 rubberliks
sanple,

oy
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of the experimental stress—strain curves where the
Mooney effect shows up, although the absolite value of
the correction is generally smaller than required. But
the basic failure of DiMarzio’s theory appears o lie in
th2 sign of the correction itsell; in Jact the averall cal-
culated stress is always smaller than in the absence of
the Mooney effect, conirary to experimental da-a which
shew that the disappearance of this elfect in progressive-
1y swollen samples is accompanied by a decrease in the
st-ess intensity, '°

We have considered a different aparoach to accoant
for the intermolecular interactions, Let us anticipate
only that, although the explicit mathamatical treatment
of this effect raises formidable difficulties, as pointed
out by Freed, !! we will take it into an approximate ac-
¢ount by replacing the complete set of topologicat con-
straints with limitations on the degrees of freedom of
the network junctions, as it will be shown in the follow-
ing discussion,

GENERAL FORMULATION

The configurationa)l partition func-ion for a cross-
linked network®! is

Z(T, Vo, A) = [dT expl~ BH(T) |olc — oD |alT@)] . (1)
The integration is to be performed over all poiats T of
the configurational phase space. The network :s char-
acterized by a deformation tensor A, V, being ~he vol-
ume in the undeformed reference state. H(I') is the
conligurational energy, and #=1/kT. The delta function
.5 Eq. (1) accounts for the specifica conneciiviiy C of
the network. The capital delta accounts for all remain-
ing topological constraints T such as those forbiddirg the
mutual crossing of two entangled chains. M, as it is
« ften the case, the configurational energy is only ex-

i ressed in terms of the interactions between atoms close
to each other along the macromolecilar sequence (first-
neighbor interactions), the excluded volume effects
should also be regarded as topological cons-raints. The
capilal delta function is bound to vanish outside a eor.-
venient subset of the phase space.

The existing theories of rubber elasticity are mainly
concerned with the deformation dependent part of the
free energy and, in view of this, rather drastic approxi-
mations are generally made.

In the theory developed by Wall, Flary, and Rehner
{henceforth WFR) connectivity requirements are not ex-
plicitely introduced into the configurational partition
function, while the actual volume and shape of the sam-
ple are considered in an indirect way. The prccedure
of James and Guth (henceforth JG) of accourting for the
volume and shape requirements by linking the coordi-
nates of a convenient set of surface junctions with the
macroscopic deformation, satisfactory as it is from a
heuristic viewpoint, raises obvious physical objec-ions,
However, we want to point out that thé same essential
resulis may also be obtained by imposing o suitable con-
dition on the bulk density of the material,!? In :he se-
quel we will retain JG's original assumption bezause it
leads to the significant resulis in a consistent and
straightforward way,

Let ms assume that in the undeformed isotropic state
the netwerk is adequately described by JG theory., In
other words, the junctions fluctuate with Gaussian iso-
tropic distributions around their average positions, un-
der the constraint that some of them are fixed in space,
Consider a pair of junctions which may be chosen close
one to the other for convenience, We know from JG
thecry that the probability distribution of their connect-
ing vector around its average value is also Gaussian
isotroric. Given two arbitrarily chosen junctions, say
1 ard Z, the probability distribution of the vector ry,
calculated at rj, =0 is to be regarded as the density of
probability of mutual contact, Now, should JG theory
hola in ary deformed state as well, the distribution func-
tion of 1), around its average would not change with re-
spect ty the isotropic state, although the average vector
itself would be affinely transformed, with the conse-
quence that in general the probability of finding junction
2 in any given small volume around junction 1 would be
chamgei. In other words, the probability of having any
two jurctions overlapped would either increase or de-
crease compared with the undeformed state, depending
ont whether their connecting vector is oriented along the
direction of elongation or at right angles to it. Obvious-
1y enough, any such change in overlapping probability
betwee two junctions would entail a change in the prob-
abilily of mutual contact for the chains adjoining them.
In unswollen networks at small deformations, which
presumably do not imply a substantial rearrangement
of the entanglement topology, any modification of the
interaction probabilities should be unlikely in practice,
hincered as it is by the concerted action of entangle-
merts ind packing forces. On the basis of these con-
siderations, let us state here the following assumption;
In aqy shightly deformed state of the network, the fluc-
tuations of the junclions will charge in such a way as to
kecp the probability of mutual overlap as close as pos-
siblz to that existing in the undeformed siate.

Pastooning further discussion of this point, let us re@
mark tia: there exists a simple and unigue way of re-
strizting the junction fluctuations so that the overlap
probab lity is exactly invariant with the deformation.

It cons_sts of deforming the fluctuation spheres into el-
lips>ids whose axes (i.e,, the rms displacements from
the average positions) are given by the product of the
original radins of the sphere times the principal stretch
ratis>s, There is no better way of keeping the intermo-
lecular interactions invariant with the deformation, at
least if we limit the configurational restrictions to the
junctions. On the other hand, although this limitation
may appear to some extent arbitrary, it seems to be
justfied because the junctions are the points of our sys-
tem mcst likely involved in topological hindrances.

We are now confronted with the problem of imposing
suilable restrictions to the fluctuations of the junctions,
depend:ng on the macroscopic state of deformation, To
this end, we assunie the existence of a functional rela-
tionship belween the deformation tensor and a suitably
defimed fluctuation tensor

m:(:E(rq-cr..))(r,-(r.») . (2)
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where r, is the vector defining the posizicn of the ath
network junction, and the sum is extendec over all of
them, This assumption, which is phencmemviogical in
hature, tends to restrict the statistical ersemble in such
a vay that the additional configurational h.ncrances in-
duced by the deformation are minimized, If the refer-
€nce axes are made to coincide with the primcipal axes
of the deformation, the above condition mey oe written
arc

(H)=FQRy, b, I, H®  (i=1,2,3) @)

where A; is the general principal eloagation ratio, I, , .
are the deformation invariants, * H'® gives tte {(isotro-
pic) diagonal components of the averaged fluctuation ten-
8or in the undeformed state, and FQu, I, 1, 1) is a given
function whose actual form will be discussad in the fol-
lowing. In the thermodynamic limit the brac<els can be
dropped from Eq. (3) and we gel an approxinrate cquiv-
alent-for the factor 4[T(T)} appearing in Eq. (1):

" 3
@ A'T(I))~ H 6[H#, - F(a, 1, 1, Ligte (4)

{al

A physically equivalent representation of A’lT(I)] can
be obtained by relating the sum of the mear. sjuare pro-
lections of the chain end-to-end distances t the macro-
scopic deformation:

A’[T(r)] ~ rII G[Kl "G(Ah Ils ]2! !3)]"*0,] ' (5)

where the tensor K is given by

K= ZFSI.IG'Z‘G‘“(!,, -I',)(ru ‘rn) ' (6)

and K gives the diagonal components of K ins the unde-
formed state, The sum in Eq. (8) is extended over all
instantaneous positions of the network juncters; €, 18
unity if junctions @ and 8 are connected, zerp otherwise.
In the factor 3/4p1%, that has been introduced “or con-
venience, v is the number of equivalent segments per
chain, which is assimed to be the same for el. chains,
d { is the length of the statistical Segment.

The equivalence of the weighting factors (Zgs. (4) and
{5)] requires that a one-to-one corresponderce must be
set between functions F and G. This is indeed the case,
as it will be shown, Equation (5} can be wrillen in terms
of the instantaneous values of the junction coordinates
without introducing the average values whizha-e g
priori unkpown, For this reason we shall mele refer-
ence to this second form of the weighting facto= A'[T(T)).

