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I. lntroduction

Thirty years before the date of this article, one of the founding editors of this
scries proposed and claborated the concepl of the imperfection in a nearly
perfect solid" as a way of understanding the structure-sensitive propertics of
crystalline matter. His synthesis has since proven 10 be one of the bases upon
which much of modern materials science rests. Included in the oviginal list of
fundamenial imperfections was the dislocation, which was originally proposed
by Orowan et al. in 1934~ 10 explain the plastic mechanical properties of a

solid. We suggest that the crack should be added to this list, and argue that the

crack and distocalion taken together comprise what might be termed a
“complete set” for understanding the mechanical failure of crystalline
malerials.

The argument follows from the fact that matcrials failure exhibits a bipolar
character; i.e., materials arc classifiable in tesms of their relative brittleness or
ductility. A material at the extreme ductile pole flows plastically like 1affy when
stressed above its elastic Limit, and finally separates by necking, as depicied in
Fig. 1. Purc copper single crystals are excellent prototypes of this extreme pole.
The necking failure in this crystalline case involves only dislocation processes,
and is often termed plastic rupture. At the opposite pole of britile failure, the
malerial is perfectly clastic up to a critical stress at which it cleaves
catastrophically (Fig. 2). Ordinary silicate glasses are the most widely known
examples of brittle fracture, but, because it is crystalline, silicon at room
temperature is perhaps a better prototype. At this pole, no dislocation activity

* F. Scilz, in “Impcriections in & Nearly Perfcct Solid™ (R. Smoluchowski, ed), p. 3. Wiley, New
York, 1952,

TE. Orowan, Z. Phys. B, 605, 634 (1934).

¥ M. Polanyi, Z. Phys. 39, 660 (1914).

* G. ). Taylor, Proc. R. Soc. London Ser. A M5, 362 (1934).
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a

Fai. . A rod of ideally ductile matcrial when pulled devclops a region of plastic instability
o
e

which finally thins uniformly down 10 & sharp point.

Q b
Fii. 2. Anideally brittle material when pulled separates suddenly by cleavage with no prior or
simuliancous deformation. A notch is shown which localizes ihe plane of fraciure.

at all is observable at failure, and the fracture is due to the propagation of a
single atomically sharp cleavage crack right through the specimen.

The conceplual importance of the two types of defects operating at these
opposile poles derives from the fact that the material in each casc fails al an
average stress level which is often many orders of magnitude less than the
theorelical strength of the material, expressed in terms of its constiluent
atomic bonds. This low failure stress at the two polar extremes thus constitutes
a lundamental problem in mechanical failure. The reader is reminded that, in
the case of the dislocation, this problem is solved in principle, because the
dislocation is a latice defect whose atomically sized core conlains stresses
equal to the theoretical shear strength of the constituent atomic bonds. Under
& modest external stress, the dislocation Iranslates through the crysial,
shearing bonds as it goes, in a progressive fashion. When it traverses a cryslal
from one side to another, a shear of one atom spacing results. Generation of
mew dislocations in the local region of the macroscopic neck in the sample then

77
JUbs
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explains its final separation. Similarly, the atomically sharp cleavage crack
(Fig. 3) possesses a core of atomic size at its lip where the stresses are maghified
10 the tensile strength of the bonds, and when the crack passes through ithe
crystal, again the bonds are broken progressively until the entire crysial
cleaves into two halves. Thus the dislocation and crack are twin lattice defects
r!:ich jointly provide an answer to this first fundamental problem of materials
ailure.

Fortunately lor materials technology, however, the vast majority of
materials are situated at neither pole, and are much stronger thaa pure single
crystal copper, and much tougher than untreated silicate glass. {The concept
of “toughness™ will be defined more carefully 1ater, but for the present it canbe
taken as simply the energy absorbed [rom the external stressing machine asithe
crack propagales.)

M'atcriais of high strength and toughness have been the goals for allarge
portion of materials research for many years, and the detailed understanding
of these properties is still elusive. Qualitatively, however, materials are Itougll
and strong because of the rich variety of interactions dislocations have with
themselves, with cracks, and with other imperfections, and perhaps ithe
greatest conceptual difficulty of the subject is connected with the collective
character of this interaction. Thus the understanding of the two complemen-
{ary material propertics of strength anditoughness constitutes a second major
fundamental problem in materials science of very great proportion, whiich s
yel largely unsolved. In this article, we shall be primarily concerned with
toughness and the properties of cracks, which constitutes only half of the:total
problem associated with mechanical faiture, though the problem of strenathiis

closely related to and overlaps that of toughness.

hn is possible to get close to the heart of the problem of toughneus by
focqsmg on the structure of the underlying cracks in a solid. In the next
section, where some of the background phenomenology of fracture will be

$ F $
¥

Fii. 3. Diagram of a crack in & two-dimensional square lattice with external forces exertexl a1
the center of the crack. Bonds at the Iwo crack tips are nonlinear. The nonlinear attractive forces
af the 1ip are labeled f and the eaternal applied forces at the conter of the crack are labeted .
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dlisplayed, the ductite/brittle duality will be found to cxtend or persist well into
the middle ground of the ductile/brittle axis. 1t persists in the sense that even
it >ugh a failure may appear macroscopically 10 be cracklike, on closer
m croscopic examinalion, the “crack™ will be found to be quite blunt and
irsegular in shape, without the characteristic atomically sharp tip of the
Heavage crack. On the other hand, a crack showing considerable tloughness
m 1y consist of a sharp underlying cleavage crack, but be associated with large
nwmbers of dislocations. On moving from relatively ductife to refatively brittle
materials, the shape of the underlying crack changes from a blunt notch or
mizunded hole which expands by purely plastic means (i.e., dislocation
mrmation from the material ahead of the crack, or from corners on the crack
stface, either of which usually Jeads to necking on a microscale) to a sharp
ceack which advances by cleavage. This change in mechanism when induced in
@ given specimen or structure usually has dramatic, tangible, and even
practical consequences, as for example when a material becomes embrittied by
external chemical attack. _

" A valuable key in the approach to the toughness problem is to distinguish
itween an intrinsically brittie material and an intrinsically ductile one in
lierms of the atomic structure of their cracks. We show that the first class of
iraterials can sustain an atomically sharp crack stably in the lattice without
Itweakdown by dislocation generation, while the second class cannol. in those
materials where the sharp crack is stable, cleavage crack growth is possibie; in
iibe opposite case, only tougher ductile crack growth is possible. This
«fistinction between intrinsic brittle or ductile cracks may depend upon
(e-tternal conditions, as well as on the material itself. This distinction will be
iodified as we develop it, for example, by considering a middle ground where
the crack is only barely stable, and by considering the effects of dislocations
generated in the bulk material; but without vndercutting its overatl usclulness
im sorting out the enormously complex phenomenology of fraclure.

" After establishing the basic distinction between intrinsically ductile and
imtrinsically brittle materials, the study of toughness then proceeds to develop
the distocation interactions with the two types of cracks and from this to
establish the fracture criterion. Unfortunately, much of this analysis, espe-
dally for ductile cracks, still remains to be done, and even in the case of the
trittle crack, is only in semiquantitative form. But the central role of the
structure of cracks also emphasizes a familiar type of problem to physicists,
mamcly the atomic structure of defects. In the case of the crack, the severe
mature of the distortion of the lattice by the defect puts the quantitative study
of the structure of cracks still largely in the “research to be done™ category.

| The previous paragraph is couched in theoretical terms. But the science of
‘iracture at the time of writing is entering a period of intense development on
the cxperimental side as well, which is generating a theory—-experiment
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confrontation and consequent flowering of our understanding, reminiscent of
the period 1955- 1965 in dislocation research. This experimental development
has largely been due 1o the work by Hockey in brittle materials, and Ohr,
Wilsdorf, Neuman, their co-workers, and others in ductile materials; usually
working with thin films in electron microscopes. In a sense, then, this article is
ablc to point to some guiding principles, and initial theoretical and eaperi-
mental findings whose major purpose will be 10 point with hope toward the
future.

In an article like this, it will be necessary to establish some background
information. Therefore, in the next section, a series of microphotographs will
be presented to provide the reader with a necessary observational perspective.
In Part 1lI, the required results from the elastic analysis of cracks and
dislocations will be presented. In Part 1V, a central theorem of Eshelby on the
force exerted on elastic singularities will be used to derive the forces on cracks
and dislocations and the interactions between them. Then, in Parts V and VI,
the central theme of the structure and propertics of sharp cracks in lattices,
including interactions with external chemical e vironments, will be addressed.
In Part VII, the idea of dislocation shielding of static and moving cracks is
presenied along with the simple available models for fracture toughness and
the available experimental evidence.

We shall not attempt 10 cover the more applied aspects of fracture, partly
because it would be unsuitable in an article emphasizing the physical
fundamentals of fracture, but also because the more important applications
still await an adequate description in terms of fundamental ideas. Hydrogen
embrittlement and fatigue crack initiation are just two examples where a final
description is probably still well in the future, even though some of the
fundamental tools are coming to hand. Nor shall we have space Lo consider
fracture in polymers, where the effects of crazing bring up a different set of
phenomena that are now being successfully tackled.

Finally, we note here that the subject of fracture is one involving a number
of disciplines. We shall, of course, repeatedly delve into physics, chemistry,
and maltcerials science. However, fracture science also deeply involves con-
tinuum mechanics. The reason is easily seen from inspection of Fig. 3: A crack
requires an external force for its existence. If this force disappears, in principle
the latticc will simply heal itsell. Hence, the manner in which this force
manifests itscll at the crack lip is a continuum mechanics problem that will
involve the way the force is applied (o the external surfaces of the body, and
may involve sophisticated mathematical descriptions of deforming media.
Fortunaiely, we shall find it possible to condense most of the mechanical
aspects of the problem into a local parameter at the crack tip called the local
stress intensity factor. However, the reader should be aware that there are
classes of problems such as propagation of cracks through plastic media, or
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the role of plastic instability in the propagation of ductile fracture, where
continuum plasticity approaches musi be used.

N. Observational Background and initia) Concepts

A casual observation of the fracture of any practically useful engineering
malcrial shows a very complex phenomenon. This section will thus be devoted
to a demonsiration of some of this complexity, and will also demonstrate the
observational basis for the scientific approach which we have outlined in the
Introduction, but which must be firmly established on an observational basis.
Al the same time, the reader will appreciate from a perusal of the fractographs
which we will display here the limitations of making quantitative predictions
of [racture toughness for engineering materials.

t. MACROSCOPIC FRACTOGRAPHIC OBSERVATIONS

Belore displaying the rather sobering complexity which we have alluded to
above, Fig. 4° illustrates the beaulifully symmetric brittle fractures which are
possible in a material such as glass. The figure shows a hertzian crack with
cylindrical symmetry produced by an indentation at one point on the surface
of the glass. The fact that the glass is completely isotropic results in a highly
symmetric fracture mode and a highly regular overall configuration. A BB
pelict stopped by ordinary plate glass will display such a hertzian crack. At the
opposile extreme, Fig. 5% illustrates the chisel point which is formed when a
highly ductile metal is pulled to ultimate fracture. Each of these two examples
is of course a direct illustration of the two poles of fracture shown
schematically in Figs. 1 and 2 of the Introduction,

Fii. 4. A Herizian crack produced in the upper surface of a block of glass by a round indenter
(after Roesler*)

% F.C. Rocsler, Proc. Phys. Soc. B 69, 981 {1956).
* H. G. F. Wilsdorl, Mater, Sci. Eng. 59, | (1983).
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Fii. 5. A chisel point formed in a rod specimen of gold after neckin
specimen was (.15 cm in diameter (courtesy of H. Wilsdorf °).

& and rupture. Original

PHYSICS OF FRACTURE 0
2. Microscopic ORSERVATIONS

On a microscopic level the rough surface typical of a high-toughness metal
still displays a high complexity. The surface is highly dimpled on a micrometer
level and below, as shown in Fig. 6. These dimples have been shown to be
caused by the formation of holes which form ahead of a main crack as shown
in Fig. 7. As the crack grows, the holes enlarge by plastic means and coalesce
with the main crack and with other holes in the vicinity. In these cases the
growth and coalescence of the voids with the main crack are really a
manifestation of the necking process on a microscale. As shown in Fig. 6, the
larger voids are found to be nucleated at the site of precipitated particles in the

Fia. 6. Ductile fracture surface, showing the final dimpled structure of hole growth, Precipitate
parlicles are visiblc in some of the dimples which served as nucleation sites for the holes (couriesy
of C. Interrante).
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Fii. 7. Schematic drawisg of the development of & ductile frscture from a blunt crick
embedded in a material containing inclusions. Microcracks are nucleated at the inchusiona, which
arc blunted in turn. {COD is an abbreviation for crack opening displacement )

matrix. The precipitate particies may fail on their interface with the mairix, or
britile precipitates may cleave. In either case, they are lefi behind in the holes,
as shown in Fig. 6.

In a brittle ceramic, or in a steel in an embrittled condition (such as when
under hydrogen or other chemical attack, or when the temperature is low and
the strain rate high), the fracture morphology is different. Figure 87 shows an
intergranular brittle fracture in which the crack proceeds without any obvious
void formation, and a very clean form of separation at the grain boundarics
occurs. Transgranular brittle fracture can also occur, often mixed with the
intergranular variety. This example shows how important the metallurgical
and ccramic microstructural variables such as grain-boundary segregation
and second-phase coarscning are to fracture toughness.

3. PROTOTYPE FRACTURES

In the next set of observations, the phenomena characteristic of more ideal
conditions are illustrated. Figure 9 shows the resuits of Hockey® for cracks in
silicon. Figure 9a shows a completely brittle cleavage crack at low tempe-

T E. Fuller, unpublished photogruph of a crack in Si,N, at high temperature.
* B. Lawn. B. Hockey, and S. Wiederhorn, J. Mater. Sci. IS, 1207 {1980y
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FiG. 8. Brittle crack in & ceramic.” The crack has opened along the grain boundaries of the

waterial, giving tise 10 & very irregulas morphology. Such Sorms of brittle fracture are also
observed in metals,

atures in which no dislocation activity is observable. F igure 9b shows that the
cracks in silicon are nearly completely reversible. This crack presumably has
grown beyond its final position, with a network of misfit dislocations
appearing between the initial and final positions of the crack after regression
has occurred. Figure 9¢ shows a crack growa in silicon above the ductile
transition temperature, in which significant dislocation activity in the presence
of the crack tip is visible. It is not clear whether these dislocations are formed
out of the crack after it stops, or whether they have been carried along by the
crack from the deformation zone in which the crack itself was formed. Fig-
ure 10 shows the electron channeling pattern of a transgranular cleavage
surface in embritiled steel, which illustrates that dislocations are generally
present even in very brittle fracture in steels, excepl at high crack speed.
Figure 11° shows the crack configuration of iron-2.6 at.% silicon. The
crack is wedge-shaped just as one would expect if dislocations were emitted on

¥ H. Veholf and P. Neumann, Acta Metull, 18, 265 (1980).



b 0.5um .
_ Fii. 9. (a) Anelectran microscograph of a fully brittde crack in Si. In the photograph, the crack
is seen c_dge on. In (b) a brittle crack has regressed from its initial position, leaving a network of
misfit dishocations on the closed portion of the cicavage plane. {c) Cracks formed in Si st 500 °C
are associaled with dislocations as shown (see Lawn er al.*). (Courtesy of B. Hockey }
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F1G. 9. (Continved).

slip planes intersecting the crack tip (see also Fig. 43). In this case the material
“slides off” on its slip plane which is at an oblique angle to the plane of the
crack. When hydrogen is introduced into the system (Fig. 1ta) the angle
15 made more acute, showing (hat cleavage and emission take place
simullaneously.

Figure 12 shows the experimental configuration used by Ohr and co-
workers.'® When a region in the very thin section near the hole is imaged in the
microscope, the results are shown in Fig. 13.'" In this case the crack spews out
screw dislocations on its cleavage plane. The crack has a substantial region
near its tip (termed an elastic enclave or dislocation free zone) where no
dislocations are present. Similar experiments have been performed in & variety
of other metals (see Table I).

A more typical form of purely ductile failure is shown in Fig. 14,'? where
experiments performed by Witsdorf,* again in thin foils, exhibit a more normal

'*S. Ohr, J. Horton, and S. Chang. in “Defects, Fraclure, and Fatigue.” {G. C. Sih and J. W.
Provan, eds), p. 3. Nighofl, The Hague, 1981,

"' S. Kobuyashi and S. Ohr, Seripta Metall. 18, 143 (1980).

'? R. Lyles and H. G. F. Wilsdorf, Acta Merall. 23, 269 (1975).
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Fic. 10. Elecuron channeling patterns from portions of a cleavage crack in hydrogen
embritiled sieel. A blurred pattern indicates laitice planc rotalions caused by presence of
disiocations. In the hgure, the crack accelerates from ils initial position at rest in the region of
patiern | 10 3 high velocily near pattern 6. At the high velocity (an apprecisbie fraction of the
sound velocity), there is no measurable increase in the dislocation density above that of the initinl
material. (Couriesy of W. Gerberich and K. A. Peterson,)

failure by hole growth and coalescence. The event shown in the figure is the
final result of the chisel necking shown in Fig. 5. In this case the foil thins by
plastic processes and small holes form in the dislocation cell walls, which then
Brow to a size equal to the film thickness and the large holes shown in the figure
then become visible. These holes are crystallographic in shape corresponding
10 the slip planes in the material. A mixed form of growth seems to take place
in which some dislocations are emitted from the crack tip itself, while others
arc generaled at sources in the medium very close to the crack tip. Although
these films are very thin, the hole formation and growth processes illustrated

PHYSICS OF FRACTURE 5

a 100um
FiG. 1. Ia(a)sharp cracks are formed in & hydrogen simosphere in Fe { + Si). n (b} the crack
opens ctirely by distocation slide-off al the crack tip. In both cases, dislocations are cmitted from
the crack tip, snd form slip bands. In {a), cleavage must also be present. The angle of 1he wedge
opening in {b)is defined by the intersection angle of the two slip planes with the crack plane {after
VYeholl and Newmana®).

are thought to be analogous to those taking place in bulk sampiles such as in
Figs. 6 and 7. In Fig. 14, of course, the void gencration takes place in the
dislocation cell walls rather than at precipitate particles, perhaps correspond-
ing to the smaller holes formed in Fig. 6. Wis in fact generally observed on close
cxamination that the large voids formed at large precipitated second-phase
particles arc often connected by void sheets composed of very small voids, and
the question of whether these sheets are created at small precipitates or are
gencraled at dislocation cell boundarics has not been fully sorted out.**?

3 A. Thompson and P. Weirsuch, Scripta Meiall. 19, 205 (1976).
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b 100um

Fia. 11. (Continued).

|
B

Fiii. 12, Specimen geometry used in electron microscope fracture experiments by Ohe and co-
waorkers.'® The crack grows out of the thinned region nearest the hole in the center.

