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1. Introduction

When in 1934 Orowan [1], Polanyi [2] and Taylor [3] independently introduced
the concept of a dislocation as a lattice defect moving under relatively low stress
(~ E/1000), it remained only a theoretical construction for some two decades. There
were no experimental methods available at that time for observing and studying the
physical properties of distocations, or even for proving their existence.

In the past three decades, research workers were able to observe and to study
dislocations by a number of techniques. Hedges and Mitchell (4] introduced a
decorating technique to make dislocations visible in silver halide crystals. The etch-
pit technique was explored by Gilman and Johnston [5]. Transmission electron
microscopy was used first by Hirsch et al. [6] and by Bollman [7] for studying
dislocations, a technique that is now commonly used for observing dislocations.
However, either these require transparency of the crystals studied and immobile
dislocations, or they allow only investigation of dislocations near free surfaces, where
the existence of image forces may cause their behaviour to be very different from
that in the interior of the material. These drawbacks make it especially difficuli {0
interpret the results of experimental dislocation studies in terms of plasticity of solids,
and there is consequently a real need for techniques of investigating dislocations and
their movement which are free of such limitations.

It has been well established that the strengthening of solid materials is brought
about by obstructing the movement of dislocations. A description of the dislocation
motion on a microscopic scale is essential for the understanding of the macroscopic
plasticity of crystals. A few years ago. we showed that pulsed nuclear magnelic
resonance is a useful tool to study dislocation motion. The technique and results
obtained for alkali halides and polycrystalline metals will be the subject of this
chapter. It turned out that three sets of microscopic information about the dislocation
motion can be deduced in principle from these pulsed nuclear magnetic resonance
experiments: (i) the mean free path of moving dislocations; {ii) the mean time of stay
between two consecutive jumps of a mobile dislocation: and (iii} the mobile disloca-
tion density as a fraction of the total dislocation density.

Prior to our investigation, the nuclear magnetic resonance technique had proved
to be a means of determining “static” characteristics of defects in solids such as the
total dislocation density. Pioneer work was done by Walkins [8] about the effect of
dislocations on the nuclear magnetic resonance, but he considered merely the stress
field of an edge dislocation and further simplified by assuming that the electric field
gradients arise only from the shear strain. His calculation of the angular distribution
of dislocation lines and its effects on the broadening of signails of "°Br in K Br is
based on the assumption that a crystal is an ideal continuum, neglecting the preferred
Orientation of a dislocation line. In 1957 the nuclear magnetic resonance of 127 was
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investigated by Otsuka and Kawamura [9-11] in plastically defarmek crlystals of
KI. The broadened signals of '27] showed considerable anisotropy with ircspect to
the direction of the external magnetic field, The anisotropy was interpreted as arising
both from the specific orientation of a dislocation line in a ¢rystal and from the
second-order quadrupole perturbation. The experiments were anatyzud ir terms of
the electric field gradient tensor introduced by Shulman et al. |[12], witu» applied
elastic stresses to InSb single crystals to decrease the crystalline symmetry; thereby
producing quadrupole broadening of the nuclear magnetic resonance! tines. In this
chapter, the underlying theory for obtaining total dislocation wdemsities from the
resulting quadrupole broadening will also be explained.

The method of obtaining total dislocation densities from quadrupcle broadening
and that of determining mobile dislocation densities are both esser tially basad en the
interaction between nuclear electric quadrupole moments and electric field gradients
at the nucleus. If the nuclear environment is cubically symmetric {here dhoss not exist
any static electric field gradient at the nucleus and interaction: boes 1 ot appear.
However, around a dislocation that symmetry is destroyed and intenact jomsibetween
nuclear electric quadrupole moments; and electric field gradients aris2.' When the
condition of nonvanishing electric field gradients is fulfilled, line shapes: ank| splittings
of transition frequencies in nuclear magnetic resonance measurements arei influenced
by the quadrupole interaction. In order to apply the NMR technigue to:studies on
dislocations, it is essential to have atomic nuclei with non-zero quadrppclemoments;
that requirement limits the chaice of materials to be studied. :

In moving across the interface between two established fields i isdiene:, namely
dislocation theory and nuclear magnetic resonance concepts, it was foun wecessary
to limit the discussion to a relatively small number of basic idexs and :concepts.
Furthermore, we have attempted throughout the treatment to keep it umderstandable
by research workers in both fields. The principal emphasis is on! the application of
nuclear magnetic resonance as a complementary new technique ffor: khe: study of
dislocations in solids. Of necessity, theitreatment is rather brief anid dioes mw¥ pretend
to completeness; accordingly only a few representative materialsiane dliscussed, and
an attempt was made to focus on the main leatures of the NMR picture. It i5 hoped
that this approach will be stimulating to the reader and familiarize himi with NMR
concepts and ideas about dislocations.

The chapter is divided logically into two parts. The first partlol the chapter—sects.
3 and 4 - is devoted 1o the fundamentals: of static quadrupole difectsi in dislocated
solids; the second part is mainly a presentation ol experimente] results :and con-
clusions. Section 3 treats the electric field gradient tensor and the itfhaence gl quadru-
polar perturbation, and the effect of the dislocation density onl the NMR signal. In
secl. 4 attention is given to relaxation theory adapted to dislodation myoiion and in
sect. 5 the nuclear spin relaxation experiments on alkali halide sitrgle cyysteks and on
polycrystalline aluminium foils are described. The results of these skiaxation seasure-
ments as functions of strain rate, strain, compression axis, temperatare: andi impurity
content are given in sect. 5. In addition, experiments confirming: the whlitiky of the
nuclear spin relaxation theory used are presented in this section Finally, in sect. 6
the limitations of the NMR techniquel with respect to dislocatiom Hynamics are dis-
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cussed and a number of new ideas on the application of this technique of investigation
will be presented.

2. Dislocations in particular structures

2.1. Dislocatiens in NaCl-type single crystals

Inthe chapter by Amelinckx {13] in vol. 2 of this series, a review is given of dislocations
and slip in the sodium chloride structure. For the plastic deformation of ionic crystals
in general the reader is referred to the book by Sprackling [t4]. A concise review
will be presented here.

The NaCl structure (Fm3m) can be considered as consisting of two interpene-
trating f.c.c. lattices of the two types of atoms. Normally slip takes place on (110}
planes in (110) directions, but when the ions are highly polarizable as in PbTe,
{001} slip planes are found to predominate [15). The smallest Burgers vector of
a perfect dislocation in this structure 1s 1(110). Three low-index planes intersect
along the (110) direction: {100}, {110} and {111} (fig. 1). The {100} planes are
cleavage planes, although they are observed sometimes to act as slip planes as well.
In particular, if {110} has only a very low resolved shear stress acting in its plane,
and {100} a relatively high one, it is possible for glide to occur on { 100! in the {110)
direction {15].

The {111} planes contain jons with charges of the same sign. Therefore, although
these planes are close packed, glide on these planes seems less favourable because
the extra half plane of an edge dislocation on a [111) plane would end in a row of
identical atoms with the same charge. The total line energy of such dislocations would
be high, and i- is therelore less likely that they occur. The common glide planes are
the electrically neutral {110} planes.

Huntington et al. [16, 17] calculated the core energies of dislocations in NaCl

Flg 1. Unit cell of the Fm3m NaCl structure with 1110} and 111} planes indicated.
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using a Born model, minimijzing the core energics and matchingthem with it ke lelastic
solution at large distances. The core energy of a (110){100} ege dislocakion was
found to be about three times larger than the core energy of a {110} {100} ddge
dislocation. The core energy of a {110} screw dislocation appeared to beionewnrden of
magnitude smaller than that of a {110){100} edge dislocation. Humington «t @l
suggested that the Peierls siress is larger than for {100} edge dislocations bezause ol
the repulsion between the jpns. Therefore it is likely that the glikle plane in the NaCl
structure is determined by the core structure of the glide dislocatipns. Similayxcalculu-
tions of the dislocation coye energy for NaCl, giving results of’ the same onder ol
magnitude, have been made by Kurosawa [18], Puls and So [[49] and by ‘Granzer
et al. [20-22]. The latter applied for the first time nonlinear ielasticiyy hkeory o
atomistic calculations of the core configuration of edge dislocations in' NaCluype
crystals. In fig. 2 the atomic configurations of a {110) edge disiocationin'’aCl are
depicted schematically.

The work-hardening behaviour (increase in resolved shear stuess as a. fursction of
resolved plastic shear strain) of single crystals of f.c.c. metals and of akkali halides
with rocksalt structure show a striking similarity. An examphk: of a stress-+swam
curve obtained on NaCl compressed along the {100} direction is drawn limifyz. 3.
Stage 1, a region with a low constant work-hardening rate 6= (io/3¢), 1. is tollowed
by stage 1l with increased constant work-hardening rate. At still higher: strains,
stage I with a decreasing work-hardening rate appears.

In the past, great attention was paid to the work-hardening mechanism :of alkalli
halides with the rocksalt structure. It has been suggested [20]] that thel commom
features of the work-hardening behaviour of single crystals o f.c.c. matals and of
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Fig. 2. Dislocations on [§10! and {100} glide plancs in NaCl and the shear caused by tlin wotion.
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I Fig. 3. Stress-strain curve of an NaCl single crystal compressed along the {100} dircction [145],

NaCl provide arguments for explanations of the work-hardening curve which are
| independent of the crystal structure, but that can hardly be correct. In fact, the range
(of a particular stage and the value of the work-hardening rate are found to depend
+0n a number of parameters such as temperature of lesting, strain rate, impurity
'content and crystal orientation. At present, no well-established complete theory
« of work-hardening in alkali halide crystals exists. The experimental facts which are
testablished are presented below:

' Glide systems. When rocksalt-structured crystals are loaded along the (100)
tdirection, four of the {(110){110} glide systems are equally stressed. The Schmid
‘factor ¢ is the same for all four slip systems [13): ¢ =0.5, as indicated in fig. 4. How-
r€ver, in compression tests on NaCl one rarely finds a significant amount of glide on
iall four systems together. 1t was observed by Pratt [24], Davidge and Pratt [25],
'Mendelson {26] and Heidemann [27] that initially in a region of “pre-yield"” {up to
[0.3%, strain) deformation occurs by slip on these four glide systems, but beyond that
istrain range only one of these four systems is operative in stage I, and the others are
‘blocked.

| In the “pre-yield” range of deformation the first dislocation bands are quite isolated.
IThe edge bands are strongly birefringent [25] and they are nucleated at or near the
specimen surface. Well-defined tilts are preduced on the surface, corresponding to
the movement of about 500 dislocations through the surface [25, 28). Slip then devel-
‘ops by an increase in the number of bands of one system and by band broadening on
this system until glide has penctrated the whole crystal at the end of stage I. This
-broadening has been interpreted in terms of a cross-glide mechanism leading to
'dislocation multiplication [29] and dislocation multipole (ormation [30].
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Fig. 4. Principal slip planes in rocksalt-structure crystal loaded along the {100} direction.

That deformation in stage i is dominated by one activated “primary” slip system
was found by Davidge and Pratt [25], Hesse and Matucha {31], Hesse [32], Argon
etal.[33], Heidemann [27]) and Hesse and Hobbs [34]. Some dislocations are trapped
by the weak, inactive conjugate slip bands, which results in the formation of kink
joints [25] or in local glide polygonization [25, 26]. Generally speaking, the increase
of the shear strain takes place by the broadening of the single slip planes into bands of
closely spaced paraliel planes and by an increase in the number of bands. The inactive
secondary slip bands are acting as traps for the dislocations of the major slip system.
When stage 1 is terminated the distance between dislocations in the slip planes
approaches the distance of about 1.2 ym between the slip bands [25].

Electron microscopic investigation by Hesse and Matucha [31] ol carbon replicas
of {110) specimens deformed in stage I confirmed that mainly pure single slip was
visible. In addition, a transition was observed from a region with [110](110) single slip
to a region with [110}(110) single slip. A similar phenomenon was described by Kear
et al. {35] as “block slip”, i.e. separate primary systems are operative in diflerent
parts of the crystal so that mainly single glide occurs. However, near the “block”
boundaries of such regions intersections of dislocations on orthogonal systems can
occur, giving rise to double slip.

If glide on the preferred {110} planes is impeded in certain experimental cond:tions,

]

e.g. compression of {111) oriented crystals - in which the Schmid factor for {110}
glide is equel to zero - subsidiary glide on {100} and {111} planes can be expected.
Franzbecker [36] indeed observed simultaneous glide on {100} and {111} planes at
high stress levels, whereas other research workers [ 37-40] concluded that glide occurs
mainly on {100} planes. Recently, Bhagavan Raju and Strunk [55] carried out a
Jetailed investigation of plastically deformed (111) oriented NaCl single crystals by
etching and X-ray topography: the results suggest that glide starting on {111} planes
develops at 1 much lower critical resolved shear stress than glide on {100} planes.
The preference of {111} glide over {100} glide has also been concluded from slip-line
observations [41] on deformed {110)-NaCl crystals: screw dislocations cross slip
from {111} ¢nto 100} planes.

In stage IL work hardening increases, especially for compression axes other than
+100): slip skeps on oblique | 110} and on {001} planes become visible in (100) com-
oressed Na(l [41, 25]. The deformation is dominated by slip on the same slip system
as is active im stage | [27, 25. 31]. According to Matucha [41]. at the end of stage 11
about 10%;, cf the total slip occurs on oblique {110} and about 1%/, on 1100} planes.
"aasen reported a transmission electron microscopic study by Strunk [42] of (100)
oriented Nail crystals compressed at room temperature. In the stage 11 region of
deformation he found dislocations of two {110} {110} slip systems which were in
oblique orientation to each other.

Stage 111 is associated with the activation of cross slip on {111} and 1100} planes.
Franzbecker [36] also observed {112} cross-slip traces on replicas. This was con-
firmed by St-unk, who also revealed cross-slip planes of higher indices [42].

Dislocatior distribution. The distribution of screw dislocations in stage 1 is fairly
random. Near the onset of stage 11 dislocation walls are formed through polygoniza-
tion [26, 25]. Strong walls are built up in stage [ where polygonization becomes more
mmportant. Transmission electron microscopy studies of {100) compressed NaCt
single crysta’s [34] in stage Il showed a non-uniform distribution of dislocations.
Most of the cislocations appear to have pure edge character with a preferred orienta-
tion of the dislocation lines parallel to the {100} direction.

Argon et a . [33] considered that random slip on the conjugate system can increase
the hardening rate and thus limit the easy-glide extension of stage . In stage 11 of
deformation the conjugate dislocation bands accumulate dislocations as a result of
klide on the primary system in the interband region. Birefringent secondary dis-
location bands are formed, but the internal stresses assoctated with such secondary
slip bands de not appear to affect the flow stress directly.

Hesse and Hobbs [34] observed many pure edge dipoles in stage II. The observed
pure edge churacter of the dipoles is consistent with the forest-intersection model
[43. 44] based on the intersection of distocations of orthogonal {110}{110] glide
systems, and with the stress-field trapping model [45]. Dipole formation seems (o be
casier in com.pression with axis (110) than in compression with axis {100). In the
latter, the Schmid factor on {100} planes is zero. so there is no resolved shear stress
cn the {100} cross-slip planes.

Distocation density. The relation between the flow stress 7 and the total dislocation
density p for -he alkali halide crystals - in particular for NaCl and LiF - has been the
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subject of considerable controversy over the past two decades. The densﬁy of the
screw components of primary glide dislocations may be obtained: by sectioning the
{100} oriented crystal normal to the Burgers vector and etching, or the projection of
this density on {001} planes may be obtained from sections parallel 1o the axis of the
specimen. Let p§ be the projection of the primary screw dislocation density oa {001}
surfaces. From etch-pit measurements several authors [32, 46, 25] proposed for stage |
of the deformation a proportionality between 1 and (pg)!/? analogous to what is
observed in fc.c. metals [49, 50, whereas for stage i a linear relation 2 pE was
suggested. However, a number of other authors [47, 48] suggested that 2{pl)'?
holds for both stages 1 and [1 of the deformation. Etch-pit measurements in LiF [s1],
electron microscopy [52] and the observation of X-ray profiles [53] of NaCl resulted
in a unique relationship t=A4(pf)"/? for both stages | and Il of work hardening,
suggesting a forest-intersection mechanism. More recent results obtained by Hesse
and Hobbs [34] using both eich-pit and electron transmission techniques confirmed
the parabolic relationship between the flow stress and the density of screw dislocations
for NaCl even at high degrees of deformation in stage 11 at various doping concentra-
tions and for crystals with (100} and (110) orientations. The failure: of the earlier
workers to observe this relationship in stage 11 was most likely due o inadequate
etch-pit resolution. The flow stress may be written in the form:

T=aublps)''?, th

where u represents the shear modulus, py represents the screw dislocation density.
For compression along (100), over a wide range of temperatures and strain rates [54}
the constant « has a value of about 0.4 which is independent of impunity concentration
and heat treatment. For compression along (110) there are not as many data, but it
is clear that a .0 <a oy [34].

Davidge and Pratt [25] observed for the ratio of edge to screw dislocation densities
the value 5 and Hesse [32] about 3. It is observed that this ratio is a constant in
stage | as well as in stage 11.

Deformation stages in NaCl single crystals. We review here, as relevant for our
investigations, what is known experimentally and theoretically of workihardening in
NaCl in stage I and stage 11 only. Even so, our present knowledge and theoretical
insight are not entirely satisfactory; although the broad outline of what happens
during hardening in these two stages is fairly well known there is no consensus
concerning the details.

In recent years Frank [43, 44], Evans and Pratt [56] and Argon and Padawer [57]
have carried out experimental and theoretical investigations of work hardening in
these crystals. A decrease of slip-line length is observed with increasing strain in
stage I, indicating that blocking obstacles are being formed in increasing density.
These obstacles are created by the formation of Junctions between dislogations of the
primary slip system and those of a secondary slip system on a plane inclined to the
primary slip plane. The dislocations of the secondary system taking part in the
creation of blocking obstacles have to be locally mobile, but otherwise they act as
forest dislocations to the glide on the primary system,
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Furthermore, the primary dislocations may cross slip when in the screw orientation,
and sessile jags may be created in these screw dislocations which impede their further
progress. Thus, in the view of Evans and Pratt [56]. there are at least three compon-
ents of the stress which contribute to the strain hardening in stage 1: the interaction
with the forest dislocations results in a term 7y, the sessile jogs in the screw dislocations
give rise to a component t » while the blocking obstacies exert a back siress 1, on the
moving dislocations.

Experimeatally, the work-hardening rate is found to depend on strain rate and
lemperature. As the density of sessile jogs depends on the frequency with which
cross slip occurs, which is a thermally activated process, the experimental finding can
be interpreted as 1 , being predominant in stage 1. In addition, the length of the glide
lines in stage 1 is indicative of a low density of forest dislocations and blocking
obstacles [53], i.e. of low 1, and 7, values.

At the onset of stage II, glide on secondary systems begins, and although the
amount of slip on the secondary system does not approach that on the primary
system, the (requency with which blocking obstacles are created on the primary
system increases drastically. As a result. the stress components t, and 1, increase
much more tapidly with strain than in stage |. On the other hand, since there is no
particular reason why cross slip should increase, t, should have essentially the same
value as in stage |.

According to this description, which follows closely the theory of Evans and Pratt
(56]. especially as regards the additivity of the three strain-hardening terms, slip on
the two planes of one conjugated systemn takes place in stage I

Matucha [41] initially reported for stage 11 slip on two pairs of conjugated systems,
and Frank [43, 44] based his work-hardening theory on this fallacious observation.
it was later withdrawn, and thus Frank's theory proved fatally fawed: however, a
number of his ideas were taken over in later work-hardening theories.

Later on a theory of strain hardening for stages | and 11 was proposed by Argon
et al. [33, 59. 60], which was supported by direct experimental observation. The
theoretical description is based on the notion, introduced earlier by Argon, of dis-
location flux conductance, which was originally applied to metals. In stage [ this
conductance decreases as a result of the statistical growth of edge distocation multi-
poles. This statistical process of dislocation retention predominates during strain
hardening as long as the interference between the primary and secondary systems is
minimal,

Argon et al. observed that in stage 11 long, thin bands of fibrillar birefringence are
created, whick they explained as being formed by isolated slip on the conjugated
secondary slip system. These birefringent bands constitute obstacles to the passage
of primary dis.ocations, causing an increase of the work-hardening rate.

This model predicts a work-hardening rate for stage Il which is comparable (o the
one actually cbserved, but it also predicts that the work-hardening rate is inde-
pendent of temperature. The original theory had to be modified by the assumption
that at lower lemperatures the production of conjugate slip bands is impeded by
retained prima-y dislocations. The mode) does not take into account glide on oblique
secondary slip systems, but probably such glide is not essential to hardening in
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comparison with the hardening caused by the glide on the conjugated secondary
glide system.

The rather unsatisfactory state of affairs as regards theories of the work hardening
of NaCl structures is obvious from the foregoing account; in part it may be due Lo
inaccuracies in the observations reported, and to variations in sample preparation
and purity. From the preceding discussion of dislocation density it is clear. however,
that the proportionality of t to p'/? should be accounted for in any work-hardening

theory.

2.2. Dislocations in f.c.c. metals

The glide system commonly operative in f.c.c. metals is {110}{111}; stable stacking
faults can be formed on the densely packed {111} planes. For a review of the various
dislocations observed in [.c.c. materials the reader is referred to Amelinckx’s article
in this series [13]. Some of the properties of dislocation propagation found in poly-
crystalline [.c.c. materials have been studied in detail in single crystals, but in spite of
the microscopic similarities, the macroscopic mechanical behaviour is quite different
in the two cases. Single crystals exhibit the “easy glide” phenomenon which is observed
in stage 1 of {100) and (110) NaCl single crystals, and which is absent in polycrystal-
line material.