THE MODIFIED JG PARTITION FUNCTION
By the very definition of K and A we must have
K@ =Nyt/out {7)

where N is the total number of chains and 72 is given by

Fa.*.-;..ﬁ<‘z'; {r, -r,)"c,,) .

uadef, stale
Furthermore we must have in the undeformec sate;

G(1,3,38,1)=1 . {8)

Iniroducing the functionality f of the junctions, which
we assume 0 be consian! throughout the sample, and the
total number of pnctions n, we recast Eq. {7) in the form

' =nrir/gut (9)

Denating by r,; tie ith coordinate of the general junction
o, (i e, x,, %o, x,, for %oy Yar Za), We incorporate
the weighting fac or (5) into the JG partition function

= ﬁfﬁd"u EXP{- ;l%‘z g €anlXny _x“)z:,

=2
xﬁ[z:? gicl(xai -x”}e—G(A‘)gg_;] . (10)

(For brevily, we amit 4, 1 and I from the arguments
of G.) Assuming that » surface junctions are kept fixed,
the incegration is to be performed over the position of
the remaining n =1 free junctions,

In the absence of deformation we have A=l Gly)=1
and the & factor Ir. Eq. (10) becomes ineffective in the
thermadynam.c linit, Under these conditions the parti-
tion function (10) effectively coincides with the original
JG formulation,

We define for further reference 2 statistical quantity
related with the umdeformed state of the network

?:'.—- zljv “Z‘ Eusl (l‘, ‘ra>mm. lllt.lz . (11)

As it is well knows, 72, which determines the rigidity
of the mnaterial, is the front factor of the JG elastic con-
stitutive equation, whereas the pbreviously defined quan.
tity 7* [Eq. (7] plays the analogous role in the Flory—
Hoeve~Ciferri (FFC) development'® of the original WFR
theory, For a network having a regular functionality f
and a homogeneoue length of the chains, 7% and 72 can
be related through a straightforward calculation from
JG par:tion functisn (see Appendix A)

Fra=Fio (25t (12)

Equation (12} prcves that the rigidity of the sample as
Predicted by FHC theory is generally greater than that
given by JG theory. Denoting by x, the general Carte-
sian eoordinate (x= %1,2,3) of the junction @, and by A the
elongation ratio alcng the same axis, we calculate the
corresponding contribution to the factorized partition
functior. [see E3. (10)]

Z,:fgd:gex; [— 5375 ‘ge,,(x, -x,)‘]
x 6[4—3,7 ; Eas(Xqy = 2, -G(U.,ﬂ:‘;] . (13)

By making use >f the Fourier representation for the
delta fuaztion

— et 4
1 e . .
(14)
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and substituting into Eq. (13) we obtain
1 - iw ﬁz]
. = 2—“ .[- dw exp[—-— EV—IEG(X)F{f‘V

-
x fn dx,exp[- ;—3;—2(1 ~iw) Zﬂ €aslxy -xa)"‘] .
aal x
{15)
Upor the change of variable g_ = (1 - il 2y, Eq. (15) is
trunsformed into

L tw 52 )i /2
Z,.= oy f dw exp[—- mG(A)nfr ](1 -~ iw)

x fn dqa exp[" Zl-i_z uzﬂ EnB(Qnr - qﬂ)z] J (16)

Henceforth, the ¢ variables will be denoted by a small
latin subscript if they belong to free junctions, by a cap-
ital latin subscript if they refer to fixed junctions, and
by a4 greek subscript in the general case. According ‘o
the assumptions of JG theory, the fixed -unctions are
affinely displaced by the deformation,

Denoting by x{% the initial position of the fth fixed
junction, in general we obtain

9=~ W) = (1 = jw)23 0% an
Making the simplifying assumption that no two fixed junc-
tions are connected by a chain, we obtain from Eq. (18)

1 - 1 - o y=la=m
2,=2—w[‘dwexp[-;%fc()\)nrzf](l-tw) (s
=1 3
S o] T e-ar
P 4 %

- E?rv'%; €dq, "Q_-,}'.'] . (18)

Introducing the matrix C,, = FOin = €5, We write the sec-
ond integral appearing in Eq. (18} as

3 R
I =exp(- 2 E:.r.qi) f qu.
2154y

anj

xexp{z—gl—z[—gcuq,q.+2 Zq,h,]f , (19)

where

ky =; €14y . (20}
Defining the quantities 7, as
gy if a=r
Ta (21)
2€Yh U azi
»
and changing to new integration variables
Pi=qi-q;,

we diagonalize the quadratic form

I= exp[— %Z%gﬁu - q—‘)z]

o, 5

xfﬁdp,exp(—-ﬁ%gcupm.) : (22)

FYUULIET BdoddCily M1 intzrna consiraints
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Performing the integration we obtain

2 e\ (=m)y I _ .2
I- (.2..1_””) {DetC) 12 exp | —3—22 LN -%)] )
3 / 4Vl a8

(23)
Defining the quzntit:es ¥, =(1 - i)ty we see that ¥,
Eives th2 average position of the corresponding junction,
This is obvicus y true, from the very definitions of g,
ard g,, if @ is a fixed junction, If not, we observe at
first from Egs. (21), (20), and (17) that X, does not de-
pend on w; in fact we have for a=;

X, =A§:(C-1)u‘u"im A", (24)

Tten, introducing the variable %, - %, and transforming
to g, - g, =p;, we may caleulate (x; - x;) averaging over
the partition integral the result being zero. Further-
more Eq. (24) saows that the average positions of the
Junctions are displaced alfinely by the deformation,
Since JG partiticn function and the new modified parti-
tion function are equivalent in absence of deformation,
we conclude that the introduction of the weighting factor
(5) does not affect the aveyage positions of the network
Junctions, Substituting Eq. (24) into Eq. (23), and mak-
ing use oI the de’ining equation (11), we get

272 n-m} /2 +2 Nt
I= (-l—aﬂ) (DetC)'/2 exp[— Zala --:'w)] . (25)

Equation (25) car be substituted into the partition func-
tion (18) .

1 ZIZV‘H (nem /2 " ";2 2
z,=2—,(—3—) (DetC} "exp(-—‘h;';@- (),

(28}
where J(\} is given by

- = -2
JA) = f dw exp {_ ;mf[c—(x):_:;!}_all]} (1 - jw)-tn-mre
@7
To simpli’y calculations we assume that n—-m is an even
number, With th:s restriction, obviously inessential or
large n an? m, J(A) can be calculated through a straight- @
forward application of Cauchy’s integral formula

J(A) =

COJF? -] Jeemit
4pl*

2r
(61 =m), 21T [
X exp _{- ;—:%[[G(A)F‘ - At } . (28)
Substituting Eq. (28) into Eq. (26) and making use of
Eq. (12), we obtain

2 (n-m} /2
- ﬁ_.p_(z‘ va8) T (Detcyi

h-m'/2-1
2:' }(n-an’z-l exp [- Z;ZG(A) ;.;:z- ] .

(29)
From Eq. (29} we get the expression for the free energy
in the thermodynamic limit {(m <n;m, n—~ ) .

AQ)=-rT In(-H z,)

%1, 2,3

X{P{[(G(M-RI)-E;Q +}%A

=1
- E:—T:'S:In{[c()«,) - "”?5’7,, +j-":-xf}

nl
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4 i3 y 4 ¥ fir

where the usual notation (r?), for the unpertursed mean Equatior: (37} shows that, in the absence of internal con-
8quace chain displacement vI2? hais been intrediaced. The straints, the flectuations of the junctions are not affected
fluctuations of the junctions are generally affected by the by the deformat.on, while Eg. -(38) gives an expression
deformation, Denoting by x, the general coarc inate for tie free erexgy of deformation that is identical with
(x,~ Xp1,2,s) Of the ¢th junction, and by:x the correspond- the resuit o James and Guth, as it was to be expected.
ing elongation ratio, we may calculate i{=, - x,¥® through

Th= reasons for assumi the existence of a stron
the partition integral, obtaining as a nasalt ne &

coupling between the directional fluctuations of the june-

— vid | ' 2y T2 2 tions and the macroscopic deformation field have been
- = — =1G{A) = ). — + AT, 1 . .
(e - 2,75 3 Cet {2[ ) ]irz,':, * (1) previously discussed, We have already seen in the in-
- troductory sections that the invariance of the interaction
h A= =
In the condition of rest =1, 60 1] we have probability between any two chain sections of the net-
{x, - %D = v ct a2) work requires—ag a necessary although not strictly suf-
£ 3 e ticient condition—that an affine average displacement of

the junctions be accompanied by an affine distortion of
their fluctuations in space. With this hypothesis, and
ot ] . . . R .
g 2P L 2 - 21t a2l e = i@ assuming that the principal deformation axes coincide
@ e - 2,7 {2 (60 -22) o, " =559 . (33) with the Car:esian axes, let us now see how the overall
mean-sgquare fluctuations of the junctions change upon
deformation [see Eqs. (2) and (3)]; we obtain

From Egs. {31) and {32) we get

The first of the two factors on the righi-hand side of
Eq. (33) coincides, apart from the multip_icative con- s s
stant f/2, with the argument of the logarithmic terms in : - o

the free energy (30). Thus we conclude quite generally g § (Cay = 2o = ¢ )z)@ :
that, whenever a nonvanishing coupling exisls between
the macroscopic deformation and the frunction fluctua -
tions, a logarithmic term appears in the fvee erergy.
Summing Eq. (33) over all junctions of ithe network, we