PIIYSICS OF FRACTURE 17

b o
F16. 13. (s} Dislocations emitted from the tip of a crack in a foil of copper. Thecrack has grown
from the idi. Immediately ahead of the crack is a region free of dislocations. The pile-up of
dislocation: is seen extending on the cleavage-slip plane to the right. In (b} the crack dislocation
geometrica configuration is illusirated (afier K obayashi and Ohe'*),

Frii. 14. Side view of a growing fraclure in a thin film of gold. Holes are shown nucleaung
ahead of the crack (see Lyles and Wilsdorf'?). ¢Courtesy of H. G. F. Wilsdorf)
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4. FRACTURE MoODE AND CRACK DISLOCATIONS

The previous fractographs indicale that real cracks are three-dimensional
defects whose fracture planes may be very rough surfaces, that even brittle
fractures may take place on the three-dimensional network of a griin
boundary structure, and that interaction with various kinds of imperfections
in a material iscommon. Nevertheless, for analytical purposes, it is desirabic to
ilealize a crack line as a onc-dimensional line defect on a flat cleavage plane.
There are, then, three modes of cracks corresponding to the diflercnt
orientations of the exiernal stress with respect 1o the fracture plane. These
three modes are analogous 1o the two different classes of dislocations: screw
and edge. In the case of the crack, a cut is made in the medium which becomes
the cleavage plane, and simple shear or tensile stresses are exerted on ithe
external surfaces of the specimen. In Mode 1 the stress is a tensile stress with
principal axis normal to the clcavage plane, as shown in Fi . 15a. This mode is
the oniy one leading to physical fracture, because, unless the external stress
physically separaies the two surfaces on the cleavage plane, then rewekting
would occur cven afier the stress is applied. In Mode II the stress is a shear
parallel Lo the cut in the x, direction (we use the coordinate system of Fig. 16a).
In Mode lil the stress is a shear parallel to the cut in the antiplane or, iy
direction. Mode 111 is important because antiplane strain is associated with a
particularly simple analysis, and we shall make extensive use of this analysis in
order to describe results for cracks in a generic sense. Even in the case of simple
two-dimensional cracks, mixed cases are common. For example, a crack may
be produced which is primarily Mode Il or I, but with enough Mode |
present to separale the cleavage plane.

We note here an idea originally proposed by Friedel'* that the displacement
on the cleavage plane of a crack may be represented by a distribution’ of
dislocations of appropriate Burgers vector. Such a represeatation can be used
analytically to describe the stress field of a cleavage crack (see Part 111}

5. THE O8SERVATIONAL Basis FOR FRACTURE SCIENCE

From the sclected illustrations above, an olmrvalionﬂ basis can he
constructed for our approach to fracture, as follows.

(a) In practice, cracks are most often Alaws of a complex three-dimensional
form which sometimes only vaguely approximate the three idealized modes of

'* ). Fricdel, “Les Dislocations,™ p. 214. Gauthier-Villars, Paris, 1956, “Dislocations.” p. 120.
Pergamon, London, 1964. See aiso B. A. Bilby and J. D. Eshelby, in “Fzacture™ (H. Licbowitz,
ed). Chap. §, p. 99. Academic Press, New York, 1968,
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MODET MODE T MODE 10
FiGi. 15. The three modes of fraciure. In ¢ach case, the crack is formed by making planar shit in
the material, with the crack Jine along the edge of the cut. In Mode 1, the opening mode, the force is
cacried normad 1o the cleavage plane. In Mode 11, the force is in the plane of the crack normal 1o
the crack line. 1a Mode 185, or sntiplane strain, the foroe is in the planc along the crack ine. Modes
1 and 111 are shear cracks.

Fig. 15. However, because of the necessitly of developing models which can be
analyzed and described in accessible mathematics, we are led to the study of
these idealized modes.

(b) In some solids, the crack is capable of cleavage advance without
intrinsic gencration of dislocations (Fig. 9). (By intrinsic is meant generation
from the crack tip itself, independent of external sources.) In others, when
the crack is stressed, dislocations are emitted from the tip without clcavage
(Figs. 11 and 13). Crack advance in the second case takes place by ledge
formation or slide-off at the crack tip, Fig. 11. The shape of the crack in the
cleavage case is atomically sharp at its tip (Fig. 9). When the crack advance is
controlled entirely by dislocation emission, the shape is that of a wedge whose
opening angle is equal 1o the angle between the operating slip plancs (Fig. 1t;
sec also Fig. 43),

(c) The ubiquitous presence of dislocation sources in nearly all materials
and the stress concentration around the crack lip assures that dislocalions,
sometimes in copious numbers, are gencerated which accompany the fracture
process (Figs. 9 and 10). Only in exceptional cases, such as in Si at low
lemperatures, or in fast fracture when the crack outruns its dislocation cloud,
are idegl‘ brittle fractures observed. Since dislocations and cracks are
singularities in an elastic medium (if the crack tip has a sharp angle), their
stress fields give rise 1o strong crack-dislocation interactions which play a
central role in determining the overall toughness.

(d} The effect of Plasticity external 10 the crack is to blunt the crack by
means of the steps formed on the cleavage surfaces when dislocations are
annihilated there. The final macroscopic shape of the crack blunted by
dislocation absorption will be determined by the combined eflect of the
available slip systems, stress distributjon around the crack, the characteristics
of the sources such as operaling siress, etc., and the mobility and mean free
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path of the dislocations. A variety of final shapes is th itde i
general the shape of the crack will not be dompi:m-ted t:lys :’r(;?;::t:::;'g::"h'i:
features as in the case for the cleaving or emitting crack. Further, such a c:::ck
(we shall often refer to blunted: cracks as notches), of itsell, will‘ndli iddvance
:mlely b){ dislocation absorption under continued stressing, but.wili:s:im |
increase its cffective radius at the tip by indefinite plastic blunting. In m;acii';:
however, ,nhomogencilics in the material cause microcracking te occur aheaci
of the main crack with subsequient hole growth (Fig. 7). Blunting bf: the main
crack stops when a void is absorbed, and “crack” advance takcs;i pia'lce b
accretion of the voids to the main crack. The void formation and:m:crelio:
also limit the necessary region of plastic activity 1o that surrounding the
blu_nled crack lip; so that fracture can occur without raising the stress of the
entire specimen to the plastic yicld value.

We are thus led to propose three prototype cracks: cr ith:¢
craFIts which emit dislocations, and p!aslical);';eblumed nd):ctl::‘; ::i:h :I::::;:.
activate external plastic lowiin the surrounding medium. The ph sica’;
mechanisms in each case are quite distinct, and each type tends lmc‘;mrﬁy nd
toa parlit_:ular geomctry. Mixed cases are to be expected, however 1B:u
cxternal distocation sources usually are activated By clcav,agc cradlc‘s eve:
thqugh the crack advances by cleavage and no hole growth is 'crb';erved
{ Flgs: 9c and 10). Likewise, in cases where the fracture is prcdomiﬁﬁr;lly by
plastic hole growth, significantiportions of transgranular or grain boundar
cleavage facels may be observable in the fractured surfaces. Also the iniliayl
stages of hole formation normaily involve cleavage, and the whole question of
how the cleavage (or emission) events are affected by the alteration of crack
shape causeq by dislocation  absorption is unanswered. Finally, mixed
clcavag_c—cmlssion is possible iin cases where a crack is balanc&»d'non the
borderline between cleavage and emission (Fig. 11a).

The correlation between these three prototype cracks, which are diassified
agcordmg to their atomic structures and the mechanisms of their advance
with the overall fracture toughness and the brittle/ductile polarity !hcmme.':
::iet :c(']:lm: task of frac;ure :cieticc. Qualitatively, the brittle pole is ;smcialed

e cleavage crack, while the emitti i
rack are forvage crack. while the itting crack and the plastically lblunted

The crucial Physical implication of this line of thought is that the shructure
of the underlying crack and its immediate environment determines the overall
mecha‘mcal response. The atomic structure of the tip will dictate whdther the
crack is a cleaver or an emitter, and the properties of the dislocationsianid their
sources in the medium and their interactions with the crack will determine

whf:l}!cr I_he core crack can ever be stressed sufficiently so that cleawage or
emission is possible,
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Thus, the balance achieved regarding the brittle/ductile polarity in any
fracture event is determined partly by the bonding of the atoms of the solid,
parfly by the lattice structure, partly by the microstructure of the material, and
partly by the external environment. A material may change from ductile hole
g-owth to brittle clcavage by modifying these factors in various ways. For
ctample, for any given material, a variety of chemical species can be
enbritlting agents. Hydrogen in steels and water in glass are examples.
Toughness is also a function of strain rate and temperature, and stecls
t¢p:cally undergo a dramatic ductile-to-brittle transition along the axes of

t1ese parameters.

M. The Elastic Fields of Cracks and Dislocations

&. INTRODUCTION

Many scicntists view elasticity as a field essentially completed by the end of
'he 19th century. However, in this article the mathematics of clasticity will
play a much more important role than that of an ancient formalism to be
sriefly revisited. Rather, cracks and distocations, viewed as intcracting
singwlarities in the clastic field, will lead to new insights into the toughness of
materials, and much of the mathematics required will be unfamiliar to most
readers with a nodding acquaintance with the elements of classical elaslicity.
For full-scale numerical calculations in a2 particular crystal, anisolropic
clasticily is the mode of choice, and a brief review of some aspects of
anisotropic theory will be given. However, we shall find the more analytic
results possible in isotropic theory Lo be more useful in this article for
developing the physical insight which is our main purpose.

The basic reference for this section is the treatise on clasticity by
Muskhelishvili'* because it contains an authoritative treatment of Iwo-
dimensional elasticity, complex potentials, conformal mapping. and Muskhel-
ishvili singular integrals. However, it does not address cracks or fracture
problems. For collateral reading on fracture, the reader is referred to the
excellent articles by Bilby and Eshelby,'® Rice,'” Sih and Libowitz,'®

13 . Muskhelishvili, “Some Basic Problems in Mathcmatical Theory of Elasticity.” Noordhofl,
Leyden, 1977,

15§ Bilhy and ). Eshelby, in “Fracture”™ (H. Licbowitz, &), Chap. £, p. 99. Academic Press,
New York, 1968,

17 J Rice, in “Fractore” {H. Lichowitz, ed.). Chap. 2, p. 191, Academic Press, New York, 1968.

15 ;. Sih and H. Liebowitz, in “Fracture™ (H. Licbowitz, ed), Chap. 2. p. 67. Academic Press,
New York, 1968.
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and Goodier'? in the series Fracture, edited by Liebowiiz on the elastic {and
plastic) treatment of cracks. Bilby and Eshelby,'® in a tour de force, present
cracks entirely in terms of dislocation pileup theory, treating the crack as a
distribution of virtual “crack™ dislocations in the sense proposed by Friede!.**
Many reflections of their work will be found in our treatrment. Rice!? has nied
the Muskhelisvili integral equalion in deriving crack siress ficlds, and because
of the similarity of his treatment to ours, his article is especially recommended.

7. GENERAL EQUATIONS AND BOUNDARY CONDITIONS ' #

Local static equilibrium at a point in an elastic medium requires that the net
force density at the point be equal o zero,

L = ﬂu“ = 0, (‘]'-l’

where g, is the siress tensor, the summation convention cver repeated indices
is assumed, and the comma represents differentiation. Hooke's law conmects
the stress with the local derivatives of the displacement (straink and in an
isotropic medium is given by

oy = duy Sy + plue; + uy ) 1.2)

4 and p are elastic cocflicients, and u(x,, x,, x;) is the displacement function.

In any elastic problem, boundary values of o, on the external (and internal)
surfaces of the body must be specified in order to gencrate unique solutions. If
a surface is [ree of externally applied forces, the fact that a free surface exisis
impiies that forces, F;, cannot be transmitted across it. Thus,

ﬁ = ﬂuﬂ} = ‘l 0'3)

n; is the normal vector at the surface pointing from the negative to positive
sides of the surface. Equation (7.3) represents the force per: unit atca
transmitted across the surface from its posilive side toward (the material on)its
negative side,

In the crack problem (Fig. 16), two general approaches are possible. In the
first (Fig. 17a), forces are applied to the external surfaces which give rise 10 a
siress disiribution in the body, aﬁ"(x). Then a cut is made in the medium which
defines the cleavage surface of the crack. Since the cleavage surfaces are fiee
surfaces in the above sense, Eq. (7.3) is satisfied on them. If Fuax.x’) is a
Green's lunciion for a dipole force at x’ on the cleavage surfaces (an equal and
opposite force is exeried on each of the cleavage surfaces facing one another
across 1he cut), then the total stress in the body in its final stressed and cracked

'* 1. N.Goodier, in “Fracture” {H. Licbowitz, ed.), Chap. 2, p. 2. Academic Press, New York, 1968,
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Fii. 16. Two crack-coordinate configurations for use in this article, In (a), the crack extends
indefinitely along the negative x, axis. In (b}, the crack is finite in lengih. and again liesalong the x,
axis from —a < x, < +a Dislocations may be present at position {, in the complex plane. (c)
Construction for Eq. (8.9). An equal and opposite foree distribution is exerted on the iwo surfaces
of the cleavage plancs in Mode 111 These exiernally applied forces on an clement of volume af the
upper susface are shown balanced by inlernally generated siresses, which cancels 1he total force on
the volume clement shown.

L

Fui. 17. Two ways of creating a cvack in # medium are illustrated. The siresses may be exerted
on ihe cxiernal surlaces as shown in (a), or as & pressure acling within the crack as shown in &)
Under conditions described in the text, the siresses near the crack Lips are equivalent.



state is

Gu = 0";" - J‘g“;'c:‘g’". ds. (7.‘)

The integral serves the purpose of simply nullilying the forces which were
excricd by the initial stresses across the cleavage surface before the cut was
made.

In the second approach (Fig. 17b), after the cut is made, forces are exeried on
the crack surfaces which force them open, thereby generaling stresses in the

medium. If —o{;’n, are these forces, then

0= — J‘ﬂu; 1o, ds (1.3)

is the siress in the body. n points from the medium across the surface to the
vacuum.

There is thus a basic equivalence between these two approaches, and they
will be referred to in the following as Problem ! and Problem 2. For example,
in Mode 1, a standard problem is to exert forces on the upper and lower
surfaces of the specimen as shown in Fig. 17a, giving rise to a constant stress
throughout the body o’ = o'7}. In Problem 2, if this same constant force is
applied on the surface of the crack, then the only difference between the final
stress as given in Eqs. (7.4) and (7.5} is the constant term oY} in Eq. (7.4). Near
the crack tips, where most of our concern lies, the stress is highly concentrated,
and the constant term can be ncglected. Thus, which fracture problem is
addressed in any situation is usually a matter of mathematical convenience.

Two-dimensional analysis has a special place in the treatment of fracture
problems. The reason is simply that 3D treatments of cracks are usually
enormously difficult, and nearly always numerical. Thus, the 3D literature is
sparce and recommended for the specialist only. Bul, as with dislocations,
much can be accomplished in 2D, where the crack fine is straight (taken along
the x4 axis) and infinite in length. In addition, in 2D, it is required that u, , = 0
everywhere. Substitution of this requirement into Eq. (7.1) with Eq.{7.2) shows
that the solutions break into two separate cases,

Viug =u3, + 1y, =0, (7.6)

(tl + p)"l-]‘ + By = 0, i,] = |,2. (1.1)

These two cases correspond to the two independent shear and longitudinal
polarization solutions for sound waves, and arc called antiplane strain, and
plane strain, respectively. Equation (7.6) corresponds to screw dislocations

and Mode-1tl cracks, and Eq. (7.7) to edge dislocations and to mode | and 11
cracks.

TR OILA WA I RALITURDG

In usual treatments of elasticity, the so-called compatibility conditions on
the strain are introduced. Since we shall be dealing with dislocations, where
these conditions are violated, however, it will be easier simply to monitor the
single-valuedness of the displacement directly in discussion of solutions,
rather than to introduce these considerations as special added equations 1o the
basic equilibrium equations (7.6) and (7.7), which are of course the field
equations of elasticity.

There are several approaches to the solution of any boundary-value
problem, and, in the case of 2D elasticity, Green's lunctions, conformal
mapping, and a singular integral method generalized from the Hilbert
transform have been most effectively used. In any given case, one or another of
these techniques can be employed, depending on the ease and directness of the
relevant mathematics. In cases where the Green's functions can be found
easily, that is often the method of choice, but for slit cracks, the singular
integral method has been developed by the Russian school associated with
Muskhelishvili into an elegant and powerful approach which we shall use, and
from which the clastic Green's functions can be derived. On the other hand,
conformal mapping can be a powerful tool for application to more general
crack shapes such as wedges, which are also important. The mathematics for
both these latter approaches will be found in the Appendix. Elasticity is
complicated by the tensor character of the variables, and, like electromagne-
tism, is generally simplified by the introduction of elastic potentials. In spite of
the fact that these polentials were discovered in the 19th century, they are not
familiar 1o nonspecialists, and the elastic equations expressed in terms of these
potentials are also developed in the Appendix.

In 2D the variables i, and o, will only be functions of the complex variables
z=x, +ix;and I = x, — ix;, and it is natural to invoke complex function
theory. In antiplane strain, where only u, is nonzero, this is a particularly
straightforward procedure, and it will be discussed first. The reader is
reminded, however, since elasticity is a linear theory, that the total solution in
mixed cases is a simple superposition of plane and antiplane solutions.

8. ANTIPLANE STRAIN. THE Mobe-1H Crack

Since the ficld equation for antiplane strain, Eq. (7.6), is Laplace’s Equation,
2 solution can be given in terms of any analytic complex function n of z, such
that

Uy = tt3(xy, X3) = (2/p) Im(n(2)). 8.1)

n willl be called the antiplane strain efastic potential and the factor 2 is used to
achieve symmetry with certain expressions 1o be derived in plane strain. The
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only nonzero siress components, ay, and o33, can be written in terms of n by
Eq.(7.2) as

o(2) = 63, + igy, = 2'(z2), 82
where the prime denotes differentiation. As shown in the Appendix, o isnol a

true vector, because 4/i is the quantity which transforms as a vector (see
Eq. A.23). In polar coordinates,

0,, = 03,088 + a3, 5in 0 = Im(oe"), @3

Oy, = ~03,5in@ + 0,,c080 = Re(ae").
Singular solutions for a dislocation or a line force at the origin are given by
n = (pbfdx)In z. {3.4)

The real part of b represents a dislocation, and the imaginary part gives the
strength of a line force. Re (b) is given by the multivaluedness of n at the origin,

247 2 [ ‘

In the same way, the strength of the line force is given by integration of ,
around the origin,

Suitable clastic polentials for the crack probiem are found by satisfying the
boundary conditions on the open cleavage surface in Problem 1. If a cleavage
plane lies along the negative x, axis, with the crack linc coinciding with the x,
axis, as in Fig. 16a, then

0;,():.,0] = 0' X, < 0. (ﬂ.h)
A suitable solulion is
noa /2, 67
N = Ky/2/2nz.

In this solution, the cleavage surface is a branch linc and o — Oatinfinity. The
crack tip is a branch point in the function 7. This simple result is a clue that
crack problems in gencral will lead to square-root-like functions, with branch
lines coincident with the cleavage plane. The discontinuity in the potential
function on the cleavage surface corresponds (o the discontinuities in both
displacement and o, there. (Note that gy, need not be zero on the open
surface along —x,.) The constant K is a measure of the sirength of the
singularity ai the crack tip.

In Fig. 16b a more genceral finite crack is shown lying along the x; axis from
—4 < x| < a Again, a complex polential  is sought having a branch linc on
the cleavage surface. In Problem H, equal and opposite external forces pes uniil
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area, Fy(x,), are exerted on the cleavage plane, as shown in Fig. l6c, thereby
generating an internal stress a5, On an element of volume al the upper surface
in Fig. 16c, zero net force requires that ay(—n3) + Fy =0, with n} = 1.
032 = — Fiu(x,) on the upper surface. By the same reasoning g, = — Fy(x,)
on the lower surface, because equal and opposile forces are exerted on the
lower surface. Thus the boundary condition at the cleavage surface is given by

[03:]1" = [03:]" = —Fulx,), (8.8)

where F is an arbitrary real function of x,. In terms of the polential function n
Eq. (B.8) is written

'] +[0']7) = ~ Fulx,). (8.9)

Note that in Eq. (8.9} the imaginary parts of #’ on the opposile sides of the
crack surface are of opposite sign, because Fy, is real.