The (110) {111} dislocations may form Lomer—Cottrell locks [61, 62], which can
be an important component of strain hardening. This may come about as follows:
a 1{011] dislocation on (111) is split in two Shockley partial dislocations:

o] L12] +¢121]; i2)

similarly, a 1[101] on (117) may split. The two glide planes intersect along [110],
and partials of each of the two decomposed perfect dislocations may react along this
[110] line:

L1217 +L[211] - [110]. 3)

The two remaining partials lie on the two glide planes and the }[110] “stair-rod”
dislocation lies on (001); the whole configuration is therefore sessile.
Only il the three dislocations are forced to combine:

1[112)+4[112]+1[110] - 4[110] 4

can the perfect dislocation which results glide on the {100) plane. The possibility of
such glide on {100} planes was suggested by Cottrell [61], and earlier, Schmid and
Boas [63] had detected by X-ray techniques slip on {100} in Al deformed above
480°C. In transmission electron microscopy of Cu Steeds and Hazzledine [64]
observed a Lomer-Cottrell dislocation lock slipping out of the foil. indicating glide
on [100}, a result confirmed by the more recent electron microscope studies of
Karnthaler [65, 66] on Ag, Al, Cu and Ni. Slip traces observed by Lacombe and
Beaujard [67] showed that the phenomenon was not limited to thin loils.

The recombination reaction (3) depends on the siacking-fault energy and the local
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stress, which might be produced by piled-up dislocations, as calculated by Stroh [68].

: As the number of piled-up dislocations considered in the theory exceeds that observed

:
]

[#], Karnthaler proposed that mobile constricted nodes must be present in the
d=xcomposed sessile 1[ 110](100) dislocation.

A second important hardening mechanism is the formation of jogs by dislocation
ir :ersection: non-glissile jogs in screw dislocations which have to be dragged along,
creating strings of point defects, are especially effective in strain hardening.

Dislocations in fc.c. single crystals. Slip-line observations in fcc. single crystals
using electron microscope replica techniques showed that in stage I the slip lines are
lcng, in the order of 100 um [70]. According to Mader [71] and Seeger et al. [50]
{re number of dislocations per slip line increases at the end of stage [ and remains
censtant in stage I1. Moreover, the heights of slip lines increase with increasing strain,
Te lemgth of the slip lines and hence the slip distance L, of dislocations of the
przferentially operative slip systems in stage Il was found to be dependent on the
resolved plastic strain g and the strain at the beginning of stage 1, 4*, according to

{5)

w=ere 4, is a constant. Relation {5) appeared to be valid for Cu [71]and for NaC1{41].
Using transmission electron microscopy, Mughrabi [72. 69] observed in stage |
tkat the majority of the dislocations in Cu are primary dislocations which frequently

Ly=Anfla—a*),

’ fosm dipoles and planar multipoles. In this experiment Cu single crystals oriented

fom single slip were deformed in tension at 78 K and irradiated with fast neutrons at
2C K bedore removal of the load in order to pin the dislocations. In stage 1l dislocation
grids (sheets) are observed both in the stress-removed and in the stress-applied states.
Hz concluded that considerable rearrangement occurs upon unloading in stages |
ard i and that dislocation pile-ups exist in the stress-applied state. Earlier observa-
tiens in copper [73-75, 64] show that the density of secondary dislocations in stage |
is rather low in comparison with that of primary dislocations. In stage 11 these two
densities appeared 10 be of the same order.

‘t is generally accepted that the flow stress can be correlated with the average

- didocation density through the equation: roc p'/2. However, there exists no consensus

as regards p. A number of research workers state that the flow stress is controlled by
thz density of the primary dislocations Pp. whereas other investigators claim that the
fo-zst dislocation density is the controlling factor for the flow stress in stages 1 and 1.
(Far a review sce Basinski and Basinski in this series [76] and Hirsch [77].) As
tezards the low-temperature flow stress in single l.c.c. crystals it seems either that the
Bcw stress is controlled by the forest disiocations or that the long-range stresses of
primary dislocations and forest contributions are in a constant ratio. Furthermore,
th: low-temperature Row stress is partly temperature dependent. This temperature
dependence is usually attributed to the cutting of forest dislocations by the primary
dix ocations (see Mughrabi for a review [78]). It has generally been concluded that
the forest density and therefore the thermal component of the flow stress remain
constant in the easy-glide region of deformation. However, recently Argon and East
[79] argued, on the basis of their measurements of the obstacle profiles for the inter-
section of (orest dislocations, that this latter conclusion seems Lo be incorrect, because
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it could not have resulted in the observed thermal and athermal componerits of the
flow stress.

Before concluding this subsection we must refer to Hirsch's argument [77] that
correlations between the flow stress and the average dislocation density may not be
physically significant, since the flow stress will most likely be determined by local
interactions between non-uniformly distributed dislocations. The remark aighlights
the difficulty of interpreting the statistical effects of the various potential con:ributions
to work hardening.

Work hardening of polycrystalline f.c.c. metals. In our NMR experimems we are
dealing with polycrystalline Al foils in which the work-hardening phenomenoan occurs.
For a general discussion of it, including polycrystals, reference should be made 10 the
review by Basinski and Basinski in this series [76] and to the review by Hirsch [77]
on the work-hardening theories of single crystals. Nabarro et al. [80] have reviewed
the proposed theoretical models for single-crystal work hardening critically; only
three appear {o survive.

The fundamental difference between the nature of the slip process in polycrystalline
material as compared to that in single crystals resides in the fact that at deast five slip
systems have to be operative in each crystal grain of the polycrystalline material in
order 10 maintain compatibility between the plastic deformations of the individual
grains. For this reason easy glide is impossible in polycrystalline material, ard, for this
reason too, the many atiempts made long ago to derive work-hardening curves
of polycrystalline materials from those obtained on single crystals cou.d not be
success(ul.

In terms of dislocations the difference can be expressed by the difference between
the two categories of dislocations distinguished by Ashby [81]: “statisticaily stored”
dislocations accumulating by self-trapping during plastic deformatior., and “geo-
metrically necessary” dislocations which maintain compatibility between crystal
grains. The “geometrically necessary” dislocations can pile up againit the grain
boundaries, and thus cause long-range stress fields in the two adjoining grains; the
compatibility between grains is thus maintained by additional elastic deformations.
The densities of the statistically stored and geometrically necessary dislocztions will
be denoted p,, and p, respectively.

Ashby pointed out that the statistical density p,, depends on strain ard on slip
distance A,, according to

Pu=albA,, (6)

and the geometrical dislocation density depends on strain and on grain sizz/d (in the
limit of low strains) as:

Pe=afdbd. m

The occurrence of polyslip and of geometrically necessary dislocations constitute
the main differences between work hardening in single crystals and in polycrystaliine
materials. The recent work by Mecking [82, 83] emphasizes that for f.c.c. metals there
is some similarity between the work-hardening curves in single crystals and in poly-
crystals in that in the latter, too, different stages of work hardening may be distin-
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guished (fig. 5) if low-temperature tests are performed. Given this finding, it is useful
tc_> distinguish these stages 1, 2 and 3 in the way Mecking does (Arabic numerals
differentiate these stages from the ones denoted by Roman numeralsin single crystals).
‘ The distinguishing characteristic is that the second derivative d?a/dc? for stage 2
is larger than that either in stage 1 or stage 3, where it is negative, while in stage 2 the
value of d*o/de? may occasionally approach zero [82]. This type of strain-hardening
curve is a marked departure from the common description of the curve by a power
law or a parabola, which suggests a single work hardening process; the parabolic
hardening was essentially predicted by Taylor's work-hardening theory.

Moreover, it was remarked by Mecking that in stage 2 the hardening rate is
athermal, while stage 3 is thermally activated. Mecking draws the parallel with stages
| a_.nd 11 and stage 111 in single crystals, but from our own work on NaCl single crystals
It is clear that stage li is not different from stage [ as regards thermal activation. We
performed [84] a series of stress-relaxation tests at various strains in stages ] and 11,
‘and found that throughout the range of our tests the strain-rate sensitivity do/d In é
!S p@poﬂional to o, which conforms to the Cotirell-Stokes law. No change occurs
in this relationship when the strain hardening passes from stage 1 to stage 1. More-
over, as the basic mechanism underlying the change from stage 1 to 2 in polycrystals
cannot possibly be the same as that for the change from stage 1 to Il in single crystals
the comparison does not appear justified. ,

Mec.king {82] remarks that the formation of cell walls of dislocations, a process
occurring in stages 2 and 3, begins near the grain boundaries. As we saw earlier
most of the geometrically necessary dislocations are piled up near the grain bound:
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aries. Accordingly, Kocks and Mecking [85] have extended the Taylor model by
assuming that within each grain two diflerent regions may be distinguished, viz. a
layer of thickness t near the grain boundary, and the interior of the grain. The density
of dislocations in the boundary layer is denoted by p.,,; there are two contributions
to that density, viz. one due to statistically stored dislocations. and one due Lo geo-

metrically necessary ones.
The derivative of the dislocation density p,, with respect to the resolved strain

then comprises {wo terms:

de=(Pen'm 1 (8!

du Bb bt’

where § is a constant. For a single crystal only the first term on the right-hand side

of the equation would have been present. ,
Kocks and Mecking assume that for the interior region of the grain the stress-

strain dependence of a single crystal in stage 11 is valid:

T =To + (4, L]

in which 0,, is the strain-hardening coefficient in stage 11. and t,, the shear stress at the
onset of that stage. Furthermore, they assume that the local flow stress in a grain is
composed of the flow stress of the interior and exterior regions in proportion Lo their
volumes, or

=T, I—'I-\+r L (10)
=Tim ‘d) exl d’

where ¢ is a constant depending on the shape of the grain: {or a cube, ¢c=6, for a
sphere, c=3; Kocks and Mecking used ¢=4. The ratio between ¢ and the grain
diameter d is assumed to be small.

In spite of the dubious nature of some of its underlying assumptions, the model of
Kocks and Mecking has the merit that it predicts at least the right order of magnitude
for the effect of grain size on the work hardening in stage 2.

In contrast to stage 2, thermally activated rearrangements of dislocations in
ordered patterns occur in stage 3. It is gencrally believed that the rearrangements at
low temperatures are controlled by cross slip and therefore depend on the stacking-
fault energy (listed in table 1). At higher temperature the diffusion coefficient plays an
additional role of importance. Cell structures are observed on low-temperature
deformation and sub-grain boundaries at higher temperatures in stage 3. The grain-
size effect in stage 3 has nol been investigated thoroughly. However. it can be ex-
pected that size effects will play a minor role in stage 3 hardening because the in-
homogeneous distribution of dislocations in stage 2 is transformed into more
homogeneous sub-boundaries and cell structures in stage 3.

Before concluding this section, it should be noticed that many of the results mer.-
tioned were obtained using transmission electron microscopic observaticns and
optical micrographs of slip lines. In particular. slip-line observalions are essentially
surface observations. Undoubledly the deformation of the surface layer can be
considerably different from that in the interior of the crystal [86], so that slip-line
patterns do not necessarily represeni the bulk properties. There is without any ques-

Table |
Stacking-fault energy of aluminium [%%]
estimaled by various methods.

Methods ylerg/em?)
Creep data >200
Absence of tetrahedra > 150
2 x cohgrent —twin energy 200
Loop annealing 250
Loop annealing 210
Loop annealing 200
Loop annealing 135

lion also some rearrangement of dislocations occurring during sample preparation
[87] Therefore there still exists in the fietd of crystal plasticity a need for new tech-
niques which aim at measuring bulk properties on a microscopic scale. Pulsed nuclear

fnagr::;ic resonance is such a new complementary technique for studying dislocations
in solids.

3. Fundumentals of static quadrupole effects in dislocated solids

3.1, Electric field gradient tensor

N-uclei with spin 1>} possess an electrical quadrupole moment @ which interacts
with the gradient { ¥} of an electric field. If the electric field gradient tensor (EFG)
i Vi) at the site of the nucleus is caused by a surrounding with cubic symmeiry it
follows that ¥y y=Vyy = V,,, where (X, Y. Z) is the principal coordinate system of the
EFG. Because of the Laplace equation Vyx+ Vyy+ V4z=0, the EFG vanishes. In
crystals the individual ions are assumed to have spherical symmetry in a first approxi-
mation. Thus the EFGs due to their own electron cloud vanish, Therefore the EFG
ata nucleus in the lattice originates from neighbouring ions. Ina perfect cubic crystal
the EFG at each nucleus caused by (he neighbouring atoms is zero owing to the cubic
symmelry.

However, lattice defects such as dislocations in the crystal can destroy the cubic
symmetry, producing local field gradients which would cause a quadrupolar inter-
action. The corresponding quadrupole Hamiltonian ﬁo in an arbitrary coordinate
system (x, y, z) can be written [89-91) as:

- N +2 -
HQEIZ Z Vtit'r (tn
i=1g=-2
where

Qo=a[32 - 11+ 1)),
91|=a[1211 +1.1.]
Qtz=a'2¢.
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and
W=V,
V:t 1=l Vx: tJ Vy:),
Vi 1= %( Vxx - Vyy}ijyxyv
with the abbreviation a=eQ/[41(2] —1)]({,, I ; are operators of the nuclear spin [;
N is the number of nuclei in the sample). ‘ .

In the presence of a strong magnetic field H,, usual in NMI% experiments, tl'_le
Hamiltonian ﬁq acts as a perturbation of the Zeeman Hamiltonian Hyz of the spm
which is given by the magnetic field. The time-independent first-order perturbation
theory leads to a quadrupole distortion frequency:

W =(2m +1)1:— Ve=(2m+1)a (12)

of the satellite transition m — | = m(m+ 1). B
In second order, the central transition —1—1 is also shifted by

2
o 2 [V +0]
0

Ineq.(12), V,, is the component of the EFG {V,} at a given nucleus in the direc:li?n
of the applied magnetic field H,. Generally the transformation of the EFG | ¥,}
from a frame of reference ({,, §, {,) to a [rame (n,, 11, ;) is given by the well-known
formula:

fvat=Tivir (13)
The orthogonal rotation tensor T=[1,} is defined by the equation:
m §
(’h =T{4:z]: ie. T=[t,} = {cosiy, &)} (14)
LK) 33

From the orthogonality of both frames it follows that T~ ! = {1,.}. Therefore eq. {13)
may be rewritten as:

V= ¥itutim: )
1,m

Replacing the system (1;) by the laboratory frame (x, y, z), the componcnl ¥, of the
EFG in the direction of the external magnetic field H, is given in the first~order
quadrupole perturbation by the following expression:

Vee= V11031 + Vaat 32+ Vist 334 2V 5050050 + 2V, 53 85 + 2Vasta 5005, (16)

For example, with this equation it is possible to determine the component l{,, f!'om
an EFG given in the coordinate system of the lattice defect. If the EFG ‘,I{,,,} is given
in the principal coordinate system (X, Y, Z), the off-diagonal elements vanish, so that
eq. {16} is of the form:

Ves=Vaxtd) + Vertdz + Vet {7

A&
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Assuming the elements ¢, to be expressed by the Eulerian angles (¢, 0, W), generating
(x, y, 2 from (X, Y, Z), it follows from eq. (16} that

Vie= Vg cos*0+ Vyy sin¢ sin?0 + ¥, cos?¢ sin?0,
or with

n=(¥Vxx—=Vyy)/Vsz,
Vee=1Vz2(3 cos?0 — 1 —y 5in%0 cos 2¢). (18)

According to this equation it is possible to determine the maximum field gradient
component V;, and the asymmetry parameter n from a rotation pattern of the single
crystal. This is shown in detail by Volkoff et al. [92,93].

As discussed above, if the nuclear environment has a cubic point symmetry, the
EFG {V,} at the nucleus site vanishes. In the presence of strain, however, the cubic
Symmetry is destroyed and electric field gradients are created. In the elastic region,
i-e. for sufficiently small strain, the EFG {Viu} can be correlated with the strain tensor

iea} or the stress tensor {oa} by a set of linear equations as shown by Shulman e1 al.
(12]. In 1he Voigt notation, the relation can be written as

6 6
Va= Zl Suky= z Ciou. {19)
= t=1

By symmetry arguments valid for a cubic lattice the gradient-elastic tensor {8} as

well as the gradient-stress tensor {C} can be shown to possess only two independent
elements, leading to:

f - Sl l[H"l"'l '—121&'1-‘: + Exyxy )]

Ves, i i cydlic, (20a)
= Cl l{anxl _%‘a.r;x, + ax,x, ']

V’gll = S44£x¢.n = Cuax‘x. {c¥k). (20b})

The coefficients §,,, C,;, Sss and C,, are related 10 the elastic compliance constants
s by:

Cas=544544 (21a)
Ciy=(51,—5.2)8,. . (21b)

3.1.1. Homogeneous external stress

In the following the stress tensor {a} may be given by an external stress acting in the

. x-direction of the laboratory frame (x, v, 2

1 00
{a}=cng g g (22)

Transforming this matrix into the crystal axis system (X34 X2, X3), substituting the

matrix elements into eq. (20a), and then transforming back into the laboratory frame,
leads [94] to the EFG
A9



(a) ay parallel 1o (100}:
2 0 0}

{V"-r-ﬂ};“_."c‘-‘ 0 -1. 0}): V,=- ""g“ : (23a)
0 0 -1 :
{b) o, parallel to (110}:
{ V(x.r.zl} =
. Cii+2C4, 0 0
To 0 —Caa HCyy HECy — Coako0s 2¢(Cyy —3C Jsin 2¢
0 (Caa—3Ci1)sin2¢ —[1C,, +Cyy +3Cy ~Caskos 2¢] (23b)
a
Vee= = ?0 [3C11Caa+(3C 1y —Cyy)cos 2¢],
(c} og parallel to {111)
2 0 0
pery %G ly 1 o). p=- "m"g“, (23¢)
3 0 -1
(d) Quasi-isotropic polycrystalline sample:
(V2)=03[(383/140)C3, +{17/21)C , C 44 +(124/315)C%,]. (23d)

Here ¢ is the angle between the static magnetic field H, {z-direction) and the x, axis.
Note that in cases (a) and {c) the component V_, is independent of the angle ¢.

Several experimental groups have used the quadrupole distortion :of the NMR
signal due 1o an external elastic stress in order to determine the two gradient-elastic
constants for crystals with a cubic lattice structure (see references in table 2). Results
of such experiments are shown in fig. 6, confirming the linear relationship between the
external stress oy and the quadrupolar shift frequency aq which is proportional to
V... Furthermore, the expected dependence of the frequency shilt ag on the orientation
of the crystal relative to the external field according to case (b) (g, parallet to (150})
is demonstrated in fig. 7.

Values of the gradient-elastic constants obtained by such “external stress” (ES)
experiments are listed in table 2. in addition the table exhibits data of gradient-elastic
constants determined by nuclear acoustic resonance (NAR) experiments, as first
described by Bolef [95]. In this technique, the elastic distortion of the lattice due to
an ultrasonic wave produces fluctuating field gradients V., and V., via eq. (19)
which give rise to the nuclear spin relaxation process. Furthermore, it should be
noted that gradient-elastic constants can also be determined for crystals with a non-
cubic lattice structure. This was shown in the case of 2> NaNO, by Kanashiro et
al. [96].

3.1.2. Field gradients caused by stress fields of dislocations
A dislocation produces in its surrounding a loca! strain field |e(r;)} and a correspond-
ing stress field |o(r)} leading to a local EFG [ ¥,(r;)} at the site r; of a given nucleus.
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Fig. 6. Dependence of the quadrupole frequency shill aglo,) on the external stress for the 27| resonance
Ir Rbl single crysials. Compression axes parallel to ( 100) and 10 {111) [134].

Table 2
Values of gradient-clastic vonstunts (10* dyn % = 10° slatvolt/dyn)
Crystal Nucleus [Cral 1C a4l Mcthod Ref.
NaCl 'Na 1.2 8.6 ES [128]
. 78 6.3 NAR  [129]
=Cl %1 34 ES {128]
69 2775 ES (130}
NaF 3Na 6.2 4.95 ES [130]
475 5.25 ES [131}
17 - NAR  [132]
RbC Q) 22 49 ES [133)
*TRb 97 153 ES [133]
Rbl b 44.5 51.7 ES [1347
127) 226 160 ES [134]
515 - NAR  [95]
Al 27Al 40 6.7 ES [135)
. 17 106 NAR  [137]
Cu *Cy ca. (.l ca. 0.15 ES [106)]
Ta 81T, 2.6 35.1 NAR  [137]
Nb **Nb 10.6 192 NAR [138}
Mo Mo 242 126 NAR  [139]

ot



462 O R YT T LTI TR T [

Quadrupole fregquency shift fa} -
»
"
= ~ o 4 = b -

"~

L i i " " Mt " L A
-45* 30" -15* 0 15 30" &5 60t 7t 90" w0s°
H ll<100> — ——= Angle of rototion $

-715* -60°

Fig. 7. Rotation pattern of the quadrupole frequency shift ag of 271 and "&b in an Rbi single crystal
elastically deformed in a {110) direction with oo =9 x 105 dyn cm " 2. The solid curves represent the theory
as discussed in the text [134].