(39)
=1

Confiring our attention for a while to constant-volume

deformations, it is important to remark that (A + 2% +aA3)

is stationary for A, =X =2y =1, which means that the

obiain overall fluctuat:on keeps constant for small straing
_ around the isotropic state, as it appears reasonable. On
- =\ _Jf A ) ~ )0 the other hand, for large deformations % 2! becomes
<; (- %,) ) _{2 [60) - x ]m - } (,Z by -%,) ) larger and larger, with the paradoxical c(;nsequence that
(34) the mctions associated with some of the degrees of free-
or, in terms of previously defined quaniitizs [ see Eqs, dom allowed to our system wouid increase without limit
(3) and (9)), after application of physical constraints, To put it an-
f 72 other way, at large deformations the topological con-
F(x) ={§-{G(A) - A’]m +Az} ] (35) straints not only should affect the fluctuations of the

: junctions, they should be almost entirely responsible
Equation (35) gives the functional relations yip coanecling  for thew. We shall see later how to overcome this ab-
cg"ﬁ_f‘(k) and G(4), thus establishing the formal equivalence surdity. Confining now our attention to small deforma-
“weibetween the two weighting factors i4) and (£). tions, ‘we will accept the hypothesis of affine distortion
of the fluctuatiors, which leads to [see also Eq, (35)]
THE FORM OF THE COUPLING FUNCTICNS

= =t
Gty la d3) AND FON L, 13 1) Fiy)=60) =) (40)
- Substituting Eq. (40) into the elastic free energy (30),

ha‘f: om the defining Eqs. ®), @), (), and (6) we must we obtain, apart from an inconsequential additive con-

stant;
G(A;); F(lg)éo =2 3
y_NERT 7 , 2

G)=F(1)=1. AN == o5, 4 M ~mkT Ina,) (a1)

Minimizing the free energy (30) with respect to G{A,), Considering that (r2), is the mean-square end-to-end

which corresponds to neglecting internal;constraints, distance of the unperturbed chain, we obgerve that Eq.

we obtain (41) coincides with the Flory-Hoeve-Ciferri'* elastic
equatior., This appears to be a rather surprising result

2
GA) =2f ~ (A2 - 1); S’ézﬁl , (36) since we have started from JG statistical approach,
r
FiA) =1 37) Let us now take into consideration the hypothesis of
] . ' ( large deformation, specifically assuming that one of the
AQ) = wrRT[ 72 2 32, const A'8 goes 1o infinity, In order to avoid the paradox of
4 Oh g™ * infinitel¥ large fluctuations, we shall impose that F(p,)

tends to some finite limit. From Eq. (35) we get as a
or, from Eq. (12), consequence
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G(-’\;)"’J\l‘ (1 —Jj ';—z-) . 42}

for A;>>1, whereas for A; =1 we must have
G(A)~ 2%, (43;

Obviously enough, the probiem of finding a regular
function G(\,, I, I, 1) satisfying the asymptotic condi-
tior... {42) and (43) does not admit a unique solution,
However it may be deduced from Egs. (42} and (43) that
any possible solution must approach the FHC result ot
smail deformations and JG behavior asymptotically a-
hi:h deformations. The simiplest way to generate s con-
tinuously differentiable function Glag, &y, Iy, Iy satisfying
the asymptotic conditions (42) and {43), is to replace
Eq. (40) by the weaker condition

G =g, I, I, (¢4)

where g(ly, Ly, 1y) is to be determined by a mimimization
of the {ree energy. In fact the condiiion G(1)=1 puir-
antces that g~1 at smali deformations, so as to satisly
Eq. (43), while the minimization requirememnt ensures
that £q. (42) is approached at high deformations, Using
Eq. (44), as a result of the minimization process, we
obtain

2 v? 3
GOA, I)= xf-)—;'—;?xf( - K)’ (45)
or
Fy, LY=33/1, . (43)

From a physical point of view, the solution repre-
sented by Eq. (45) or (46) has some attractive features,
as we shall see. It gives

fZF(A,,I,) =3, (47)

Equation (47), which is also obtained by JG theory (that
is, neglecting configurational hindrances) means that
the m.s. junction fluctuations, averaged over all direc-
tions, are never increased when taking topological con-
straints into account, This conclusion is consistent with
the intuitive idea that additional constraints should not
increase the overall fluctuations of a physical system,
To this extent Eq, (47} is 2 neCessary corvreclion 10 the
strong affinity result which is obtained {rom Eq. (39)

EF(J«,) =l (2 3 at constant volume) , (48)
£

Substituting Eq. (45) into the general formula (30} giv-
ing the free energy of deformation, we obtain, apart
from an inconsequential additive constant

3 — 3
TS (M), 2T 7
ARPYz e — ) Inf=i LE .
@ 2 & (-’1)+ 4 13

For constant volume deformations a simpler formula is
dbtained

a3, (404

A(A)=3—"‘.flmul)+’;ﬂ<—f§)-nz,. , (50;

The jorce per unit undeformed cross section, referring
© a uniaxial tension test, is easily obtained from Eq.
50)

WEE IR e

If A is arourd unity, from Eqs. {51) and {12) we have
JMETTL 214 A\ _mpeT FE o4 1
a(») 3 [;7";-3 +f} (x Jl2) 2 O, ( 12) (52)

wtich zorresponds t> the FHC equation, whereas for A
> 1 James behavior is asymptotically approached

T 72 1
a(x) ~ 1';— {{g}—o(a - 17) ) (53)

These resulls are ccnsistent with the general conclu-
sions previoasly drawn, Anticipating further discus-
sion, we may say that the gradual transition, occurring
at intermediate deformations, between the stiffer Flory-
like elusticity {52) and the softer James—Guth behavior
(53) is perhaps respensible for the so-called Mooney ef-
fecl observed on dry rubbers, We wish to remark that
Egs. (49) and (50) give a physical interpretation of this
effec: without making recourse to the second deforma- e
tion invarianl f,, whizh appears in the original Mooney-
Rivlin empirical equation

AR =Cy(f - 3) + (S, - 3) . (54)

Our result seems to support recent criticism™ on the
Physical just:fication for Eq. (54). It should be borne

in mind that :n highly swollen polymers the retractile
force is usually seen to obey rather closely-the (A - 1/a%)
law within a relztively large range of X values, Obvious.
ly enough, this may easily be interpreted according to
JG theory; the effect of the packing forces being virtual-
ly absent, the networs system is not bound to maintain

a constant overlap probability between the various chain
sections even at small deformations, with the conse-
quence that no restriction on the junction fluctuations is
required.

EXPERIMENTAL IMFLICATIONS OF THE THEORY

Figire 2 stows the plots of the tensile stress vs A in 9
unidirectional deformation according to the theory of '
James and Guth [JG, see Eq. (53}], to the Flory~Hoeve—
Ciferry theory [FHC, see Eq. (52)], and to our inter—
mediate model [IM, sze Eq. (51)], Although the first
two curves difer for 1 scale factor only, they have been
reported in order to stress that the intermediate model
behaves according to FHC theory at moderate departures
from i =1, while tend.ng asymptotically to JG curve for
large strains. We have adopted for the ratio 7 /o,
the orientative value 1/2 on the following grounds. For
a regular tetrahedral network of identical amorphous
polymethylene chains, e.g., all the average distances
between neighboring jenctions have the same value of
about 5.2x10™*%'"* em (N = number of ~CH,~- units per
chain), obtained upon -mposing the actual density value
{(~0.86 g/cm®). Since the {r*%), unperturbed mean-square
distance is about (16, € x10°%R) em? at room tempera-
ture, ** the 72,/G-%), ra-io ranges between 0. 35 and 0, 20
for X in the range 100-500 {corresponding to a range
15-75 in terms of the number of statistical segments),
Considering that any deviation {rom a regular topology
necessarily entails a2 broadening of the distribution of
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where g i3 either unity or 31/(2 +A%), depending on
whether FHZ theory or our intermediate model ig
x. adopted. While the above factor must be always smaller
. IM_ - -J than unity with the parameters chosen in Figs. 2 and 3
- it shculd be 0. 5 in both cases for A~1, increasing to
s == JG . 0.67 i ¥4 =72, On the basis of thermodynamics con-
Siderations Xrigoaum and Roe'? also pointed out that the
0 —t—t- 4 ' } } existence of the Mooney effect should entai} some inac-
curacy in Eg. (53),

-~
——
3"'

n

T

"
]