Equation (8.9) and the boundary-value problem it represents conform to the
discussion of the Muskhelishvili singular integrals in the Appendix (Subsec-
tion 3). Specifically, Eq. (8.9) is of the form specified for h(1) in Eq. (A.40), and
the solution for i’ according to that equation is

‘. ﬁu(‘)\/ﬂz - ljd‘.
11—z

() = ._2“/2'1 — I . (8.10)

The polynomial is set to zero in Eq. (A.41) in order for the stress at infinity 10 be
zero. The solution in Eq. (8.10) is singular at z = (14,0). Near z = a, the
solution has the form

002 o(§)" ae
27'({) = o m"‘ al ' {=2-a

a+t (8.11)
a—

Ky= \/—_::_a J: Fult) (~—‘)m di,

Ky = Fm\/;s; Fy, = const,

This solution corresponds to the “second problem.” When a constant stress F,
is added at infinity (“first problem™), the singularitics at the crack tips are the
same as in Eq. (8.11), and thus the constant K, is also the same.

The relations in Eq. (8.11) give the central results for the region near a crack
lip, showing thata 1/,/z stress singularity exists there, with a strength K, called
the stress intensity factor. K is lincar in the external driving stress, and depends
upon the crack geometry, as well as the specimen shape and the way the
exlernal stress is applied. This latter point is seen from the second equation of
{8.11), where K depends upon the initial stress distribution on the cleavage
surface,
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The reader will note that Eq. (8.10) has the form of a Green's function
solution [Eq. (7.5)), where the Green's function for the finite crack is

n = -Jﬁ..(l)g(!.z)dr.

1 az_‘z 2 1
glt,2) = 5—(—5—-—5) —_—

n\z’—a t—z

8.12)

Y. PLANE STRAIN AND PLANE STRESS

The plane-strain equations are given by Eq. {7.7), and in terms of the
Goursat polential functions, the field equations (7.7) become

o + 02 = 2[0'(2) + @'(2)),
O1: — 0y + 2ioy; = 2[Zp"(z + ¥'(2)), o.1)
2 = 2p(u, + i) = ke(2) - [20°(2) + $(2)).

These equations arc derived in Appendix Subsection 1 [see Eqgs. (A.12)-
(A.15)].

For cases where the specimen is a plate whose thickness is small compared
with all other dimensions in the problem, these same Eqgs. (9.1) are also valid,
when x has the appropriate value. This case is called plane stress, and all future
equations are valid for both plane strain and plane stress when

_ {3 — 4v: plane strain, 033 = v{o,, + 03,);

(3 — /(1 + v): plane stress, 0y, =0 ®2)

In the fracture problem of Fig. 16, the boundary conditions pertain to o, 2and
011; S0 it is convenient 10 recombine Eq. (9.1) so that these quantitics are
displayed conveniently:

o1y + 033 = 2[9'(2) + @' ()],

013 ~i0; =0 + & + 7z — )"

22 12=9 (-_ ¢“ 03
2pu = ko — (2 — 1)’ — @,
w =z + ¢

In these equations, the new function w has replaced ¥ for convenience in the
following analysis, because of the appearance of the term(z — 7), which is zero
on the x, axis.

For a crack lying on the X, axis, —a < x| < a(Fig. 16b),in Problem II, the
internal stresses on the left-hand side of the second part of Eq. (9.3) are
batanced at the crack surface by an externally applied force distribution which
we shall call ¥, and following the reasoning leading up to Eq. (8.10), the
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boundary condition on the crack faces whete (z = Z) = Ois wrilten
~F = [¢'() + 00",
~F =o'+ o’(®)]", (9:4)
F=F+iF,

- Asbefore, + and - superscripts relate to the limiting values of ¢’ and @’ on

the upper and lower crack sutface. In the notation adopied for the externally
applicd forces, F, relates to a foree in the x, direction producing a Mode-1
opening of the crack, and F, relates 1o a force in the x, direction producing a
pure Mode-I1 crack. The use of the real variable f denotes that the variable is
laken along the cut, —a < x, < a.

In the form of Eq. (9.4), the Muskhelishvili analysis cannot be used because
its right-hand side contains the nonanalytic function &'. That is, @ is not a
function of z, but of 7. It is, however, possible to rewrite Eq. (9.4) in terms of
analylic functions of z, through the function w*(2) defined by

m.(z) = w(_u—f), (9-5)
On the real axis, [w*(t)]* = [w{1)]~ and Eq. (9.4) becomes

(-F1* = [9'0)* + [w*®);

[-F) = [o'() + [w*)]".
Subtraction of these two cquations shows that [¢'(z) — @®(z)] is a function
with no discontinuity on the crack surface, and hence is analytic everywhere,
From Liouville's theorem it is therefore zero, because the constant allowed by
Liouville's theorem would not fit the requirement in problem 2 that the

siresses are zero at ao. Hence, 9'(z) = w*(z), and the sum of the equations
[Eq. (9.6)] has the form

~F =[o'01* + te']". 9.7)
The analysis of the Appendix Subsection 3 now applies, and the result from
Eq.(A41)is
P — I Ffal-t7
i f2P-a? ). t-:z (9.8)
F(n) = F(1) + iRy().

(9.6)

Investigation of the singularity at z = a leads to

K
wa—zmwt\/ffam

K = K| + iK".

1 y a+t
K=——1| rnfot!
L J,Gf m(a_,)d:, (9.10)

9.9)
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in complete analogy to the antiplane-strain cas¢. When F, and F, are

conslants,
K = F./na. 19.11)

In this notation, Eqs. (9.9) and (9.10) contain both Mode I and Mode Il as their
real and imaginary parts, respectively. As noted earlier, Mode-111 stresses
when they exist are simply added in linear fashion to these equations.

As in the antiplane-sirain case, Eq. (9.8) provides an expression for the
Green's function for the planc-strain crack, because Eq.(9.8)is in the form of a
Green's-function-type integral, with a set of forces, o, distributed in equal and
opposile amounts on the opposing crack surfaces,

¢'@2)= —J.F (0)gle, 2)di,

a("z)tl(al_‘l)lﬂL

x\z? —al) -7

9.12)

Finally, it is noted that the potential function ¢'(z) possesses the same simple
form in plane strain as does the n' and stress in antiplane sirain. The stresses
themselves, however, are quite complicated, and obtained from Eq.(9.3)afiera
quite tedious manipulation, and this fact demonstrates the great usefulness of

the clastic potentials. In the interest of completeness, the stresses are given
below:

Equations for Mode I:
a,,} K [cos(ﬂﬂ)[l “— sin(B/2)sin(36/2))

Oy} = (—2;7;”—, cos(0/2){1 + sin(6/2)sin(38/2));
6, sin(6/2) cos(8/2) cos(30/2)
o, X cos(8/2){1 + sin?(0/2))
] = (—21'—”‘-‘75 lcos’(ﬂ/l] ;
e sin(8/2)cos?(0/2)
alt b v"oxx + ﬂ'") = v'(d,, + 6”), [9.|3.’

O =0y =0,y = 0y, = o;
L

= ‘(V"Z/Enﬂn + ‘”) - ‘V"Z/E)(ﬂ',, + 0‘.),

K (!_)”’ (1 + M2 - 1)cos(6/2) ~ cos(36/2)),
2E\2n) (1 + w[(2x + Vsin(B/2) — sin(36/2)) °
K,

( ry\ {(l + v)[(2x — 1)cos(0/2) — cos(36/2)}
2E\2x (1 + v} = (2 + 1)sin(8/2) + sin(30/2))

"
)
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Equations for Mode 11:
{—[sin(ﬂ/Z)][Z + cos{8/2)cos(30/2)]

all

.
a”] Qarp'?
g

xr

sin{8/2) cos{6/2)cos(I0/2) ;
[cos(@/2)][1 - sin(9/2)sin(30/2))

o, K [sint0/2)H{1 - 3sin?(0/2)]
Oy = z— =4 —3sin(@/2cos}(0/2)
{2rr)t? .
O, cos(t/2)[ 1 — 3sin?(0/2)}
6, = vio, t+a,)="v(g, + g), (9.14)
Oy = apl =0y = a‘: = 0;
u, = ~(v'z/E)a,, + 0,) = —(v"2/ EN,, + 0pg).

w,] K ( r N2+ vf2x + 3)sing0/2) + sin(3/2)]
T 2E\Ix

A _l_(_,,(L)”’ {(I + W[ —(2x — 1)sin(0/2) + 3sin(30/7)]
uf  2E\2x (1 + 9[- (2x + 1)cos(6/2) + Icos(30/2))'
Equations for Mode I11:

P Y B )
u, = + v[(2x — I)cos(8/2) + cos(36/2))

O =0y, =0 =0y =0,,=0, 0,=0,=0;
d'"} K“l { - Sin("/z,_

9,.) (2ar)"? |cos(0/2) '
Oy _ Ku Sil‘l‘ﬂlz}_ 9.15)
9§ ~ (2nr)'7 |cos(6/2)

Uy = (Ku/2EXr/2m)' (21 + v)sin(8/2)];
U=y =l =uy=0.
For all modes:
k=C3-v{l+v), v=0 =y

k= (31— 4y), Vo=, V=0

{for plane stress);

(for plane strain).

10. DiSLOCATION STRESS FieLps

One of the ceniral themes of this article will be the interaction of
dislocations with cracks, and in order to study this it will be necessary to
develop analylic expressions for the potential function of a dislocation in the
presence of a crack. There are a variety of ways for doing this. One is by means



of the conformal mapping for the known image solutions of distocations in the
presence of an infinite free surface.?® This is the only method practicable for
w.rcdgc cracks and other complicated crack shapes. For slit cracks, however, a
simpler approach is to use the general Green's-function expressions already
develtoped for slit cracks, Eqgs. (8.12) and (9.12).

In both antiplane strain and plane strain, the solution is obtained by
breaking n’, @', and w’ each into 1wo parts, that given by the dislocation
potential in an infinite homogeneous medium, and that required to satisfly the
boundary condition at the crack cleavage surface.

a. Antiplane Strain
1 antiplane strain, #’ is thus given by
n'=no+m,
o = ub/4n(z — )

The origin is at the tip of the semi-infinite crack shown in Fig. 16a and the
screw dislocation is at {. The solution nj, produces a nonzero force on the open
clcavage surface, and n} corresponds to additional forces exerted on the crack
plane to ensure that oyn,; = 0 here. Thus, 7' (a) is calculated from Eq. (8.10)
when that equation is medified to represent the crack configuration of
Fig. 16a, i.c., translate the origin to the right-hand side of the crack and take
a—aq:

(10.1)

f [ JftRelmoln]
njz J)-= t—z '

In Eq. (8.10) we have taken Fy, = —2 Re[n5(1)] with the substitution for o

from Eq. (10.1). Straightforward integration of Eq. {10.2) leads to the total
stress

ni(z) = (10.2)

' b Kin

[ )
N == ( ) -— ‘i )
4,,\/521: z—./(_, \/z—\/cr, +‘/I;
=£ﬁ b, (g)lﬂ ] b, fj 12 K
4u>,-3{z‘““- c,[ ) *! *7:3,[(;) - ']}+ Jom 1Y

!!1 this equation, the total stress is the linear sum of a set of dislocations
suua_icd at {,, and the crack K field is also added from Eq. (8.7) in order to
obtain a general result,

Physic_:ally. !his expression is interesting because of the appearance of the
term in {,, which corresponds to images of the distocations at { ;- Because of

1 G. Hirth and ). Lothe, “Theory of Dislocations,” 2nd Ed, McGraw-Hill, New York, 1982,

the cancelting effect of these images, the dislocation part of the stress ficld at
infinity decays more strongly than the normal 1/ dislocalion field. Of course,

. the overall field is dominated at long range by the K, field.

The most important result from Eq. (10.3), however, is that the siress
singularily in the tip region is also of the 1/./z variety, but with a different
strength than the tong-range Ky,. Thus, from the limiting form of ¢ near the
origin, the local stress intensity factor, k, is defined by the relations

Grug — klll/\/ 2nz,
L LB
ki = Kue — 3 ;( ot + g,

The important physical meaning of Eq. (10.4) is thal the dislocations shield the
crack from the externally applied stress field for positive Burgers vectors.
Dislocations with ncgative Burgers vectors are antishielding dislocations
because they enhance the effect of the external field. Note from Eq. (10.4) that
kin, like Ky, is always a real quantity.

) {10.4)

b. Plame Strain

In plane strain, the procedure is exactly the same as the antiplane case,
except that two poltentials arc required, ¢ and w. As before,

¢"—"¢;}+¢'h

o' =wy + w).

(10.5)

@5 and ), represent the potential functions for “free”™ edge dislocations. These
functions are not exhibited in the traditional dislocation texts, but the reader
can verify with Eq. (9.3) that the following expressions reproduce the edge-
dislocation stress fields as published, for example, in Hirth and Lothe;?°

, 24

¢°—z___c’

,_ 24 2¢-0

0o =7 {z-Cl‘A' (10.6)
L

A“zm'(x+|)'

These solutions satisfy the Burgers circuit condition and have zero line-force
term at the origin. The appearance of the second term in wy arises because of
the necessary translational symmetry of the stress fields of a dislocation in
expressions like Eq. (9.3).
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The terms ¢, and w) are once more chosen 1o satisly the boundary
condition a;n, = 0 on the crack surface in Eq. (9.3). They can again be
regarded as duc 1o additional forces exerted on the crack surfaces which
accomplish this goal, and which give rise to new stresses calculated from
Eq. (9.8). Fortunately, the analysis is simplificd, because

?12) = wi*(z). (10.7)

The reason is thal ¢} and w) are polentials which are derived from
{“external”) forces exerted on the crack surfaces, and the sdme reasoning
leading up to Eq. (9.7) applies in this case as well, The function F 10 be used in
Eq. (9.8) is given by

~F = 2¢400) (108)

from Eq. (9.3) because z = Z. Thus, with the obvious modification of Eq. (9.8}

for a semi-infinite crack (transtate origin to the right-hand crack tip and Jet

4 - ),

RSz J)-w 1—2

Cre )
¢ =P =—" f Mdm (10.9)

The easiest way 10 evaluate Eq. (10.9) is to integrate in the complex plane, {,
with the expanded contour shown in Fi ig. 18, in which ¢ is the real axis:

flodedde o

FiG. 18, Expanded contour of inlegration of Eq. {10.)0) rlong the negative real anis. The
expanded contour surrounds the negative real azis, C, conlinues a4 infinity with C_ , and encloses
the pokes al z, {,, and {a-
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The final result for the total ' corresponding to a collection of dislocations in
the presence of a crack is

¢ =90+ ¢}

ot ()" ()

A_(CJ"_EJ}[ f_])lﬂ (-zr)lﬂ_z]
e —tpl\z) *\G

X K

* 2,/232;

Al el

AL = B[ (6" ()" +e] e

Ty [(z) + ? +2|+ 2 Aoy (10.12)
Asin the antiplane-sirain case, the relevant expression for the crack part of the
polentials, in Eq. (9.9) have been added to Egs. (10.11) and (10.12), and the
additive property of siresses has been used to write an expression for a
collection of dislocations of Burgers vectors b, at positions {;. Thesc equations
for the potentials ¢ and w exhibit some similarities to the antiplane-strain case,
Eq. (10.3), but contain extra terms. As in the antiplane-strain case, the
dominant term at infinity in these equations s the K term. The far-field slresses
of the dislocations are also again degraded by the image terms in the crack
surface, although these image terms are considcrably more complicated than
ia the earlier case.

The limiting functional form of Eqs. (10.11)and (10.1 2) atinfinity and at the
origin again provides the basis for the physical picture in which the
dislocations shield or antishicld the crack. The relation between local and
applicd stress intensity factors is then given by

Prap = E/2./2:z
- = " b, b, ab{, - fj)) (10.13)
Rl rred ) B U S ELL/ . ind V1) )
2i(1 - ");(‘ /anl, /2l (2={)*?
The reader is reminded of the complex number character of k, K, and b,;

k =k + iky;b = b, + ib,, etc. [As noted earlier, these cquations are valid for
planc siress when the substitution v — v/l + v) is made.]

=K, + iKy; A= nb,/l:u‘(x% ). (o

Forw',
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1 plane

§ plane

Fii. 19 Wedge configuration. In (a} the wedge parameters are shown in the 2 plane. In (b the
wedge is transformed 10 the imaginary anis of the { plane.

A somewhat different treatment from that given here for dislocation-crack
stresses is given by Hirth and Wagoner,?! and an clegant method for deriving
the image stress of dislocations in the presence of cracks [contained in
Eqgs.(10.11),(10.12), and {10.3)] has been derived by Rice and Thomson.?? The
method here is quite similar to, and was suggested by, a development in
unpublished lecture notes of J. R. Rice.

I1. WEDGE CracCks

Although in most crack problems, the slit-crack analysis is adequate
because dislocation processes at the crack tip modify its shape, dislocation
intcractions with other shapes are important. In particular, the wedge
configuration is the result of continued dislocation emission (see Fig. 11), and
will be dealt with here. The analysis will follow that of Chang et al.,?* but
Sinclair?* has also discussed the dislocation-wedge configuration, numeri-
cally. As mentioned earlier, the only analytic method suitable for this case is
conformal mapping as presented in the Appendix (Subsection 2). The
geometry is shown in Fig. {9,

In antiplanc strain, the relevant equations are Eqs. (A.27) and (A.28). The
boundary condition, of course, is that o,n, = 0, which transforms into the ¢

M) Hinhand R, Wagoner, Int. J. Solids Struce. 12, 117 (1976).
12 J Rice and R. Thomson, Philos. Mag. 29, 73 (1974).

'S Chang, S. Ohr, and R. Thomson, 1o be published (1986).
14 ). Sinclair, Nucl. Metall. 20, IRE (1976).
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plane as
Im[o(ret'™?)] = 0. (1.1}
The transformation law is '
z=4§", l<p<? (11.2)

where p is geometrically refated to the wedge geometry as shown in Fig. 19,
and points on the wedge are transformed onto the imaginary axis of the plane.
Equation (A.28) becomes

2 dn})
o+({) = W:ﬁm _F’

e‘. - (z_l'(::_))lﬂ - (i’_-_l,)”z_
() ¢t

@, as explained in the Appendix, is the local rotation at a point.

Since £ is a real quantity everywhere, the boundary condition on the x,
axis in the plane is then

(1.3

Im[”,(c)]hllll = 0 " l‘)

A second boundary condition, of course, is that the solution represent a
dislocation at z = { in the z plane; that is u{z) must be double valued at { with
strength given by the Burgers vector

Auz={)=b. (11.5)

These two boundary conditions, of course, are reminiscent of the similar
problem of the image solution for a dislocation in an infinite free surface, and

indeed the function,
A 6 — cll!
n(£)=iln({—-—”(.,,) (11.6)

satisfies Eq. (11.4). The constant [ ' is chosen so that n(z) is singular at z = (.
In the z plane, Eq. (11.5) is satisfied if A takes the form

ph [V _[iw
lﬂZ) = Z; |n(z—’rfm).
o{z) = 2n'(2).