At sufficiently large distances from the defect site the strains and stresses induced by
the defect are small and can be described by linear elasticity theory. Assuming that
in this region the EFG depends linearly on the stress or strain tensor, the EFG can
be calculated, if the gradient-elastic constants introduced in the last seclion are
known. In contrast, for ions situated in the neighbourhood of the defect the displace-
ments are large, and linear elasticity theory fails in describing the ionic positions
correctly. This region has to be treated on an atomistic scale. First, results will be
presented in the region of lincar elasticity theory as calculated by several authors
[97-101]

The stress tensors of a screw and an edge dislocation in an isotropic medium are
represented respectively in the frame (v, =r cos 0, vy=rsin 0, v; parallel ta the dis-
location line) of the dislocations by:

0 0 s34
Kb .1_3
{ay =—-_2* (o 0 1;3(0;),

AR B0 4
and
€  E
K b j_ll jlz 0
iael=2—:r- 0 o2 0. | (24b)

6 0 fn

2

« o g ke g

f Y LU L ek —uo

where K, Ke., f3 and fi depend on the elastic moduli €115 €12 and ¢4, and on the
polar angle 0 [102]. Furthermore, the relations (24a, b) are also valid for cubic
crystals in the case of special directions of the dislocation relative to the crystal axes
where {100, 101]: C1a=C18 =024 =025 =Ca4 =35 =46 =36 =0 (dislocation along a
diad axis; as a result, the screw and edge components separate) or Cle=C20=C1p=
C4s=C14=C15= C4=Cas5~= CAla=Cas=04p=Csp= 0 (dislocation along a diad axis with
another diad perpendicular). The crystal axes (X 1+ X2, X;) of the lattice are related
1o the dislocation frames (p,, v;, vy) by a rotation matrix !t} determined by the
special type of slip system of the dislocation. Consequently, using the transformation

{15} and eqs. (20a, b}, the EFG in the surroundings of a screw and edge dislocation,
respectively, can be written as:

) 0 0 Vls:_,
{K'sl-")-!'.l}= 0 0 st_l '

: X (25a)
Wi ¥ 0
and
VlEl VIEZ 0
¢ Val:' .e-;.v,} = VIEZ VzEz o ], {25b)
0 0 ¥

with the condition tr {¥5} =0,

Introducing the unit vector & in the direction of the external magnetic field H,,
cos(Hy, vy)

h=|cos(Hg,v,)],

(26)
Cos (HOQ vj'

the component ¥, which has to be used for the calculstion of the quadrupole dis-
tortion frequency according to eq. (12) is given by the general relation
3

Va=h{Vib= 3 Vb,

27
=1
leading to:
Viem23(h Vs + Ry V3y), (28a)
Vi = Vish} = b3+ VEy(hd b3+ 2VE h . (28b)

Finally, substituting the coefficients Ky, K as well as the orientation functions

I:. Je into egs. (28a, b) the EFG V.: in the surroundings of a screw and edge disloca-
lion, respectively, may be written as:

VB g, h)=£%‘_lj _:: {_jfrs:g. :)) '
£ b}

where the orientation function Js,& depends on the direction of the dislocation line

relative to the magnetic field direction and on the coeflicients &'=C,,/C,,,
und ¢, [103],

The mean EFG felt on the average by all atoms at a distance r from the dislocation

23

29)
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line is described by the root mean square {f?)'"? of the orientation [functions fse:

) 1 x
=5 |
Furthermore. it is possible to introduce for a given slipsystem a todali meanonicntation
function by:

() =as(2) +ae( 2. |
where ag and ag are the relative abundances of screw and edgediklocntions, pespec-
tively, with ag +ae =1L 3

As shown by Brown [104] and Ogurtani and Huggins [104], im e metdlimear a
dislocation a redistribution of conduction-electron charge density.oxaursl a2nalingous
to the behaviour around point defects. From the redistribution around adisiocation,
an oscillating potential with:a period 2k¢ (ke: magnitude of the Fermiiwawve wector)
resuits. This leads to a mean/ EFG at a distance r from the dislacation.:

1o, _ I (30)

Ve~ 3k (2 (32)
(Er, Fermi energy; v, Poisson’s ratio).

An estimate shows that up to very high dislocation densities of the order af 10'!
cm™? the influence of the conduction electrons on the dislocation-induced quad-
rupole distortion remains below 1%, [106].

Furthermore, in ionic crystals field gradients may be caused Ipy: aichangdd disloca-
tion due to a jog in the dislocation line [107]. Starting from e electrid field of a
straight line with a charge density 4,

E,=2i/r, ' L33
according to Cohen and Reif [108] the total field gradient tensorial point r lrom the
dislocation line can be written approximately as:
2¢,+324

Se, rt’ |
where (1 +7) represents the Sternheimer antishielding factor. 1t:shoud be nidhed that

the EFG V2 has the same geometrical structure as the EFG ue ol the stress field
of a dislocation dipole which according to Greenberg [109] isigiven by

Viz=(1+7y) (34)

V2 =DCyy % Sl b @)
Here h is the spacing of the dislocation dipole, D= ub/2n(1 --), with 4 beiing the
shear modulus, and fp is an orientatioh function with {f3)'/ olithe order of unity
[110]. Lt can be shown that the charge effect is a factor of about I10° smalierithat the
strain effect around dislocations.

As a last remark concerning the region of linear elasticity nheomy the stisss field
tensor of a tilt boundary has the general form [111]:
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{ alPp 2.1
foltu .\)}=

>l

L1, O
ta t, 0], 36
0 0 1, =

where the matrix element  depends on the geometrical coordinates in a complicated

way and 4 i the separation of the dislocations. In a rough approximati
V.. can be expressed by: 8% approximation. the EFG

V,,Ix):C. lam(x]- (37)

In the case of an infinite dislocation wall, the stress componen i
, | o t
x> h/n from the wall is given by [112]: P xiata distance

. Dn? x

Odxl=— ——
)= T SRty (38)
This leads to:
DréC x
Vu ~ it
)= R (39
with the asymptotic behaviour for x> h:
Dn?C
Voglx)~ pYR; LY expl —2nx/h). (40)

From eq. (40) it follows that the EFG V,, vanishes rapidly with increasing distance x.
Therefore, it is to be expected that an observable quadrupole interaction exists only
for nuclei in a small region of order A near a dislocation wall.

Contrary to the results based on the linear elasticity theory given above. the
calculation of the EFG in the direct neighbourhood (r < 3b) of a dislocation is r;1uch
more complex. A possible treatment is the extension of an analytical description of
'lhe EFG inlo the region r< 3b using the computer-calculated positions #° of atoms
in the core of a dislocation.

Hut et al. [84] have shown that for nuclei inside the core the radial function S

- of the electric field gradient can be expressed as

Sir)=—ari +a,, 41)

where the coefficients a, and a, are obtained by matching the function f{(r,) and its

first derivative to the EFG V,,(r} given by the linear elasticity theory at r= 3;).
anlly, a more direct calculation was carried out by Raupach [113] for alkali
halfdc crystals. In his calculation, the crystal is considered to be built up of rigid
lonic rows parallel to the dislocation line. Because of the periodicity of the lattice
along the dislocation line, the EFG will be the same for all nuclei within an ionic row
Then the EFG at an arbitrary lattice site can be divided into two parts -
V:"- = V;L:‘ + p:in (423)

Wh . iD . N .
ere ;7 is the contribution due to all ions of the ionic row containing the nucleus
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under consideration, and

'Ziz= Z V;: {42bs
J
represents the contribution of all other rows. V7 is the EFG induced at the site of &
nucleus in the jonic row { by the ionic row number J- 1n all cases the external magnetic
field (the z axis) was chosen parallel to one of the {110} directions.
For screw dislocations the result of the calculation is given by:

@
V8=l ¥ mo3, 43
* 2J2usoa’.z.:,m @3
and
-~ 2”111 @ @ 2”27"",'1 21.’2“‘2‘_]

where a is the nearest neighbour distance and Ko(x) denotes the zero-onder Mac-
Donald function.

For edge dislocations, a treatment analogous to that used in the case of screw
dislocations leads to the following expressions for the contributions to the EFG:

i0_ q‘ [ (_l)m+l
Iz _21“:0“3 ngl m_; ) (45)
"'I-_ 1 e e (2‘_])21:2‘2:‘ n(zf—l’ru
V"_Coazj;n{q].;l[ a "_.-ZJKO a
Jxi
21 2t—=ry
+ 3 (2za—r?j)xl("( , )")]}. (46)

Using the atomistically calculated positions for different potential functions and
boundary conditions, the corresponding EFG at a cation site within the core of a
screw and edge dislocation, respectively. is listed in table 3 for NaCl. As a result of the
symmetry of the core configurations the symmetry relations ¥, (—x, — y}=V,(x, y)
for a screw dislocation and ¥, (~z, x)= ¥..Az, x} for an edge dislocation, resectively,
are expected for the EFG.

The differences in the values of the EFG for different model parameters reflect the
corresponding deviations of the core configurations. The EFG is very semsilive to
small changes in the positions of the jonic rows,

In addition, the calculations show that the EFG of a screw dislocation decreases
rapidly with increasing distance from the dislocation line (|Veel 1072V /b2 fo-Ir 3 10a).
This is in good agreement with the result to be expected in the elastic regicn, where
for the given orientation A, =h, =0 and the EFG must vanish, because in this case
Js(8, h)=0. Compared with the EFG for the screw dislocation, the EFG in the case
of the edge dislocation always has larger absolute values. This is in accordance with
the fact that the elastically calculated EFG for the edge dislocation is different from
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Table 3
Atomistically calculated EFG at cation sites within the core of a 1104110} screw (S) and edge (E)
dislocation, respectively. z axis of the coordinate system is parallel to the dislocation line. exiernal
field parallel 10 {110). A}l distances in units of cation -anion distance a. (BMH Born- Mayer - Huggins
repulsive potential, BP Born - Pauling repulsive poiential, VDW van der Waals polentiul, E, isotropic
lLinear elastic boundary conditions, E 1 anisotropic linear elastic boundary conditions. )

Position EFG{V/b?) Screw dislocation
BMH + VDW BP+ VDW BMH BMH

g Ys E; E; E, E,
e -15 0922 1.347 0.388 G742
—izm -05 -312%0 =1.544 -3.645 —31.59%0
+hn -05 —6.127 —4.028 -6.447 —6.700
-0-52llﬂ -0.5 ~1.594 0943 -1.704 -1994

EFG(V/b}) Edge dislocation

BMH | BP] BP1+VDW BMH 11l + VDW BMH 11l + VDWW

ZEVE E, E, E, E; E,
-2, -1 ~5152 —5.006 -551 -4.754 —=4.741
-1 -2 5811 5.949 6044 5986 5976
-1,0 6.505 6.395 6.382 6.404 6.296
+1, =2 1535 1519 15.06 14.65 14.65
+1.0 19.8% 19.72 17.78 19.64 19.68
+2, -1 1.800 1.699 0.598 1.408 1.559

zero, while for the screw dislocation for the chosen orientation the EFG vanishes
identically.

3.2, Influence of the quadrupole perturbation on the NMR signal

The electric field gradients V.. in the neighbourhood of a dislocation as calculated in
the last section are associated witha quadrupole distortion frequency wq(m) according
10 eq. (12). A given distribution of dislocations results in a corresponding distribution
of quadrupole frequencies which may be described by an inhomogeneous line broad-
ening function golw) as discussed in detail in the forthcoming section.

In general the shape g(w) of the NMR wide-line signal of nuclej with half-integral
spin I>1 resulting from n mutually independent line broadening effects, each of
which is characterized by a normalized distribution function g;(w), can be written as

-1

glwi= Y 'f.[uT{w) ®gTw) & Bglw)],

(47)

with

j Og(w)dw= 1,

s
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where ¢, is the relative transition probability m—m + 1

I+ D—mim+1)
=1 v
Y, [+ -mim+1)]

!

Cm=

and @ stands for the convolution operation. It has to be noted that in fact most of the
nuclei which are of interest as probes for studying quadrupole effects in solids have a
half-integral spin [ > 1.
In the case of a rigid cubic lattice distorted by dislocations together with an external
uniaxial stress, the distribution functions g7(w) are given by:
(1) the magnetic dipole interaction cf nuclear spins, which is independent of the spin
quantum number m: gTi{w)=gplw);
{2) the electric quadrupole interaction between the nuclear quadr.pole moment @
and the local EFG given by the dislocations:

gHw)=galm = go[(2m + 1a]:

(3) the electric quadrupole interaction beiween the quadrupole mament Q and the
constant E¥G caused by the external stress ¢,:

gatw) = d[w —wilog)] =d[w —(2m + 1)ais,)]. (48)
Using the symmetry relation ¢, =c_.+,, and remembering that in first order
a(—1- +1)=0, eq. (47) may be written as: :
-1
glol=c_ygolwl+ 3, 2c.golw) @ gof@m+ N[a—ala,)]}. (49)
m=+i
On the other hand, the time response function of the nuclear magnetization [oftea
called free induction decay (FID)] F(:) following an on-resonance 1f pulse of lengtn
dt="1n/(yH,) (H,: strength of the corresponding magnetic rf field) is generated by a
Fourier transform of the NMR signal g(w) [114]. Therefore F(t) is given by:

Fity=c_,,,D()+ 'f 2¢,, D(1)Q,.(t)cos[(2m + Daloo)t], (50)
where —

Dit)= j+mgn{w)coswr dw;  DO)=1, (51a)
and N |

O.it)= r: gotakcos[2m+ Dat] da; Q. 0)=1, (51b)

are the Fourier cosine transformations of the corresponding distribution functions
glw).
Experimentally, the observation of the total free induction decay is often com-
plicated because of the finite dead time of the receiver of the NMR spectrometer.
On applying a second rf pulse following the first #/2 pulse after a time 1>, (the
half width of the FID), multiple spin-echo signals are observed [114+120]).

3.8
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Especially, the main echo E{t') at time ¢' = + 27 has a form very similar to eq. (50)
([103), p. 12):

-1
E)=C.. /DX + 3 26, (DD*E)Q,1 kcos[(2m + Datogr'), {52)

m= +3
where D*{t') denotes a modified dipolar function. The coefficients Cull) depend on the
spin quantum number / and on the rotation angle f=yH ¢, of the second rf pulse,
and are caleulated by Mehring and Kanert [12t]. The maximum echo height is
obtained for an optimum rotation angle ... Values for B.o together with the corre-
sponding values for C,(I) are listed in table 4.

Table 4
Spin echo signal parameters

Spini : H 3 :
Bop o4 a0 30 FL
C_ ol Boprd 036 D247 0190 0153
2C o fopim= i 0634 0.46% 0.362 0.294

m =§ - 0.284 0.297 0.266

m= j - - 0.151 0.201

me . - - 0.089

. As discussed above; the dipolar part D{t) in eq. {50} is due to the magnetic dipole
interaction of the nuclear spins and can be expressed to a good approximation by a

! modified Gaussian function [122, 123}

D(t)=exp(— i sin(c, et (53)
The coefficients ¢, and ¢y are related to Van Vieck's second and fourth dipolar
moments, A% and A* [124], by the equations

2_ .2 2
A=y --;C; and At= 3et+2cici+ %c;

For many purposes one can assume that Dut) is roughly approximated by a Gaussian

lunction of the form:

D(n~exp(—1A%?),

(54
and consequently
11
yuiwl=amzexp( -~ w?2A%). (55)

Furthermore, a theoretical expression for the modified dipolar function D*(f) in
¢4. 152) does not exist, since up to now the problem of refocusing of spins under the
l_nﬂucnce of the totat dipolar and quadrupolar Hamiltonian is unsolved. However,
line-shape analyses of measured spin-echo signals E{t*} show that in all practical
cases D*(¢) can be described by D(r) in a good approximation [125]. Supposing also a
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Gaussian shape for the quadrupolar broadening function

| !
9Q(0)=W W expl —02/2(02)),

with (a?) being the second moment of gota) and assuming alag)=0, one caricalculate
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Fig. 9. NMR line parameters as given in fig, 8 in the case of spin I'= 2 [103].
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K. 10. Derivatives of J(w) of the wide-line signal giw) of **C) in an undelormed

+74

the dependence of defined signal parameters of the wide-line signal g{w) and of the
spin-echo signal E(¢*} on the
i Starting from the derivative Slw)=d/dwgle) which is actually recorded in wide-line
1. experiments, the relative peak intensity f./f, of f(w}is the usuai parameter in sych
experiments. On the other hand, in

measure the width of the echo signal. Therefore, Kanert and Mehring [103, p. 17}
i have introduced a spin-dependent width

normalized mean quadrupole distortion w — {u?) A

spin-echo experiments i1 js more effective to

te of the echo which has been shown to be

- Most sensitive against a change in quadrupole distortion.

Results of such calculations are shown in figs. 8 and 9 in the cases of spins /= and

¢ 2. The insels in the figures give the exact definition of the echo width g for both cases,

Furthermore, as described by eq. (49), a finite uniaxial stress g, induces satellite

.t lines at the frequency position (2m + 1)atay) in the wide-line signal giw). An example
'{is shown in fig. 10 for the case of NaCl

loaded with an external stress o as given by

V

(a) and an elastically
deformed (b) NaCy single crystal (¢4 =3 x 107 dyn ¢m - 2 along the (111} axis) [ 126).
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Fig. 11. Spin-echo signat of '*1 in an unloaded (¢4 =0) and an ¢lastically deformed (0= 11.24x 10* dyn
<m " ? along the {111} axis) Rbl single crystal, showing the reversible narrowing of the echo signal due to
an external uniaxial siress o,. The signal at 1 =0.5 ms is the allowed 3r-echo [ 11 51

Bogdanov and Lemanov [126]. Corresponding to the splitting of the wide-line
signal gw), the [ree induction decay Fi(r} eq. (50) as well as the spin-echo signal Eir')
eq. (52) given by the Fourier transform mechanism are modulated with the frequency
(2m + 1)ala,). The beginning of such modulation of a ' 2’| echo signal in an elastically
deformed Rbl single crystal is demonstrated in fig. 11. The gradient-clastic constants
based on such experiments are listed in table 2 under the abbreviation “ES”.

Before concluding this section it is noteworthy that the assumption of a Gaussian
line shape for the quadrupolar function gola) as formulated in eq. {56) is quite arbi-
trary. Indeed, quadrupolar broadening functions as given by dislocations will be
presented in detail in the forthcoming section. Nevertheless, to get a feeling for the
behaviour of the NMR signal influenced by static quadrupole distortions as demon-
strated in figs. 10 and 11, it is legitimate to introduce such a simple analytical ex-
pression for ggla).

3.3. Quadrupolar distribution function for dislocations

In order to calculate the quadrupole broadening function gola) and the corresponding
time function

Q)= I

+o
gola)cos{ar} dt

-~

due to the distribution of the quadrupole frequencies, one has to take into account
the density and arrangement of the dislocations in the sample. It is obvious that any
change in the arrangement of the dislocations in the crystals results in a change of the
broadening function gela). Vice versa, a measured broadening function gq(a) may be
associated with different densities and arrangements of dislocations. Up to now, only
the simple model of a network of randomly distributed, paralle! dislocations of

3%
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density p has been used for a detailed calculation of gala). In this case, following the
treatment given by Cohen and Reif [108] and Stoneham [127), the broadening func-
tion can be obtained by a random-walk theory. They have shown that in general the
time function ({1} can be written as

N
Q(”= ]_I (']exp(l.ﬂ'j”. {57’
F=1

Here c; is the probability that a lattice defect is on site Jj and a; is the quadrupole

- distortion frequency of a given nucleus due to the defect on the Jjth lattice site. It

A b’ Mpalief s

S S,

should be remarked that in the case of the random distribution of defects discussed
here ¢, is independent of j and denotes the concentration ¢ of the defects.
The linear term of the series vanishes in the case of a large defect concentration ¢

where each nucleus is perturbed by a sufficient number of defects. Introducing the
second moment

N
{@®)=c ¥ a3,
i=
and neglecting terms higher than quadratic in the expansion. eq.{57) may be wrilten as:

QUty=exp(— {a?)1*/2). (59

This result is known as the central limit theorem. The Fourier transform of eq. (59)
leads to the distribution function dole) assumed in eq. (56). To calculate the response
function Qr} for small defect concentrations one has to bear in mind that each defect
produces in first order at a given nucleus an antisymmetrical sel of quadrupole
frequencies as described by eq. (12). Therefore, eq. (57) may be written as:

(58)

N N
Q=[] cjcosay =[] [1 -2¢, sin*(u,1/2). {60)
=1 i=1
Using the approximation In{1 — x)~ —x one has
N
Q)= -2 ¥ c;sin’(a;t/2). (61)
i=1

Restricting the sum over the lattice sites J to the core region of the defect and replacing

- the sum by a space integral outside the core, the time function can be written as:

N
Qi) =exp [ -2r ( Z sinz(a,t/2) + ‘[ (62)
i=1

irjgre}

sin‘(a(r)l/Z)dv)}
ol
where r, represents the core radius.

According to egs. (12), (26), (27) and (41) Tor a dislocation (either screw or edge)

tl?e mean strain-induced quadrupole frequency a;of a nucleus at distance r, [rom the
dislocation line can be expressed approximately by:

Yr  r>r,

f(r,) r,Src'

3

uy= Ay g fs 6t0, ’l){ (63)



where

__ 30 KsebCy,
qU-m 2

{64)

AS.E

Then for a network of randomly distributed parallel dislocations the semi-discrete
approximation of the time function Q) has the form:

Ne
Oin=exp [ —p (2:!5 ,Z sin{[ 14 e £s £(0, )] £ (r )i}
-1

+A_§-E[1 Lz- J-& sinz[xfgf(ﬂ, k)] dﬂdx)],

xg—0 X

(65

Where x = Ay t/2r, p is the dislocation density, d, is the nearest neighbour distance,
and the sum has to be restricted to nuclei inside a plane orthogonal to the z axis of
the core cylinder where: 0<0<2n: 0 < rj<r.. Since the integral diverges logarithmic-
ally for x, approaching zero, ie. r— ac, one has to introduce an upper value r, for
the distance r defined by the refation

ro=2.5(rp)" 11, 166)

This is approximately the mean distance between the dislocations.