It is beyond th= Scope of the present paper to discuss
other prohlens related with the nonideal behavior of un-

s
T

i swollen rubbers, especially those related with large re-
Ny laxation times ard with other temperature dependent of.
P 7] fects, 19
I
i " b CONCLUDING CONSIDERATIONS
Sk — The basic assumption whereupon the present paper is
developed is the Joliowing: the action of the forces mu-
5“ u‘a . 0 1'5 ZJG 2'5 3*0 Y tually exer:ed between chain Segments of an unswoilen
' ) ' ' polymer network is approximately accounted for, {rom
FI1G. 2. Eloogational stress in uniaxial tens.on vs the stretch the statistiza.-mechanical viewpoint, by properly re-
Tatio A for a tetrafunctional rubber network, ‘as predicted by stricting the “luctiations of the Junctions. The above
Flory—-Hoeve-Ciferri (FHC) theory, by James—Guth UG) theory, forces arise both from packing requirements and from
and by the intermediate model (IM); see text (v =nf/2 is the topological canstraints; they prevent the network from

number of chains per unit volume of the natwark), collapsing -0 an iafinitely high density, 7 and at the same

time make it diffizult to modify the pattern of the inter-

the average chain vector lengths, wita a consejuent in~
crease of ¥, we have chosen a larger value for the T
above ratie, although keeping it lower than unity seemed e
reasonable, It is apparent from Fig. 2 that in simple 20—
elongation the Mooney effect is fairly well interpreted
by the intermediate model, In the compression region
some deviation from the (A -~ 1/A%) law is observed (see .
the FHC/curve for comparison), cont-ary to most ex-
@erimental data, although the discrepancy is much less
"N dramatic than yielded by the C,/A Mocney term. This
is w1s0 seen from Fig. 3(a) where the deviations from EXITENS’ON
the above iaw may be better appreciated :n bott cases.
Figure 3(b} shows the corresponding plot obtaired from
experiments by Rivlin and Saunders. !* The experimen-
tal curve, similarly to our IM curve, appears to be sta-
tionary around A =1 and then to decrezse in the compres-
sion region at small deformations, altiough its eventual
increase contrasts with IM predictions,

{a)
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EXTENSTON I' COMPRESSION (b)

The following formula is usually assumed to relate the
temperature coefficient of the unperturbed mean-square
end-to-end chain distance with the retractile force

-

!
N
|

6/2(7«-1/?\1) Itg/tm2
=

~{81In(e/T)/0T] t,v=dIn(r?,/dr | (55) /

where the derivative is to be evaluated at both constant 10y I \ , . . ;
lenzth L and constant volume V of the sample. From 17 06 s 3 5 ? 9 o
Egs. (52) and (53) it may be seen that Eq. {55) holds for ) N
JG theory only (in the limit of highly swollen samples), t}::(ih 3;M a) th!e T ";”:m‘.’ft }:he elorllgangnnl Tt" ‘:513 /;Bf p"“’di"'teid

. — . : < . ¥ the model an eory plotted againg or one gig-
s?.ncg ¥'m 18 ”?v'flrmnt with temp(.erature i we. neglect _the nificant value of the r gidity factor v}, (W =nf/2 is the number
dilation coefficient of the material. Otherwise the right- of chains per unit velime of the network). (b) The ratio of the
hand member of the above equation must be corrected experimental elongatienal stressto 2(\— 1 /3) plotted against
by a factor equal to 1/A. The experimental results are due to Rivlin and Saunders, ’*
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chain conticts upon deformation, In onderto take a il NETp*/(r %), (N = number of chains), then p?
account of these effects, it would be necegdhar: to: de.
velop a sta]tistical concept of the entanglemeny | PResTn)-
ably along the lines recently indicated, by FiabipkiEs

is tempera-
tur= independant for JG theory only. As a consequence,
the validity of Eq, {5%) is limited to this case,

for the isotropic state, and to predict ion wistmucteral ‘APPEMDIX-THE CONNECTION BETWEEN 7? AND r2
basis the slatistical coupling between enEnyle ments: ang| L -
Tnacroscopic deformation, The methods detvised Ly By the very definition of 72 we obtain

epAll ; ; " .
Freed sho‘uld be very useful in this conmerition, — 2 Gz:( (e - r,)z> - (A1)

Within the limits of our approach, which mar be von.. LA P Bt
siiered as Phenomenclogical in nature, the rejutremen | Explie:tating Eq. (A1) by means of the partition integral,
that the intelraction probability between amy b pakts il .'we obtair
the network be invariant with deformation may :be 5atis.. rem
fied if both l‘rhe average coordinates of the lunctdomss and ! “f =n—'1.—z- f Hdr, Ee,,(r, ~r,)?
their rms fluctuation tensor are transformed writh e R =3
alf*~ity law.” By imposing the last restiricticn td rhe J13 3
partition function we obtain an expression olf t1e free en. - Xexp [‘ mg‘uﬂ(rﬂ "rﬂ)z] . (A2)

. ly identical witth that i Tivexd
s;ggh[)i?'eaﬁg cgﬁv)c}):lfggf?’te ;h:sea::clusmn :I: |recrl:;alr$ d,"tr(’di"":i"g fhe quantity s =3/4u] 2’ we write Eq. (A2) in
able and to some extent Surprising, inasmurhas, oilike 1€ more suitable form
Flory, (i) we explicitly account for the chaln connettiviity 14
cf .ue network, (ii) we impose the fixed volume wondition ro=- nfds T4+ (a3)
through the James-Guth procedure of Consiwa imrng | the ) . . . .
Po-ition of the surface junctions, thus obtaiming nonzews 4D evalf:atmr:'o.’ the JG partition function gives in the
values for the components of the chain end-tr-2mdigver . 'thermocyramic limit:
age vectors, and (iii) we do not introduce; suyy; entragy: ef.. Zxisg™ " ey~ s¥inf), (Ad)
fect associated with the random distribution of thejjune.. , o
tions, However, a basic common feature oflbctly; gy '¥pon substituticn into Eq. (A3) we get
treatment and Flory’s is that the whole protubiltty blig-. . 31 _. i
tribution of the end-to-end chain vectors—aat ot merely A s *Tha
their average values, as in JG theory—is atlfinel, # trans.- )
forraed, ' ' &I, from. tae definition of s,
-

Although for an unswoljen Polymer the. abuing rastyic . et L) (A5)
tion to the junction fluctuations appears to!le wery rea- 4

; Bonable at small strains, it is physically urtenabie:at | that correspords to Eq, (12) of the paper.

 large deformations because it would lead. to emcawedingly
large fluctuations. Allowing for the Iluctuatirms;:nerhg.g:

; of a finite range in the high deformation Yimit, ; we come Ul Kuhn, Kolloid-Z, 76, 258 (1936); 87, 3 (1939),

. to the conclusion that any realistic model shoulc e hawve i M, James, J, Chem, Phys, 18, 651 {1947), -
(a) like Flory's at A~1 and {b} like James ang IGathisaal " H. M. James and E, Guth, J. Chem. Phys, 15, 669 (1047), @I
A>1, We have considered in some detail what ws bg- “Fu T. Wall, J. Chem, Phys. 10, 132, 485 (1942); 11, 527
lieve to be the simplest of these models, deniring it as '1943).

“*P..J, Flocy anc 4. Rehner, Jr., J. Chem, Phys, 11, 512
111943},

1F.T. Waland P, 4, Flors, J. Chem, Phys, 19, 1435 (1951);

. “intermediate model” (IM), because of its following nea..
;sonzble features: (i) as in Flory’s theory the ralics be.-

tween the rms ;unction fluctuations along the warimus'dj- <u d. Hermans, Trang, Faraday Soc, 43, 591 {1947),
:rections (although not their actual values) areiin dEree- .. :Ronea and G. Alegra, J, Chem. Phys, 83, 4104 (1975),
.ent with the affinity law; (ii} as in JG theory He:over. "L. R. G. Treloar, The Physics of Rubber Elasticity (Oxford,
@ll values of the m. s. fluctuations are invariznt with | ce- 5, Hversits, Londcn, 1958), Chap, vIIL

8pect to the applied deformation, Although in. the nom.~ {%. A. DiMarzio, J, Chem, Phys. 36, 1563 (1962).