This function is the same as the crack solution [Eq, (10.3)] when p = 2.

The dislocation interaction with a wedge is only complete when a term
corresponding to a K term in Eq. (10.3) is added. When the wedge (assumed
semi-infinite in extent) is present without a dislocation, Eq. (11.4) s still valid,

(1.7)
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and the simplest function satisfying Eq. (11.4) is

P
n= 3 Awi  n= g/\uuf. § plane;

A (11.8)
+ 1

W= A= gAmZ”". z plane,

This solution has the same meaning and limitations as the infinite crack
solution [Eq. (8.8)] has. That is, Ay, 3s 2 measure of the strength of the wedge-
tip singularity, must be specified by other considerations, such as thase
discussed in Part I11,3. Note that for P=2 Ay =K/ /25

In antiplane strain, the total potential function for dislocations and
“loaded™ wedge is given by the linear superpositions

b zVe _ rip P
"(z)=;"—:-ln(z'.—”—:a‘:'—ﬁ) +5Amz”’ {l'.g)

12. ANisoTrROPIC ELAsticiTy

General methods have been developed for anisotropic elastic problems and
have been applied primarily to dislocations. Ap excellent recent review of
these techniques is provided by Bacon et al.?* For two-dimensional problems,
this theory is based on the methods originated by Eshelby et al,*® which are
briefly summarized below. In the general tensor notation for Hooke's law,

‘u =Cwu._‘- (Iz'l)
The equations of equilibrium are
0y = 0 = Cuﬂ‘l‘u- (12-2)

If all derivatives with fespect 1o x; are 2er0, then a solution of the equations is
of the form

U= AS(pix, + pyx,). (12.3)

Substitution of Eq.(12.3)into (12.2) yields a set of homogeneous algebraic
equations in the coefficients,

CyuPiPrA, = 0. (12.3)

In this notation, P3 = 0, and because of the arbitrary form of the function L
is permissible (o seq Py = |. With this convention, the determinant for the
coeflicients in Eq. (12.4) when set 1o zero yields a sixth-order polynomial in p.,

3 D.). Bacon, D. M. Baraeit, and R. D. Scattergood, Prog. Mager, Sci. 23, 51 (1980),
) Eshelby, W. Read, and W. Shockley, Acia Metall, 1, 251 {195)),
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which will yield complex roots. Because lhg ca in Eq, (I2:2) are all. rftal, :hfe
roots of the determinantal equation appear in co{nplgx-conjuga(e pairs. Thus,
there are three independent values of p,, for which it ha§ been customary to
inlrociuce a nolation with Greek indices, P2, in w!nch the summation
convention does not apply Lo repeated Greek indices. With these conventions,

the general solution has the form
) 25)
= z A(x, + prux)) (12
a=|

Since u, is real, the two f’s corresponding to complex conjugale p's are also
paired, so that the final solution is

o, = -)::l Re A, fo(x, + p1.X;3). (12.6)

i i lex variable z, =
Thus there are three arbitrary solutions, f,, of a complex .
[xi + Re(pa)x;) + ilm(p,,)x,, and the usual complex function theory can
be cmploycd. ‘ .
In particular, the stresses are given by the relations

on = 2Rc(- )3 p.L..f'.(z.»).
-t (127)

g3 =2 Rc( z]:l LS :(z,)).

J' denotes differentiation with respect to z, = Xy + p2x;. This theory ha§ bee:
applied to the crack problem by a number of authors, with results as reviewe
Bacon et al.?* o _

byA :cncral warning must be made in applying this formalism in certain cases.
In the isotropic case, the solutions become highly dcge:nerale,_ and isotropic
results are not always the limit of the correspending anisotropic expressions,
Forcxample, in the isotropic case, antiplane strain separates from plane strain.
and in plane strain, the solution [Eq. (12.3)] is not lhc_mosl gcncral'so.lutlon qf
Eq. (12.2). Additional functions are required. Thus, in plane.-stra'm isotropic
problems it is best 1o revert to the Airy stress-function analysis or its complex-
variable variant as done in this section.

V. The Elastic Forces on Cracks and Dislocations
{3. InTRODUCTION

Since the problem of fracture entails the lravcrsgl of a crack and is
associated dislocated deformation zones through a solid, the problem of the
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equilibrivm configuration and dynamics of the assemblage requires an
analysis couched in terms of the various forces on and between the consfituent
defects. Historically, the elastic force on a dislocation segment was worked out
many ycars ago by Peach and Koehler,??

df = (@b} x dI (131

in terms of the external siress ficld o, the Burgers vector b, and the line segment
dl. A fundamental result of Peach and Koehler's analysis is that the scif-stress
of the dislocation does nol exert a force on itself. Likewise, for the elastic sharp
crack, lrwin?® derived a similarly classic result for the force per unit length on
a Mode-1 crack in two-dimensional isotropic elasticity, in terms of the stress
intensity K, Poisson ratio v, and Young's modulus E,

S =Kl = v)E. . (13.2)

This force is traditionally called the energy release rate in the mechanics
literature, and is known by the letter G. However, here we adopt a more
comfortable physical notation.

When cracks and dislocations are combined together, as in nearly all
fracture events, one could proceed by simply combining these two resulis in an
ad hoc manner to find the individual forces on cracks and/or dislocations,
because from Part 111, the stress fields and local stress intensity factors are
known. However, there is a more powerful, general, and elegant approach
which foltows from the basic theorem of Eshelby® on the force exerted on an
elastic singularity, expressed in terms of the energy momentum tensor for the
elastic field. This second approach has the added advantage that it can be
written in terms of the complex potentials, which are much simpler to work
with than the full stress tensors as in Eq. (13.1). With it, we shall also make
direct contact with the J integral of Rice,*®~? which is the standard
continuum-mechanics approach to cracks in a deformation field. Clearly,
then, we shall prefer this latter path, and will display the Peach-K ochler and
Irwin results as special cases. The point of view and results of this section
largely stem from two papers involving the author. >33

** M. Q. Peachand 1. §. Kochler, Phys. Rev. 38, 436 (1950).

MG R Irwin, J. Appl. Mech. 14, 361 (1957},

121D, Eshelby, Solid State Phys. 3,79 (1956).

19 ) Rice, J. Appl. Mech. 35, 13(1968).

' 1R Rice, in “Fracture™ {H. Lichowitz, ed.), Chap. 2, p. 191. Academic Press, New York, 1968,
') Rice, Mech. Fract. ASME Winter Anm. Meet., 1976, AMD 19, 31 (1976),

" R. Thomson and ). Sinclair, Acta Metall. 30, 1325 {1982).

3 1. H. Lin and R. Thomson, Acta Metall 3, 187 (1986),

PHYSICS OF FRACTURE 41

14. Tue Force on AN ELAsTIC SINGULARITY: ESHELBY'S THROREM

To derive this theorem, following Eshetby,?® we suppose the finite elastic
body possesses a set of stiress singularities, as shown in Fig. 20, and that the
external surface of the body is subjected to a specified set of external forces. A
strain-energy density function is assumed to exist, and since, except at the
singularitics, the medium is elastic, this function is given by

W =la,u,. (14.1)

In this and the following equations through (14.8), the full three-dimensional
clastic notation will be used. If all the singularities move a constant distance ox
from their initial positions x, to x, + éx, the energy change is calculated in
three stages:

In Stage 1, the energy change, 3U", arises from integrating the strain-
energy densily function over the solid. In this stage, when the sources translate,
the stresses and displacements constituting the clastic solution are assumed to
move rigidly with them in space. Thus, after the displacements occur, the new
value of the strain-encrgy function is

Wi'x) = W(x) — g—:—dx.. (14.2)

F1G. 20. Figure lor deriving Eshelby's theorem, A body is contained within an external surface
S, and is subject to external stresses, Strain singularities exist at 5,.3,.5,..... which are transtated
by 8x to new positions. 5, is an inner surface enclosing singularities s, and s,.
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The total energy change intcgrated over the body is thus by Gauss’s theorem
W
UM = ——J’a—x-éx.dl’= —J.sttﬁx‘. {14.3)

In the second stage, the boundary condition on the surface of the body when
the sources translate is considered. In Stage 1, Just above, when the elastic

translate in the same way. However, although the stress originally om the
boundary satisfied the required boundary condition,
oy, = F, (14.4)

on the boundary, where » is the normal to the boundary, after the rigid
translation of the elastic solution, the new stresses and displacements on (he
boundary no longer salisfy Eq. (14.4). In Stage 2, an additionat surface siress is

0}
Ay, =yl _ (uj‘" - g‘%‘a—&x‘). (14.5)

The work done on the body by the total siress acting over (Aw) is then, 1o first
order{o + Ao ~ o),

sum = I ol Au, ds,

source translates to thai after the end of Stage 2, when the boundary .

conditions are satisfied
UM = _ j o (Wi — ui™)4s,, (14.7)
Addition of Eqs. (14.3}, (14.6), and (14.7) gives the final resuly

hi= —g'i' = f (Wéy — o,u,,)ds,. (148)
Xy
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Ji 18 the force on the singularity in the Lagrangian sense because it represents
the ncgative of an encrgy derivative.

A subtlety arises when applying Eq.(14.8) 1o a crack. The shit comprising the
cleavage plane of the crack is, of course, a part of the exiernal surface of the
body. However, since on the free surface of the slit, Eq. (14.4), is satisfied, the
second term in Eq. (14.8) is zero. Also, by symmeiry, W on the lower surface is
€qual to W on the upper. Because of the change in sign of 45, when comparing
the upper 10 the lower surface, the contribution of the first term is thys zero
also. Hence, in making a contour around a crack, the contour may cnd on the
crack cleavage surface,

The integration in Eq. (14.8) is over the actual external surface of the body,
and may enclose a number of singularities. The force in this case represents the
total force on the entire set of singularities. If instead, the force on a single
singularity, or subset of the original group, is desired, the following strategem
can be adopied. An inner boundary, S;, is drawn surrounding the singularities
in question (Fig. 20), and the remainder of the body then serves as an
“extcrnal driving system” on the inner surface. In carrying out Stage 2 of the
argument, however, a subtle point must be obscrved. The boundary con-
ditions are established on the real surfaces of the body, and the Ay, as
calculated in Eq. (14.5) are the Au, on the inner integration path S; which are
induced by salisfying the boundary conditions on the external surface S. The
rest of the argument then follows as before. In this casc, of course, the forece on
the singularities within S, is not only a function of the external driving stresses,
but also of the remaining singularities outside S

An imporiant Property of the integral in Eq. (14.8) is that, within certain
limits, it is independent of the shape of the surface. Consider (wo surfaces
enclosing a collection of singularities, such that the volume between the two
surfaces contains no additional singularities. Then the difference in the
inlegration over the two surfaces is

f: _f:' = §(W‘5u - ‘u“u)dsp . "4-9]

Gauss's law for the enclosed volume, the equation of equilibrium, 0, ; = 0,and
femembering that within ¥ there are no additional singularitics, then

f: - :I =I (W_. —dull,-.u)dV. (I4.l0’
[ 4
The gencral definition of the strain-energy density is

W= f Gudey; €y =Huy +u,,). (14.11)
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By the chain rule of differentiation, and provided that a, is only a functior of
the strain function ¢, which does not depend upon position (i.c, the medium is
elastically homogeneous), then

d .
"V'. = Cu‘ldTu J‘I’.!dfﬂ = ﬂuul'in . (|412)

and the integral in Eq. (14.11) is zero. Hence Eq. (14.8) depends only on he
number, type, and configuration of singularities enclosed in the contour for a
homogeneous medium, and does not depend upon the shape of the contour. In
more physical terms, if f, in Eq. (14.8) is the Langrangian force on she
singularities, it cannot depend upon the shape of the contour on which the
elastic fields are evaluated.

This corollary is very evocative of the Cauchy residue theory in two
dimensions, and indeed it has been shown?? that for general anisotropic mecia
Eq. (14.8) can be written in two dimensions as

fi= "‘4’”"‘(‘;. (iPthAu)z, Rcs[f;(z,)]’). (14.13)

This equalion is written in the notation of Stroh?3-%6 explained in Part 111,12,
and ¥,,, is 2 sum over the enclosed residues. The 1 sign is the sign of Im(p,).
The Peach-Kochler and Irwin relations are also examples of the sane
proposition that forces on defects depend only on functions cvaluated at tae
singularities,

15. ANTIPLANE STRAIN. MODE-TIT AND SCREW DISLOCATIONS

In isotropic elasticity, the general equation (14.13) degencrates inso
noninieracting antiplane- and plane-strain parts. The antiplane-strain part
then corresponds *-¢ (o

P _ i,
Ll] = i&*;.
Ay = ~0y3/2p,

I3z} = a(2),

{15.9)

3% A_N. Stroh, Philos. Mag. 3, 625(1958).
¥ A N. Siroh, J. Math. Phys_ 41, 77 (1972).
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where a(z) is the complex stress defined in Eq. (8.2). Then Eq. (14.13) becomes

f=£§,"“‘“z" (15.2)
f=f+ify.

Alternatively, one can derive Eq. (15.2) directly from Eq. (14.8) using the
complex function notation of Part 111, by substitution for ¢y and u, in
antiplane strain, and using the Cauchy residue theorem. Note the complex
vector notation introduced for the force f.

The simple Irwin and Peach-K ochler relations are recovered from Mode-
111 cracks and screw distocation by taking a contour surrounding only one
defect in each case. For a Mode-11l crack at the origin, from Eq. (8.11),

o = Ku/\/28z, and
Jo= K2 (153

This equation is the Mode-111 form of the Irwin relation. Note that the force is
real, so the crack opens only in the x, direction.

For a dislocation, the sclf-stress is of the form 1/2, which contributes no
residue. Thus the self-force is zero. If an analytic external stress a4 is added Lo
the distocation stress, so that

¢ = 04(z) + ub/2xnz, (15.4)
then the force on the distocation becomes
J=ba,, (15.5)

which is again the Peach- K ochler result.

More substantive resuits are obtained when the crack coexists with onc or
more dislocations, For this purpose the stress field of Eq. (10.3) is required.
Using this expression in Eq, (15.2), the force on the crack is

f,=k.’.,/2n,

b b (15.6)
hy = Ky — & (_!__ _'_)
= Kum 2 ,/2n,+\/2:t.{,

Thus the force is the expected Irwin relation, but using the local k field of the
crack, as defined in Eq. (10.4). Note again that the force is always real, that is,
is an extension force along the x, direction. In antiplane strain, there is no lorce
tending Lo carry the crack away from its initial cleavage plane,

The force on a dislocation at { with Burgers vector & in the presence of the
crack and other dislocations at {, with Burgers veclor b, as shown in Fig. 21 is
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b
¢ b
*zl L8
bﬂ
————— 1
X, {,

FiG. 21. Crack-dislocation configuration. In Lhis section, the crack isassumed 1o lic along (he
negative real axis. Dislocations are bocated al points {,. When a reference dislocation s needed, ag
fur example when a force is calculased o it if is refesred to without subacripi, Subscripis are gven
{o all other dislocations.

evaluated in terms of the residue at {, and is given by

f=1£m£_ﬂ_b’_[i+_'_,_(§)"' I ]
Ul W XTI\ =T

.@[ 1 (f;)"’ 1 (c',)'ﬂ ! "
R e ad v el t: c—c',} (147)
The prime on the summation is to remind one that the refesence dislocation at
{ 15 not included.

Three types of terms are contained in Eq. (15.7). The first is the K ficld, or
direct crack interaction and depends on the distance from the crack as | IN/%
The second is a sell-image force on the dislocation in the open surface of the
crack, because it depends only on band varies with distance from the tipas 1/{.
Further, the sell-image force in the radial direction from the crack is simply

(P Dmags = — ub?/4x({), (15.8)

which is exactly the same as if, at the crack line, an infinite open surface wer:
erccted perpendicular to the radius to the dislocation, This is a result first
obtained by Rice and Thomson.>? The third group of terms is the contribution
to the force from the dislocation-dislocation interactions. They have the
expected 1/({ ~ {,) terms, but are modified by the factors . /T/{,, because, if the
teference dislocation is near the crack tip, even il K,,; = 0, it will sense a stresy
concentration there contributed by the stresses of the dislocations at ;. These
are, of course, the K-field contributions due to the dislocations which lead 1
ll!e local k concept in Eq. (15.6). In addition to the direct dislocalion-
dislocation terms, there are also contributions from dislocations at the image
points, {;, and caused by the open surface on the cleavage plane. Note
particularly that the sign of the force is lineas in b in the first term, bilinear in
the third term, and is quadratic in the second. That is, the force is repulsive or

*" 1. Rice and R. Thomson, Philos, Mag. 19, 73 (1974).
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attractive, depending on b or b, in the firs or Lhird terms, but always attractive
for the sell-image term.
An interesting variation of Eq.(15.7)can be written in lerms of the local kyi,

namely
= kmb ubz L_ 1 (i)l”_l‘]
fo= *'«ii“[zc 7)) =t
-ﬁ'ﬁ[ L (E)"'._.'_ (£)"’_'__] 9
Wale ) r\g) =gt v

2
Thus, Eq.(15.7}is a form which best expresses the force when the dislocation is
near (he ouler edge of the dislocation distribution, while Eq.{15.9)is a better
approximation when near the inner edge.
When the contour is taken around all dislocations and the crack, then the
result is simply :

Re(fo) = Kiu/2u (15.10)

Thus the elastic force on the entire collection of crack plus dislocations is
simply that for a crack characterized by the far field K. When the distribution
is symmetric about the real axis, then Im(f,,,) = 0.

A simple relation can be writien when all the dislocations are lined up on the
X, axis in a one-dimensional distribution. Then Eq. (15.7) becomes

I=-Kn _pb? E-__Fi"i__,("_')”’
‘T Sax A - x\x/ (15.11)

b
Km="m+¥ al

. /2ux,'

The simplicity of this result lends itself 1o use in pileup problems in later
sections.

16. PLANE STRAIN: EDGE DISLOCATIONS AND MODE-1 AND MoDE-] CRACKS

The Mode-1 and Mode-Il case is not a straightforward limit of the
anisotropic results as in antiplane strain, because the isotropic solutions of the
field equations are not of the form of Eq. (12.13). It is then necessary to revert
to the potential functions developed in Parts 1119 and 11. With the use of the
strain-energy lunction in its plane-strain form,

W=tdoyu, = §[a, ., + 0,205, + 4y 3) + 023u5,], (16.1)
direct substitution of the stresses and displacements, Eq. (9.3), into (14.8) can
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be shown to yield**
f= &‘-@;‘:—ﬂ; [2Res(o’e’ — ¢ — 29°0") + Res(p?)).  {162)

In terms of the ¢ and y, f has the simpler form

- BUINT Rty s R e

I;
Similar equations have also been derived by Budiansky and Rice,™ and by
Chang.*®

For the crack alone, the force corresponds to the residue at the ofigin, and
carrying oul a limit analysis of Egs. (12.6) and (12.7) at the origin, theifusce on
the crack is

= l—vf . k- P)
e =~ kk + v
. 2 ( 2 {164)
k = *. '|'h ikﬂ-.
The k here is the local & at the crack tip. In terms of components,
- 1 -2 .
Uh =3k + kD) = 2 + 4 (16:5)
l -
(fh=- (—7‘":')"‘!&"- (16.6)

Eis Young's modulus. Equation (1 6.5) is the Irwin relation for Modes| land {1,

Unlike Mode U1, there is in Eq. (16.6) a component of the force along the
imaginary axis, the meaning of which is somewhat obscure. Strictly speaking,
Eq.{16.6) is the force of translating the crack rigidly in the X 3 direction, which
is not a normal physical motion for the crack, However, cracks do!hranch
away from their original cleavage planes, as shown in Fig. 22. One might
suppose that Eq. (16.6) would form a reasonable estimate of this branching
force, since the force on the crack is the same as the force on the virtual or
“crack™ dislocations which are equivalent 1o the crack, and these dislacitions
arc highly concentrated at the tip. But a more careful analysis of the bramching
force shows that such is not the case, and that the branching force is aciually
composed of a linear combination of the terms k?, k3, apd kk, in an
approximale treatment carried out by Cottrell and Rice.*® The reader is

® 8. Budiansky and 1. Rice, J. Appl. Mech. 40, 201 (1973).
5 Chang, Int. J. Fract. 16, R79{1980).
“* B. Cottrell and 1. R. Rice, Int_ 1. Fraet. 16, 155 (1980).
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— 7

il 22, | Branching motion of a crack in which the crack abruptly changes cleavage plane.

refercet] 1o these authors for an excellent discussion of the branching force, and
 forzitztions to the further literature on the subject.