In most cases, a continuum approximation to eq. (65) together with an average
orientation function {fle) is sufficient for describing the response function Q(t) [113].
Carrying out the integration over the angle 0 and introducing the normalized time

t=1.2545 g(np)' 1= B, (67)
€q. (65) leads to the normalized form of Q) in a continuum approximation:
T V¥ (® sinx
Q{t)—exp[—(rﬁ) L'lﬁr—xs—dx:l. ‘68]

A plot of Q(t) is shown in fig. 12, demonstrating a behaviour similar to a Gaussian
function. Therefore, in a first approximation, instead of eq. (68} the analvlical ex-
pression of eq. (56) may be used. The normalized half width 1,,; (dimensionless] is
correlated to the real half time ¢, 12 of the time lunction Q1) by

T2 =0.70= 1.25A5_E(np)”2!m. (69]

The corresponding plot of the normalized distribution function gqfs) cakculated by a
Fourier transformation of eq. (68) is presented in fig. 13 as a function of the normalized
frequency s=(1/Bla.

In order to verify the theoretical expression [or the dislocation-induced quadrupole
broadening function gq, spin-echo measurements were performed in ultra-pure,
plastically deformed non-metallic (NaCl) and metallic (Al) samples. As described
above, from the measured echo signal E(t') the response function Q') and via a
Fourier transform the corresponding broadening lunction gofw) can be obtained.
Results of such measurements are shown in fig. 14a for **Na in NaCl and in fig. 14b
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1

for 2’ Aliin aluminium. For comparison, the theoretical quadrupole functions due to a
broadening mechanism of point defects are inserted into the figures. Both the plots
demonstrate clearly that the dislocation-induced distribution function g, fits the
experimental data, in sharp contrast 1o the broadening function caused by point
delects.

1.4. Effect of dislocation density on the NMR signal

In ultra-pure crystals, lattice distortions are¢ mainly produced by dislocations. In
this case, the resulting quadrupole broadening of the NMR signal is determined by
the total density p, of the dislocations. The broadening may be described by the
hall width a,,,, the absolute first moment (|a}} or the square root of the second
moment {a*)'/? of the distribution function ggfa).

in all the cases the broadening is proportional to the parameter B in eq. (67), i.e. to
the square root of the total dislocation density p,. Hence. together with eq. (12)

(wé) =Ap., (70)

with A=an?A% ¢(f¢) and a being a factor of the order of one. For a more precise
discussion, one has to take into account that the densities of screw and of edge dis-
locations are different for different slip systems. With af and a being the relative
ubundances of screw (density pi} and edge dislocation (density gf) in the ith slip
system ol the lattice, the quadrupole second moment can be written as

(w§) =an’ (A?s L af(fithYyel +4l ); aé(fé(*))'p‘i) (7

From the orientation dependence of the functions {f*(h)) an orientation dependence
of {w§)is expected in general [ 103]. Based on these concepts, dislocation densities on
i different planes can be measured as shown by Alsem and De Hosson [218].

i
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4. Nuclear spin relaxation theory adapted for dislocation motion

- -

' 4.1. Motion-induced spin-lattice relaxation
While static quadrupolar eflects associated with static lattice defects such as disloca-
lions are analyzed in terms of width, line shape, and intensity of the NMR signal,
“dynamical effects originating from time-dependent quadrupolar interactions due to
+ the motion of defects, such as the long-range migration of a dislocation during plastic
deformation, are studied through the related nuclear spin-lattice relaxation process.
Following the sudden application of a static magnetic field H to an unmagnetized
diamagnetic sample. the exchange of energy between the nuclear spin system and the
hoen-spin degrees of freedom (the “lattice”) may be detected via the evolution of the
nuclear magnetization Mir) lowards its equilibrium value M. Typically, this relaxa-

3



tion process follows a simple relationship [89]

M(n)= — %[M‘(l)—Mo], (72)
where M, is governed by Curie’s law and T, is called the spin—Ilattice relaxation time.
The relaxation process is due o a weak time-dependent interaction, described by a
spin-latlice Hamiltonian Hy, (7} between the strongly coupled spins with a Hamil-
tonian Hy and the “lattice” with a Hamiltonian H, and is caused by phenomena
such as atomic, defect, and electronic motion. Consequently, the total Hamiltonian
of the sample is given by

A=A+ A, +Hg0), (73)

where ﬁu(t) commutes neither with A L hor with ﬁ's, but [ﬁs, ﬂL]=0. The corre-

sponding thermodynamic picture based on a quantum-statistical description [140]

is shown in fig. 15. In the figure, the sample is decomposed into a spin system and a

lattice heat reservoir characterized by a temperature f=1/kT and a heat capacity

[141). Independent of the special types of relaxation theory given in the literature,

the following fundamental physical assumptions have been incorporaled into all

these theories:

(1) The general starting Hamiltonian is assumed to be of the type given in eq. (73).
(2) The heat capacity of the lattice is assumed to be infinitely large and therefore
fL=constant. .

(3) The spacing of the energy levels associated with the spin Hamiltonian Hy is
assumed 1o be much smalier than the thermal energy S{' (“high-temperature
approximation”). .

(4) The small size of Hy | with respect to Hy allows the use of first-order perturbation
theory to calculate the "lattice”-induced transition probabilitics, i.e. the relaxation
rates.

External magnetic field H

/7

Spin system

~~

Hg B

| _-Sample

Hg, [t

Lattice
A
H B

y

Fig. 15. Schemalic representation of spin-lattice relaxation.
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(5) Because of the use of perturbation theory the observation time has 1o be large

compared with the correlation time of Hg,(1).
(6) Hy\(t) is assumed to be a random operator, the correlation function

-~ o . . l ¢ - -~
(Hy LV Hg (1 + 0)), = lim 5 I dtHg (n)Hg (40

a0 [

(74)

of which is assumed to be Stationary, i.e. independent of a shift of the time scale.

: {7) The spins are assumed to be strongly coupled, leading to a common spin tem-

perature fi;.
Then, by applying second-order perturbation theory, the “golden rule of quantum

; mechanics” leads to the relaxation rate [140)

I 2

ﬁ"‘gi Re L dr’ (“Iﬁgl.(")lb)(blﬁgL{o,ItI). (75)

Here the bar indicates the average over the spin ensemble and ﬁ,ﬁ denotes the

{ interaction representation of A, defined by

AL )=eMm fig, (1) it (76)

] where Hy is the Zeeman operator which determines the precession frequency wy=yH

of the spins (y: gyromagnetic ratio). To relate the spin-lattice relaxation rate in eq.
i75) 10 the motion of defects in the lattice, one has to remember that the Beneral

{ mathematical structure of H, is given by a product of a spin-operator part Qanda

“lattice” function F{r{t)] as shown by eq. (1) in the case of a quadrupolar interaction.

| In the usual semiclassical approximation the spin-operator part is treated quantum

mechanically while the lattice flunction F(r} is assumed to form a classical correlation
{unction

[ S S

[

] N
G(r):E Y (FuOFL+1)),.

k=1

(77

where the ensemble average in eq. (79) is replaced by a time average. Defining the
spectral density

@
Jw)= I G(t) e dr, {78)
" one obtains as a general expression for the spin-lattice relaxation rate
VT = fUMw,), (7%

where the factor JU) is determined by the quantum-mechanical treatment of é
Next, the spectral density function has to be related to the motion of the defects,
requiring the calculation of the correlation function Git) for a given mechanism of
motion. As discussed first by Bloembergen et al. [142], it is quite reasonable for a
ypical motional process to let G(r) have the functional form

Git)= 2y o e
()= {F(0) Je (80)
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where

i :
(F{O)”:R’»'Z Fz . | ]
" i { irate according to:

N - H
.and ™™* denotes the mean time between consecutive changs:iin! fg.(e), i tme
“NMR correlation time”. It is important to recognize that injpangral: 2™ ™" differs -

from the “mean jump time" 1 of the lattice defects. For instance,iliitcobiious thatiin. |

the case of the motion of a defect pair (j — ky"MF =11, since whanevrr:jor i peitlpnms
a jump the operator H{; (¢) will fluctuate. However, it will be shoveri inkh&totthoomiag
sect. 4.3 that for motion of a dislocation the relation t™M® =t jgwdlin, :
Hence, carrying out the Fourier transformation of eq. {80], kheirekunation rate:
1/T, [eq. (79)] may be expressed as '

1 NMR
T (wd, (0)) THw ™y (1)

“where {w, } is determined by ﬁs . and describes the strength of thercnupling hetwe:n
the “lattice” and the spin system which acts as a probe for the: mution lof ddedts.
It has to be noticed that eq. (81) is only a rough approximatinr, lhut neveritelss
the relation is a fair basis for describing the general importan:iteards in. a miotian-
induced relaxation process.

The basic results of eq. (81} with respect to magnetic relaxatinr. upectnoscopy: am:
illustrated in fig. 16, and are as follows:

(1) At t™M® =1/, the relaxation rate 1/T, goes through a maxirnun:offering. i
direct possibility of determining the NMR correlation time t™W! Sinoeiiti is pussitike
experimentally 1o change the precession frequency w, over aweny tapge nangsl be-
tween about 107? 5. (Zeeman-relaxation in the strong static ##d barid 10°%  (ee-
laxation in the local fields of the spins), t™™M* can be measuestliverillange kirne

scale. Especially if the internal motions are rather slow, as in th: esse dlidislosation ' |

motion, the process of motion has to be followed by means of a gpetin) type of relama- |
tion spectroscopy, numely the spin-locking refaxation techniques. | In thist techhniquee,
the retated spin-lattice relaxation rate in the rotating frame, 171,135 dhservet| al a
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Fig. 16. Motion-induced spin-lattice relaxation.
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| 'Fu timetindependent field. Consequently,
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‘very low precession frequency determined by the strength of the rf field. Details of
|the tedhmique and the relaxation theory will be discussed in the two following sections.
(2) Lowering of the precession frequency w, results in an increase of the relaxation

: m'.y?\‘ll !mn = (ng)fsz ‘823)

3) For wot <1. the relaxation rate 1/T, is equal 10 the NMR correlation time
1t™® scaled by the strength of the spin-lattice coupling (w?,(0)):

i

|

{1 T = (@2io)Mr. (82b)
{

|

l

t4) [For the ultra-slow motions, where w,t> | the relaxation rate 1/T, is pro-
iportiomal to the inverse of the NMR correlation time t™M* and depends inversely
on the square of the precession [requency my:

| LTy = (g (0)) /e TN MR, (82¢)

' [t shewld be noticed at this point that most of the relaxation measurements carried
oul: far: studying dislocation motion are governed by a relation of type (82c). This
wil beishown in detail in sect. 5.

1 4.2] The spin-locking experiment
{ s shomm by Redfield [143], the spin system under the effect of a strong rf irradiation
Ucading vo a rotating magnetic rf field may be treated in a manner which is formally
| identizal to the treatment of the spin system exposed to a time-independent static
| magnetic field The key factor of the formal equivalence lies in the transformation of
1 i#lsiinks a reference frame (x, y, z) parallel to the external field which rotates with the
¥requenqy of the rf field.
| Experimentally, as shown in fig. 17, a 90° pulse with an rf field H, along the x axis
| ¥otates the nuclear magnetization M [rom the direction of the static magnetic field
i'Wo tthe ydirection. As soon as the pulse is completed the phase of the f field H, is
[ whangailby n/2, so that H, also now lies along the y axis. Since H, and M are collinear,
{moltorgue is exerted on M, and M remains along the y axis. The sample magnetization
s culleil 'spin-locked” in the rotating frame. In the rotating frame, H, plays the role
the rotating magnetization relaxes paratlel
- towards its equilibrium value characterized by a relaxation
. iz, wsually called the relaxation time in the rotating frame, T,,. Clearly, T;, must
. Meiclosely related to T,, the relaxation time in a static magnetic field (determined by a
- precession frequency w, =yH,). To measure the relaxation time T,. the nuclear
/magnelization is allowed to decrease in the presence of the locking field H, for some
::hrmc 1, then H, is turned off and the initial height of the free induction decay Fir)
Irimoted.. After repetition of the process for other values of 7,a plot of tog F(r) vs T gives
i straight line with a slope 1/7,,.
.“ should be mentioned that it is possible to turn the locking field H, off and (just
hétoreitime 1) on again adiabatically in order to perform a nuclear relaxation process

4

+

o ithe tocking field H,
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Fig. 17. Spin-locking experiment and [ree induction decay.

with a precession frequency w, determined by the local magnetic field K, of the
SPins: Wi =yH\.. The technique is calied “adiabatic demagnetization in the rotating
frame” (ADRF) in the literature [144]. In the ADRF state, the net magnetization is
zero, i.e. the order of the spin system is transferred from the Zecman alignment 1o a
local spin alignment within the nuclear dipole fields. Hence the relaxation process is
determined by the corresponding precession frequency in the local dipclar field:

4.3. Spin relaxation due to dislocation motion

As discussed in sect. 3, in cubic crystals electric field gradients at the nuclear Jositions
are due 1o the stress fields of lattice defects such as dislocations. Whenever & disloca-
lion changes its position in the crystal, the surrounding atoms have also to move, thus
causing time fluctuations both of the quadrupolar and dipolar spin Hamiltenian for
spins with I>4. However, as verified by Hut [145] and theoretically confirmed
by Wolf and Kanert [146], the dipolar effects on the nuclear spin relaxation due to
dislocation meotion are negligible, and quadrupolar interactions dominate the
observed relaxation behaviour. Therefore in this section we shall concen:rate ex-
clusively on the effect of quadrupolar fluctuations on the nuclear spin relaxation due
1o the motion of dislocations.

Furthermore, for the investigation of rather infrequent defect motions ss in the
case of moving dislocations, the spin-lattice reiaxation time in the rotating frame
Ty, has proved to be the most appropriate NMR parameter affected by such motions.
In reviewing the basic expressions for Ty, due to time fluctuations of quadrupolar
interactions, we limit ourselves to the case in which {i) all N spins of the sample are
identical and (i) the rotaling locking field H, is applied at the exact resonance-
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ﬂ precession frequency wy=yH, of the spins, H,
§ field.

For a comprehensive discussion we start with the general relation for T, due to
i quadrupolar fluctuations as derived by Wolf [140]

' _'__Eo_(dﬁo‘”

Tlp Hezlf

dt
7 where &g is defined as follows:

P 3 [N 2143
30\ Pai-n
The classical quadrupolar “lattice” correlation function Gg(t) is given by

| &
{ Gl= 2 L (W + oK),

=lk=1

being the static external magneltic

= diG
— RE I d[ Q“) kQ{”[l +exp(j2w¢.,-!)]).
[+]

dr? 83)

t=0

(84)

{85)

{ where N§'® denotes the number of mobile defects and the angular brackets symbolize
the time average over the initial time ¢’ as introduced by eq. (74). Vi, represents the
1 EFG at the site of spin j which is due to a defect k and is given by [see also eq. (18)]:

Vu'—'—“‘%ygz(k,j)(3 00520“_ 1 M Sinz(’&j Cos 2¢U)' (86)

jHere V,,(k, j) and 14; denote the magnitude and asymmetry parameter of the EFG
at the position of spin j which is produced by the defect k, while 0, jand ¢, ; character-
{ize the orientation of the Symmetry axis of the EFG tensor associated with defect k
i\;vllt‘l;n ;:spect to the laboratory frame with its z axis parallel to the external magnetic
4 o

The “quadrupolar spin-correlation function” kq(r) describes a thermal mixing
process between the nuclear spins following a dislocation Jump, i.e. a distortion in
fHy1 [146]. In close analogy to the cross-relaxation process discussed by McArthur
i¢tal. [147] and Demco et al. [148] one may assume that

| kaldxexp(~y/T,) ®7)

éwhere the “quadrupolar thermal mixing time” T, is given approximately by
1/ To=yHyu exp( — H\/Hye). (88)

. 'Physically. the relation demonstrates that the strength of the thermal mixing process
is determined by the overlap of the nuclear energy levels in the rotating frame which is
_Eiven by the magnitude of the local field Hy.. An increase of the level splitting by
Increasing the locking field H, leads to a decrease of the overlap, i.e. an increase in the
, thermal mixing time 7, The “effective Zeeman field” H,,, in €q. {83) defined by

Hyr=HY + HE + () + [1 —ko(t) ) HY), 189)

15 proportional to the effective heat capacity of the spin system, i.e. the heat capacity
ol tha.t part of the spin system which is able to maintain a common spin temperature
tcondition 7 in sect. 4.1)even during the quadrupolar ffuctuations. The corresponding
local fields in the rolating frame which appear in €q. (89) contain secular (0) and
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nonsecular (n) contributions with respect to the Zeeman Hamiltonian in the rotating

frame. 1, denotes the quadrupolar “lattice” correlation time, ie. the mean time °

between consecutive changes in EFG caused by the stress ficlds of mobile dislocations.
{Note that the term [ 1 —kgltn)] denotes the probability that on the average quadru-
polar thermal mixing takes place between consecutive changes in the EFG.| Further-
more, wer=7Her is the “effective spin precession frequency”. The dipolar local field
Hp in the rotating frame is connected [124] to Van Vieck’s dipolar second moment
A?, introduced below eq. {53), by [140]

Hy =142, (90)

while the different quadrupolar local field contributions in the rotating [rame are
given by

l N Nd
H5=4(53)z=§(ﬂ'6)2=50‘ﬁ Y X% 91a)
=1 =

and
Hy=4(aH3) O1b)

where (AH3) represents the quadrupolar second moment in the laboratory frame.
N, denotes the total number of defects (mobile as well as immobile). In the two
limiting cases of “strong” and “weak” collisions, eq. (83) can be simplified as follows.

{a) Quadrupolar strong-coilision region. For 1,3 T, the “lattice” correlation function
Golt) in eq. (83) remains in essence unchanged while kolr) decays to zero during
quadrupolar thermal mixing. In practice, koit) therefore vanishes at all times [see
eq. (87)] and one obtains

1 do d Golt)
T,, HI+HL+HE dt Jioo
Introducing by [see eqgs. {85) and (91)]:
2 R 2
Hilon=domy ¥ 3. Kl
ji=1k=1
a dynamical quadrupolar local field associated with that part of the EFG which
fluctuates, thus causing spin-lattice relaxation, eq. (92) may be rewritten as:

| Hlyn 1 d Golr)

T,, Hi+Hb+H} GQ(O}( dt  Jiao
Analogous to the theory of Rowland and Fradin [149]. the factor on the right-hand
side of eq. (94) involving Gg(r) may be interpreted in terms of the average rate of
change of the mobile part of the quadrupolar energy due to the dislocation motion.
In order to show this, the initial time derivative of Gg{t) may be replaced approxi-
mately by

_ dGQ“)
dr

92)

93)

94

~ GQ(O’ - GQ(Tm)

Ty

195

Then. eq. (94} becomes

l Héldyn l
{ 7, HTE Ay T, 00
{ where
Gol0)—Gyglty)
]—q=—~Q 9 ‘97'

Gl0)

represents the average relative change of the mean quadrupolar energy per spin due
to one defect jump. {See Rowland and Fradin [149].) As a final remark, instead of the
dynamical local field Hgl,, we could equally well have inserted the total quadrupolar
local field H} eq. (91) into eq. (92). The factor involving Gyft} then would have to be
?nlerpreted in terms of the rate change of the total quadrupolar energy due to defect
jumps.

(h) Quadrupolar weak-collision region. For t,, € T, Gglt) decays much more rapidly
than kqlr). Hence, in eq. (83) kqlt} may be replaced by unity according to eq. (87).
Aller two subsequent partial integrations eq. (83) then yields

1 HE +ag[H +(HY*]
=35 2 i T3l i1 +iHg
=35 2
{ 7.7° THRH iy ey o)
{ where Jolw) represents the spectral density associated with Gg(t):
3 +w
Jolw)= j Ggln) e’ dr. 99

ﬂ The quantity ag in eq. (98) is of the order of two, depending on the ratio Ho/Hp, [140].
It should be mentioned that for a locking field H, large compared to the local fields,

ieq. (98) turns over to the general expression (79). The main difference between the
strong-collision expression (92) and the weak-collision relation (98} lies in the absence

iof thermal mixing between successive defect jumps in the weak-collison region.

;Accordingly. by extrapolating eq. (92) towards weak collisions, the same result has
1o be obtained from eq. (98) for 2w T3> 1. As shown by Wolf and Kanert [146].

i the result of such a comparison leads to the relation

t

tl 3 HI+Hy+H} 1
LI

we. 4HTYHR+IHY T ksc.
Consequently, in zero field (H, =0) the difference between the weak- and the

‘ S.lro'ng-r?ollison rate is smaller, the larger Hg, with respect to Hyp. In the high-field
- limit this difference is accounted for by the factor 2

(100}

—— W

AV "Lattice” correlation function associated with dislocation motion. By applying an
cx!c.rnal stress a(r) to a crystal, dislocations may be forced to move from one stable
Pusition to another. The result is an anelastic or plastic contribution to the deforma-
Aion £(r) of the sample. As illustrated above, in order to determine the related nuclear-
rf'laxation behaviour, the corresponding quadrupolar “lattice” correlation function
Gyt has to be calculated for some assumed microscopic model of dislocation motion.
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The usual procedure applied 10 determine correlation functions of the type of eq. !
(85) begins with the conversion of the time average into an ensemble avzrage. This
step is only permitted, however, if the microscopic fluctuations causing the decay of |
Golr) represent a random stationary statistical process. In a crystal, dislocations
periorm discrete jumps. Assuming that the mean time T, between successive jumps of
mobile dislocations is independent of time, the time average in eq. (85) ay be con-
verted into the following ensemble average [150]:

N NI

|
qu=ﬁ Z Z Vu(l’f;)
=1 k=}

The meaning of the vectors in ¢q. (101) is easily understood from fig. 18: v}, denotes
the initial vector from an element of dislocation k to some spin j, whiie r symbolizes
the displacement vector of the same dislocation k in the slip direction.