1%, J, Sm:th, Jr., A. Green, and A, Ciferri, Kollold-Z, 184,
v 4137 (19€4),

VK. F. Freec, J. Chem, Phys, 55,.5688 (1971),

pression region the predicted discrepancy: from; g 10
= 4%) law is tog Pronounced as compared to mnst BAPER -

mental data, in simple elongation the so-called! Mconecy 2, : Ronca {uapublished resiits), -
eifect is fairly *;ivell explained, It should be siressed P, J. Flory, C, AL Hoeve, and A, Ciferri, J, Polym, Sci,
that any model ineeting requirements (a) and {4} syl 1 84, 337 {1359),

be able to interpret the Mooney effect at least to spume 4, ‘Zisbicki in E. 3. Minch ang A. Ziablcki, “The Mechanics
*#xlent, inasmuch as the slope of the force mt lmrge g ' ¢f: Fluid 3“"":"‘“”‘ aod Palymer Solutions: a Reporton

inu-t be smaller than required by the (A — &) uw, iif tne s Coomech 49,” 4. Fluid Mech. 66, Pt, 1, 1 (1974),

- . P, J. Fle Statistical Meckanics of Chain Molecules On.-
Initial slope is used as a reference for hor maltizaion Etemciem?},ew York, 19g8), i cuiee Qo
(see Fig. 2), “R.15. Rivim and P. R, Saunders, Philos, Trans. A 243, 251

. - ‘ (E8E1),
1 AB a final comment, we want to stress that if ke fromi "W, R. Knigbaum apg R. J. Roe, Rubber Chem, Tachsol, 38,

factor of the tem;ne stress, i.e., the factor mulitipying 11028 (1965); R. J, Roe, Trans, Faraday Soc. 62, 312 (1956),
(A =2"%) in Eqs, (52} and (53), is put into the fomm ‘1A, i iabick:, Kollotd-Z, (to 36 published)
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The Angular Distribution of Crystallinity in a Stretched
Rubberlike Polymer

Giuséppe Allegra

Istituto di Chimica del Politzen co,’ PiazzalLeonardo da Vinci 32, 20133 Milano, ltaly
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SUMMARY:

The distfibution of ~rystéllinitw: around the axis of elongation in a rubberlike polymer
stretched above its normal imelting tamperatare is calculated. Although most of the basic
assumptions are identical with. iheseiadopted oy Flory in 1947, the model of rubber elasticity
proposed by Ronca and. Alliegra in 1975 is explicitly adopted, ad the assumption of parallelism
among the. crystallites is avoickd.. According to some experimental observations, only the
extended chain crystallizetion mechanism isina<en into considerazion. The incipient crystailiza-
tion temperature and tne equilibrinm retractile force are also obtained. The X-ray intensity
distribution for the genzralreftection on a siretched fiber diagram is formally derived as a
function of crystallite :ariestation. “Azreement with several expesrimental data obtained by
Cesari, Perego, ZazzettaandiGargeni. from crosslinked cis-1,«-polybutadiene may be regarded
as satisfactory, considering she sirmplifying assumptiors. According to the theoretical predic-
tions, the crystallites formed at iincipiznn crystal.ization are quite narrowly aligned around the
direction of elongation. Unlkke Flory's theary. the present formalism leads to no discontinuity
in the derivative of the ratraitiie forcevs. the stretch razio at tie incipient crystallization point,
in agreemeni with obserwation.

Introduction

Recent iexperimental siudies an istress-induced crystzllization in crosslinked poly-
mers’' ¥ suggest theexistence df twoitlistinct mechanisms of crystal formation, the
first of which shows:a Ifaster kinetics and probably leads to extended-chain crystallite
formation, being follnwe 1:by a siower mechanism producing the usual folded-chain
crystallites. Gaylord™™: propcsed aithcory of stress-induced crystallization in cross-
linked networks where zhain folding is explicitly taken into consideration; stress
changes, crystal orientation and birefringence effects as well as the initial rate and the
incipient temperature -of crystallization are thecretica ly interpreted. Although the
end-to-end vector of & crysiallizeit chain section is assumed to be oriented along the
direction iof stretch, {foilwing ‘Flory’s.classical theory of extended chain crystalliza-
tion®, the end-to-ent! arientation'with respect to the st-etch axis of the general chain
connecting two differant ~rassiinks is not explicitly considered, so that average results
are obtained. Smith consideréd: another interesting model® which is basically
characterized by the assumplion ithat ‘the direciion taken by the chain through a
crystallite is determined by thel first few segments entrapped within the crystallite
itself. Consequently, altlsough eath chain is still assumed 1o traverse a crystallite only
once, it may do theti i1:zitlver sense of direction, although with two different
probabililies.
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Stimulated by the experirmental ‘nesulss :obiained by Cesari, Perego et al.*¥ on
crosslinked samples of cis- 1, 4-pol¥ynumd ene, we have umdertaken a theoretical study
on stress-induced ;crystallization anawe the nermal meliing point, where essentially
extended chain crystallites should: Tomrn ™ “!, with the mzin purpose of obtaining the
probability distribution of the zrys:aliizing chains at different angles with the axis of
stretch. This type of information imay: ve dbtained by diffraction experiments* .
Although our statistical approach is: different from that proposed by Flory®, most of
the ibasic assumptions are the same: in 'rarticuar, the system is considered to be at
thermodynamic equilibrium .&md trne eninopy of nucleation is ignored. The major
feature characterizing the presemianproachiis dtat a chain segment 13 assumed here 1o
crystallize parallel 1o the end4tn+end chawmn vechor, unlik= Flory's hypothesis that all
the :crystallites are aligned in ithe 'suretich direction®; Fowever, in agreement with
Flory, we assume that any chaimimay traverse:a crystallitz with a single pass and only
along the direction of hjgher ; padbability. 'Anothe- difference from Flory’s
approach® ' is that we impose id ffavent tonstraints to tae junction fluctuations in
order to account for packing effects"! Mamely, by simply imposing the root-mean-
square fluctuations along (x, ¥, I to ke propamional to (4,, 4,, 4,), their values are
rescaled so that the overall mean squiwe (m:s.) fluctuat on of each junction always
keeps the same value as in the abseiice of strain. As Ronca and Allegra have shown !V,
this:type of constraint is able o raprobly ce kather satisfactorily the experimental data
both in extension :and in compression: feom: a conceptual viewpoint, the rescaling
operation forbids any unrealistic mcreese of the fluctuations with increasing applied
stress. As we shallisee, in the jpresen: nomtsx:the fluctuation constraini only affects
the shape of the stress vs. strain curce, mith ro effect on the angular crystallinity
distribution.

It should be stressed that the present madel. was chosen mainly for reasons of
simplicity; in fact, it appears o b= rfia-ed wiih a very limited amount of ad-hoc
hypotheses and of adjustable paranzerers. Flowsver, althcugh our calculations lead to
a sakisfactory qualitative interpretation 11 the experimental data, the quantitative
agreement Is rather approximate, duz i to the very simplicity of the model.

General Part
Theoretical approach

As said above, the following thepny 1s:anly &pplicable above T2, i.e. the normal
melting point of the unstressed sample. Our as:umptions are the following:

1) The sample is at thermodynamic eguilibriuri®. This means that for any stretch
ratio 4, crystallites may anly |farm by paralld association of chains which happen
to be physically contiguous. {Chauns that:arewontiguous for a given value of A may
tend to move apart if the strain ithanges. The corresponding crystallites must
progressively melt and r¢form, :ailleas: perially; otherwise they would act as
additional network junctions, :eriemzanglements, thus preventing the absolute free
energy minimum to be reached.| Unbler these ideal assmmptions it is reasonable to
ngglect the (negative) entropy rekared with crystal nuckeation®.
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2) For any stretch ratio the uncrystallized chain sections are sufficiently far from full
elongation as to cenform o the Gaussian behavior.

3) The average positions of 1he junctions are always dictated by the law of affine
deformation. As antizipaed, according to the Ronca-Allegra treatment the
Junction fluctuatios alonz the principal axes are (4, - &, Ay k, A, k), k being
adjusted so that K2{A7 + ;2 + i}) = const.!",

4) Chain sequences connecting two given junctions (hzretofore denoted as ““chains’
for brevity; any junc:ion connects three chains at least) must contain a large
number of monomeric unizs, i.e. at least of the order of 50 to 100. They are all
assumed to be of equal lergth.

5) Each chain may partially crystallize, in which case the crystallized section is
oriented parallel tc the st-aight line through the average positions of the two
junctions connected by the hain. Although it will be essentially immaterial for the
following treatment wheth=r a chain is involved in more than one crystallite or
not, each crystallite is supaosed to be only traversed along the direction which
leads from the starting junction to the other. This last assumption is based on the
same argument that suggesis chain folding to bz unlikely above TP. In any event,
the occurrence of opposite traverse of the crystallites should be rare®.

6) All the chains having the seme average end-to-end orientation with respect to the
stretch direction crystallize to the same fractional extent, no matter what is the
average distance bztwzen their end points. Actually, for small degrees of
crystallinity (see next poirt) this assumption is equivalent to considering an
average degree of crystallization (see Egs. (5) and (6)) for the parallel chains.

7) The theory is strictly applicable under conditions of incipient crystallization®, i.e.
for an overall degre= of crystallinity not exceeding about 10%.