[Mhe relation between K and k in the analysis leading to Eq. (16.4) yields

¢ Hgain the. complex number form of the shielding relations for Modes I and II:

bl + bl "';(CJ - EJ)) (16.7)

- p
=k "
K=kt 3 —v)%j(, g, * ot Gl

“The korce on the dislocation requires an evaluation of the residue at {;oand is
| mudh mon: complicated than in antiplane strain. Again, as in Eq. (15.7), there
1 amellaree separate contributions to (his force, which wiil be denoted

Jo=Txa ¥ fo ¥ fen (16.8)

{The First 6erm is linear in the reference dislocation b, and linear in K. It

-enrresponds to the direct interaction between the crack and the dislocation,

| The :secand term is proportional to b, and represents the self-image term.

‘Fimaljy, the third term is proportional to bb, and represents the dislocation-

Idislocation interaction. These three terms will be addressed in turn,
The!direct crack-dislocation force is

1 _- Kb -0) _) Kb
Kb—-Kb+—2_2 _Rpl-— .
2.‘./2::(( * b/ 4 2i./2n{

Sitwce ‘the Kislocations in question are edge in character, it is convenient to
rewrike Eg. (16.9) in terms of a coordinate system rotated so the slip plane lies
-abong:the real axis (Fig. 23). In this coordinate system

F*=jev pw= be ™ etc. (16.10)

™I by definition is real, ic., b = b.. and equal to the edge component of the
idishocation. In this coordinate system,

Fe b (Kel- — Re ™

Ill‘_zm |.

+ iKehtn-0n 4 iKe'm). (16.11)

Jra =

(16.9)

elllﬂlﬂl + R Sin 0'“2! - 32}

Notelthalt the Re( £**) is the slip force on the dislocation and ~ Im(f™)is the
-¢limb fonce.
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FiG. 23. Configuration of Modc-) and -il edge dislocation in slip-plane coordinates.

When the slip plane intersects the tip, then a = 6, and Eq. (16.11) simplifies
to

Re(f3¥) = 2—\%_; [K,sinOcos 0/2 + K(2cos 36/2 + sinsin 8/2)].

{16.12}

For future reference, inspection of the angular parts of this equation indicates
that dislocations are likely to be more sirongly aficctied by K uthan by K,. For
rough estimation, Eq. (16.12) gives a good picture of the force on dislocations
in the deformalion zone, because gencrally speaking, it is those dislocations
whose slip planes roughly intersect the crack tip which do the shielding. Afier
they are left behind in the wake, for instance, they have little interaction with
the crack lip, and their prime interaction is with themselves and possibly with
the open cleavage surface.

The second term in Eq. (16.8) is the sell-image term quadratic in b, and is
given by

Fom_ B M[ (5)"’] @[? _'_( _E_)
Jo= ml-va{c’" A Ay Farw < Ut

O

When slip-plane coordinates are used and 0 = a, the result is

(f8hip = — ulb?|4n(1 — wr, (16.14)
= _ #b* tan{0/2)(5 + 3cos )
U & )tims = Yo a— (16.15)
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The resuit Eq. (16.14) was first given by Rice and Thomson,®” and has the same
form as in antiplane strain. That is, Eq. (16.14) is the same as the simple image
force on a dislocation at a distance r from an infinile surface.

The third term in Eq. (16.8) is bilinear in bb, and is the dislocation-
dislocation term. The general cxpression is

Sn(l—v)-'= A Fh o4 bE L _(1)”3 ] L[(Q)m— ]}
PR (bb’”b’”""{c;[(c el !
{1 f,_ 12 ] 1 [(C,)"‘ ]}
—bb<{=|1+# | =|{ -
’{c,[(c) el !
[ e PN
%’b"{t’[(c ) -
"_"1_‘&[(&)"' (5)”’ ]
+ iz T + 3 +2 (16.16)
(5E+b@)iy, 4b5,-yy, 12 \'2
T = ) ( ) +(F) ”2]

4,
* (
) )] - )

£ I\{ {; (e ¢*
7 ( P \_/51)

Ctl /_""cc clu d

G=0-0 8=0-0 y=€-02i:  y=0-Ly
This complicated expression is a bizarre example of how difficult it can
become to solve boundary-value problems in clasticity for any but the simplest
situations. The various distances, £, £*, etc., are diagrammed in Fig. 24.

~ Fati. 4. Diagram of the distances £ 80, & and & for a pair of dislocations st { and {for
inerpretalion of Eq. (16.16).
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17. The WepGE Cask

When dislocations are in the elastic field of a wedge crack, then the
equations for the poltentials given in Part 11,1 | apply. For the Mode I- 1 case,
the results become quite complicated, and the reader is referred (o the paper by
Sinclair?* for numerical results. In Mode | I, when the dislocation is on the x,
axis, the results are (see Fig. 19).

fo=0, pg2

:_ Ab b’ I

_f‘ = ‘c|_1 - 4,!( l_+ ('c"/c)'t (l?.l,
q=1/p.

These results for the dislocation reduce to the slit crack when p = 2. The
curious result is thal f, = 0 when the wedge angle is finite. The analytic reason
is that the singularity at the crack tip then differs from | /J¥, and no residue
exists. On the other hand, the wedge can certainly be extended, geometrically,
inte the medium, and when it does so, the external surfaces of the material
cxlend, and work is done by the external stressing machines. So a paradox
exists. The resolution is by means of the construction in Fig. 25, which shows
that a self-similar translation of the wedge, in which its elastic stress Jfield is
rigidly translated with it, can only be produced by dislocation emission. That is,

Fiii. 25, When a wedge is translated to the right, the arrows show the displacement necessary,
and indicate an accomulation of strain at the tip and along the sides. Thus, self-similar transiation
uf the wedge and strain field is impossible elastically. When dislocation emission is altowed, such
teanslation is possible,
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il the wedge is cut open af its tip, and the faces forced into the wedge shape,
clastically, then the stress field is nol translationatly invariant as the process
conlinves as required in the Eshelby theorem. On the other hand, after
emission of dislocations from the tip, the stress field of the wedge does so
translate (when the dislocations move away!). But dislocation emission
generates nonzero incompatibility, and is therefore nonelastic, If the work
done on the dislocations as they are emitted is included in the analysis, then the
work done as they cmesge from the external surfaces is just that done by the
cxternal stressing machines, which resolves the paradox. In other words, there
is no elastic force on the wedge as it translates, but there is on the dislocations.
Closcly coupled to this distinction between cracks and wedges is the fact that a
Mode-1 wedge does not disappear when the external stress is removed, even
though the stress singularity does. By contrast, the cleavage crack, of course,
has the basic property that, when the external siress is removed, the atom
bonds zip together again and the crack disappears. Thus, the wedge is,
fundamentally, a void (made by punching out distocation loops or agglom-
eration of vacancies), whereas cleavage cracks are a logically distinet class of
crystal lattice defect. This analytically derived distinction between cleavage
cracks and wedges is, of course, intimately connected with the physical
consequences for toughness to be discussed in later sections. {The dislocations
in this discussion are, of course, “real™ dislocations, as distinct from the virtual
or “crack”™ dislocations introduced by Friedel and discussed in Part | 1.5)

8. THE J INTEGRAL

Equation (14.8) as applied to cracks was derived independently of Eshelby
by Rice.**~32 who called the right-hand side of Eq. (14.8) the J integral. J is
used extensively in the fracture mechanics field for the analysis of fracture in
plastic materials, Unlike our approach, which addresses plasticity in terms of
the individual dislocations which are the seat of crystal placticity, J is
calculated using continuum plasticity theory under the assumption that the
medium obeys a nonlinear stress—strain law, which is a single-valued function
of strain. From the definition of the strain-energy function, Eq. (14.1 1), Wis
then no longer a quadratic function of strain,

W= ey, (18.1)

but a more general nonlinear function of the strain. If this more general siress—
sirain law is a unique single-valued function of strain, then Eq. (14.12) is still
valid, and the integral in Eq. (14.10) is still zero. Thus J is path independent.

The difference between J and [ as we have used it is that in J there are no
singularitics representing the dislocations of the plastic zone, only a nonlinear
stress-sirain “constitutive law.” Thus, unlike S the contour path for J can be



54 ROBB THOMSON

shrunk through the deformation zone 10 the crack tip itself, for alt of which
contours, the value is an invariant. F urther, outside the deformaltion zone,J i
exactly the same as calculaied for our £, and in this case, from Eq. (15.104,

Ju = Re(f) = Ki/2u (1.2
Similar equatjons follow for Modes 1 and II,
Tin = Re(f) = [(1 ~ v}/ EYKE + K}). (18.3

Note that we have followed tradition and defined J for the X, component of
the force only.

Equations{18.2) and (18.3} follow only when a K field can be defined outside
the deformation zone. That is, the boundaries of the specimen must be far
away from the edge of the plastic zone surrounding the crack on a scale based
on the size of the deformation zone. This case is called the “small-scale
yielding™ approximation. The major usefulness for J comes from its use when
the small-scale yielding approximation is not valid {see Fig. 26). In this latter
case, of course, J is still calculable by Eq. (14.8) even though no X field can be
inferred. Bul the relation to the force has a less clear meaning —in our terms,

—t |-

(b}

~ Fud. 26. Small-scak yiclding. In (a}, the deformation zone surrounding a crack (shown shaded)
15 small compared to all physical dimensions of crack size and specimen size. A K ficld oulside the
deformation zone is well defined. In (b), the deformation zone overlaps the specimen surfaces, and
no K field can be defined ay large distances from ihe crack. Nevertheless, J can be calculated in the
latier case and is conlour invariant.
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the dislocations of the deformation zone may disappears in the boy ndary when
the conliguration is displaced if the deformation zone overlaps the boundary,
for example.

The great value of J is associated with the fact that it is a characlerizing
parameter for a crack in a given material, and critical values of J can be
measured for cracks at which catastrophic failure occurs, J,.. From its
desivation, J, is a parameter which depends only on the material properties
such as yield siress, work hardening, elc., and can be used as a measure of the
susceptibility of a material 1o failure under various conditions of stress and
crack size. Morcover, J, is a parameter which can be measured for specimens
where the small-scale yielding assumplion is no longer valid. Although there is
some uncertainly aboul its physical meaning in this case, one would roughly
expect [rom its contour invariance that the conditions at the crack tip which
cause crack growth should continue to be approximately inferred by J, even
when not in small-scale yielding. Indeed, empirical explorations have shown
that J_ is in fact an excellent fracture criterion in the large-scale or general
yiclding case as well as for small-scale yiclding. (See the engineering references
below.}

A more serious problem arises when a crack is stressed to the critical level
and actually moved. As the crack moves, it leaves behind in its wake material
which has gone through a stress cycle of loading lollowed by release. The J
formalism is only valid if the release of stress follows the reversible stress—
strain law used in deriving W in Eq. (14.11). Unfortunately, real materials
exhibit considerable hysteresis if they are cycled into their plastic regimes, so
that the J lormalism is not valid for a crack which begins to mave, and of
course, most certainly not for one in something approaching steady-state or
dynamic conditions. (Eshelby has described this condition on J in the classic
words that the J; concept is valid “so long as one does not calt the material's
blufl” by unloading itt) A great deal of work has been done 10 explore the
practical limits of this difficulty for engincering purposes, and the limitations
do not impose important constraints for crack initialion measurements and,
surpnisingly, not even for fatigue growth.*'-*? The reader is referred 1o the
various volumes of the ASTM series for the delails of the engineering
applications, especially the article by Begley and Landes*® and the book
edited by Campbell e gl 44

41 C. Wutherichs, Int. J. Fract. 16, R15{1982).

*2 H. Heitmann, H. Vehofl, and P Neumann, Fatigue Eng. Mair. Sir., in press {1986).

*3 ). Begley and 1. Landes, Fracture loughness ASTM Spec. Tech. Publ. 560, p. 186; sce other
artickes in this publication.

*4 1. Campbell, W. Gerberich, and ). Underwood, “Application of Fraciure Mechanics for
Selection of Metallic Structural Materials.” ASM, Mctals Park, Ohia, 1982.



For the purposes of this article, however, J and the continuum plastic
approach have important limitations.** Perhaps the most important reason
follows from a crucial theorem of Rice,*>*® which states that if the stress field
saturatcs ncar a crack (ip, as it must in a plastic theory with a realistic finite
plastic yicld condition (which may incorporate strain hardening), then as the
crack moves forward, all the energy supplied by the external loading machine
is absorbed by the deforming region, and none is left over to provide energy to
open the surface. We will return to this issue in Part VII, but this theorem is a
fatal blow to the attempt to understand the conditions under which a crack
will open (what we will call the fracture criterion) on the continuum level,
because the energy supplied Lo open the bonds at the crack tip is the crucial
cvent in the entire crack growth process. We will show that it is the local &
which is important in this connection. That is, unlike J, which is a complete
invariant, f gives a different value when the contour only encloses the local
crack tip than when it encloses all the dislocations in the deformation zone,
and it is this distinction which will allow a microscopic physical picture of the
cracking process to be constructed.

19. Tue GRIFFITH RELATIONS

This section will be concluded with a review of the classic work of Griffith
on the equilibrium of cracks in brittle materials.*” This is the simplest example
of crack equilibrium, a subject to which we return in Part VII.

It will be assumed that the crack of Fig. 16b is loaded in Mode 1. Then, since
there are no dislocations present, the elastic force on the crack, Eqs.(16.5)and
(16.6), is

(1-v
2

Opposing this elastic force are resistive forces 1o crack opening provided by
the material. In later sections, a variety of such forces will be considered, but
there is always one contribution for a Mode-I crack, namely the simple surface
tension of the opening surfaces at the crack tip. Working by simple analog to a
soap bubble-like surface tension operating at the crack tip and neglecting for
the moment the complexities of surface tension it a solid, the opposing force
excrted on the crack by the crystal is simply

** Fracture mechanics in design and service: A Royal Society discussion organized by H. Ford,
P Hirsch, ). Knott, A. Wells, and ). Williams. Philos. Trans. R. Soc. London Ser. A 299, 3(1981),

“* ). Rice, Proc. Int. Conf. Fract, Sendai 1, p. Y9 (1966).

4T AL A Griflith, Phifos. Trans, R. Soc. London Ser. A 221, 163 (1920).

f.= K {to.1

{Notc there are two surfaces presented lo the crack tip.)
When the clastic forces and surface tension forces are in balance, then the
poinl of cquilibrium is given by the critical value of K,

Ky = 2/yp/(1 — ). {(19.3)

This equation is often called the Griffith relation, although it is not in the form
given by him, since the stress intensity factor was introduced much later.

The point of equilibrium is actually unstable for the most usual form of
crack |yading (Problem 1), a fact most easily seen by working with the encrgy
of the system. For Mode I, from Egs. (9.10) and (18.4) the energy of the system
with the double-ended crack of Fig. 16b is given by

v=2f (f, + 29)da
' o

= ~{[aFa}() — v)/2u] + dya. (19.4)
This expression represents an inverted parabola as a function of the crack
length, a, with its maximum at the Griffith stress, oG,

og = 2 /yu/na(l - v). (19.5)

This is the cquation derived by Griffith*” (as corrected — see Goodier'®), With
the assumed loading geometry, the crack is in unstable equilibrium at the
Griffith point. With other forms of Joading the specimen, for example by using
a wedg= at the crack mouth with a point-function opening force exerted at
the mouth, the crack can be stable at the Griffith point. For these reasons,
Eq. (19.3) is a more gencral and satisfactory way of expressing the crack
equilibrium, because it is independent of the loading geometry. The reader will
note that Eqs. (19.3) and (19.5) are equivalent through Eq. {9.10).

In the usual derivation of the Griffith equation (and in his original paper) a
careful Jistinction is made between the elastic energy of the medium and the
potential energy change of the external stressing machine. This subtlety is
included in the Eshelby derivation of the force on the crack. Thus, Sf.isnot the
derivative of the internal energy of the material with respect to crack position,
but the derivative of the elastic energy of the totat system, including energy
changes of the external stressing machines, with respect to crack position.

The mstability at the Griffith value is the physical reason why fracture is
often calastrophic when a critical stress is reached on a crack and, of course, is
the physical basis for the enormous practical importance of fracture control in
actual materials. The instability in the other direction, i.e., crack closure, is not
normally observed (except in polymers!) because the surfaces, once open, are
subject 10 oxide formation, deformation, eic., so that crack closure with exact
registry is difficult to eflect. It is observed in brittle solids when sufficient care is
taken, wwevcer. (Sce Fig. 9b.)
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V. Atomic Structure of Cracks

20. INTRODUCTION

The discrete alomic nalure of matier leads to chiemicalzind other bandlir g
effects at crack tips which gencrally go beyond simple coninuum camcepis. ||t
will thus be necessary to develop descriptions of cracks in lat tices. Ths gemeral
subject fafls into two subheadings, the problems, associsijed withicleargpe
(including the chemical effects) and the problems aswociated with the
breakdown of the crack with emission of a dislocation. These twa subyjects will
be treated consccutively in this and the following section, Trhe mathemalicu
framework will, however, be dealt with here. Although tuis discussion wad |
address the propertics of the ideal brittle crack, the ideas presenteid will by
applicable 10 cracks shielded by dislocations in more genanal circusastanges,

2L, LATTICE StaTics

The mathematics of lattice statics for describing defews in latices, ay.
recently been reviewed by Bullough and Tewary.** This melhod yields sudh
simple and accessible approach to the cracked lattice, tha we will use it i
discuss cracks in a simple 2D lattice in some detail, The discussion is hasedon
the papers of Hsich and Thomson,*? Esterling,*®and Thommon and Fulier. *'

We imagine a lattice as shown in Fig. 3, which is bound bymearest-neighhar
forces. The crack is defined by cutting a finite number (N +4 3) of ithz bowds
crossing the cleavage plane. An external force, Fy, is assumedito aci o the two
aloms al the center of the crack to hold the crack ppen, again as shown in
Fig. 3. 1t is assumed that all the atoms of the crystal are bongied by springs, 5o
!hal I!Ie system as a whole responds in a strictly lincar | manner to|ihz
ampo_suion of the exiernal force, Fy. Finally, it is :assumed that, atbitrary
bonding forces, f, are applied to the pair of atoms at each endeof the cun,which
for the moment will be viewed as “external™ forces, The responise of theisysiam
can then be wrilten in the form

U =YGF, L2001y
Ui is the displacement of the jth lattice point, andi G is the Gareen's texsor oy

** R. Bullough and V. K. Tewary, “Dislocations in Solids” (. R. N, Navarip, ed)) Val. 2, p.1l.
North Holland Publ., Amsierdam, 1979,

** C. Hsich and R. Thomson, 2. Appl. Phys. 44, 2051 (197).

** D Esterling, J. Appl. Phys. 47, 486 (1976).

* R. Thomson and E. Fuller, in “Fracture Mechanics in Ceramics™|R. Bradisy af,, edi.). Piennm,
New York, 1982,
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the cracked lattice. G is a function of N, the crystal structure, and the direction
of the cleavage planc in the lattice. u and F are vectors. Equation (21.1)is a
general lattice equation, and can be applied to any lattice or direction of crack.
But in order to develop some simple illustrative resulls, we will restrict the
following discussion to simple cubic lattices, with u and F in the x 3 direction, so
that these quantities become simple scalars. Then, because of symmetry, with
only the forces F, on the central pair and — Jn on the atoms at the tip, when
N » |, the two equations from the set of Eq. (21.1) most important to us are
those giving the displacement of the center of the crack, ug, and the
displacement at the Lip uy. Thus

Uy = Goopo - ZGoufm
Uy = GoyFo — GunJn.

the distinction of capital and lowercase between Fy and f, is made 10
emphasize the point that F, is a “real” external force, while f,, will ultimately
be interpreted as an atomic bond force.