Pyr, 1) represents the probability that during time ¢ dislocation & has been displaced
by the vector r relative to its position at 1=0. By assuming the probabilities Pyr, 1) |
to be independent of r{; (i.e. P, =P) it was implied that the relative motions of atoms
and dislocations are uncorrelated. For atoms close to the path of the dislocation this
is not quite true. However, since most of the atoms in the crystal do not perform any
dislocation-induced jumps, the above approximation js well justified.

A realistic model of dislocation motion has to take into account that thz displace-
ment r results from a number of discrete jumps. Separating the time scale from the
geomelry associated with these jumps, analogous to the self-diffusion casc, onc may
write [150]:

j dtPylr, DV el —r). (101)
vo)

P(l', t)= Z wnu’ Tm)P.(él';)é(f"fer-
s=0
Here W,(t, 75} denotes the probability that some dislocation & performs s discrete
Jumps in time ¢ if the mean time of stay is t,,P,(dr,) represents the geometrical prob-
ability that as the result of s discrete jumps a dislocation has been displaced by the
resulting shift vector dr,. In particular, Po(0)=45(0), and P, is given by the s-fold }
convolution integral of P,.
Inserting eq. (102) into (101) and carrying out the summation over individual
dislocations k via an integration over the dislocation loop length one obta.ns

(102} ‘

i

§ unit element of a “representative”

{ with an appreciable fraction f of the sound velocity c,,

N ®
GQ(:)=—J,:7 Y VehH Y wy, T Pyldr)V(r§ —or,), (103)
i=1 =0

[

Spin i
Pin :
o !
M .
-
Dislocation k\l_
(t=0) 767 (1>0)  Shp direction

Fig. 18. Geomelry of the variables used in the caiculation of the quadrupolar geometry factor gg ‘or s mobile
dislocation.
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where V{r]) denotes the field gradient at the site r$ of spin j which originates from a
dislocation. The transition from Vdrdi)ineq. (101)
to ¥j(r]) implies that, per unit length, all dislocations are of the same type (c.g. edge
or screw dislocations). With this assumption the EFG per unit dislocation length
experienced by some spin j no longer depends on the dislocation k producing it, and
the vector rY; may formally be replaced by r?.

Also the summation over all N §pins may then be simplified. As illustrated by Hut
[145), this summation may be restricted to those spins which actually experience a

{ fluctuation of their EFG due to moving dislocations. If n,,, is the number of such

nuclei per unit dislocation length, N = Pmbn, ., where p,,
mobile dislocations and the crystal volume, respectively.

If, as is assumed for solids, a dislocation runs onits way from one obstacie to another
the actual time ¢; a dislocation
spends in the jumping process is much shorter than its mean wailing time 1, at an
equilibrium position. Also, consecutive jumps are uncorrelated with each other in a
statistical sense. Therefore the probability W (1, 1,,) is governed by the Markovian
relation

and ¥ denote the density of

Ws(" tm)=;1|' (_,'). exp( _‘/tm)'

Tm

(104)
Il during a single jump s=1 a dislocation covers the distance L=
¢q. (104) is limited by the following condition:

=LA fe )<ty

In typicai plastic-deformation experiments 10° % cm <Lg1074
Consequently the validity of a Markovian process is
seclion may be summarized by combining eq. (103)

|6r,), the validity of

{105)

cm (see sect. S5).
unquestioned. The results of this
and eq. (104} to yield:

PoV & 1t t
Golt}=~2"— 1= -
olt} N .=oS!(Tm) exp( Tm) B(s), (106}
where the lattice sum Bl(s) has been defined as follows:
Fon .
Bls)= 3, VirDIPAorJVir? —br,). (o7
i=

The Fourier transform and first time derivation of Gqlr) which dominate T, in the

:cak- and strong-collision region, respectively, are easily found. Differentiating, one
as at 1 =0

_4Gl)  _pa¥ BO)\ 1
( i )‘zo— N 3(0](1—%);;- (108)

' Inserting eq. (108) into €q. (92), the quadrupolar relaxation in the strong-collision

region becomes
_]- = 60 (
T\, H{+Hi+H]

Here the summation J over spins in eq. (107) has been converted into an integration

4%
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over r and 0, thus taking into account that for a given position of the dislocation line T

with respect to the external field H [see eq. (26)], V(r) depends only on r and 8:

Roy =
(V1)=j j rdr dOV ¥r, ). (110}

0 ]

The cut-off radius R, corresponds to the number of spins n,,, appearing in eq. (107).
The integral appearing here represents the mean-squared EFG due to a dislocation
element of unit length. Values of (V2) may be either determined theoretically by
means of the corresponding equations given in sect. 3 or derived experimentally from
the analysis of the free induction decay F{r) or spin echo E{r) of the NMR signal (see
sect. 5). The lactor gq in eq. (109} is called the “quadrupolar geometry factor” and is
given by the relation [see eq. (108)]:

=1 B
Values of gq will be discussed in detail in sect. 44.

As illustrated by Woll [151], the spectral density Jo(w) eq. (99} may be written
with the aid of eq. (106) as follows

(in

(112)

1poV & .
JQ{w) =% T sgo _;,(w‘l'm)B(s],

where

j.lx)=Re[2x/ll—ix!’*']=—-2x— (113)

X s+1Y ,,

“+le"+1 ngo(“l)“( 2" )X )

with K being the greatest integer <l(s+1). For s=0, Jo(w) represents the usual

Lorentzian [obtained by assuming Ggl?) to be simple exponential as expressed in
eq. (80}], since

Jolx)=2xA1 + x2). (114)

For 5>0 the functions j,(x) have been analyzed elsewhere [151]. Furthermore, for
x<l

Jdx)=2x (115)

for all values of s.

Assuming that the jumps of a dislocation cover distances |dr,| which are fairly
large, Vi(r;—dr,) vanishes to a good approximation except for s=0ér,=0) since (in
the continuum approximation) the EFG ¥, is proportional to 1/r. Consequently.
only terms s =0 contribute appreciably to the spectral density Jolw) given by eq. {112).
Then, inserting eqgs. (114), (112), and {107) into (98), the relaxation rate in the weak-
collision region may be written as follows: '

H}E +aq[ HY + (HBP] T
HE+HR+(HYY "™ 1 44wl

A%

1
—=3dgy2(V?
T“, Q ( )

(11&

in the limit of large locking fields H, eq. (116) becomes

| 1

i 7= 3‘5"?2(V2>""‘m‘2,"‘§?:,' (117
Figure 19 illustrates schematically the relaxation behaviour as a function of the
} mean waiting time 7, in the strong- and weak-collision regions. The dashed lines in
the figure show the regions which do not comply with the condition for the strong-
collision {7, > T) and the weak-collision range (t,, < T;,) respectively. The properties
} ofthe maximum of T,,," ofeq. {116) provide the most direct access to the understanding
of the microscopic dynamic properties of the underlying mechanism of dislocation
{ motion. The position of the maximum governed by the relationship

Tm ! =2we I

{118

leads to the mean wailing time between two consecutive jumps of a dislocation,
whereas the maximum value of 7,

2 2 n 2

i = sqrqvy M t“"“f"“'l:"z} 1t
3 Tlamn 4 Hl +HD+(HQ) Werp
directly yields the density p,, of the mobile dislocations. According to eq. (109) a
relaxation measurement in the strong-collision region leads only to the ratio p, /1,
which is indicated by the straight lines in fig. 19. Therefore, to get more detailed
information about the mechanism of dislocation motion one has 1o combine such a
} NMR measurement with another type of experiment. Such a combined measurement
will be discussed below.

! It has to be recalled at this point that the model of the microscopic mechanism of
{ dislocation motion has not been specified so far, except for the assumption of discrete
§ dislocation jumps with a fairly large step width. [The latter is used only in the relation
1 lor the relaxation rate in the weak-coliision region {eq. (116)).] To get a step further,
possible techanisms encountered in diflerent kinds of deformation experiments have

(119)

|

7’
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tig. 19. Schematic double logarithmic plot of the rotating-frame nuclear relaxation rate T;,! versus the
inverse of the waiting time t.
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to be introduced into the relaxation theory. In the following we will focus on plastic-

deformation experiments with a constant deformation rate é. This type of experiment
is governed by the Orowan relation [152]

E=@bpyb=¢bp L/, (120

The physical model underlying eq. {120) assumes a thermally activated, jestky motion
of the mobile dislocations of density p,, between the obstacles in the naterial. ¢
denotes a geometrical factor {¢ z%], while b symbolizes the magnitude of 11 Burgers
vector. The mean dislocation velocity v may be expressed in terms of the mean
distance L between obstacles and the mean waiting time t,,,.

As pointed out above, the strong-collision rate cq. (109) depends similarly to the
Orowan equaltion on the ratio Pa/tm Therefore, combining eqs. (109) and (120), one
obtains

i dq(¥?) 1 1,
T “HIrtHI o mIigpbeT
T, Hi+HE+HIpb L
Hence, for a given plastic-deformation rate ¢ the nuclear spin relaxation rate is pro-
portional to the inverse mean jump distance L. This relationship may bte used 10
determine L.

Applying the Orowan equation to the weak-collision relaxation rate eq (116} for
W, 1Ty > 1, one obtains (approximaltely)

L3 dotv) 11,

T, 4H}+Hy+(HRP ¢bL"
As shown in fig. 19, in the limit of large locking fields H, eq. (122) differs from the
strong-collision rate by a factor 1. In the other extreme, for WerTn €1, eq. (116)
becomes

(121)

(122

H} +aq[H} +(H)]
Hi+ Hi+(HY)?

As a final remark of this section one should mention thal, in principle, a dipolar
Auctuation should occur, also leading to a dipolar relaxation process. For the follow-
ing two reasons the dipolar latlice correlation function Gy(t) and hence the dipolar
contribution to the spin-lattice relaxation rate may be neglected as compared with
Gqlt} if the nuclear spin relaxation is entirely due to dislocation motion:

(i) the mean time T between successive dislocation-induced jumps of an arbitrary
atom is much larger than 1, The reason for this is obvious: although a given dis-
location may jump rather often during a given time interval, in a single dislocation
jump only a fairly small number of atoms move slightly. By definition, however, 7 is an
averaged quantity for all atoms. Since the great majority of the atoms do rot move
at all during the deformation experiment, the value of © averaged over all atoms of
the sample is extremely long, and Gpf) decays considerably less fast thar Gy t).

(i) Due to the fact that few atoms ever “see” a dislocation pass by at a distance of
less than a lattice constant, and then only in the very short time interval during which
they are “visited” by a dislocation, the dipolar lattice sums Bo(s) defined in acalogy 10

80

1
7= ¥’ (V?) ¢bLp;, % (123)
Ip

§ the distribution function Py(dr,).

Al LML RIS I U

eq. {107) may practically be replaced by their rigid-lattice values Bp(0).
Consequently, the dipolar geometry factor gy, defined analogously to eq. (111) by

the relation

Bp(l)

By(0)

vanishes, leading to a vanishing dipolar relaxation rate in analogy to eg. (109).

go=1—

4.4. The quadrupolar geometry factor of dislocations

The remaining problem for calculating the dislocation-induced relaxation rate is to
specify the quadrupolar geometry factor gq defined by eq. (111). In order to carryouta
calculation of gq, one has to introduce into €q. (107) an “Ansatz” for the geometrical
probability P,(dr,) that as a result of one single jump the dislocation has been dis-
placed by the shift vector dr,. Assuming a Gaussian distribution centred at the mean
jump distance L, the distribution function P,(ér(} may be written [153] as
1

PI(&1]=‘“'2N)_|,2'2W exp[ —(6r, — L)}/2(5r})] (124)
where (8r{) denotes the second moment of P 1(6ry), Le. (3r})'/? describes the width of
It should be noted that alternatively a Poisson-like
distribution function may be introduced for P\(dr,) as discussed by Appeletal. [154]
in the case of MgO single crystals and by Neuhiuser and Schulz [155] in the case of
copper.

Introducing eq. {124) into eq. (107) one obtains for go [eq. (1113]:
1
Ly=1- o ..
vll=1 ~ sy

) VAED [ dtor,) Ve —ar Jexpl —8r, ~ L]
i=1

ll‘-

Y Vi)
i=

Assuming that the width (6r{)'' of the distribution function P(dr,} is small com-
pared to the mean jump distance L, €q. (124) may be approximated by a é-function,

(125a)

leading to
L Virvie} —or))
goll)=1- 121 , (125b)
Y Vi)
=1
with L<|gr,),

Starting with €q. (125b), Hut [84, 145] has carried out a computer-calculation of the
kcomelry factor gq as a function of L for edge dislocations in NaCl. Outside the core
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region of the dislocation (jr}} > r. =3b) he has used the continuim gpproximatien for
the EFG V; according to eq. (29). Inside the core region {jrf <=2 tne iraclial
dependence of the EFG ¥ was approximated by a parabolic drstance tonation Jfir )
as given by eq. {41), assuming no change in the angular function 'fi It eg. (29).on
going from r;<r. to r;>r. For r;>r. the posilions of the nuitiei were taken Trom
linear elasticity theory, whereas inside the core the results of a dlickition of Granzer
et al. [20] for the position of the nuclei have been used. (It shobclbe notkc rhat ite

atomic positions they obtained do not depend very sensitively:a the special type ol

potential they used.)

Starting with the assumption given above, the computer-zilaltation ot g was
performed using 43 nuclei in the core and a region of 200b x 0 iputsikle (e cone.
With those numbers, the convergence of the calculation of ggswasizxetitenl.

3
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Fig. 20. Quadrupolar geometry factor gq for a mobile dislocation as a functiv 1iofl hhe mostaliioed | jump
distance N (in unils of the Burgers vector).

The result of the compuiter calculation is presented in fig J20, iwhere (he jump
distance L is expressed in units of the Burgers vector b: N = L{b* s anpeeted fimom fhe
general formula (125a) the quadrupolar geometry factor gq vasies!from zep [pump
distance L=|0r,| equal to zero, iec. Vfr!—dr )= Vir])] 10 on|jump ilistamoe L=
|67,| equals infinity, ie. Vir] —dr,}=0 because of V;~r~'].IMyotcally, in: plastic-
deformation experiments the jump distance L is of the orderdl' (87 *-{{0 ™ .omy, s,
N=L/b is of the order of 10*. As shown in fig. 20, for such a layze oy distance; g,
approaches unity and is not very sensitive to a change in L. Fukhermory,) it Inas been
shown [145] that for large jump distances of the edge dislocauton 4, besomes Quite
independent of the detailed atomic positions in the core. Tegrtbore [fori praciical
applications one may suspect that the difference in gg for antehignan for a sorew
dislocation is not very significant. As a general concluding renahk there:ane good
arguments to believe that the shape of gq given in fig. 20 dexrikes fairly iwelll the
dependence of the quadrupolar geometry factor on the junyp odisumace W= [L'»
independent of the special type of dislocation and crystal lattics:, atldzast o1 W, 22102,

8o,

{1 4.1, Principles of the measurements

FEST e T

' 5. Nuclear spin relaxation measurements and results

i 5. 1. Specimens
| The measurements reported on alkali halides were performed on high-purity single

- crystals. The Jeener experiments [ 156, 157] were carried out on 2*NaCl, *’RbCl and

' K.YF single crystals bought from Quartz and Silice Co. (Paris) and Harshaw Chemical
.Co.[Selon, Ohio). These crystals were all cylindrical with a length of 15 mm and a
' diameeter of 10 mm, aligned along the {100} crystal axis.

The spin-locking experiments were performed on alkali halide single crystals
‘furnished by Korth Co. (Kiel). The (100} single crystals were cleaved along [100}
' planesiand then carefully polished to square prisms. Before being deformed, all alkali
| halide Single crystals were kept at 150°C for at least six hours and slowly cooled.
i Spin-locking experiments were also carried out on {111), (110} and {9 13 10} single
rgrystals.

Sines it is well known that divalent cation impurities might influence the flow stress
: of these crystals, some randomly chosen ultra-pure alkali halide single crystals were
linvestigated for their impurity content by means of a Perkin Elmer spectrometer
1 dfter| the deformation. The impurity content was of the order of 0.001 mol%;, for
. Ca’* and 0.0001 mol?; for Fe** and for Mg?*. Relaxation experiments were also

, ‘ perfarmed on (100} single crystals doped with different amounts of CaCl, ranging

“from: T to 700 mol ppm.
Fior ithe investigations on metals, ultra-pure (99.999%) polycrystalline aluminium

i samples were used. The average grain size was about 150 4. To avoid skin-effect

 distortions of the NMR signal, the samples consisted of thin rectangular foils with a
tlength of 27 mm, a width of 12 mm and a thickness of about 50 u.

' 5.1.2. Spectrometer

| Thespectrometer used was a commercial Bruker SXP 4-100 pulse spectrometer with a
| modified resonance circuit described elsewhere [158] operating at 15.7 MHz, corre-

+yponding to a magnetic field of 1.4 T, including a NMR field stabilizing system. The
-sample’ under investigation was plastically deformed by a servo-hydraulic tensile
I machine (ZONIC Technical Lab. Inc.) in which the exciter head moves a driving rod
'with a constant velocity. The NMR head of the spectrometer and the frame in which

the rodimoves formed a unit which was inserted between the pole pieces of the electro-
ITagnet of the spectrometer. The unit could be temperature controlled between 77 K
1and 550 K. The spectrometer was triggered by the electronic control of the tensile
Imachinie. The trigger starts the nuclear relaxation measurements of the nuclear spin

i ntlanation experiment at a definite time during deformation.

The decay signal obtained exhibited a signal to noise ratio of about 100:1 in the
rease of:alkedl halide single crystals and of about 20:1 in the case of polycrystalline

+ 1 abuminium. The signals were stored on a fast transient recorder (Biomation 802) and

ithen transcribed on magnmetic tape. Further processing of the decay data was carried
lout byian on-line Varian 620/L computer system.
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Fig. 21. Part of the mechanical tester which is inserted between the pole picoes andl the probe head. D is
the diaphragm, L is the coil. B I5 the connector to the spectrometer, S is the spevimen. P are the PYC
templates, C 5 the condenser and R are rings for fixing the diaphmagrnion rod [145].

A\ HENRARRARRERANNRRRE S

\ Pump [Exciter . — arive :.:'::l IDataiab
um ead Zonic 1
\ hydraulic Fc:dre 108 Master. oe g0
\ pressure 'L\ '”::::ol;:;mm‘
§ XCE TE ‘ input  input J ovm
\ 1101220 Fo dd . »'iﬂ
\ ‘ : olal &
\ driving ! H,,E - —"'—v %
\ tod Lc?l‘ld P %
\ [ | '&mﬂ;[ lC..‘-—-—‘ 3
\ A g T Y :
\ \\ Maghet Function  — E
Genarator . g
\ NMR Crystal -H1& 5K _ ovm :
\ w PH-temperature 7900
Spectro. /
§ l'lr\ol‘:ot° / oelay L
\ $XP-100 N . Joete.
\ \ oL 300
\ .
N\ | Trigger NMF measurement TotaTian
NS \\\\\%\‘ Top Dot ,]____,lm,o, |

Fig. 22, Scheme of experimental set-up [107, 217).
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5.1.3. Mechanical tester

In fig. 21 the part of the assembly between the pole pieces of the magnet is shown
schematically [84]. The inner rod (brass) can be displaced relative to the outer ones
with a constant velocity. The distance between the rods was fixed by diaphragms with
a large stiffness perpendicular to the axis of the rods and a low stiffness in the dis-
placement direction. The diaphragms prevented the bars from buckling; this was
elfective up to a load of 200 kgf, and the maximum load in the experiments did not
exceed this value. The cross-head templates were manufactured from polyvinyl
chloride, so as to avoid bringing metal into the coil during a test. The cross-head
velocity could be varied from 107% s~ to 105~ . No plastic deformation took place
in the machine itself. The direction of compressive deformation always lies per-
pendicular to the external field H ;.

The stress was measured by a strain-gauge load cell and the elongation by an induc-
tive displacement transducer. Measurements at temperatures lower than room
lemperature were carried out by using a hollow polyvinyl chloride cylinder around the
coil as a cryostat and blowing N, vapour through it. Temperature stability of about
+1°C, which could be sensitively determined by the variation of the pressure, was
usually reached in about half an hour.

The part of the tensile machine shown was placed in the gap of a 10in. Bruker
BE-25 magnet with a current siabilizer and an external Bruker NMR stabilizer
B-SN 15,

An overview of the experimenta} set-up is depicted schematically in fig. 22. Detailed
information can be found in [217].

5.2. Measurements of T, T, o a0d T; during plastic deformation of ionic crystals

The first investigation concerned the existence of the elfect of finite plastic deforma-
lion rate on the zero-field spin relaxation time (H 1=0). Using the Jeener pulse
sequence [156], signals for two states £#0 and £=0 were compared for the three
single crystals with three diflerent resonant nuclei: the results are presented in fig. 23.