The general expression o the elastic network free energy A (1) given in ref.'V (Egs.
(49) and (50), intermed ate model) may be reformulated in the following equivalent
form

3k T . ——

Ad) = N ); (Axi - ARE + Az

Ll

N 2 2
)+ % ;f—lkB Tln (———ﬁax ki j;;y * '122) — kg TinZy (1)
where (see Fig. 1) &y is the Bo.tzmann constant, T the absolute temperature; N the
uniform number of stat stical segments per chain (a statistical segment comprises the
shortest sequence of skeletal bonds which is essentially uncorrelated with the next
segment in terms of space oriemtation; for cis-1,4-polvbutadiene it seems to corre-
spond 1o about 2 monomeric units '+ '3y 1 is the root-mean-square length of each
segment; Ax,, Ay,, Kz} are the average end-to-end displacements of the k-th chain
along the three principal axes ard the sum is extended tc the .#chains of the network:
Jis the functionality degree of t1e junctions, assumed as umform, (4,, Ay, 4;) are the
principal components of the strain tensor A, Zy is the partition function of the ideal
“phantom’” network in the absence both of strain and of any physical constraint
other than the existing topological interconnections among the junctions.

It should be clearly remindec here thas any network with n-dimensional connec-
tivity (n > 1) is bound to collapse to an infinite density if appropriate constraints are
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; A [ &y
X l-r‘r\l‘slmlmu /
IT TR . ,'-J:,.,m, l Fig. 1. Schematic drawing of a
e network chain comprising
‘/'4 ; N = 14 statistical segments,
SN R | ¢ = 3 of which are crystailized

¢ not postulated'*'%. consequenityy, Z, is.a purely hypothe-ical partition function. A
¢ particularly simple way of preserving bech the rea; average density and the actual
+ external shape of the sample:is 1o assume: -hat a proper nunber of Junctions are con-
: strained to lie at the sutfare ¢ apoardlielepiped whosz shape is dictated by the state of
+ strain'?. Consequently, (AXE Sy, TR (&—E) never vanish even for the unstrained
system.

If the general k-th chain comtzins s« cristallized segments, its free energy changes

| because of i) the disappearance of ithe worresponding amorphous portion, ii) the

+ appearance of the crystalline fraction ang 1il) the ctange >f the average end-to-end
wing amopkous portions of the chains from o=

. Vector characterizing the wrerigi
(A + AR + AZD tai; - L ! tbecause of assumptions 3) and 5)). As for the junc-
i tion fluctuations, we will lassume: them §o be constrained as in the case of the
1 completely arnorphous merwgik !, Allthough. the term depending on In (A7 + 4, +
A2)/3], appearing in Eq. (1), is strictly validl only for amorphous chains all having the
1 same length, we wil] take ttothold far partly crystallized chains as well. The lack of
‘any dependence from :chain liength iin fve above term appears to support this
1approximation. Besides, we shalk assume Ienceforth uniaxial extension at constant
ivolume, so that A, = i, Hyom iy = A2 Consequently the network free-energy
becomes, for small O /N (cf. assumption . 7v):

3 Ak T A2 220
A, = — — ( b=k TINZy - % 40 1n2/00,)
. o q\ ,/l
o kg TG — iy 1P
.+ g b i1 : 2
T Z Y ) 20N . (ku'-a'z (2)

where g. is the free enengy :of 1. statistical segment within a crystallite, while
the subscript | zero refers |ty tae mncensirained netwcrk. The general term
+ kg T, (O InZ/80)y comesponds to - the ~disappearance of {c(<€N) statistical
segments from, the amorphous part of the k-th chain, whil> {k & 1s the free energy
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contribution: of the same segmenis in 'the crystalline state. We will replace
—ky T(0InZ/00)y with g, iz, theleYlecive free enc-gy per statistical segment in the
amorphous state of incipiemi cryseall zatton. Af-er fartker substituting g, — g. with
(A — Ts¢), where A and rpare the enrhdipy and ent-opy of fusion of one statistical
segment, respectively, and e terms mo coniaining {, with the symbol A,(4), we
have from Eq. (2) (dropping thziirdex k for simplicity):

: . _ o BEg T - 0
Aclh 0 = Aglh) = Tk = Tsn s Ty S
(% - Q,

(3)
It may be useful to write sxplicitly the dbove:free-e-ergy as a sum of contributions
each belonging to one of nheichains gomprised in the network

Ac(iv é) = E e
4
Yy T “

—_— Y~ ] :
CUN — ) R v o

A = ay(A) — {Bhe =1 T,

v

where w(4) = Ag(4)/.+. According s assumption €, all the chais having the same
direction cosines for the veatpr 7 are dharacter zed b the same crystallization degree
¢. Their crystallized segments must obwioulsly pack among themselves within the same
crystals, in view of their panille; oriensation. “he sub-ensemble comprising all these
parallel-oriented chains wi.l e assumed ko atain its own crystallization equilibrium
independently of all the other: dhains. Thece are two simplifying hypotheses under
these assumptions, i.e. 1) any chain mey Tiad enough contiguous chains having
(about) the same end-to-end vector, ro pack with; 2) adjacent «crystallites do not
disturb each other. Accordingly, the paramster ¢ will be derived by imposing that the
sum of all the «’s belonging ito :ne sub-ensémble tor, equivalently, their average
value (2;)) is at a minimum. Let us evaluate £} with the substitutions w = (/N,
y = F/N:

3
Copd) = ap(R) — Nwily — TS + —2"NJ'«'H T - 2 w+ wh/d - w) 5
After imposing the stationary cord o &)/ = N o y/0w = 0, we get

woes b= (0= 2 + 7 Bk TS B Ry Tise — 2(T — TAHIRY2 (oalyif w > 0) {6)

where T3 = h/s; is to be regarded : as ihe meltng temperatire of an ideally
unconstrained, undeformed merwiokk.

Although this state is esserndlly unigalistic, as long as the crosslinks correspond to
uncrystallizable regions T2:sholld be siomewhat lower than the melting temperature
of :the uncrosslinked polymer®; |hewevwer, ithe parallel configmrational entropy
decrease induced by the crosslinks mav exerr an oppositz effect. Only for infinitely
tong chains 7;} must be expecied 1o be identical with the normal melting point.

If (Kx, B}, K%) are the oariesian cemporenis of tae general average end-10-end
chain vector, and (4,, Ay, A, @re the pringipd! stretch ratios, the affinity assumption
leads to
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AX = 10 . A.YO = A.\‘(]/};hr;z‘:; !Aji“l I;‘L:"“ : :A_V“-:l A_Vn/dlly: N AZ = l{,— ‘ AZU =A- Az” (7)

where the zero subscripi réfe-sitolthe undeformed siate. Furthermore we shail adopt
spherical polar co-ordinares lor the average end-to-2nd vec:or, distinguishing between
the undeformed and defmmmed states. Le. ¢ and ¢ ce the angles formed by ry and 7
with the z-axis, respectixely, avhile xiis the common value of their azimuthal angles.
We have

Ax

il

Fsin@-cosy = Awy AN = Frsive cosy /a2

Ay = rsing-siny = A/ = Fo Sing siny/ A 7

) (8)

AZ = rcosQ = Azy-h = 1 oosige A

cosg = cosg/(cos? p -+ b disindip)' Py cose = cos @/{cos® ¢ + A% sin? ¢)'/?
where, remembering thay y/A'N(): = @

Y = ey (Ao + 5 @/ AV () = (F3lecs @ + sin? /) (9)

In deriving Egs. (8), it musi be remembered that the averages are performed at
constant ¢. Here we will zssume for simplipity hat the probability distribution of 7, is
gaussian and that its mean-squace vilue s NP2, iz the same value as for the free
unperturbed chain. Conszquently

<},2) - <!'_2>/(N2 |Mf‘_' = AN ey oo s AN = 8 172
0 ATH i1 ‘ oA = a3/ (NI1) = iz N (10)

Substituting from Egs. (% ark! (10), :E:q. (6 gives the chain “ractional crystallinity as a
function of the external variebles T iand 4 as well as of the angle ¢ defining the
average orientation of the chuain:

W '8 N\ /2 . . . 1
wig)=t-1[1-2} ) (F* cos” @+ sin? Wl)'j3+—}—\7 (A? cos? @ + sin? ¢/4)

|\ Biﬂ.’.l‘l"
3k T 4 3w T COANR
x B fm e »:2.;(T~-I:r;;) (6)
ST A N2 L

For a given stretch ratio i, ittere is:a temperature, say T, , at which the crystallites
oriented parallel to the @ axis (i:e; with ® = 0) Telt, 5- start to form (incipient
crystallization). T, is ohtained by Egqi (6'), pmting ¥(0) = O (cf. with the
corresponding Eq. (19)iin ref!¥}:

o = T {1 - 22 (VZA' /——}i TR R ¥
mi o T !:: u.‘n--'j.\ |t\j3n..‘ﬁ\' | (n

At lower temperatures, there is allimiting.angle P Withia the undeformed sample
(corresponding to @y, for theiaciual sample) above which no crystallized material
MAY eXist:
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‘ ‘ 8 \12 8 2T+ Try N2 / 172
=N I (s L T _ -1 2 -1
oS @iy, H [( Py ) < In T /l Pl ; (A2 - 1-hH (12)

€OS Ptim = 4 €08 @ /(A% ~ A~ ) costwpy .+ 41172

. The first equation of Egs. (12) is obtainable after putting w(@s,) = 0into Eq. (6",
while the second one derives from: lEgs. (8). The positivity requirement of the
rquantities within square roots gives

T '
T<Tym=Ta /{1 - — — (13
moosy )

i.e. an upper limit is sel &ty the teriperare: of crystallization, independently of the
stress. An analogous requirernent #alkso Found within Flory’s theory (cf. Eq. (18) of
ref.® e.g.).
The overall fractional crystalliniiy off the sample may easily be obtained from Eq.
(6") as
Plim

(T 1) =2 | wied: pip)dg (14)

where p(¢)de is the pratabiliy of fincling a chain within the angle ¢ and ¢ + dgin
the undeformed sample and ‘t1eifactor 2in the rigt.t-hand side is due to the fact that
both the {equivalent) angzutai intervads (0 1o @;,) and ((n — im | to 1) must be taken
into consideration. Due ta ithe: statiistically ‘isotropic structure of the undeformed
network we have

; 1
pP@)de = —  2nEngicp = —-singdp (15)
4n 2

Let us now obtain the probability idensizy Wy (@) of finding a fractional crystallin-
o1 . . .
ity > Wy(@) - sing d¢ betwesn;¢ and wp + d¢, in the elongated sample. Obviously

enough, the fractional crystaliinity imuist bz the same no matier whether the co-
ordinates ¢ or ¢ are adapted, so tha:
1 ) 1 o
Y w(g)sing dg = 5 W) sinog de (16)
Differentiating the last off Egs. (3}, we et
Wolg) = w(@) Picos? ¢ + AP siuhy 042 (mn

where w(¢) stands for the ‘€xpression; given in Eq. (6'), cos¢ and sing being
substituted in terms of cosigk andisingifzee Egs. (8).

". The equilibrivm retractde force of the partially crystallized sample with
undeformed length Ly is
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I /0A,
i = Ly ( aa )'r (18)

The free energy A (4,€) will:bbe ‘corveniently expressed in terms of the following
integral, replacing the sum given ir Eq. (),

n

. |
AC = . IJ(.:{C) : —Ehmmgm:ﬁgw (19)
G

where (al) (see Egs. (5) and (6} is tof be regarded as an explicit function of 7, A and
of the crystallinity fraction wi= /W), Erp. (19 transforms to

n

P! dCv) i ) aw

Jo=— — |+.(ﬁ'_c‘ , o
4 2 LO j{( at ﬁJT_.y W\ | B ,,‘f”r-l 8l }T sm e dep (20)
0 B
n
L M opyh

2 L j( A ;3,07.\“,'5"“""““”

3 )

because (0¢.2;)/8w);, = 0 comresponaGs to ourassumptior. of equilibrium crystalliza-
tion, Remembering Egs. (5), (), 10y and (67), we obtain from Eq. (20)

Plim
Ak T {2 3N\ 3 wkgT w(p)
fl - B - A—Z)M(t 4F'TT'_'3_h]|_ —- B (¢
Ly \ J oA 42 J 2 Ly I — w(p)
' h
d ().2 o . l._l Lo 2 8N\ IZ (21)
X —1 - COsU i+, SNt H
da i A o

X (12 cos’ @ + A7 min? n’;ﬁ)]y"" ST dipe

where w(gp) is given by Eq. (6').The ‘present theory is based on the assumption that
the stretch ratio is not so large as tollexd ta chain extensions approaching full
elongation, so that the abowe integrhli is :&lways positive. As a consequence the
corresponding contribution to rhe retnactile fonce is always negative, as expected: it
vanishes for w(p) = 0, i.e. when ihe r ibbar is wompletely amorphous, in which case
the Ronca-Allegra expression|is resoveced MEq. 1151), ref.'h).

It is worth pointing out thai the derivaiive with respect to A of the crystallization-
dependent contribution to £, is zere foriincipient crystallization, which means that f;
is a smooth function of A everywhere. IThis .conclusion may be easily obtained from
Eq. (21), remembering that bo!# Py A28 #1(g) vanish under these conditions. Unlike
the present case, Flory’s more simplified treetment leads to a discontinuity in the first
derivative of the force vs. thel fractipnak elongation. Although this discontinuity must
be regarded as a direct conseguence of the mode assumptions, with no particular
thermodynamic meaning, we want to)rematk that the impossibility to define the
amorphous and crystalline regions s separdte phases — as Flory clearly points out®
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— makes the existence of any real transition unlikely. On the other hand, it is a clear
experimental X-ray evidence favouring the present approach tnat in the course of
incipient crystallization the existing crystallites are indeed guite rigorously aligned
along the direction of s:retch, unlike those which may form at lower temperature
and/or at higher extension.

Relationship between Wj(¢) and the intensity distribution along the arcs of the X-ray
reflections

In order to compare the crysia. probability distribution We{¢) with the X-ray
intensities on stretched fiber diagrams, we need a suitabie relationship between W, (¢)
and W,(f), i.e., the probability distribution for the general reflection making an
angle o with the ¢ axis of the cryvstals, as a function of the angle £ with the axis of
stretch {coinciding with the fiber axis). Obviously enough, except for a proportion-
ality constant W, (f#) corresponds to the intensity distribution of the reflection under
consideration for different 8’s. Rzferring to Fig. 2, the orientaticn in reciprocal space

2

Fig. 2. Geometrical relationship
among ¢ (i.e., the angle between the z
axis of the general crystallite and the
direction of stretch Z), f (angle
between the particular reflection P
belonging to the same crystallite end
the Z axis) and the dihedral angl=s y
and y,

of the reflection is indicated by the unit vector OP \while the - axis of the general
crystal corresponds with z. In turn. the orientation of OP with -espect to the axis of
stretch Z is further specified by the dihedral angle y between th2 plane containing Z
and z and that containing z and _O"T:"; for a given a, once the ang.e ¢ between Z and z
and the dihedral angle y are beth specified, the angle £ between Z and OP is uniquely
determined by the well known relationship

cosfi — cosg@rosa

cosy = - , (22)
sin ¢ sin o

Henceforth, a will be treated as a fixed parameter, since it bnly depends on the
particular reflection chosen. In the particular case a = 0 (e.g., for a 00/ reflection,
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the ¢ axis being orthogomnai to.m and blritisasparent from Fig. 2 that # coincides with
® s0 that Wy(f) = Wokpd. il the, penera; case, the joint elementary probability
d* Wigp, ¥) of having the rwo anglzs within dhe intervals (9. ¢ + do¢) and v,y + dy)
respectively, may be expressed ias

d? Wip, y) = 2sing - Wiyl ) W) it dy {23)
‘where Wiy/¢) is the comiditizng! probabiity density of Javing y for a given @.