The general formalism of Bullough and Tewary*® for lattices has 1o be
madified to obtain the relevant Green's tensor for the crack. In brief, for the
crack, the G is obtained by calculating the displacement from the perfect lattice
Green'’s tensor due 1o a unit force, when Rclitious forces are simultancously
applied on the cleavage plane 10 annihilate the bonds there. The result is the
cracked lattice Green's function, and details for finding it will be found in
Hsich and Thomson.** For present purposes, the coefficients, Goq, and G,y
and G, are simply 1aken as given constants.

The character of the crack solution is then casily seen by inspection of the
first of Eqs.(2).2) when f is set to zero, viz. g = GagFy. The displacement asa
function of F, is simply a straight linc with slope Ggo, where the slope is a
function of N. For different values of N, the solution is then a manifold, as
shown in Fig. 27. If the force law is assumed to possess a critical range, as
shown in Fig. 29a, then there exists a maximum value of displacement u, when
the bond at the tip reaches the critical displacement. Thus, the portion of the
line in Fig. 27 larger than this maximum value (above the upper limit curve) is
not an aliowed part of the solution. Likewise, when F, is decreased, there
comes a point where the last open bonds on the cleavage surface at the tip snap
back together, and again, portions of the line less than this value (below the
lower limit curve) do not represent a solution, Thus, the crack “solwtion” for
diflerent values of crack length is the set of lines between the limit curves of
Fig. 27. This solution shows that for a-given value of crack length, the crack is
stable over a range of external forces, and for a given Fy, a number of crack
kengths have stable solutions. This result is contrary to the conlinuum
solution, Eq. (19.4), where there is only a single stable solution (crack length) at

{21.2)
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Fic. 27. Solution of q.(21.2). A family of compliance curves is genersted for variousivaluss of
crack length N. The curves are limited at a maximum displacement by the bond strength at the: tip,
and at a minimum displacement by reconnection of the first broken bond at the tip. A( the
maximum displacement for N, the solution snaps hack 1o N + 1 at the minimum, ss shown by the
dotied lines, provided F can be varied al the same time.

the maximum of a parabola. [The loading conditions of Fig. 3 and for
Eq.(19.4) are not the same, but the result is still the same—continuum theory
using the loading system of Fig. 3 yields only a unique crack length for any
external load, Fy.] When nonlinear bonding forces fj, are postulated at the lips
of the crack, then the straight lines of Fig. 27 become the continuous curve
shown schematically for a single branch in Fig. 28.

The multiple crack solutions depicted by Fig. 27 are separated by energy
barricrs, explained as follows. In Fig. 28, the line for constant Fy crosses the
curve at three points. The energy necessary to move from point 1 to point 2 is
given by the expression

2
AElZ = .[ Fo(uo)d“o - Fn Auo. (2'.3’
]

The first term is the change in internal energy of the system, and the second is
the change in potential energy of the external driving system. AE,, is the tedal
energy change. AE, , is thus the cross-hatched area shown in Fig. 28 from point
| to point 2, and is a positive energy. To go from 2 10 3 is a negative energy.
Thus, states | and 3 are stable states, and state 2 is a saddle point in
configuration space between the two stable states,

This energy is easily calculated if the force law is known, by reference to
Fg. (21.2). In this equation, the forces fy are now assumed {o be the actnal
nonlincar bonding forces exerted by the atoms according to some specified
force law, Fig. 29. Since fy = fy(uy) is a nonlinear function of uy, the sel of
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FiG. 28. Crack solution for nonlinear forces for N and N + L. For a given F several discrete
solutions are possible. Positions | and 3 are siable. Position 2is unstable. The cross-hatched areas

correspond 1o trapping barriers. That from [ to 2 is  forward barrier and that from 3 to 2is a
reverse harrier,

N

Fa. 29 Md forces f. A variety of bond forces are discussed, in the lefi-hand part, the force is
a snapping spring. In the right-hand part, a more realistic nonlinear force is shown.

et_]ualions (21.2) become a pair of coupled nonlinear equations for the
displacements 1, and uy in terms of the independent variable F,. The
conslants G are still the linear lattice Green's tensor, however. If f,, is
climinated from Eq. (21.2), then after taking differentials,

26, G, G,
dug = —X gy, 4+ 2 2
0= G, i Gon 3Con  Guy dF. (21.4)

Here and later we drop the subscript from F and f because no confusion is
possible. Substitution of this expression into Eq. (21.3) yields

2
G
AE,, =2 J. af:qu,. ~ F Au,. (21.5)
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the term ﬁ FdF is dropped from Eq. (21.5) because stales | and 2‘have the
same value of F. Substituting for F from Eq. (21.2) and for Au, from tq.{21.4),

]
AE =2 fluy)du, + ~|—A(u,’,) _ 2Gon
1 GNN GNN
1n this equalion, f(u) is explicitly the atomic bond function, and is gi.vcn by the
functional form illustrated in Fig. 29. Equation (21.6) exhibits an importast
theorem for all nonlinear atomic processes at the tip, when the nonl'!\_ear
process is limited to only one atom, which we will call the decomposition
theorem. The activalion energy AE, , is composed of three additive paris. The
first is the energy change in the chemical bond at the tip, and is the only term
which can reflect the influence of externai chemistry. The second is the change
in the lincar lattice, which is a simple quadratic function of the displacement
change at the tip {or alternatively, displacement at the Poinl of force
application). The third is the change in the exlernal machinery potental
energy which is a negative linear term. The last two terms depe?u.l only upon
the linear properties of the butk material. This simple decompos:tno,n theorem
can be used 10 deal qualitatively with complicated chemical interac!mns at the
crack 1ip, even when the nonlinearity is not strictly Iimil_ed to a single bond.
The decomposition theorem is graphically depicted in Fig. 30.

Au,. (21.6)

AU
/ ~* (a)
AN (b)
/:.,_\ A (c)
g S

Fui. 30. Diagrams illustrating the decomposilion theorem. Thc broad duM Parabola =
composed of the sccond and third terms of Eq.(21.6). The alomu:-.bond function is displayed in
cach of three cases superimposed on the parabola. The resultant is the dolted curve. In (&) the
bund function is weak and nol near Lhe parabola minitmum; no aclivalion_ energy. in(b), the bond
is strung, and has its maximum slope close 10 the parabola minimum; activation energy. ll_ l.‘)._m
additional chemical activation cnergy is present, which adds a large bump 1o the total aclivaiion

encrgy.

PHYSICS OF FRACTURE 63

The model above has been pursued more guantitatively by Thomson and
Fuller*' 1o explore the sensitivil y of the energy barriers to force-law form, and
to explore the siress dependence of the barriers. In general, the resull is that an
extreme snapping force law like Fig. 29 leads 10 3 Maximum Irapping,
compared to the softer law of Fig. 29b. This result and that of other discrete
crack theories, suggest that for realistic force laws in materials, the 2D energy
barrier will lead to a Irapping stress range which will be small compared to the
Griffith stress. The cnergy dependence of the energy barriers is found (o
depend on the type of force law, and

Ejo(k—k)

_ J2. snapping bond (Fig. 29a), (21.7)
= i, inverted parabola.

k. is a constant, and is the value of k when dynamic cleavage occurs. The 2D
mathemalics above does not account for the fact that the real crack will make
use of its third degree of freedom in moving from one atom row 1o the next. In
particular, just as for dislocations, any crack limited by the lattice barriers will
traverse the barriers by nucleation of a double kink of finite length, so the
encrgy 1o cross traversing the barrier will be finite, Such kinks were proposed
by Hsich and Thomson,*® and have been discussed semiquantitatively by
Esterling,’® Sinclair®? for simulated Si, and by Lin and Hirth®® in a
quasicontinuum mode].

The only other fully published work with the lattice statics approach is that
by Esterling,*® who cxplored a variety of force laws at the tip, and who first
pointed out that nhonsnapping force laws were accessible with the lattice-
slatics approach. He also made some estimates of kink configuration in a
quasi-3D calculation. All such work done by the authors,**~3! however, was
performed in simple squarc lattices, and was limited to nonlinear forces
restricted to the tip bonds. As such, this work is only of very rough qualitative
significance. However, the analysis is actually entircly general, and in principle
can be applied to any lattice structure and (o any number of nonlinear forces
at the tip. For other lattices, the Green's tensor would be more difficult 1o
calculate than for the square laitices, but the strategy outlined in Hsich and
Thomson*? for generating the Green's tensor is applicable using the generai
theory given in Bullough and Tewary.** In addition, if more than one
nonlincar bond is contemplated at the tip, then additional terms, Jiand u; at
the tip, must be included in Eq.(21.2). Counting the displacement ug, Eq.(21.2)
becomes a set of (L + 1) equations for ug, uy, u,, tr---v by ey 0 terms of Fy,

*1). Sinwlair, Philos. May. 31, 647 (1975).
ML H. Linaod 3. P. thisth, J. Mater. Sci, 17, 447 (19823
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Srlu,), ctc. This is now a set of (L + 1) nonlincar equations which will require
numerical technigues to solve, but poses no further analytic difficulties. Thus,
the cxtended fattice statics approach as outlined here is a very powerlul
method lor obtaining general quantitative results. Once the Green’s tensor has
been calculated for a given lattice (for a given crack length), then the
generalization of Eq. (21.2) can be solved for any arbitrary set of force laws (or
chemical interactions), and much insight into the various fracture con-
figurations could be gained. U is to be emphasized that the analysis is not in
any way limited by consideralions of whether the set of atoms in the discrete
lattice is large enough (because it is o), or by considerations about boundary
conditions between some internal discrete enclave and an outer infinite crystal,
because there is no such arbitrary boundary in the problem. Sinclair** has
rgporlcd some initial resulls on such a program relating to the problem of
dislocation emission, but this work is still in progress at the time of writing,

22. DISCRETE-ENCLAVE METHOD

{\ second method for studying the atomic configurations of cracks embeds.a
finite Qiscrele set of aloms within a surrounding continuum. The con-
figuration is then found numerically by successive approximation of a self-
consistent displacement field in the discrete set and in the continuum. This
mcll_md has a long history lor all sorts of defect calculations, and has been used
to simulaic cracks in real materials. The first such attempts were made by
Gchlen and Kanninen®*® using the Johnson?® potential for iron, and these
?ulhors th various combinations with A. Markworth and J. Hirth gradually
lmpr‘oved the early computer model over a number of years, in part with a
continuum _ Green's function technique of J. Hirth®' so that a flexible
boundary is allowed between the continuum and discrete regions. In addition,
an attemp! was made 1o model the effects of hydrogen on the configuration.
Results of this work, logether with references to prior work, are given in the
paper by Markworth et al.’® The reader is also referred to the paper by Sinclair
et al. >° for details on the flexible boundary method (Flex 1) as it has been
developed for simulation calculations using two embedded regions inside an

* 1. Sinclair, 1o be published {1986).

3 P.C Gehlenand M. F. Kanninen, in “Inclastic Behavior of Solids™ (M. Kanninen ef ol , eds.),
p. 586, McGraw-Hilt, New York, 1970.

'* R. A. Johnson, Phys. Rev. 134, A 1329 (1964).

** 3 Hirth, Seripta Metall. 6, $35 (1972).

A Markworth, M F. Kanninen, and P.C. Gehlen, Proc.Int. Conf. Stress Corrosion Cracking,

f(::;‘;: :;:;: 12(1973); sec also, P. C. Gehlen, G. Hahn, and M. F. K antinen, Scripta Merall_ 6,
)

** 1 Sinclair, P C. Gehlen, R. G. Hoagland, and ). P. Hirth, J. Appl. Phys. 49, 3890 (1978).
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outer continuum. In part, this work has been aimed at simulating cleavage in
iron and Fe/H, but it has also been used (o study the dislocation emission
problcms, as d:scussed in the next section.

Sinclair*? has used Flex 11 to simulate a crack in Si, using a directed-bond
noncentral force, and has studied how the [atlice (rapping varies with choice of
the radial part of the force law. In addition, he has estimated the kink motion -
and formation energies for Si with these laws, and finds that the kink motion
encrgy is in the range 0.01 ¢V, and that the kink pair-formation energy is of the
order 0.1 eV. The estimate of formation energy, however, is very crude, and
based on a quasicontinuum siring model of (he crack. The interesting
conclusion from this work, however, is that even in this most favorable case,
the latlice trapping barriers are estimated to be small, though the actual
numbers involved must be considered very rough estimates for the 3D
quantities because ol unceriainty in the force law.

Most recent work with this method has been an extensive study of
simulated Fe with the Johnson potential and simulated Cu with the Morse
potential by de Cellis et al.,* with the intent {o study the dislocation emission
question of Part VL. The new mathemalical development in this work is to
derive a boundary condition between the discrete enclave and the continuum
which is sufficiently flexible as to allow a dislocation to penetrate it. The iron
cleavage planc was found to be {100}, and unlike the carlier work of the
Battclie group, Lhe critical k for cleavage is essentially the Griffith vatue. Other
points discussed by these authors are the effect of isotropic/anisotropic elastic
solutions in the conlinuum, and the effect of size of discrete enclave on the
accuracy of the results.

Mutlins®' has also recently analyzed simulated iron with the Johnson
potenlial to study dislocation emission and crack branching under mixed
loading, with resulis to be discussed in Part VI

23. MoLecuLarR DyNAMICS

Straightforward molecular dynamics has been applied to the crack problem
by Ashurst and Hoover®? and more recently in a series of papers by Paskin,
Dienes, and collaborators.5*~*% In these calculations, 2D simulations are

" B_de Cellis, A, Argon, and S. Yip, J. Appl. Phys. 84, 4864 (1933).

&' M. Mullins, Int. J. Frace. 24, 189 (1984).

81 W.T. Ashurst and W. G. Hoover, Phys. Rev. 1314, 1465 (1976).

** A Paskin, D. K. Som, and G. ). Dienes, Acta Meiall. 3, 1253, 1841 {1983),

&4 A Paskin, K. Sieradsky, D. Som. and G. J. Dienes, Acte Metali, 30, 1781 (1982).

%% A, Paskin, D. K. Som, and G. J. Dienes, J. Phys. C 14, L171 (1981).

** G. 1. Micnes and A. Paskin in “Atomics of Fracture™ (R. Latanision and ). Pickens, eds ), p.671.
Plenum, New York, 198).
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made with the lasgest number of atoms which are practicable in the cempuier
(~ 10%). The Lennard-Jones 6/12 power-law polential, Iruncated to include
only the ncarest neighbors, is assumed, Such a foree law does not simu ajke any
particular material, but these authors have very aslutely used the model (o
study a variety of general phenomena to be expecied al the crack tip, and as a
test bed for investigating the limit of applicability of quasicontinuum
calculations. It has also proved possible for these authors to study both static
and dynamically moving cracks by varying the external joad. The results
principally relate to dislocation emission cffects, which are the sukbgpect of
Part VI

24. Force Laws For Derect CALCULATIONS

Clearly, the calculations of crack structure depend in a crucial way on the
validity of the force laws which are used. In ionic crystals, the Born-Mayer
Lype of theory can lead to defect calculations for the simple ionic malterials
possessing a fair degree of accuracy.*” No crack calculations have been made
in those materials, however, because the potential is long ranged, and this
would lcad to special problems with present techniques.

In the case of the simple metals, pscudopotentials have been used
exlensively for defect calculations.®® However, pseudopotentials in their
standard form require that the volume change be small, and stacking faults are
the only defects where the dilatation distortion is truly negligible. Since the
crack involves an incipient surface, there is no hope that standard pseudo-
potentials can yield suitable force laws for crack calculations.

Another approach which has been used is the molccular cluster quamium
chemistry approach. For example, charge distributions have been calcmlated
for small clusters intended to simulate the vicinity of an impurity on a grain
boundary, which are then used to rationalize what types of atloms will weaken
or strengthen a boundary.®® But the aumber of atoms needed to simulate the
properties of a crack are well beyond current capabilities.

A third approach is complelely heuristic, in which a spliae or other function
is constructed which is consistent with known material properties.*® The
Johnson potential* for iron is such an cxample. However, there is no reason
to believe that such an approach can yield any more information than is fed
InLo it, 50 far as making predictions for a particular material is concerned.

Thus, the crack poses the same challenge as any defect, to calculats he
absolute energy of a configuration from first principies, which is still one of 1he

*? M. P. Tosi, Solid State Phys. 16, | (1964).
** D). Esterling, Comments Solid State Fhys. 9,105 (1979),
** C. Briani and R. P, Messmer, J. Phys. Collog. 43, 255 (1982).

PUHYSICS OF FRACTURE 67

most difficult things 10 do in theoretical condensed matier physics, But i also
gocs one siep further, and adds a highly distorted surface, where the
perturbation of the lattice (the volume-dependent lerm) is not weak. Hence,
the crack is likely (o be the last defect for which reasonable force laws can be
obtained,

In the opinion of the author, interesting progress is being made on two
fronts. In the first, the tighi-binding method has recently attracted con-
siderable interest for calculating defect structures, and has the advantage that
noncentral forces can be derived for the d shells,?®

The second approach has been an intensive effort by Barnett and
Landman™' 10 calculate the configuration of a surface in the simple melals.
The result is a set of pair potentials which are siructure dependent,
Unfortunately, the volume- and structure-dependent effects are not always
smaH,

Where do we stand? Clearly, for the near term, there is not fikely 1o be a first-
principles calculation of a crack tip. The best we are likely to have is some
guidance from theory on general rules about whai the “force Jaws™ aretike,and
how 10 use them in a qualitative sense. But the crack will probably be the lasi
defect for which a configuration calculation will be attempted which
repeesents an actual solid. Thus, we are ieft only with the simulation of (he

25. CuemicaL KiNeTics

The general results above which show that discrete atomic eflects at crack
tips kead 10 energy barriers to crack motion are important for the interpre-
tation of a variety of kinetic effects of fracture. Although, strictly speaking, the

al the tip will be discrete in the same way. Furthermore, it is 2 common
occurrence for chemical reactions in the 8as phase 10 have energy barricrs to

™ D.G. Penifor, in “Atomisticy of Fraciure” (R. Latanision and J. Pickens, eds ), P 281. Pienum,
New York, 1943,

7 R.N. Barnet! aod L. Landman, Phys. Rev. Len. 81, 359 (1983),
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Fri. 31. Modified Grilfith energy function. The smooth parabolic curve cotresponding to
Eq. (19.4)(-- -), becomes a “dinosaur back” function. The irapping occurs over the rapge AN
ahout the ceniral maximtem,

the reaction, and the highty constrained region of the crack tip will certainly
enhance this possibility. Thus, barsiers of one kind or another can be expecied
to show up for crack growth near the Griffith stress. Figure 31 is a schematic
drawing of the modification which the energy barriers make in the continunm
energy function, Eq. (19.4),

Physically, the energy barriers will give rise to a thermally activated:grack
growth (or, according to theory, to regression) near the Griffith point. Therate
of jumping the barriers according o chemical reaction rate theory is™!