Iibgn.l height

KF'® Na?3Ct ReslCl

time —w

Fig. 23. Signal after a x-Ty —infin—1—1a) pulse sequence as a function of time; the signal height is
Proportional to exp( —1/7,,) [159] K'*F-a, é=0b. i=33x10"%s"": a, Tia=30s5.b, Tjg=30s5, T=
*X'C tmds, Ro=0 PNaCl-a, £=0: b, £=33x10"4s " 8, T, =475: b, Tio=21s: T=+20°C,
1=355 Row0.265 RbY'Cl-a, £=0; b, £=19 x W07*s '@ Tio=1455; b, T.o=0495. T= — 196°C,

T=15s, Rp=0.26s.
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The maximum signal height S is related to the time t the spin system spent in the
internal ordering state, i.c. alignment of the spins according to their kocal fields, by:

Sit)=S(0) exp( — /T, o). {12¢)

The relaxation time T, is equal to T,, with H , =0 (see secl. 4).

First T}, was determined with £ =0 on the basis of the equation for S(t) by varying
the time 1 between the pulse pair and the read-out pulse and observing the signzl
height S as a function of Lhis time 1. Then 1 = T}, was chosen - for maximum change
insignal height - and the decays were measured for i =0 {curves a) and &+ 0 (curves bt

It is quite obvious from fig. 23 that the zero-field relaxation time of 2*Na and #'R>
is affected by plastic deformation whereas T, of '°F is unaltered.

The difference must be attributed to the presence of the quadrupole moment in
*Na and ®”Rb which both have I=2 and to its absence in '°F, which has J =LIn
the case of '°F the effective quadrupolar coupling is equal to ze-o since for a half-
integral spin the levels m= +1 are shified by the same amount and the transition
frequency between them is unalffected in first order by the quadrapolar coupling.

Apparently the dipolar geometry factor gy (sect. 4), which in principle could b
responsible for a change in T; 4 due to dislocation motion, is too small to be observec.
The results shown in fig. 23 therefore confirm that the quadrupolar geometry factor
g is much greater than the dipolar geometry factor gp.

There appears to be a contribution from the moving dislocations to the zero-field
relaxation via quadrupolar interactions which one would like to separate from other
relaxation mechanisms. This may be done by applying the relation:

d__ 1 1
Tio Tiolé=0) Tyop’

where the total relaxation time T, is split up into a component due to dislocation
motion Tyop and one due to all other causes T,g,.0, In this formula it is assumed
that both relaxations, i.e. with and without plastic deformation, a-e described by an
exponential decay.

Figure 24 shows the experimental data confirming the exponent:al character of the
decays following a Jeener pulse sequence.

A problem arises if one does nol take into account the change of the line shape as a
function of plastic strain due to the increase of the dislocation density. The signal
height was always determined from the integral of a number of digitalized values
grouped around the maximum signal. By this procedure the effect of noise on the
signal is diminished; this is important during deformation where signal averaging is
impossible. However, although the maximum signal height is unaffe:ted by an increase
in dislocation density, the integrated signal height is lowered by the increase in the
number of nuclei influenced by quadrupolar interactions due ta dislocations. Tc:
avoid this problem the experimental data depicted in fig. 24 by squares were obtainec
from 4 different crystals, which were deformed with the same veloci y, and at approxi-
mately the same amount of plastic strain. The data indicated by dots were obtainec
from one crysial.

For each deformed crystal S(0) was determined as a function of plastic strain e
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Fig. 24 The exponenttal character of the decays following a Jeener pulse sequence with and without plastic
ceformat.on of the specimen. The signal heights are plotted on a logarithmic scale [145, 157].
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Fig. 25. The variation of ${0) with strain obtained from the Jeener pulse sequence [145].

by interrupting the deformation process at intervals of a few percent of plastic strain
and I_ay then varying 7 in eq. (126). An example of such an experimentally determined
relationship between $(0) and ¢ is shown in fig. 25. During plastic deformation only
oOne signal can be obtained for given values of rand . Using fig. 25, ${0) was determined
[rom‘ the measured value of ¢ at the moment the decay was obtained. The exponential
relaticnship between the signal height and  (fig. 24) was used 1o determine Twor T,
from 5(0) and the single measured signal height at the given value of . "
Infig. 26 T,, is given as a function of plastic strain for various deformation rates &,

- ltisquite obvious from this plot that both parts of the relaxation time, the background
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Fig. 26. Ty, as a function of plastic strain for various deformation velacities ¢ [145,157],
relaxation time and the contribution due to dislocation motior, are independent of
the plastic strain.

An example of a typical 7}, measurement on °NaCl is stown in fig. 27. The
behaviour of Ty, as a function of deformation rate was found te be quite analogous

to that of T, as might be expected on theoretical grounds (see sect. 3). However, -

Fit)
b
i T=295K
H I ILch
-IzlPuln
A} Fit)
g Sit) + exp"'.rx,p|é.an
E 20 ’ Y1ol€el
: | spin-locking fisdH, R/ Sttds expl Vi l€401 )
< 5 R e .
% . ?th shift ¢
" ';" -'5.._ - &x 0
N, L iTpeess
é'zm“ﬁ:;‘ -.;r'i;;'L... e e e e L e 1
ihpe276) e
n 3.0004 30008 30002 30016 3 t

Fig. 27. Experimental resull showing two free induction decays Fis) after a spm-locking ficld M, of 2G
{sec insert) with zero and with finite plustic deformation rates & The values of F,, given in the figure arc
calculated from the usual expression Fit)= FOjexp( —1/T,,) in which (0) is the maximum of Fir) {160},
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T,, experiments have a much better signal to noise ratio than T,, measurements. in
addition an extra variable H, is available in T}, experiments (see sect. 4). For these
reasons most of the experiments carried out were spin-locking experiments.

Since T, is not a function of strain, the T\, experiments were performed as depicted
in fig. 28 One crystal is deformed with increasing deformation velocities. T, o is un-
altered when both the applied load and the plastic strain rate are zero. From the
results depicted here it is evident that the change in T,, is a function of the plastic
strain rate. It is observed that the line shape of the decay is unaffected during plastic
deformation. From these results and from the exponential decay the dynamic part
of the relaxation rate due to dislocation motion R, can be calculated according to

1 1
T (6400 T, (=0}

In order to check the conditions for the validity of the strong-collision theory
[16t, 149] for 2*NaCl and ®*'RbCl, T, and T, were measured during plastic deforma-
tion. The result based on the strong-collision theory is applicable only in the limiting
case of sirong collisions where the sudden quantum approximation can be used
[162] (sect. 4). Furthermore, the strong-collision theory may only be applied if the
time t between jumps is much longer than the inverse of the dipolar line width
frequency and the energy of the quadrupolar system is not much larger than that of
the dipolar system  i.e. before each jump one common spin temperature is established:
t>(wp)™ ' and HA<3HE.

RO (128)
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Fig. 28 Experimental run consisting of conseculive compressive deformations at increasing sirain rates.
The associated decrease in the total relaxstion time Ty, of NaCl is shown in the upper half of the diagram.
The variation in the relaxation time T, » follows that of the strain rate without any measurable time lag [84].
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T, was measured alter a pulse sequence 7 —1 —1x; no change in signal height os
line shape was observed with respect 1o the non-deforming case, as is illustrated i
fig. 29. From fig. 29 it may be concluded that T, is unalfected by the plastic deforma
tion rate £

In ®”RbCl, T, was determined as a function of plastic strain rates using a pulse
im—t—p [111]. Because the signal height given by S=5{0)xp{—1%/2T3}) was
found to be constant (see fig. 30} for the same t, it was concluded that T, is constant
and unaffected by the plastic deformation rate £. 5

From the constancy of T; and the change in the spin-lattice relaxation time in the

—time
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Fig. 29. Two decay curves of **NaCl at 20°C alfter a pulse sequence x —t =1n. The signal height Is given
by 5=S01{1 -2 expl —1/T,)] [145].
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Fig. 30. Spin echo in *"RbC] at 20°C after a pulse sequence in —1 —f(f=
is due Lo the increase of the dislocation density with plastic deformation [ 145).
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rotating frame T, , during plastic deformation it may be concluded that a dislocation
line actually jumps in a time considerably less than (wp) ™"

Whether or not the concept of a common spin temperature before each fump_is
valid depends also on the values of H3 and H3. This will be discussed in the next
section.

Before concluding this section. however, it should be noted that a more general
theory than that of strong collision was presented in sect. 4 following Wolf [163).in
which there are no limitations in the mean time of stay t of dislocations. Especially
when crystals are deformed at constant deformation rates £ in a very large rate interval,
say from 10™* to 10? s~ !, the strong-collision model fails. Experimental evidence will
be presented for Wolf's NMR relaxation theory in sect. 5.2.5.

5.2.1. Test of the validity of the theoretical model

The dislocation-motion induced part of the relaxation rate 1/T, o isgiven by eq.(121)
of sect. 4 [146]:

I R = ‘sQ(Vz) yQ(L)-

Too Hi + H2 ¢bL =

where Jq is a quadrupole coupling constant, (V'?) denotes the mean-squared electric
field gradient due to the stress field of a dislocation of unit length and H, is the mean
focal field at a resonant nucleus determined by the local dipolar field Hg and the local
quadrupolar field Hq:Hi = H3+ Hi. The quadrupolar geometry factor gq depends
on the mean step width L of a dislocation. Equation (129) is valid as stated before in
the strong-collison region where a common spin temperature exists between succes-
sive dislocation jumps.

In order Lo obtain experimental proof for eq. (129}, Rf, was measured as a function
of & with H| as a parameter {fig. 31). The slope of the curves uploéx2x1073s s
about 1 as predicted by eq. (129). According to eq. (129 a plot of the relaxation time
Tio=(R$)™! versus H? will yield a straight line, which can be extrapolated to the
intercept at Hi= —H} = —y~%({wd) + (w3))~*. The slope of the line is determined
by Cé™1:

(129)

Ci'= obL
da(¥*)gqlL)

where C is approximately constant. Figure 32 shows the result of such an evaluation

of the experimental data, confirming the theoretical predictions of eq. (129). The

occurrence of an apparent common point of intersection of the different experimental
curves with the H} axis is explained by the fact that the change in H} with strain in

£l {130)

. the different samples yielding the data in fig, 32 is small compared to H3+ H} and

~ lies within the experimental error. Furthermore, the ratio of the slopes of twe different

* curves in the figure is equal to the inverse ratio of their deformation rates ¢ as required

by eq. (130).

In these measurements the crystals were oriented with one of the {110} directions
parallel 1o the large external field H, so as to avoid a possible orientation effect.
Subsequently R§, in 2*NaCl was measured as a function of the slip-plane direction
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relative to H . No orientation dependence was observed withiin am enmror of about
1075; this is in good agreement with the theoretical model usek! ot the celculation
of go(L) as described earlier in sect. 4. . :

So far only the qualitative agreement between theory and experiment has been
discussed. In order to determine whether there is a quantitative ngmement dhe values
of the different parameters of eq. (129), viz. dq(V2), {wd) and {23} dhoudd be known.

For the shape of the free induction decay after the locking piss (see fiz. 27) the

following expression holds ([103], p. 10):

Fn(”=(.'_lnD(‘)‘{"QD“D*‘(”, “3]’

where F(t) is the normalized decay function, €_q;2 and ¢, are the tramsition prob-
ability coefficients and D(t) and Q* (1) the dipolar and quadrupolar Fourier cosine
transforms, respectively, of the distribution functions.

With I=3 for 2*NaCl one obtains ([103], pp. 62):

L 6=06, QT@)=02) (132)
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Fig. 32. T\,c of *’Na versus H}. The intersections of the lines with the abscissa are approximately at one
poinl. given by ~2.6 G* {54, 145, 160].

i Assuming Gaussian distribution functions [eqs. (55), (56) and (39)],
Din)=exp( —1(Aa%)s%),
land

{133

Q) =expl —1(u*)t?), {134}

'where (e‘}"" and {¢*)'/? are the dipolar and quadrupolar line widths (L (wd)i?
and ${w}}'3, respectively), the resulting expression for F,(1) becomes:

Ful)=04 exp( ~1(A)1%)+ 0.6 expy — 1A% ) Hexp( ~ 2(a?)r?). {135)

. Fitting F, 10 the measured free induction decay, the dipolar ehergy term {3} and
ithe quadrupolar energy term {w}) can be obtained at several stages of the deformation
process. From these analyses it was found that (wh) =32 x10°5"2,in good agreement
Mfrllh the value 40 x 10° s~ as given by Hebel [164], and to first order independent
ol strain.

| The restlts of the values for (wd) thus obtained as functions of the applied stress

are shown in fig. 33. Using a statistical distribution of dislocations one may write
[eq. (20)]:

(wd)=Ap=y23¢(V?)p, ‘ (136}

where 4 is a constant (~0.13 cm? -2 for 2*NaCi) and p stands for the total disloca-

: lion density. Because of the linear relationship between {wd)''? and the applied
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Fig. 33. Linear relationship for NaCl between the applied stress and (wg)' measured on #*Na and

on **C1. The different sensitivity of the two probes is mainly caused by the differance in the nuclear quadru-
polar moments @ and in the gradient elastic constants {table 2} [84].

stress o depicted in fig. 33. it confirms the well-known propor ionality between the
shear stress and p'/2 in stage | and stage 11 which was found by Matucha et al. [52]
and Hesse and Hobbs [34]. The maximum value of H in ttese experiments was
1.3 G2, which satisfies the condition that H3 is not much larger than H3( 20.6 G*).

Further evaluating eq. (129) quantitatively, a preliminary estimate of the average
distance between obstacles encountered by a “jumping” dislocation can be made.
Taking the curves for 2*NaCl in fig. 31 it is observed that

Rp=ClH,k. (13N

Numerical evaluation of the experimental results yields the vatue 161 for CIH,) at
H,=2G. Quantitative agreement belween eq. (129} and the experimental result
[eq. (137)] is obtained, using eq. (136), only if

YV H] +{wi) + (wd)
A
where (wd) + (wd) =y*H{. Inserting the values of C(H,), (w3} =32 x 105 s™ %, {wd) =

16 x10°s7% {fig. 33), y2=50x 10° G~ ?57 %, A=0.13cm?s %, =05 and b=0.396
nm. it follows that:

4o s -1
=631 x10°m™,
L
From the calculated values of go/Nb (sect. 4) it is concluded rhat only dislocation
jumps across large distances satisfy this equality. Taking go approximately equal to 1,
L is equal 1o about 4000 Burgers vectors (= 1.6 x 1@ % m). This value found for L

G4

"f= CiH,) b, (138)

(139)

———
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agrees reasonably well with the distance between the dislocations given by p /2,
which was found to vary between 5x 10 m and 0.5 x 10 "*m in the deformation
test (fig. 331 This agreement would confirm the idea of dislocation motion impeded
by forest dislocations.

The valuss for Rf, for **NaCl and for *’RbCl (fig. 31}, where the same dislocation
mechanism operates, are different, since the factor (w3)Ay2HE+1*H1) in eq. (129)
[using eq. (136)] is different for the two nuclei. For nuclei with spin / the mean quadru-
polar energy (wd} can be written as

(wd) ~constant x ¢*, (140)

- with g=C, 0, where Q is the nuclear quadrupole moment and C,, is the corre-

sponding matrix element of the gradient elaslic tensor connecting the mechanical
stress tensar linearly to the EFG (sect. 3). The ratio R{(1)/RE(2) of the relaxation
rates (1 stands for *’RbCl and 2 for 2*NaCl) of the two systems (1. 2) measured in a
rotating field of the same strength H;=2G is given by eq. (129):

Rbi1} gl yH2H} + (w}i2)) + {wdi2))
RB2Y g3 vHDHE+ (wdi )+ (wd)

The dipolar second moments and the gyromagnetic ratios y of the two systems are
nearly the same. Taking into account the different constants C,, and the dilferent
quadrupole moments (**NaCl: C,,=75x10"dyn" "3, @=0.1» [103]: ¥’RbCl:
Cy=32x10%dyn "2, 0=0.13h [134]). a value of approximately 8 is obtained.
The latter is confirmed by experiments, where the ratio 8.5 is obtained from fig. 31
From these results it may be concluded that both for 2*NaCl and ¥’RbCl the con-
ditions for eq. (129) 1o hold are satisfied.

{141)

5.2.2. Eftect of the orientation of the compression axis on the mean free path of moving
disfocations in NaCl

The present scction will treat the results obtained using the pulsed nuclear magnetic
resonance technique for studying the deformation mechanism of ultra-pure sodium
chloride single crystals at room temperature (impurity concentration < 10 ppm). The
purpose of this investigation is twofold. First, to provide information about the
orientation dependence of work hardening. Results of applying four different deforma-
lion axes are presented: (100), {110). (913 10). (111). Second. to investigate the
seli-consistency of the work-hardening theory and of the NMR theory of moving
dislocations. and the compatibility of the latter with mechanical experiments. In
particular, the mean free paths L of mobile dislocations derived from pulsed nuclear
magnetic resonance experiments are compared with the values predicted by work-
hardening theory.

In that connection, it is to be understood that the physical model of dislocation
motion applied here assumes a thermally activated motion of mobile dislocations
between strong obstacles viz. dislocations and impurities.

Because the components of the stress in the glide direction and in the glide plane
depend on the direction of the cotnpression axis. the stress -strain (o versus &) curves
have to be reduced to curves of resolved shear stress against shear strain (t versus g}
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according tor=¢rand g = &/¢, in which ¢ is the Schmid factor. The 7 versus ¢ clurves,
resolved on {110} planes for [100] and [110] compression axes and resolved on
1100} planes for [111] and [9 13 10} deformation axes, are depicted in fig. 34 using the
Schmid (actors of the active glide planes which are listed in table 5.

In fig. 35 the accompanying results of the spin-locking experiments have been
indicated, where R, has been plotted as a function of the shear strain ratedon {110}
{fig. 35a) and on {100} (fig. 35b). The linear relation between Rp and 4 is expressed in
eq. (129). From this proportionality and with the aid of the experimentally known
local fields [(wd} + (wd) and the theoretically determined A, {eq. {136)] the mean
free path L for dislocations is obtained and listed in table 6.

From fig. 34 it may be concluded that there exists an orientation dependence of
work hardening. Work hardening is much higher for the (110) deformation axis than
for compression along the (100) axis. In addition, the work hardening along the
(M1} axis is similar to that along the (313 10) compression axis, However, the
predominant slip systems in NaCl-type crystals are four {L10}{ 110} slip systems
which are equally stressed for the {100] and [110] deformation axes. Nevertheless,

Table §
The Schmid facter ¢ for {1 10} slip direction
Deformation axis {100} {110} HL
{100} 0.0 0.5 041
{110) 0.3 025 0.4l
(91310) 0.5 0.13 0.36
{111} 0.47 0.0 027
NaCl Nac1
| 2] W} xis i3]
3] i [ e [m]
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Fig. 35, Relanation rate R, as a function of the shear strain rate d resolved on

planes [ 165, 167],
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Table 6
The mean free path L (units 10™% m} calculated from the
dependence of Rj on d using the theoretically determined
Ag values (units cm® 37%)

Deformation axis {100} Ag {110} Aq
{100) - 1.53 0.094
{110} 043 0.521 1.2 0.330
(91310) 022 0045 037 0075
(1) 029 0055 -

the [110] compression axis hardens inore strongly than the [100] because there exists
a finite shear stress on [100} planes when applying (110) compression which is
absent using (100} deformation. Extra hardening could be caused by activation of
slip on these secondary {100} slip planes and by the interference with: primary {110]
slip planes. According to Matucha {41] (sect. 2.1), deformation takes place by single
slip on one of the {110} planes right from the onset of macroscopic plastic flow
{stage 1). In stage 11 where a higher constant work hardening exists than in stage 1,
about 1% of stip occurs on {100} planes in {i10) oriented specimens.

In general, it is to be expected that il L increases, all other variables remaining
constant, then the plastic strain ¢ would increase approximately in proportion, and
that the strain hardening #t/8a would be inversely proportional to such an increase.
Although the experimental scatter is much too large for any quantitative check of this
prediction to be made, a comparison between the L values obtained for various axes
of compression and tabulated in table 6 and the slopes of the strain-hardening curves
in fig. 34 shows that this is broadly true, especially for crystals in stage 1. ie. oriented
along [ 110] or [100]. For crystals in which stage [ is absent, viz. those oriented along
[111] and [9 13 10], this correlation does not seem to be valid.

Crystals compressed along (111) have no resolved shear stress on {110} planes
{table 5). They deform by a combination of {100} and {111} slip |55]. The work
hardening rate (fig. 34) is much higher compared to that for deformation along
(110), which is in accordance with the observations of Franzbecker [26]. In (9 13 10)
oriented crystals slip also occurs on {110} (110} systems [39, 40}, while not all {100}
planes are equally stressed.

From these analyses, the sell-consistency of the work-hardening theory, of the
NMR theory of moving dislocations, and the compatibility of the latter with mech-
anical experiments might be concluded.

5.2.3. Influence of the impurity content on the mean free path of moving dislacations in
NaCl

The main obstacles at which dislocations can be held up are points where other
immobile dislocations (forest dislocations) cut the glide plane, or point defects such
as impurities. The intersection of mobile dislocations with lorest dislocatians can be
hard to accomplish because the intersecting dislocations may react :and form small
nodal dislocation segments, which lower the local energy significantly: Therefore these
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obstacles are referred to as “strong” obstacles. In alkali halide crystals of monovalent
ions, divalent impurities are eflective obstacles. To preserve charge neutrality in the
fattice. each impurity ion, e.g.a Ca®* jon in NaCl, is associated with a cation vacancy.
These dipoles interact with dislocations and therefore also influence the mechanical
properties. At temperatures below 150" C the obstacles are fixed and can be overcome
only by thermal activation. whereas at higher temperatures the defects become
mobile and are able to follow the moving dislocations, which gives rise to a drag
force. Apart from single dipoles, aggregates of dipoles are also present in the crystal.
Their number and distribution depend strongly on the thermal treatment previous
to the deformation and on the temperature of deformation itself [169].