Obviously, since

Wiy/g)dy = 1 (24)

ra
DL__—j:

for any ¢, it 1S:easy to see dhar the dowble inzegral of d W gver ¢ and y is unity, as it
should be,
. Using Eq. (22), it 15 possible it - express v In terms of 8 and @; in particular,
considering that dy appearing ‘n Ec. {2%) comwesponds to fixed ¢, upon differentiation
of Eq. (22) we get

sin ¥ klg

dy (¢ = consi.) = YT 2
e sin g — (cosp— cosea cas P2

(25)
. With the aid of Egs. (22) :and (25] thecdouble d:fferertial d2 W(g,y) may be
transformed into d¢2 Wig, By iTheniintseration over @ produces the elementary prob-
ability of having f in the:intervd! (6, 18 - dp,:for all azimuthal directions around the
£ axis (see Fig. 2). This prwbabilisy imzy be pxpressed as 2 sin§ - W,(B) dB, where
W.(8) is the probability demsiity: we are loakmng for. Consequently, we get

sing sin f dg 4

{(sinasing)?— {cos B —cos & cos ¢)?)' 72

2rsing W, (8)dfi=an J Wikyi e Wity - (26)

where an extra factor 2 is applied vo: therrighi-hand side because two opposite values
for y are possible with the wanme setinf anigleg|1g, 8). Eq. (26 gives

@¢=n
L e t  singdg
=32 Wy/ W, bl-‘*h—ﬁ—!i—ﬁ\—rnz-smaj
' WalB) = 2 J (vie: 'mw'|\{{Er.imu'sinmzv(cosﬁ—cosa cos ¢ ¥ (27)
0=0

In Eq. (27) we have modiliied | the :expressicn: under the square root into a form
equivalent to that appearing iin‘Eg;. {1%6) (the €rpiression is symmetrical in the variables
¢ and §). Let us now introduce tre angle: v, dizfined as

COS @ — cosaoms,§
—r VAN

cosy, = (28)

sine sinf#
After comparison of Eq. 22)w ki Ey. (A8),. y41is readily ident fied with the dihedral
angle between the planes déefiped| by (7, AP) ang! (z, OP) (see F g. 2). The differential
dyy (8 = const) Is obviously given by Eg. Z5) except for interchanging ¢ and g. As a
result, it is easy tp verify thal Eq. @ Thretluces 1o
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n

WolB) =2\ Wiip)- Wole)dy, (29)
i)

where y and ¢ must be considered as functions of yyand £ trough Egs. (22) and (28);
in particular, from Eq. (28),

¢ = cos 'cosy, sinasing + cosacos §) (30)

and it is possible to see :hat, for a given 8, the possible corresponding values of | ¢| are
always comprised betwzen |8 — @f and|# + a|. On the other hand, the symmetrical
Eq. (22) shows that this statement remains correct after interchange between ¢ and 8.
Consequently, the total angular spread Af of X-ray int=nsities around the average
angle a 1s given by 2¢,,_.

The above equation requires the knowledge of the conditional probability density
W(y/¢), in addition to W,(g). Obviously enough, the simplest assumption corre-
sponds to W(y/¢) = 1/(2n), implying that the crystals are rotated around their ¢
axes in a purely randomn manner no matter what is the angle ¢. Consequently the
above equation reduces o

1
We(B) = o j Walg)dy, @31
0

In the following, we will adopt the above stated hypothesis thereby using Egs. (31)
and (30).

Comparison with Experimental Results

We have compared our theoretical results with the expe-imental data obtained on a
high molecular weight, high steric purity cross-linked cis-1,2-polybutadiene by Cesari
et al.”. More specificaily, the most important data for our purposes are those giving
the percent crystallinity «,,, the angular width within which crystallinity is observed
(2¢im = AB) and the X-ray intensity in the middle of the a-c of the 110 reflection at
different elongations and remperatures (@119 = 90°). These data were all obtained by
measuring the X-ray intensity diffracted by a stretchec -iber. It is important to
remark that the data appeared 1o be essentially reproducible, no matter whether the
final temperature was reached moving towards increasirg or decreasing values, at
constant elongation. This should give reasonable confidenoe on the attainment of a
close-to-equilibrium condition. Figs. 3 and 4 show the corparison between theory
and experiment, on the basis of the three best-fitting parameters A;, s; and N reported
in Tab. 1; we want to remind that these quantities refer to “hz statistical segment. The
enthalpy and entropy of melting per monomeric unit'? are also reported for
reference. The corresponding limiting temperature Ty (see Eq. (13)) is 62,4°C. The
incipient crystallization temperatures for the e;ongations chrsidered in Fig. 3 are also
‘given in Tab. 1, together with the calculated values. On thelwhole, agreement between
observed and calculated data is rather roughg in particu ar, Fig. 4 shows that the
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Fig. 3. Overall crystallinity e, of high-purity, eross-linked cis-1,4-polybutadiene for different
temperatures and siretch ratios A, 1Expenirnental points are taken from refs.® and %) dashed
lines are calculated from Egs. |14 :and{ (6)

Fig. 4. Angular width (Af = 2 ¢4 T theerysallite dist-ibution for different temperatures
and two different stretch ratics 4. [Lines correspond to datz obtained from Eq. (12), circles to
experimental values®

broadening of the X-ray reflections jis much larger than calculated, at higher
temperatures. Although ithe, viscosimetric data in anperturbed solution are well
interpreted on the basis of aoproximately two mwonomeric units per statistical
segment 'V, the best-fitting ~alussof N, A, and s; shown in Tab. 1 would suggest that
the statistical segment is lbetter t¢presented by about 2 single monomeric unit within
the present theory.

. From the data reporteld inl Tk 11, the temperature T3 = hi/s; is 250 K, that is
about 17 K lower than T}, = 'T_\{;. = I} = 266,6 K, i.2. the melting temperature of
the undeformed sample. Thiis: is no1 sunprising since T* refers to an ideal state where
the network is not only undeffonned but:also mnconstrained te oceupy a fixed volume,
which leads to the necessary comsequence that it should shrink to an infinite
density* . As long as Aiis largerlchar unity: — and snaller than 4)/2N/(3 1), other-
wise most chains would be dlongated at an es:entially complete extension, contrary to
our hypothesis — Eq. (11} beddsitoi7,,, 5> T2,

. Fig. 5 shows some calculated |pliots of the crystal probability distributions Wy ()
and Wy (), calculated fromi Egs.(0(5),(17). (30) anc (31). Wy (8) must be simply
proportional to the X-ray intensivy:diffractzd by any A & 0 reflection (i.e., a = 90°)
for different angles £ from Itwe siretch. direction. "ab. 2 shows the comparison
between some X-ray intensities. measured iin the middle of the arc along the 110
reflection (i.e., f = 90°)', anc -ihe:corresponding calzulated values of W, «(90°) for
different 7's and A’s. The values have:been pbtained from the same sample and are
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Tab. 1. Calcutated anil experimental values of N inumber of statistical segments or
monormeric units per chiir connecting two different junciions), #; and s; (heat and entropy of
fusion, respectively, peristatiszical segment or monomeric unit)

a)

i Best-fizting paramerers Experimental values,
referred to the statistical referred to the monomeric unit
segment

N 69 s
{everage value assuming 4
chains per crosslink)

hy/(kcal/mol) ¥ P2,48 2.21 %

sp/f(cal mol™ 'K ) ® |, 904 8.07 !9

b)

Stretch i Temperature of incipient crystallization T_;/°C

ratio .

pl i calc. from Eq. (11) 0.

1 . —6,4(=TY% -3

2,75 +21,2 +13

3,60 +33,1 +34

4,70 - +46,2 + 51

3 15 SI units: 1 kcal =:4,184 kJ.

Tab. 2. Comparison beiween properly scaled X-ray intensities in the middle of the arc of the
110 reflection'® and the zirresponding Woy. (90°) values (see Eq. (31))

Streich X-rayintensity a. T =
ratio e — —
A nge 20°C 30°C
~ N ~ - A S A N

obs. . cale. obi. calc. obs. cale.

3,6 4,8 5,2 2,4 2,6 {(undetect- 0,4
able)

4,7 14,4 14,1 9,6 10,1 6,6 59

given in arbitrary althowgh uniform scale. Although the X-ray intensity profiles along
the arcs corresponding #o the Bragg reflections have not been obtained quantitatively,
the qualitative agreement appears to be satisfactory.

Fig. 6 shows the caliculated normalized tensile force (see Eq. (21)) vs. 4, for
different temperatures. The incipient crystallization poin:s are put into evidence; as
anticipated, no discontinnity in he derivative of the force is obtained. In agreement
with what has been chgerved by Smith® on some data obtained from Wildschut'?
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Fig. 5. Probability distributions M) (see Eg. §17)) and Wy (£) (see Eq. (31)) for different
temperatures and for diffenent.stretchiratics A

Fig. 6. The normalized retractije force f; «Lo/(# R T) vs. A (see Eq. (21)), for different tem-
peratures as indicated. Crosses indizake points:of imcipient crystallization. The upper solid line
corresponds to no crystallization, rthediashetllline zorresponds to the ideal (A — A~2) behaviour
with the same initial slope

with natural rubber, the decrease on f; /1T 15 sather closely proportional to the induced
amount of crystallinity. Seme prdliminary r=sul:s obtained by Gargani and Giuliani
trom cis-polyisoprene at temperatures . slightly above the normal melting point
indicate that the tensile stress decrease due o sample crystallization is about of the
same amount as calculated hene'®,

The author thanks Prof. M. Ceseri andl Dr. «G. Perege (SNAMPROGETTI, S. Donato
Milanese, ltaly) for supplying alllthe experimentalidata as well a3 for useful discussions and very
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