L 3 L N
vt = E!'IE— = (” v,/ ” v,‘)e“""" @5.1)
h Z i=1 [ =2
Here the * represents the 3D saddle configuration, Z is the partition sumy v isa
frequency of the system, and E,,lis the enrergy of the double kink. nl the
activated state, there is one fewer vibration frequency than in the stable siate.
When chemical reactions are taking place, the pre-exponential is madified
from that of the simpfe lattice by incorporation of the appropriate partition
sums for the gascous and adsorbed chemical species.” The activation energy
(even that for a 3D kink pair), should show the salient features of the 2D
calculations, such as its k dependence.
When forward rates of motion for the crack ¢qual the reverse raie, a

condition for equilibrium between two stable states, 1 and 3, can be written
Z{t) = 2(3), 1§25.2)

¥y =¥y, or

"I R. Thomson, J Muater. Sci. I8, 1014 (1980).
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which, in kzrms of the standard expressions relaling the partition sums to the
freeienengy’ F, becomes equivalent to F(l) = F(3).

[This gemeral condition for equilibrium does not mean that the rates are
iequal when the forward barrier in Fig. 28 or 31 is equal to the reverse barrier,
tbecauseithe states | and 3 are not equivalent states. State 3 differs from | by the
addition (irl 2D} of one surface pair. Thus, the vibration structure of the crystal
with one: aditiona) surface pair is different from the initiat state, and entropy
coniributions must be counted in setting up the frec energy balance, F(1)=
{F3. Henee, at T # 0, there are subtle differences between forward and
‘reverse barriess. Similar resulls are, of course, valid in the case of chemical
adsgrption/during crack growth,

Whenithe microscopic analysis is translated into the appropriate thermody-
manric ahd: mechanical variables, it can be shown’? that F(1) = F(3) leads to
ithe general law

; f=2 - (253)

iwheare f1is the force on the crack detived in Part TV. y is the temperature-
dependentsurface energy as defined by Gibbs. This equation remains valid in
the zaseiof ichemical interactions at the crack tip, and yin that case depends in
the standard, way on the surface coverage of the external chemical species.
Equation (25.3) was first suggested by Petch and Stables’™* on thermody-
namtic gnounds for hydrogen embrittlement in Fe.

#n interesting question arises when internal chemistry is combined with
externial chemistry, for example when a crack runs down a grain boundary
with a womcentration of solute impurity. If the initial grain boundary
didiribuliion is in thermal equilibrium with the dispersed impurity in the bulk
solid, then, as the crack opens, the soluic on the newly opened cleavage surface
willlusualty ot have time to come into equilibrium with the internal solute
digtributions, This problem has been anatyzed in terms of a constrained
pquilibriumy by Hirth and Rice,”® with the result that when such a grain
boutdary opens, the y criterion is modified to be

Y=+r- h’an (25.4)

© where, ygy iis| calculated for the boundary covered in such a way as to be

romsistent with the diffusion off the boundary which will be possible under the
cisoumstances. That is, the energy and vibration entropy will be of the
approprial=ly specified covered surface.

T IN_J.Petchiand P. Stables, Nature (London) 160, 842 { 1952).
*4 W ).:Peiich. Philos. Mag. 1, 331 (1956).

" Y3 IR Hiskh nmd J. Rice, Metall. Trans. A 11, 1501 {1980).
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26. SLOW-CRACK-GROWTH OBSERVATIONS

Alithough lattice trapping is a predicted resuli for a erack imamy laltice, the
magnitude of the effcct depends on the details of the “hack side”of the force
law and on its range, Theoretical estimates dp not syggest il should be a
ubiquitous and casily observed effect, and, indeed i 'seems to have been
observed unambiguously as a slow crack growth in vacuum onlly in silicate
glasses. Evenin these systems, the crack-growth curves ate very stozp, and thus
hard to observe. Such slow crack growth has been looked forin 8§, where the
caiculations of Sinclair®? reported above suggest an mbservabk: activation
cnergy, but so far the material has not been studied iin a sufficiently high
vacuum for the result o be conclusive.

When it comes (o, chemically enhanced fracture, thowever, | thermatly
activated slow crack growth is very widespread: Howewmer, only isl the brittle
syslems is these general agrecment about the effeet of thexchemist ol In glasses,
where slow crack growth has been mosi exiensively studied, the mesults have
been reviewed recently by Wiederhorn et al.’ and Lawa.?": Briefly, chemi-
cally enhanced crack growth in glass is characterized by three regions as
shown for H,0 in Fig. 32. Region 1 depends on (he H,Civapor prsssure, and
the stress intensity factor, as the general reaction-rate Whepry supzests. Al a
certain velocity, Region 11, the crack outruns the adsorpiion rate am the crack
lip, and the velocity is ipdependent of stress. Then when iihe czack reaches the
intrinsic fracture stress, the velocity curve {Region 1) s similar «» that in a
vacuum. Stage-1I1 fraciure still exhibits some almosphere-deperalent effect
which is thought 10 be a diclectric effect on the bonds aiikhe tip by ithe water.

Michalske and Freiman ™ have proposed that the walter reaction leatures
both hydrogen and eleciron donors in the reaction, leadinyg 1o enhamced crack
growth. Consistent with this proposal, they have also siown ithat imolecules
wilh a similar capability such as NH 3» NaH,, and CH,ND have similar crack
growth curves. The crucial role of hydrogen is confirmed by the fac) that D 0
has a slower growth than H 10.

In further work ™ to explore the effect of direct themiail attatk aiithe Si-Q
bridging bond in simple giasses, 5i0; doped withinetworir motifiens {Na and
Li) have been cracked in a variety of environments. The dRects of the network
modifiers have also been studied in molecular-orbital caizulations lio find the
effect of both the bonding and nonbonding Si-Oorbitait**% Alshough the

g Wicderhor, E. Fuiler, and R. Thomson, Metall, Sci. 14, 450 (1981);

" B. Luwn, J. Am. Ceram. Soc. 66, £3(1943).

" T. Michalske and S. Freiman, Nature (London} 295, 514(1982).

™ G. White, D. C. Greenspan and S. Freiman J. Amer. Cer. Soc. €9, 11]1986).
49 B. de Jong and G. Brown, Geochim. Cosmochim. Acia 44, 451 (1980

*' B de Jong and G. Brown, Geochim. Cosmochim, Acta 44, 1627 (1980),
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FiG. 32. Slow crack growth of glass in waler. Three regions are obscrved. Region [ corresponds
to the chemically enhanced growih theory dispiayed here. 1a Region 1), the externat environment

is oulrun by the crack, Region il is the inirinaic region (altes Wiederhora ef ai, '*) (Courtesy of
S. Wicderhorn,}

work is still in progress, it appears that the simple ideas expressed in
the decomposition theorem above are correct, and can be used to interpret
the results.

V1. Dislocation Emission from Cracks

2. INTRODUCTION

According 10 Part I1, one of the two ways lo realize a ductile material is if
the underlying crack emits dislocations before it cleaves as the exiernal stress is
ruisqd. In this section this emission-cleavage dichotomy will be explored.

Historically, this subject was firsy addressed by Kelly et af % who pointed
out that at the tip of a sharp crack, when the K level is high enough 1o generate
cleavage, it is also in the range to initiate spontaneous shear breakdown in the
vicinity of the lip. Thus, which évent occurs first will depend on the relative

*2 A Kelly, W. Tyson, and A H. Cottrell, Philos. Mag. 29, 73 {1967),
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magnitudes of the ultimate strength of the material against tension orlshear.
Rice and Thomson?? analyzed the problem in terms of dislocation emission
from the crack tip, because if shear breakdown occurs at the (ip, the resul) is
dislocation cmission. However, both descriptions are physically equivalent, as
has been pointed out by Lin.?? Both of these arguments, however, dea) with an
essentially atomic property of the tip by quasielastic means, and more exacting
altemplts have addressed the problem via computer simulation with iwo-
dimensional atomic modeis, Howe‘ver,‘since only inadequate force laws exisg
for atoms in the vicinity of such a severe distortion as a crack, these calcula-
tions also have major limitations, Thus, the current theoretical sitvation is
not satislying from a quantitative point of view, though considerable qual-
itative insight is available, Experimentally, both stable and unstable cracks
have been demonstrated, as explained in Part 11, and evidence has also been
preseled there showing that at least .under certain conditions dislocation
emission and cleavage can coexist in the same material,

In this section, the current status of these effects will be presented. We will
begin by reviewing the continuum/cutofl theories, then present the compuier-
simufation results, and close with a discussion of the experimental findings.

28. ELASTIC ESTIMATES FOR SHARP ICRACKS

Suppose a slit crack in the configuration of Fig. 16 exists, and that no
dislocations exist oul to a distance, large compared with a lattice spacing,.
Then, a k field can be defined in the wicinity of the crack tip. Assume next'that
in the two-dimensional configuration a dislocation is emitted from the crack
lip. As a result of the emission (Fig. 33), a ledge is formed at the tip, and an
clastic force is exerted between the crack and the emitted dislocation, ax
calculated in Part [V. For the moment, alf effects of any other dislocations:in
the far ficld arc neglected.

In two dimensions, the total force on the dislocation emerging from: the
crack is composed of a linear combination of the Mode-I, -11, and -1} forces,
From Egs. (15.7), ( 16.8), and (16.10), the force component in the slip planei is

2

- kb, b, .
Re(f) = —l;—;"’ - cos(0/2) + 2-:;; [k sin 0cos(0/2)

nr

F
+ ku(2c03(30/2) + sin sing0/2))] — zu—(b.’ + l—bf;) (23.1)

The expression breaks down into lerms bilinear in b and K (direct k-fietd
force), and other terms quadraltic in b (image terms). For a positive b which

" 1L H. Lin, J. Mater. Sci. Lett. 2. 29501983,
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Fia. 33. Crack-tip breakdown in shear by dislocation emission.

bl_unts the crack, these forces Oppose one another, as graphed schematically in
Fig. 34.‘We have used the lower-case k in Eq. (28.1) because it refers 10 a bare
crack without other dislocation effects. Accordin

n allraclive force for sufficiently smaly values of 7, and a repuyls;

suﬂiclcnll ly large values of r, because of the different funcliona?;::;::;gr:z l:nr
rof the Image and k-field forces, Thus, on the basis of purely clastic cffects, a
craf:k will.always be mechanically stabje against the sponfaneous emission ;ﬂ
a dlslqmllon. But for values of » smaller than the core size of the dislocation
and (_:raclr. the elastic approximation breaks down. Thus, if the zero in the
function of Eq. (28.1) occurs for values r, > r., where r

' . ' h is a measure of fhe
effective core Size, and r, is the radius for which f1r = 6. then emission will

o'ocur Spontaneously, .because by the time a dislocation is “welf formed,” it
already sees a repulsive clastic force, and it ever traverses an attractive

regime. In other terms, when F<r. one might assume the emerging

dislocation has a Burgers vector which is i in thj '

: Proportional to r, and in this re ime,
the repulsive force becomes dominant until the dislocation is formed, Agagin il
To <., then the net force is always repulsive, '

fa . nertes

/

P

— ot
fe (ductie)

FiG. M. Force beg i i i i
Theommesinor oy diween acrack and a dislocation ag 5 function of the distance { between them.

slocation r_js shown in refation (o the null point of the force for brinte and
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Il = Oin Eq. (28.1), a condition is obtained for ry in terms of k, and if s
set cqual to the corc size ., then, from the discussion above, an equation is
obtaincd for values of k which must be exceeded in order to emit a dislocation,

Ly % 3 by =k bcosw/2)+5k indcos(/2)
2 /2xe N0 1=y ) TR 2 esnueos

+ %k“ﬁﬂ! cos(30/2) + sin 0s5in{6/2)). (28.2)

The added subscript E, on k refers to the critical values for emission,

Equation (28.2) yields a criterion for emission of a dislocation, and Lhe

cleavage/emission criterion is obtained by comparing Eq- {28.2) with the

Griflith criterion for cleavage. For simplicity, we first consider the simple case
ky = ky, = 0. Then Eq. (28.2) becomes

koo B Bl+bi1—v)

" J2ar, b.sinbcos(0/2)

The Griffith criterion for cleavage is

kie = 2/my /(1 — ). (284)

The combined criterion for cleavage/emission in pure Made I then becomes

(28.3)

ke < k.,  cmission, 285)
kg > k., cleavage.

This form of the cleavage—emission criterion was first given by D. Mason.**

In their original paper, Rice and Thomson?? included heuristically in the &,
calculation, a force to produce the ledge. Since the ledge will be fully formed
when r > r,, any function such as a tan™ function which cuts off at r. and
makes an addition to the surface energy equal to the ledge area will suffice,
However, since this ierm is small compared 10 the others and is purely
heuristic, it will not be included here,

Lin®* has shown that the criterion [Eg. (28.5)] for cleavage-emission is
physically equivalent to that proposed by Kelly et al.*? In the laticr paper, the
cleavate dominance criterion is given as

Oon™Omas > Gl fathesr (28.6)
s refers 10 the maximum siress developed in the teasile direction on the

atom bonds at the crack tip, 6}{3* refers 10 the similar quantity for shear,

"* D. D. Mason, Philas. Mug. 39, 455 (1979),
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O is the theoretical tensile strength of the bonds of the atoms of the
material, elc. Lin shows that by applying the simple Orowan estimate®® of the
theoretical strength of materials in terms of y and g, that Eq. (28.6) is
equivaleni to

ubfy > 10. (28.7)

This estimate for cleavage stability can be obtained from Eq. (28.4) by setting
b, = 0, the angular factors 0 §, and using r, ~ b,.

Weertman"® and, much earlier, Armstrong,*? have also discussed sponta-
neously generated ductility in the presence of a crack in terms of the stresses
necessary Lo form dislocations outside the crack. Armstrong was led 10
consider the parameter ub/y in his discussion, and Weertman's resulis are
generally consistent with the criterion Eq. (28.7).

A detailed discussion of the predictions contained in Eqs. (28.3)-(28.5) will
be found in Rice and Thomson.?? Ohr and Chang®® have applied the same
analysis to Mode-11l cracks and compared the results with Mode-111 thin-foil
experiments. (Since the Mode-1Il experiments involve analysis of dislocation
pileups, the full discussion of this paper will be found in Part VIL) The results
of thesc two papers are shown in Tabie I.

The most clear-cut interpretation of Eq. (28.2) in terms of emission is in
terms of a pure Mode-l crack discussed above. However, an important
question relates to how a mixed-mode loading might change the results. The
first question, however, 10 be explored is whether the Griffith criterion,
Eq. (28.4), is modified by mixed loading. Sinclair and Finnis*® have indeed
suggested without justification thai Eq. (28.4) shouid be replaced by

[V = v/2utk& + kifo) + kjoo/20 = 2y (28.8)

whea all modes of loading are present. (We have added the term in ky,, which
was not in their paper). Presumably the reason for considering such a
gencralization of Eq. (28.4) is that (28.8) represents a balance belween total
clastic force on the left with surface tension on the right, and that k, and &y,
contribute lo the elastic force on an equal footing with k,.

But Eq. (28.8) is not physically correct, because when k, = 0, no surface is
created at all! What is invoived is a rather sublle core effect at the crack tip as
cleavage takes place under mixed loading. The situation is depicted in Fig. 35.

% E. Ovowan, Rep. Prog. Phys. 12, 185 {19493,

** H. Weeriman, Philos. May. 43, 1103 (1981).

*! R. Armsicong, Mater. Sci. Eng. 1, 254 (1966).

*S. M Ohrand S. Chang, J. Appl. Phys. 3, 5645 (1982,

** 1. E. Sincluir and M. W. Finnis, in *Atlomistics of F, racture™ (R. Latanision and J. Pickens, eds.),
p. 1047, Plenum, New York, 198).
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Fi:. 35. Mode-Il fracture as diskmlioﬁ formation. In{s)a crack isformed by makippaniitina
lattice. In (b), Mode-11 forces are applied, and in (c), the bonds are atlowed 1 reweld, because no
vertical displacement occurs.

Shown there is a Mode-II crack which moves to the right by one: lattice
spacing. The result when the bonds facing one another on the cleavage surface
are allowed to reweld is a dislocation. If sufficient k, loading is present to
separate the crack to the left of the dislocation core region, a crack can result,
Since the core region of the dislocation is always of order b, the presence of k,
loading cannot have lowered the critical k, needed to hold the cradic open
much below its Griffith value, Eq. (28.4). Thus the effect of mixed loading on
the Griffith condition is expected to be minor, but to depend quantitativelyin a
complex way on the delails of the alomic bonding in the tip region.For our
purposes, it will be sufficient to retain the form of Eq. (28.4)1as the Cleavage
critcrion, but remember that the critical k, value will depend (only:siightly)
on ky and ky. Of course, if cleavage and emission are closely balanced in
Eq. (28.5), mixed-mode loading could affect this balance for emission in
Mode I (see Part Vil). We note in passing that lattice trapping could be
drastically altered by mixed loading, because thatis a property also dependent
on the details of the atom bonding.

The effect of mixed loading on emission can now be divided into two
scparale categories. In the first, emission will be considered 'onto the crack
planc itsell where 8 = 0( Fig. 36b,c). Such emission will not blunt the crack. In
the second, emission is on a plane inclined at a finite angle tothe crack piane, as
in Fig. 31,

When emission is on the crack plane, then the elastic forces from ky; and ky,
are at their maximum values, while the k, elastic force is zero. Thus, for a pure
edge on this plane, the condition for emission is

H h: [ do 1z
= — ~ = 28.9
kll!': \/Enrc  —v [ (sﬂ) ' ( 8 )
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Mode |

i1 1 Mode 11

2333 Model

FiG. 36. Emission in Modes I, 11, 101. In Mode 1, the emission force is on an edge on a planc at
an angle to the crack, while in Modes 11 and 131 the mazimum emission force is on the crack plane.
A separate requirement is that slip planes exist in these directions.

and for a pure screw,

king = ub,/ /8nr. ~ u. fa,/8x. {28.10)

In these equations, a, is a number approximately equal to a lattice spacing.
These equations describe a condition in which the tensile and shear loadings
are independent of one another. Remembering that the role of k, is simply to
hold the crack open, once that is assured, then emission on the crack plane is
simply a matter of building up the ky or k, loadings to their critical values.
In the second case, when emission of the distocation corresponds to the
blunting configuration of Fig. 33, then the full generality of {28.2) is required.
Now, &, and k,, foadings either lower or raise the value of k, required to emit
the distocations depending on the sign of k. kin loading acts on the screw
component, and ky on the edge. in many cases, simple materials have sufficient
symmetry in the cleavage and slip systems available that for a given slip
sysiem, such as shown in Fig. 36a, another equivalent slip plane exists
mirrored in the cleavage plane. Also, screw components can often be either
1 b. Hence, mixned loading will in general break the degeneracy in the emission,
and favor one system over the others. Quantitatively, the critical value of k,

from Eq. (28.2) becomes
o 2kyb, 2¢05(30/2) + sin 8sin{8/2)

km = k - k

"* " singb, " sin Ocos(0/2)
ki is the value of ky without ky, and ky, ie., given by Eq. (28.4).
Equation (28.11) poses a critical problem 1o the theory of the cleavage-
emission balance, because in the simple criterion, Eq. (28.5), both k. and &,
are modifcd by mixed loadings. We have argued that k. is not changed in a

(28.11)
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Tasik bk, k,, AND E,. For Sew(‘ru_) MATER ALS*

hye k, e
Eq.{28.3) Eq.(282) by, Dbs.