Considering the fact that the mean free path L in eg. (129) is determined by the mean
distance dy between forest dislocations and by d,, the mean distance between point
defects, eq. (129) is refined by insertion of:

11 1
L= + Tp . (142)
Relaxation measurements have been performed on NaCl (001) single crystals
doped with d.fTerent amounts of CaCl, ranging from 7 to 340 mol ppm in the temper-
ature range from 10-270"C. The spin-lattice relaxation rate in the rotating frame is
measu-ed by means of the spin-locking technique. In fig. 36 the value of R{=
Ti,'(6#0) is depicted as a function of the strain rate ¢ in the direction of the com-
pression axis for single crystals doped with different amounts of impurities. Raising
the concentration of impurities will diminish the mean distance d, and therefore the
relaxation rale will increase. The mean [ree path L can be determined with the aid of
eq. {129), yielding for pure crystals a value lor d¢ of about 1.0 um. Evaluation of the
data using eq (142) gives values for d, which are plotted in fig. 37. These results do not
correspond with the values obtained from calculations of the mean distance between
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Fig. 36 Dislocation-induced part of the relaxation rate R§ as a function of the strain rate & In 2*NaCl
single crystals doped with different amounis of impurities [ 170}.
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Fig. 37. The mean distances dy between pointlike obstacles as a function of the Ca?* conceration in
NaCl as obtained from NMR Mmeasurements and those between large impurity clusters as obtained from
light-scattering experiments [172].

randomly distributed single point defects in the crystal with the given impurity
concentration C, according to:

dp =(M/CpN)'7, {143)

with M the molecular weight, ¢ the density and N Avogadro’s number. In fact d,
turns out to be about a factor of 100 larger than d,.

However, a moving dislocation interacts only with defects which lie in its glide
plane. The distance between randomly distributed point defects in the plane must
be proportional to C~'/2 [168, 171). The NMR data displayed in fig. 37 agree quite
well with this. However, d, is still found to be about 50 times larger than the distance
to the nearest-neighbour single-point defect in the plane dx. (dg will be less than dj
by a factor of about C'/%) It is therefore concluded that impurity clusters are present
in the crystals which have been slowly furnace-cooled, and as a result ol this the
number of local obstacles for moving dislocations diminishes.

The mean distance between the impurity clusters as obtained from light-scattering
experiments has also been plotted in fig. 37. These cxperiments determine the cistance
between neighbouring clusters in space which must be proportional to €13, Iy is
obvious from fig. 37 that the fit to this slope is less good than the slope —1 o>tained
from NMR measurements. It should be noted, however, that from the observations

~o
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the mean distance between the obsiacles in space is found to be larger than that
between obstacles in the plane determined by NMR. Because it can be argued that
di >dy. it must therefore be concluded that in the light-scatterin
the largest clusters have been detected. (dy should also be greater than dy if the

defects form clusters, provided that the size of the cluster is independent of the con-
centration C.)

3.2.4. Measurements of Ty and T\, us functions of temperature

As long as the mechanism of dislocation motion is unaffected by a lemperature
change, Rp(=T,"!) should be independent of temperature, as it is a function of this
mechanism only. In fig. 38 the results of such measurements performed with the
Jeener technique are shown in the temperature range from -60°C to 20°C. The
values of Rp oblained at different temperatures exhibit no eflect of temperature
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Fig. 38, Comparison between the results obtained by the spin.
Pulse-pair techniques {Ro). The results of the latter were ol
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Fig. 39. The static spin-lattice relaxation rate in the rotating frame as a function of tlemperature in **NaCl
(£=01[107, 172}

In fig. 39 spin-lattice relaxation rates T}, ! are depicted as functions of temperature.
These static measurements were performed on ultra-pure single crystals (impurity
concentration < 10 ppm) and on crystals containing 72 and 690 mol ppm Ca?* ions.
Up to temperatures of about 150°C the lattice part of 1/T, o in the undoped crystals
increases with T, whereas above this temperature an exponential increase occurs
with an activation energy of 0.89 eV, The same energy is found from the slope of the
high-temperature part of T;;' in doped crystals. In this region the cation-vacancy
diffusion is the dominant process and the migration energy corresponds to the above-
mentioned value [174]. The effective activation energy of the cation vacancy has been
determined by Dreyfus and Nowick [174] based on the ionic conductivity of doped
NaCl crystals, and was found to be about 0.8 eV. However, a certain discrepancy in
this value exists among various authors, ranging from 0.72 eV [175] 10 0.85 eV [176].

In the temperature range between 50°C and 180°C the static relaxalion rate T
depends on the thermal treatment of the doped crystals. The as-grown crystals show
an exponential increase with a slope of 0.36 eV, while the crystals alter an anneal at
650'C and cooling to room temperature at 50°C/min have higher rates increasing

i

with a slope of 0.31 eV. These values are close to the dissociation energy of dimers (a

| configuration of two dipoles). Crawford [177] presented a corpus of ideas regarding

the processes underlying the aggregation of divalent cation impurity dipoles. It was
shown that the third-order kinetics experimentally observed by Dryden [178] which
governs the aggregation can be accounted for on the basis of a two-step process,
namely: {a) two dipoles come together to form a loosely coupled pair which in turn (b)
captures a third dipole to form a trimer. This process can yield a reaction rate pro-

- portional to the third power of the dipole concentration only if the dimers are in
i quasi-equilibrium with the free dipoles, a condition which implies that the energy

binding the pair is rather small 0.2 eV. Nevertheless, the activation energy for the
segregation reaction in NaCl:Ca?* is rather small (0.04 eV) which is probably too
small to be significant. Dubsiel et al. [179] concluded from T, spin—{attice relaxation
lime measurements in NaCl:Ca?* that aggregation processes take place in the range

. up1o 200°C. For higher temperatures no change in the dipole concentration could be
i measured. For doping up to 500 ppm mainly dimers and trimers were formed.
. Analysing their experimental curves they concluded that the enthalpy for the dipole

motion was about 0.6 eV and the dimer association enthalpy about equal 10 0.3 eV,

: which is in accordance with the results presented in fig. 39.

Measurements of T;, on deforming crystals as a function of temperature yielded
the data depicted in fig. 40. They were obtained at a strain rate £ =04 s~ ! with defor-
mations of ¢= 39/ and 7% for the undoped crystals and about 5% for the doped crys-

 tals. It can be seen that the room-temperature value of the mean [ree path for moving

dislocations hardly changes in the region up to 150°C. The very few impurities are
fixed obstacles with respect to the mobile dislocations and the interactions of the

- moving dislocations with forest dislocations dominate the magnitude of L. Therefore
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Fig. 40. The mean free path L as & function of temperature for purc and for doped (40 mol ppm Ca?*)
NaCl (100) crystals using a strain rate §=043" ! [170].
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more highly strained crystals show a slightly lower value of L. Above 150°C the
migration of vacancies becomes important and the mobile dislocations are assisted
in passing the obstacles [ 152]. This yields an increase in L from the same tem>erature
where the static relaxation rate Ty, starts to increase (see fig. 39). At 260°C L is
almost 4 um for the pure crystal at £=23%. The fraction of weaker obstacles, which
can be overcome quite easily at raised temperatures, is smaller for crystals strained
to e=7%. This moderates the increase in L at higher temperatures. The extent to
which L increases is obviously smaller in the case of highly deformed crystals on
account of the change of the ratio strong/weak obstacles.

Some dynamic spin-lattice relaxation measurements on NaCl single crystals with
40 mol ppm Ca®* as a function of temperature are also given. Using eq. (129), the
mean free paths L have been obtained from these experiments, and they are depicted
in fig. 40. At 260°C L has decreased by about a factor of 4 with respect 1o the undoped
crystals. The variation is caused by the fact that the number of obstacles increases
because of the dissolution of dipole aggregates, and the mobility of these point
defects increases with temperature; these effects are opposed by an increasing thermal
activation of dislocations detained by obstacles.

In the temperature range above 200°C the mobility of Ca?* impurities which are
present even in the pure crystals used (~7 x 10™* mol?/) is sufficiently high [181]
for them to follow the mobile dislocations, inducing a drag stress by the formation of
an impurity cloud around the dislocation. It is a plausible explanation for the decrease
of L above 200°C, which is more pronounced in the doped crystals (see fig. 40 Below
150°C the impurities are rather fixed obstacles with respect 1o the mobile dislocations.
The interaction between disiocations and impurities is determined by ‘hermal
activation.

The Ca?* impurities are not only effective as fixed obstacles for moving dJisloca-
tions but can also be effective by forming the so-called Snoek atmosphere of elastic
dipoles oriented preferentially in the stress field around the dislocation, causing the
Snoek stress [180]. This Snoek stress is necessary to break away the dislocation line
from the Snoek atmosphere and superimposes on the short-range stress of thermal
activation [182]. Frohlich et al. [181] concluded from their strain-rate semsitivity
measurements on NaCl:Ca’* that the minimum of the strain-rate sensitivity at
150°C deformation temperature is related to the Snoek effect.

3.2.5. Mobile dislocation densit ¥
Starting from the more general theory of Wolf [163], the relevant quadrupoiar parl
of the rotating-frame relaxation rate induced by the motion of dislocations has been
calculated without any limitations on the mean time of stay t and is depicted in fig. 17
(see sect. 4). To do this, a modified model of thermally activated Jjerky motior: of dis-
locations as given by Argon [183] was introduced into the relaxation theory (sect. 4).
For the relaxation rate in the strong-collision region, one obtains [see sect, 4.3,
€q. (109}], using H3=054(V?)p,,

HE Pm 1

P - -
R“‘H,2+H.1,+H§. p o7 e

%4

v

where p, and p, are the mobile and total dislocation density respectively. Introducing
a mean _vebcily v of the dislocation by v=L/t and taking the Orowan equalion
£=gp,bE one obtains eq. (129).

1:\ specific formula based on Wolf's theoretical model for the relaxation rate can be
written [eq. (117)] for large H, as

RG 3H3 Pm  wit

CHIYHR+H} p, 114wl

(145)

The rotat.ng-frame spin-latlice relaxation measurements were performed at room
lemperature on **Na in NaCl and NaF single crystals. The NMR coil of the spectro-
meter was part of a “fast” tensile machine, described clsewhere [ 184]. Figure 41 gives
the results of Rf, measurements on #*Na in NaCl and in NaPF as a function of ¢ for
constant locking fields H,. The measurements were carried out at a mean constant
Plastic deformation £ of about 3% The small value of ¢= 3% leads to a relatively
small local field H, =(H3+ H3)'*=1.3G since the Quadrupolar field Hg depends
on ¢, i.e. on the mean elastic strain field due to the presence of dislocations. Figure 41
indicates that eq. (144) is valid not only for low valyes of the deformation rate ¢ but
also for high values. The measurements point to the strong-collision approximation
being applicable over a large range of deformation rates €=5x10"% 10 Is)
where Rp, is found 10 be proportional to 2. '
i F ron; 3lhe straight lines in fig. 41 the ratio REU1)/RE(2) (1" stands for 2*NaCl and

2" for 2*NaF) is experimentally found 1o be equal to 2.0. A theoretical value of the
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Fl‘g. 41. Mcasured data of the dislocation-induced Part of the relaxation rate R¢, of **Na 1 single crystals
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Table 7
Different values for 2*NaCl and ?*NaF appearing in the
relaxation rate eq. {1469

BNaCl 2 NaF
H 185 x 10" dynem ~2 165 = 10" dynem 2
€,y 75x10"dyn- ' 6.2x 10* dyn-'"2
b 0.396 nm 0.327nm
Ho  098G[136] 18G[123]
H, 22.G 55G

same ratio may be found, using the relation Ho~ pbQC, . analogous to eq. (141):

REAL)_ o (HE+ HE), + X “*h3bi *HY) (146)
R&2) (HE + HY),

where p is the shear modulus, C,, is the corresponding matrix element of the gradient
elastic tensor (sect. 3), X represents the ratio (uC,),AuC,,);. and @ is the n;;clear
guadrupole moment. Taking into account the different values for 2*NaCi and NaF
as listed in table 7 a ratio of the relaxation rates of approximately 2.7 is obtained.
which is in reasonable agreement with the experimental value (Ho=085G, Hi=
1.7 G2, see fig. 42) [123, 136].

From the condition for the maximum of the relaxation rate

20 Tm= 1. (147)

the mean time of stay between two consecutive jumps may be determined. The relative
shift of the two maxima is explained by the fact that the effective frequency w, is
larger for 2*NaF than for 2*NaCl, as follows from the dala given in table 7.. .
According to eq. (147) the mean waiting time 1, between two jumps of a dislocation
line can be obtained in a direct manner from the maximum value of R§. With w, ;=
1.8 x 10 s~ ', derived from the values given above, the following value was found for
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Fig. 42. Relaxation lime T\, of 2*Na in NaCl versus H? for £=3%, é=0.463". The intersection of the
straight line with the abscissa gives & local field H, = 1.3 G [153].

ne

the time t,,:

Tolfn=205"")=28 x 10" %5, (148)
and the mean velocity at the maximum P=Lft, with L~2 um is

Cul€m =205 '}=0071 m/s. {149)

Using Orowan’s relation it is possible to estimate the density p,, of the mobile dis-
locations as:

Po=E8dbb,=14x10'2 m"2, (150)

with ¢ =1 and b>~04 nm.

The value of p,, indicates that a relatively high fraction of the dislocations in the
crystal is mobile. Hesse and Hobbs [34] found a value of about 3.8 x 10'?m -2 for
the 1otal dislocation density p, for an applied external siress of 9.5 kp/mm? which
corresponds approximately to a plastic deformation of e=3%, which is the strain
value of interest here. Using the p, value of Hesse and Hobbs results in a ratio of 0.37
for pw/pi. On the other hand, the fraction of the mobile dislocations can be estimated
from the maximum value of Rf, which is attained {see sect, 4):

3 H§  pm
g TR
Using the data quoted, the experimental value Rblta)=3405"" of fig. 41 leads to
Pw/p.=0.26. which is in quile reasonable agreement with the value obtained above.
[t should be remarked here that the good conformity of the two values is more or less
fortuitous, since the various data used for the evaluation are applied to different
crystals and themselves are subject to appreciable error and uncertainty. Nevertheless,
it should be noted that the condition of eq. (147) for the maximum of the relaxation
rate is to a first approximation independent of the precise mode of dislocation motion
(see for a general discussion ref. [151] and sect. 4).

In this sense. the determination of the mean time of stay t from eq. {145) could be
characterized as direct and relatively independent of the particular model of the
dislocation movement employed.

(151)

5.3. Measurements of T',, during plastic deformation of polycrystailine Al

As has been mentioned before, ultra-pure (99.999%) polycrystalline aluminium
samples were used for the investigation on metals. The sample under investigation
was plastically deformed by a servo-hydraulic tensile machine of which the exciter
head moves a driving rod with a constant velocity. During the deformation 27Al
NMR measurements were carried out with a Bruker pulse spectrometer operating at
15.7 MHz. Immediately before and after the plastic deformation the magnitude of the
background relaxation time was measured. The motion-induced part of the relaxation
time could be determined from the experimental data by means of eq. (128). All
measurements were carried dut at plastic deformation strains & between 5%/ and 30
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To be sure that the increase in the nuclear spin relaxation rate during the plastic
deformation is due to dislocation motion, the relaxation rate was measured while
moving the sample with a constant velocity without any deformation..No change in
the relaxation rate was observed within the experimental error.

3.3.1. Test of the validity of the theoretical model

According to eq. (129), in the strong-collision region a plot of the dislocation-induced
contribution to T), against the square of the locking field H, will yieldja straight line
which may be exirapolated lo find the intercept with the abscissa at HZ = —~H3i.
Figure 43 shows such a plot for T}, at a constant strain rate é at T=77 K. The total
local field thus obtained is H,=4.5G. On the other hand, in polycrystalline alu-
minium Van Vieck’s formula {124] leads to a value for the dipolar local field Hy, of
about 2.9 G. From these data, the quadrupolar local field Hq caused by the stress field
of all dislocations in the sample (mobile as well as immobile dislocatiofs) is obtained
as Ho=(H{ —H})'*=34G.

It has to be noted at this point that Van Vieck’s formula leads to a value for the
dipolar field Hy, in the laboratory frame. However, since the total local field H is
measured in the rotating frame, first the dipolar field in the rotating frame has to be
calculated from an expression analogous to ¢q. (91b) {H3),=(AH3 )3 in order to
find (H3), by making use of the value for H. A recent analysis by Tamler et al. [188)]
showed that H, ~3.1 G leading to (H}),~7.2G? using Hp~2.9 G. Nevertheless,
this rotating frame aspect does not greatly affect the value oblained for the mean
jump distance L as described in the following section if H, < H,.

In fig. 44 the motion-induced part of the relaxation rate, T,,5 measured with a
locking field H; of 10 G is plotted as a function of £ at two different: temperatures
{77 K and 298 K). For comparison the results of 2*Na NMR measurements in NaCl
are also inserted in the figure. The slope of the curve up to é=~10s™" is found to be
proportional to the strain rate £ as is predicted by eq. (129). So we may now conclude
that the theoretically derived formula for the dislocation-induced part of the relaxa-
tion rate is also valid in the case of 27AlL
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Fig. 43. Plat of the dislocation-induced contribution to the relaxation time T, against the square of the
locking field H, of 27 Al at a constant sirain rate ¢ at 77 K [185].
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IFig. 44. Dislocation-induced part of the 27 Al relaxation rate T,,' in aluminium as a function of & for two
different temperatures. H,=10G {185].

3.3.2. Mean jump distance of moving dislocations in Al

As discussed above, from the magnitude of the slope of the curve R versus & which
has a value of about 30, the mean Jjump distance L can be determined providing the
other parameters in eq. (129) are known. The magnitude of the Burgers vector in Al
i3 0.286 nm and the Schmid factor ¢ for polycrystalline material has been taken to be
0.33 [186]. Using the nuclear data of 27Al the quadrupole coupling constant 5, was
calculated to be 2.9 x 10725 G2 dyn~' cm*. The mean-square ¢lectric field gradient
¥} is about 1.1 x10'® dyn cm~2, which can be derived [188] from the work of
Preusser [187]. The substitution of these values into eq. (129) with Fo =085 (see

- sect. 4) yields a mean jump distance L of about 0.1 um.

| The value of L corresponds roughly with the mean distance between dislocations in
deformed aluminium, which is of the order of 10~* cm. The rather low value of L
found by NMR will be discussed in sect. 6.3. So far, the agreement would confirm the
ideas of dislocation motion in ultra-pure f.c.c. metals impeded by forest or network
dislocations (see sect. 2.2). In addition, the slope of the curve in fig. 44 should be
roughly independent of temperature, since it is known that for many [.c.c. metals the

"dislocation activation mechanism remains the same between 77 K and 300 K : this

is in agreement with the data depicted in fig. 44.

i The gliding dislocations have to cut through a forest of intersecting dislocation
lines, which involves the creation of jogs at the cutting points. The energy of a jog in
aluminium is about 0.5 eV [189], so that thermal fluctuations enable glide dislocations

to cut through the forest at ordinary temperatures. At low tem
. peratures [190
(<200 K) the obstacles become less “transparent”. L190]

| This is in sharp contrast with jog formation in NaCl-structured materials, where
the activation energy for movement of a jog or the Jormation of defects al the jogis
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much higher, about 3 eV [191]. When two dislocations intersect, each acquires an
offset segment of the magnitude of b of the other dislocation; whether the offset is a
jog or a kink depends on the orientation of the segment with respect to the Burgers
vector and the dislocation line. In NaCl the jogs and kinks can be charged or neutral
depending on whether they are one interionic distance or two interionic distances
long ([13]. p. 397). Because of the rather high energy of a jog in NaCl it is very likzly
that the forest dislocations act as strong obstacles for dislocation motion. In alu-
minium, because of the high stacking-fault energy (table 1). a dislocation can easily
cross slip onto another {111} plane. The constriction in extended screw dislocations
which is needed for cross slip is formed quite readily in metals with a high stacking-
fault energy such as aluminium. Therefore the mean free path of moving dislocations
in Al will be determined by statistically stored dislocations giving rise 10 Lomzr-
Cottrell barriers rather than by forest dislocations.

Based on the early studies by Cottrell and Stokes [ 190] of the effects of temperature
on the plastic properties of aluminium crystals, it appears that the important elastic
forces on a glide dislocation are those from its immediate neighbours, rather than
long-range stresses from piled-up groups. The elastic forces between dislocations and
intersections of dislocation lines can both be ascribed to the presence of nearby
dislocations. It should be emphasized that at this stage the interpretation has neces-
sarily a speculative component. Nevertheless, dislocations at various velocities in
metals have been studied for the first time by means of the pulsed nuclear magnetic
resonance technique. In the next section we discuss the interpretation of the mean
jump distance L measured by NMR in terms of the statistical slip distance [A,.

eq. (6)].

6. Discussion and conclusions

6.1, Point defects

Plastic deformation results in the generation of vacancies, interstitial atoms and
probably more complicated point-defect clusters also. The question arises whether
the change in T, ,p, during plastic deformation can be due to the diffusional jumping
of point defects. How can we be sure that we see dislocation motion and not vacancy
motion, induced by jog dragging? Quantitative predictions regarding the production
rate of point defects are still in a distinctly unsatisfactory state. This rate is determmed
by the dislocation interaction mechanism of the formation of point defects; the
moving jog mechanism, or a more static process such as the combination of two edge
dislocation segments of opposite sign on neighbouring slip planes, resulting in a row
of point defects [192]. Clearly, the motion and generation of dislocations determine
in their turn these interactive processes.

Secger [193] has pointed out that, depending on the temperature of deformation,
diflerences may exist in the mechanism of defect production, according fo the relative
importance of thermal activation. The details of the mechanism of generation of point
defects during plastic flow are not yet completely clear. Undoubtedly a dependence on

stress and strain rate exists. However, it seems to be rather difficult to determinz the

20
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exact strain dependence. This is due primarily to the difficulty of interpreting observ-
able data such as resistivity, X-ray patierns and density in terms of the concentration
of point defects. ‘

For rocksalt-structure crystals deformed in compression on essentially one slip
system, the general conclusion is that vacancies (single and double) are produced.
The vacancy concentration increases with dislocation density and with strain rate,
but there appears to be a threshold strain for appreciable vacancy generation. At
sufficiently high temperatures the vacancies are able to form small clusters.

Below, several arguments will be given leading to the conclusion that the effects on
T,,0 in our experiments are due to dislocation motion.

(1) As has been mentioned before, the concentration of point defects increases with
increasing strain. Although it may be questionable to calculate the density of vacancy
pairs as a function of strain from the changes in density during plastic deformation,
Davidge and Pratt [25] calculated for the change with strain of the density of point
defects in stage 1: 0.7 x 10'? cm ™%, and in stage 1i: 1.3 x 10" cm ™2, If Rf, should be
due to the movement of these defects it should be a function of the plastic strain.
From fig. 26 it could be concluded that both parts of the relaxation lime, the dynamic
part due to dislocations and the stationary part, are independent of the plastic strain.
Therefore RE, depends on the dislocation motion and is not alfected by the vacancy
motion.

(2) The rate of production of point defects appears to be independent of the strain
rate as predicted by the models of Saada {194]. Van Bueren [195, 196] and Seeger
[193]. which have been experimentally confirmed. On the contrary, it was found here
that Rf, depends on the strain rate £.

(3) At room temperature the vacancies in NaCl are rather immobile. For that reason
it is observed that in the temperature range of the experiments, in the range lrom
77 K to 293 K, Rb is not a function of temperature. The cation--vacancy diffusion
process actually causes the increase of the mecan free path L for T>410K (fig. 40),
since climb of dislocations plays a major role in the deformation behaviour of NaCli
crystals in the temperature range above 425 K [152]. Due to the process of diffusion-
controlled climbing and more simply by thermal activation allowing the bypassing of
obstacles, the mobile dislocations are able to overcome weak obstacles at higher
temperatures, which leads to an increase of the mean distance L between the effective
obstacles (see also sect. 5.2.4). Moreover, the activation energy of a cation jump into a
vacancy pair in NaCl is approximately 1.4eV [197], so that a local motion by
vacancy-cation jumps affecting T}, is also not very likely.

The situation in Al is quite different. Vacancies are mobile and can be annealed out
in Al between about 200 K and 350 K. From studies of the isochronat annealing peaks
observed for Al after quenching, it might be concluded that the divacancy is more
mobile than the monovacancy and the trivacancy is at least as mobile as the divacancy.
The migralion energies are equal to 0.65 eV, 0.50eV and 0.47 eV for the mono-, di-
and tri-vacancy respectively [ 198]. Nevertheless, according to fig. 44, no dependence
of R§, on the deformation temperature has been found in Al (77 K and 300 K). The
vacancies possibly produced are certainly immobile at 77K and mobite at J00 K,
and yet no effect was detected on R{.

8\
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(4) From a theoretical point of view, one might say that the long-range stress fields
of mobile dislocations induce a larger quadrupolar relaxation rate than the short-
range stress fields of mobile vacancies. The quadrupolar frequency wd [related to
5o{V?) in eq. (129)] varies as r ~? with the distance r, whereas the mean strain-irduced
quadrupolar frequency of a nucleus at a distance r from the dislocation line s pro-
portional to r~* [103). For that reason the production of an excess concentra:ion of
vacancies during plastic deformation has little or no effect on wd, which is, according
to eq. (136), only linearly proportional to the dislocation density.

6.2. Spin-difiusion limitations

From the experimental resuits of the measurements of T, and T; it may be concluded
that in the strain rate and temperature region considered, the “sudden” appraxima-
tion and the “strong” collision, i.e. the assumption of a common spin temperature
before each new atomic jump, hold for the materials investigated. The dependznce of
the NMR relaxation rate Rf on the mean waiting time 7 of a dislocation be ore an
obstacle, valid in both weak and strong collisions, based on Wolf's general theory
[140], was presented in sect. 4 and experimentally confirmed in sect. 5.2.5.

The experimental sensitivity attainable by employing rotating-frame relaxation
can be limited by spin-diffusion rates within the bulk of the measured spin systems.
Moran and Lang [199] developed a diffusion kernel solution to the spin-difflusion
equation and calculated the suppression of the induced decay rate by spin diffusion
for the case where this rate is due to self-diffusion of atoms. They found taat the
relaxation rate R due to slow atomic motion when no spin diffusion is involved is
suppressed by a factor which depends on the concentration of atoms jumping. Two
cases were obtained:

RE=Rpe™®, (locking time t< Ty}, (152)

RE=RE l—%; . {locking time t> TR), (153)

where Ty is the spin-diffusion time constant, determined by the average distance
AR between the jumping atoms and by the spin-diffusion constant D: T ={AR)}/16D.
The factor a is the spin-diffusion parameter which is proportional to the atomic
correlation time 7. The results of Moran and Lang show that the spin-d.flusion
suppression of the induced decay rate depends only upon local parameters, is inde-
pendent of the concentration of the sources, and in all systems reported so far. would
produce at most a 109 effect. So at most a 10% eflect upon Rj might therefore be
expected irrespective of the concentration of the sources. When adapting their results
to dislocation motion, a must be taken proportional to the plastic strain rate ¢, or

a=constant x & (154)

However, since R for the materials under investigation exhibits a linear variation
with £, the spin diffusion parameter a <1 [199), e *xl and (1+a)"! =i, or

{RB)erp=RE. 89- ' (155)

.3 Lisiocalions in sonids YA

Apparently in the experiments reported spin diffusion plays no significant role, in
agro.emcnt with the calculations of Moran and Lang. In the experimental data with a
maximum in R§, (reached at =205 "' for 2*NaCl, sect. 5.2.5), spin diffusion manifests
ll.sclf by a decreasing slope of the R§, versus & curve with increasing values of & Equa-
tion {155) can be checked experimentally [107] and the reduction of R predicted by
€q. (152) can also be determined.

6.3. Dislocation motion and dislocation density

The totai dislocation density p, was obtained using eq. 3 i

{wd) and p:{wd) = Ap,. The value A=0.13cm? s~ 2 ffa:qta{(lenﬁ };‘{;l: Br:ﬁlr::ﬁge?’est:z?:
[?00]. in which the Monte Carlo method was applied to calcuiate the quadrupole
t!lstorilon of the shape of the NMR echo signal caused by randomly placed disloca-
uons.. using linear anisotropic elasticity theory. A much simpler treatment using iso-
tropic linear elasticity theory, can be given as follows [103]: 4 is given b); eq. (71)as

A=4n2A} e (f3E). (156)
For isotropic solids

3 1 b 2
A e (fle)= (‘%—Q A=) ;_n C, :) (as{(f3(9)) +a (s 2PN), {157)

wher.e e is the clementary charge, C,, the gradient elastic constant connecting the
elastic tensor to the electric field gradient tensor, f; and f represent the orientation
functions of screw and edge dislocations, respectively, and ay and ag denote the
corresponding fractions of the two types of dislocations.

These fractions were experimentally determined by Davidge and Pratt [25] and
by Hesse [32] as as~0.2 and ag~0.8. The orientation functions are cqual to 0.55

~and 045 for (£} and (/). respectively, with ¢, the angle between H ; and the (100)

slip plane, equal to Lx.

Taking the intermediate value for C;, =7.5 x 10° dyn~ '/ ([103] p. 3
can be calculated for NaCl. The value obtained isy A= 0.(1[8 ?:m]’]: ‘3’4),wf::i§halilsd iﬁ
accordance with the value obtained by Baumhoer et al. [200]. ’

. Assuming a proportionality between  and p'? in both stages 1 and 11, fig. 33
yne!ds a value 4 ~0.07 cm s~ 2, which agrees reasonably well with the value obtained
bljf isotropic linear elalﬁicity theory. Hesse and Hobbs {34] also found a proportion-
:zn ::t:e;::: (gl.‘md p"'* in both stages of deformation by means of etch-pit measure-

So far, our results and the NMR theory are consistent, A proble i
how?ver, if account is taken of the observation that the megn disgntzp::::rt:dal;;?i
moving dislocation at room temperature, L~ 1 #m in the case of 2*NaCland ~0.1 um
in Al, does not vary significantly with strain as concluded from the strain indepcn&ence
of Rf,: A small decrease due to the increase of (w3) with strain is perhaps hidden in the
exper;mental scatter, but is certainly not significant. At lower values of H, an increase
of {w}) should become more prominent, but no such effect could be observed (fig. 31)
However, it should be noted that the nuclear relaxation experiment gives the n'lean.
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distance covered by an activated dislocation segment of un.speciﬁed lengtl?. Th‘use“;el:
arrive at the interpretation that in the case ol NE'ICI both in stage f and in :l:fless
decreasing lengths of the dislocation lines are activated to move qver almq;' i
constant distance with increasing strain For Al, b'aset.i on Ashby's apadySI nd‘:n.t o
and (7) [201]), Thompson et al. [202] found the slip distance al‘mo;st in et[:a aboui
grain size and strain for grain sizes of 20 and 200 ym and foc strains larger than
’ /ﬁcxt we will discuss the mean jump dis:anc; |L determined by NMR in relation to
ip distance in NaCl and in Al _ . ‘
theHa;tlue?:]zenaEZs';]pand Hesse [32] found that durin{; pzrae-yield slip a'nd dlsh.)czz::gn
multiplication had taken place on all four slip systems in ' NaCl_. Aftc.fr a;;‘pro;lum lani
0.2%, of plastic deformation the distance Ibc:uzreen the dislocations in the slip p
ini value of approximately 1.2 pm. '
rea‘lt‘:::i:rr:l;:;";r:::tivated plal:‘;s increases with increasir}g Slﬂ.lill mainly by mul::?(:l;
cross slip out of the original slip planes. Thus bro.ademng slip ban:s f?rml; wd; h
eventually fill the crystal at the end of stage 1. The du.stanc.e be'lween the ; }llp a:l i
then of the order of the distance between the dislocations in Sll.p plane§. : e polyg :
walls formed early in stage 11 limit the propagation of the activated dis ochuon :cg]
ments in the direction of the Burgers vector. The flistancg between l‘hese e\:ab ] (;cl:Vl ula:’
slip distance) 1.2 um agrees well with the mean jump distance measured by :
- Ciu‘::aj\ring the results from the nuclear relaxation cxperimen}s on Al wnllll1 th;it:
obtained [rom macroscopic strain-sensitivity and work-hardenn_\g curves, ed A\
has to be stressed again that the first method gives the mean distance w:;:le A i
activated dislocation segments of unspecified lengths.. whereas the Iat‘ter met ° g'i ce
the mean distance covered by an aclivated dislocation scg.ment which has the s?u:n
length as this distance if a random distribution of ubslac!es is assumed. A ct(l:!n;‘pansbe
will be made between our results on the mean free path in Al and those which can
i i from stress-strain curves. ‘
de;:v:gpi::: ttllsllat in the early stage of deformation of a po!ycrystal some :xarsd::m:gl
occurs of a type similar to the linear hardening c_;bservcd in §1ngle cr.ysla 5 agnd
hardening represents essentially uninterrupted shp. on the primary sllp'syhs"t)emda
would not be expected to be extensive in polycrystaliine Al because the grain boundary
restraints lead to multiple slip from the very beginning of the stress-strain curvei. |
On the other hand, the hardening sequence in single cryst'als seems to be crose 3
paralleled by the hardening curves in polycryslallil?e lmatenals. Jaoul _[203] togl:/
that stage 1 in polycrystalline stress—strain curves is limited to small slr:;ms upto : 5
elongation. Polycrystalline aluminium at room temperature .showe‘ no s zag 2
hardening but essentially a parabolic curve. As has been mentioned 1_nhsec'l].. h dls '
single crystals the extent of stage 11 hardening is related to the ease W.ll wl ic _an
locations cross slip to avoid obstacles on their way. Indeed. on deforl‘mng Alat
the extension in stage 2 hardening is limited because of the high stacking-fault en_ergly
[204]. According to Diehl and Rebstock [205] the mean path L of succcs;swi‘ Y
released dislocations decreases during stage 1l, according to the. formula already
written down in eq. (5) (assuming that the slip-line length is proportional to the mean

&4

slip distance):

L=ila-a*), (158)

the plastic strain at which region
ation density p and the Burgers

in which ¢* is a parameter slightly smaller than .

11 begins. 4 is related to L also through the disloc
vector b [54]:

L={A/pb)/2,
The work-hardening coefficient can be derived as
O=apbn/iz)?, (160)

Here n represents the number of dislocation loops per source and « is a numerical
factor of the order of ~0.06. Taking 0 equal to 5 x 10-3 . n=25[206] in egs. (159)
and (160), and the dislocation density about 10! cm - 2 [207], L is found to be of the
order of 1 ym, ie. much larger than the mean jump distance measured by NMR
(0.1 ym). This discrepancy will be discussed later. The constant observed rate of
work hardening can be understood by assuming that the number of piled-up dis-
locations per Frank-Read source varies but insignificantly during stage 11. Friedel
[192] also assumes the obstruction by Lomer—Cottrell barriers to be the main cause
of work harden.ng. In this theory, however, the barriers are supposed all to be formed
at the beginning of stage 11. Thus the mean [ree path of dislocations remains invariant,
only n increases continuously, in contrast to Secger’s theory.

Stage 3 of the stress-strain curve shows a certain temperature effect in polycrystal-
line f.c.c. materials. This temperature dependence points to the influence of obstacles
that must be passed by the dislocations with the aid of thermal fluctuations. Such
obstacles are predominantly Cottrell-Lomer barriers that must be passed either by
cross slip or by sheer force (breakthrough). In our experiments on Al the temperature

dependence of Rf, was found to be insignificant in the range 77 K-293 K, because of

the high stacking-fault energy. The by-passing of the barriers by slip on the cross-slip
plane which has a common sli

p direction with the primary slip plane, depends on the
stacking-fault energy. A meta

I like aluminium will soon exhibit stage 3 hardening
because the dislocations are narrow and thus cross slip can occur at low applied
stresses. The length of the slip lines does not increase in stage 3 as could be expected if

the Lomer-Cottrell barriers were collapsed by recombination of the partial dis-
locations. Seege: [208] has derived an equation for the shear stress 1, necessary to
cause partial dislocations of the leading dislocation in such a pile-up to coalesce:

. _[ 2112 2.},
i\ )
where y is the stacking-fault energy and n the number of dislocations in the pile-up.

Taking t, from experiments, n is found to be about 25. The size of the pile-up corre-

sponds closely with that which the Seeger theory postulates for the stage 2 hardening
model,

Hirsch [77] developed a general theor
up groups of dislocations are formed b

8s

(159)

(161)

y of stage Il hardening considering that piled-
ut that these then relax by secondary slip to



form the observed tangles which are the main obstacles to further slip. New dislocation
sources then operate, and when their dislocations pile up near the obstacles they also
relax and contribute to the observed tangles. The number of obstacies is in this way
directly related to the number of sources. The model has been proved to be com-
patible with the empirical relation eq. (158).

So far we have not considered the detailed effect of grain size in polycrystalline Al.
The mean free path obtained from NMR (0.1 ym) is far less than the grain diameter
(~ 150 um) and the foil thickness (50 ym).

However, even in the early stages of deformation the grain boundaries limit dis-
location movement, resulting in an initial parabolic hardening instead of the easy
glide of single crystals. A complicating factor is that the stress system even within one
grain is very heterogencous and depends on the behaviour of the adjacent grains. In
general these effects are likely to be more important at small grain sizes. Consequently,
we expect that our coarse-grained material will approach more closely the behaviour
of single crystals [202, 209].

Further, the mean jump distance L measured by NMR in Al has 10 be interpreted
with care in terms of mean slip distance and statistical slip length [A,, in eq. (6)]). As
commonly found in annealed [.c.c. metals [210], a cell structure is formed in A: after
deformation either at room temperature or at 77 K. In both mechanisms mentioned
before, the formation of a cell structure involves easy cross slip of large numbers of
screw dislocations, i.e. either cross slip of screw dislocations from pile-ups behind
Cottrell-Lomer barriers (Seeger) or cross slip from the original slip planes to form
relatively strain-free cell walls (Hirsch). Electron micrographs illustrating the cell
structure of deformed Al are shown in fig. 45. The cells are relatively free from dis-
locations but are separated by walls of high dislocation density. The dislocation
aggregates in the cell walls are tangles, jogged, twisted and mixed together in an
irregular way. The cell diameter ranges in both degrees of deformation from 1 to 2 um
The speed of the mobile dislocation is reduced in the cell wall compared with that
outside the cell wall. As a result, the mean slip distance of dislocations is mainly
determined by the cell size when the cell structure is well developed. The statistical
slip length A, will be of the same order of magnitude as the cell size {~1-2 um)
[202, 211), ie. much larger than the mean jump distance measured by NMR
(~0.1 ym).

A plausibie explanation for this difference is that all moving dislocations, both
those present in the cell boundary and those in the interior region of the cell, affect
the spin-lattice relaxation rate provided that the conditions of sect. 4.1 are fulfilled.
The mean jump distance of dislocations measured by NMR is possibly related to the
spacing of the dislocation tangles near the cell boundary, ranging from 0.01 10 0.i pm,

Another explanation for the difference between the Jump distance L measured by
NMR and the mean slip distance A,, is based on a dislocation mechanism in which the
dislocation free path A,, depends on the mobile dislocation density p,, and the number
of dislocation intersections N, in which a dislocation takes part before it gets stuck.
This would lead to A,, >~ N_p, /2. If the dislocations are delayed at each of these mter-
sections during a period of time 7.>10"*s, spin-lattice relaxation takes place
(assuming strong collisions, fig. 19). As a result the spin-lattice relaxation rate T;'

W

Fig. 45. (a) Cell structure of Al deformed 159 at 77 K. Dark-field strong-beam image,

- [100] orientation,
#=[002}, JEM 200 CX [188]. 1b) Cell structure of Al deformed 252, at 7TK. Dark-ﬁcld]slrong-beam

image. [100] orientation, #=[002), JEM 200 CX [188].
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is determined by the waiting time 1, at each intersection. The dislocation mean jump
distance L thus obtained is much smaller than the actual mean slip distance A,,.
When N, is about 10 the mean jump distance L measured by NMR would be one
order of magnitude smaller than A,,, as observed. This is according to findings by
Verel and Sleeswyk [212].  Further discussion can be found in [ 188, 213}.

At strains larger than 5%, (onset of stage 3 hardening, fig. 5) the dislocation cels
shrink in size by the subdivision of the largest cells. Such subdivision ceases once the
cells have become so small that no new cell walls are being nucleated because chance
encounters of glide dislocations have become negligibly frequent [214]. Therefore the
shrinking process of the cell pattern cannot go on indefinitely and the cell diameter
approaches an asympiotic value of 1-2 um. it means that for strains larger than
~5% the statistical slip distance A,, and the mean jump distance L measured by
NMR are nearly strain-independent.

In conclusion it may perhaps be said that exploration of NMR effects of moving
dislocations has provided valuable information on the intermittent nature of dis-
location motion in solids. The method offers much promise for further investigation
of the characteristics of dislocation propagation during work hardening undsr
various conditions of strain rate and temperature. Moreover, the NMR technijue
appears to be an independent and complementary tool to investigate the various
theoretical models proposed in the past. In the following section some of our sug-
gestions for new experiments will be presented briefly.

6.4. New experiments

Bearing in mind the results so far obtained, the obiective points in the direction of
applications of NMR to precipitation hardening in Al alloys. Nuclear magnetic
resonance serves as a useful tool for obtaining the Cu concentration in the matrix
of Al-Cu alloys in the presence of either coherent or incoherent precipitates. Naka-
mura et al. [215] determined the change in the copper concentration in the matrix of
aluminium-copper alloys during ageing, through which the kinetics of the precirita-
tion sequence of metastable phases is clarified using a curve of resonance intensity
versus copper concentration. Studying the quadrupole broadening of NMR lines
allows the determination of static dislocation densities in deformed Al In future we
will focus our attention on the dynamical aspect of dislocation motion and the mean
free paths of moving dislocations in Al alloys such as Al-Cu and Al-Zn. These atboys
will be chosen as materials because they can be prepared in different conditions by
applying special heat treatments. The NMR study of moving dislocations may answer
some questions related to the non-homogeneous plasticity of Al-Swt%, Cu. Importaat
parameters in the theory of Ashby [81, 216] for this system are the sell-trapping slip
distance for dislocations which is equal to the mean slip distance A,, and the interptate
distance A,. If A, <A, hardening is controlled by the microstructure. If, on the other
hand, A, > A, cells will be formed, smaller in size than the interplate distance. Harcen-
ing is then controlled by the matrix itsell. The pulsed nuclear magnetic resonance
experiments can make a significant contribution to this field since the dislocation

3%
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motion and multiplication are followed during plastic deformation. Already we have
performed NMR experiments on Al-1at); Cu containing @' precipitates f188,213]
The spin-lattice relaxation T, » @ppears Lo be sensitive to the microstructure of the
alloys. Further experiments need to be carried out in order to obtain more detailed
insight into the dislocation dynamics.
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