Ref 22 Ref. 22 Eq.(28.10) R=f. 106G Eo
Cu 64 k3] L5 o4 -
Al 14 217 1.0 0z -
Ni 84 547 26 1% -
Fe 88 9.34 42 22(12)
Mo B.2 92
MgO 84 2.1 7] Ccaves 205 (22
Si 64 7 82 HI1{2Y)

D5-1.0(92)

*kin 10° Nm*L Einev.
* The numbers in parentheses are references.

major way by addition of k, or ku. but Eq.(28.11) suggests that kye can be. This
situation has not been explored sufficicnily, experimentally. It may be
connected with the appearance of dislocations at cracks in materials supposed
to be brittle on the basis of Table I, or vice versa..

29. THERMALLY ACTIVATED EMISSION

The previous discussion envisioned a 2D crack and erergent dislocation,
which was entirely adequate in discussing the mechanical stability of a sharp
crack tip against dislocation emission. Bui as noted in thatanalysis, the system
always has a lower energy when an emitted dislocation is iar cnough from the
crack, because the force is repulsivewhenr > r,. Intwo dimensions, of course,
total energies of cracks and dislocations are always infivite because of the
infinite length of crack and dislocation. In 3D, however, when the sharp crack
is mechanicaliy stable, there will always be a saddle-point configuration of a
dislocation loop of finite size through which, in principle, the loaded crack can
cmil a dislocation by thermal fluctuation, In any discussion of crack stability,
the activation barriers for emission by mechanically stable cracks will be an
important quantity. It will not be surprising that such a IDcalculation has not
yeu been carried out in a rigorous way, because of the mattematical difficulty.
However, estimates have been formed of the energy barriers.

The first point 10 note is that in isotropic elasticity, and Mode I, the
dislocation loop must meet the crack line al a right angle, secause there is no
lateral force on the dislocation from the crack, and the dominant force meas the
lip is the altractive image term. Secondly, the maximum in the funclion of
Eq. (28.2) is a broad one, because of (he counteracting cflects of the 1/./r k
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FiG. 37. Mode-i emission in 3D, Distocations musi be nucleated from a b
3 mechanically stable
<rack. In (a) the shape of the critical aucleus is assumed 10 be & ha¥l-circle, and in (bja ta:langlc.

term and the 1 /r image lcrm_.“ Thus, although the siress or force field near the
!Ip 18 inhomogencous, there is alarge region near s maximum, where the force
is ncarly_ constant. For this reason, Rice and Thomson?? suggested that a

Haasen_‘" Suggested that the earlier values of Rice and Thomson might be
too farge in the case pf Si, because splitting the dislocation lowers its self-
cnergy, and the stacking faulg energy in Si is low. He has estimated about
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0.5 ¢V for the barrier energy of a loop. Lin et al.%? have also carried out an
estimate of the loop encrgy for Si. In addition to allowing the dislocation o
split, they also chose a rectangular configuration “loop™ with variable size and
aspect ratio. Again, the encrgy barrier for Si is dramaticalty lowered over the
value of Rice and Thomson, as shown in Table 1. The decrease in activation
cncrgy calcutated by Lin er al. was about equally due to the altered shape of
the loop, and to the dislocation splitting,

All these calculations use the 2D force expressions, and are therefore not
sell-consistent 3D elastic calculations. Because of the relatively large loop sizes
estimated in these calculations, the elastic estimate of the energy barrier does
not suffer from the atomic cutofl limitation which the 2D stability calculation
of Part VL,28 does. Hence, the energy-barrier calculation is apparently one
which can be performed legitimately in the elastic approximation. In view of
the apparcnt sensitivity of the estimates to the details of the calculation, a
more ambitious rigorous 3D calculation of a suitable crystal is needed.
Further, the mixed loading effects discussed in the previous section have not
been investigated, and undoubtedly would be of interest as well.

30. AToMic CALCULATIONS

Extensive atomic simulations have been carried out for 2D crack-
dislocation configurations, Such simulations relate directly to the most crucial
issuc rcgarding disfocation emission, namely the crack stability; so they have
an important place. Fortunately, as noted in the previous subsection, atomic
eflects apparently are not germane to the problem of the energy barrier,
because 3D simulations are not currently practicable.

We have already dealt in Part V with the general theory of discrete
calculations, and report here simply the results. Dislocation effects in
simulations were first observed in the work of Wiener and Pear,?* who found
that in the limit of very high driving forces, and velocitics, dislocation emission
was cnhanced by the higher stress required to move the crack at a high
velocity, A series of simulations of iron using the Johnson*®® potential were
carricd out by the Battelle group3? in various ways, showing that simulated
iron was bordcrline between cleavage and emission. De Cellis et af *° have
simulated iron (i.e., bcc metal) with the Johnson potential and copper (i.c., foc
metal) with a Morse potential in a calculation with improved treatment of the
boundary conditions, and have concluded that these simulated materials have
cracks, respectively, stable and uastable against distocation emission.

L H LinT-Z Chuang and R. Thomson, to be published (1986).
"' T.H. Wiener and M. Pear, J. Appl. Phys. 46, 2398 (1975).
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Mullins*' has performed similar calculations on simulated iron under
mixed loading conditions, and finds that the general predictions of the
conlinuum theory is correct. That is, the crack can be made to change its
clcavage plane abruptly by addition of Mode 1, and the emission criterion is
altered by mixed loading. A “phasc diagram™ from his work, showing how the
cmission criterion changes under mixed loading, is given in Fig. 38.

All previous calculations have altempted to simulate a particular material
by choice of a suitable force law, and they all embed a discrete lattice within a
surrounding continuum, with boundary conditions set on (he interface
between the two regions. In a series of papers, Paskin, Dienes and co-
workers®~** have taken a different approach to the simulation problem.
Realizing that no adequate force laws yet exist for real materials, they have
carried out a series of molecular-dynamics calculations on a large 2D array
with up to 10,000 lattice points using the Lennard-Jones potential. The points
in the array form a triangular lattice, The point of view of these investigations
is thus to model general fracture phenomena, rather than to make predictions
for particular crystals, They have shown that under static conditions, their
model will barely support a sharp crack, and that the criterion of Eqs. (28.3)-
{28.5) is satisfied. This simulated material thus provides a sensilive test for the
validity of the continuum approach, which is encouraging. In their simula-
tions, when the external stress is raised, the crack propagates, and under these

kika
Fui. 38. Resulis of compuler siudies in simulated iron for mixed loading A - no fracture, B -
(P10} cleavage, C— non{010) cleavage hy branching, I — dislocation Bencration al tip, ¥ -

dislocation gemeration combined with \winning, and |- - dislocation generation and/or twinning
followed by crack branching.
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i [ i i wnitial sloms at
Fui. 9. Resulis of a computer simulation with small aloms substituted _for .'“"' . i
the surfacc, as shown by circles. The initial model was ductile. Afler substilution, didocation
gencration is followed by initiation of a new crack (afier Paskin et ol **).

conditions, as in Wiener and Pear,?? the crack emits disloqalions asit c_Ieavcs.
in the simulations, furthermore, it is observed lhal‘ vmuafl emissian of
dislocations take place. Thal is Lo say, when the crack is moving rap_ndly. an
emitted dislocation does not move [ar afier emission, and the d_lslocatm_- l’fills
back into the cleavage plane after the crack moves on.%? Such virlual emission
was first proposed by Knott®* in order to explain why lhg “Griffuk- y" for
brittie fracture as measured in iron is nearly an order of l?agnllude hlg!nr _l_ian
the true y is believed to be. If virlual emission occurs during cleavage, it \.ﬂll be
an energy-dissipation mechanism, which will add (o the measure of v in the
Griffith criterion. ‘ .
Finally, Paskin er al** have studied the mod_:ﬁcaufm of the [racture
processes in their model when the atoms in ghc 1ip region possess a'i'lcred
bonding properties. Figure 39 shows simulauqn resu._llls when sma;m and
“large™ aloms are substituted at the crack tip, simulating l.hc'fon.naum of a
surface lilm at the crack tip. In the one case, dislocation emission is enhuanced
by the film; in the second, the material is embrittled by the addllloqal siresses
induced by the film. In cffect, what transpircs when a film fqrms is that the
stress singularity at the crack lip is no longer chara_aclcnmd enmelg bya lqcal k
licld, but by the stress field of a precipitate particle. Thus, the dlscu:fnon of
dislocation emission lcading up to Egs. (28.3)-(28.5) no longer a_pplm. Tl:
modificd analysis using continuum ideas has been carried out by Su:rad'sk)-..
We will return 1o additional discussion of the embrittlement quesiion in
Part VI . ‘
in a completely differemt approach, Sinclair ** has used the lattice-statics
discrete-Green's-function approach to study the problem . of dxslo,:al_;on
cmission. Preliminary results only have been reported at the time of primting,

¢ 1. Knou, Proc. int. Conf. Fract., 4th 1, 61 {1977},
K. Sieradsky, Acta Meiall. 39,973 (1982),
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but this powerful approach is being used 10 explore the effect thai force law
and crystal symmetry have on the emission criterion to £4in some perspective
on how these factors affect the emission crilerion in a general law.

31. EXPERIMENTAL INVESTIGATIONS

The direct and unambiguous experimental demonstration of dislocation
emission and the quantitative study of the dislocation phenomena associated
with atomically sharp cracks is exceedingly difficult, even with modern
techniques. The clearest examples of rigorously brittle cracks have been
provided by the observations of B, Hockey® in Si, Ge, Al 0,, and MgO, all
relatively brittle materials. The technique used is to indent the surface of a
single crystal by a sharp point, and induce local damage. Cracks thus formed
then propagate into refatively undamaged portions of the crystal, where they
form isolated entities. The lip region is then cut oul of the sample and thinned
for transmission electron microscopic examination. In the case of Si, when
fracture is induced at low temperature, the final crack tip is completely clean
(see Fig. 9b), with no distocations present atall. In some cases (F ig. 9¢) after the
crack has moved to a certain position, it retreals presumably because of stress
relaxation. In these cases, the former cleavage surface is manifested by a
nctwork of misfit dislocations because the surfaces have not come back
together in perfect registry. Al icmperatures above that where dislocations are
mobile (Fig. 9b) the cracks are found 1o be associated with distocation
atmospheres. In Hockey's Si observations, detailed slip-plane analysis is
tacking, but the observed dislocations may have been emitted afier the crack
arrested, or they may have been carried along by the crack siress field as the
crack grew from the region around the indenter, where intense deformation
has occurred. .

In other experiments with bulk samples of Si, Champier®” has analyzed the
deformation fields produced by a'stationary crack in a technique first used by
St. John.®® In these experiments, analysis of the dislocation loops formed

around the crack shows that oaly a small fraction of the loops are in the
blunting configuration depicted in Fig. 36, That is, the majority of loops arc on
ship planes which are not paraliel to the crack line. Alihough such loops mighi
also have nucleated spomlancously from the crack line, the activated state
would have to be a complete circle instead of a hall-loop, and it would appear
that the barricr would be larger than for the blunting configuration. The most
altractive possibility for the origin of the dislocations conslituting the

** B. Hockey, unpublished; see also Lawn er of, Ref 8.
*G. Champier. 10 be published { 1986),
¥ C. 81 John, Philos, Mug. 32, 1193 (1975).
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Fi;. 40. Distocations generated in the vicinity of a crack in MgO. Cracks in MgO appear to
generate dislocations from sources close Lo, but not at, the crack tip. Ne dislocations are seen
which are believed 1o emanate from the crack itself {afier Hockey®).

deformation field is thus inhomogeneities in the material whose stress fields
are enhanced by proximity to the crack.

In extensive studies of MgO, where deformation accompanies the crack,
Hockey°* has observed many cases where sources of dislocations operate near
the crack position (or near a previous crack position), but only a few where the
crack itscll may have been the source of the dislocation (see Fig. 40).

In summary, for highly brittle materials, the evidence is clear cut that
rigorously atomically sharp cracksexist. At elevated temperatures, dislocation
emission from (hese cracks has not been clearly established as yet, althqugl!
theory suggesis that the activation cnergy may be sufficiently low at least in Si
for it to be obscrved. _

In the bee metals, which are expected to be borderline emitters, the picture is
more complex. The most clear-cul experiments have been those of Ohr and co-
workers'™!'" using thin film in sity electron microscopy, and Vehofl and
Rothe,” using bulk samples of iron/Si and Ni in hydrogen environments.

The Ohr configuration is shown in Figs. 12 and 13. Cracks are formed when

the region near the hole is deformed. Screw dislocations on the slip plane are

** B Vehofl and W. Rothe, Acta Metall. 31, 1781 (1983).
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responsible for the “sliding-off deformation, in the foil, and originale at the
crack line which is short compared (o the width of the foil. The analysis of the
configuration requires consideration of the pile-up of dislocations, which isa
subject for Part VII. However, the existence of a local k at the crack tip is all
that is required to invoke the emission analysis. Ohr and Chang®® have in fact
used this analysis to generate the numbers in Table 1. This case must, however,
be a mixed-mode situalion, because the crack line and clcavage piane are
inclined to the tensile axis at about 45", For the screw distocations emitted on
the crack-slip ptane shown in F, ig. 13, the mixed-mode analysis of Part V1,29
shows that only the ky, part of the loading is involved in the emission, and the
analysis of Ohr and Chang®® only considers this part. For the rcasons stated

will simply take place as soon as the critical Ky value is reached. Any growth
of the crack is due to the Mode-1 loading, which of course is necessarily
present in order to hold the crack open. (See Part V11,38 for further discussion
of this point.)

In other experiments,'® when the crack grows into the thicker part of the
foil, the fracture mode changes. in Mo, a zigzag configuration develops with
the crack propagating in mixed-mode I/11 loading on alternating cleavage
Planes with Mode-II dislocation emission, as shown in Fig. 41. Again, the
crack prowth shown is, of course, due (o the Mode-I loading, and emission

L[}
1o rebuild, or the crack may branch to another slip ptane (see Fig. 41). Unlike

the screw-distocation Mode- 1} case, here the Mode-1 opening interacts with
the Mode-11 dislocations, as discussed in Part VII.

Y

Dd
/ /\\/ //\\/\

Fui. 41. Cracks in molybdenum in the thicker part of the foil configuration of Fig. 13, Figure

shows cracks growing in mixed mode and oscillating between cquivalent slip planes {after Ohr
et al'®)
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In AL'® a quile different process takes place in the thicker zone. There, an
aiternating Mode-1 cleavage-emission slide-off process occurs. When the
Mode-1 crack is arrested, emission occurs, 10 form the classic wedge
configuration. Then, as the specimen thins by the continuing general
deformation, sudden initiation and propagation of a clean brittle Mode-}
crack occurs for a short distance. This Mode-I crack is, of course, not stable in
Al, and its appearance as a dynamic event poses a major problem to which we
return in Part VII,39,

Experiments on Fe-2.6 at. % Si and Ni single crystals (reviewed by Vehoff
and Rothe®*) have been performed on macroscopic samples which also throw
light on the clcavage-emission (radeofl, In these experiments, the materials
can be made to shift from a fully ductile wedge configuration with crack
growth by pure dislocation emission and slideofl, to a highly brittle (but not
purc) cleavage condition by controlling the temperature or hydrogen pressure
on the sample (see Fig. 11). These experiments show that cleavage and
emission can coexist, and that the fraction of one versus the other is variable
over a wide range. Careful cxperimental analysis shows that the action of the
hydrogen is at the crack (ip itself, The authors show that the results are
consistent with the occupation of the special site at the tip with a Langmuir-
1ype expression for the occupation probability. The site has a trapping depth
of 49 kJ/mol H iniron, which is approximately equal to that for chemisarption
on the surface. Because the fraction of cleavage saturates with hydrogen
pressure before pure cleavage is attained, thesc authors believe that their
resilts are to be correlated with the simple coverage of the site at the lip rather
than y, because y does not saturate with pressure. They also reconfirm that
addition of O, impedcs the hydrogen eflects (an old result), and interpret this
as being due 1o the adsorbtion of O, on the surface, which denics Aydrogen
access to the tip.

For us, thcimportant results are that intrinsic cracks in both iron and Ni are
ductile at room temperature and above. At low temperature, the iron is brittle,
suggesting that iron is indeed borderline, as predicted by the theory, and that
the activation energy for emission is low. With the addition of H, the Griffith y
is lowered so that emission is less favored. The quantitative resuits of the
experiments are probably interpretabic only in terms of a kinetic trealmenti
which predicts how the filling of the sites al the tip, which leads to cleavage,
competes with thermally activated emission,

Finally, experiments in ductile materials by Wilsdorl and co-workers, as
reviewed by Wilsdorf,® have shown that high-purity ductile metals and certain
alloys behavc almost exacily as predicted. The systems studied were the ductile
metals Au, Ag, Cu, and Al, the borderline metal, iron, and the normally brittle
Be. All these metals were of high purity, and failure was by fully ductile
processes. Under tension, just as the last ligament of a sample is about to pull
aparl, however, cracks appear in the resultant thin ligament, with the resulis
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shown in Fig. 14, The single-crystal Be samples in these obscrvations are
oricnied in the easy-glide direction, so that failure is fully ductile. The ¢ ypical
hole-growth process is apparent in the ligure, and the oaly diffcrence between
these experiments and hole growth as observed in an eagineering material
such as in Fig. 6, is that there are no large precipitates for the holes to nucleare
on. A new hole is nucleated in these experiments in the dislocation cell walis.
Alier initiation, the crack grows by cleavage (Y) 10 a typical size of the order of
a few pum, and then opens in the crystallographic shape shown either by the
classic slide-off mechanism, or by the operation of dislocation sources near 4
tipof the wedge. The major surprise in these experiments is that again, asin the
Ohr*% experiments on Al, a fast-moving cleavage crack has a finite lifetime in
a malerial that in all other ways behaves entirely in a ductile manner.

Vil. Distocation Shielding and Fracture Toughness
32. INTrRODUCTION

.Wilh the help of the ideas and the formalism developed in earlier sections, it
will finally be possible 10 confront here on a fundamental level the central

~ problem of fracture: materials loughness.

This problem has had a long history, in its modern dress streiching back 10
the classic paper by Griffith* in 1920 who worked out the basic overallenergy
balance between the elastic driving forces on a crack, and the sesistive forces
against crack advance supplied by the material, as discussed in PartiV,19.1n
Griffith's work, he identified the resistive forces as the surface tension, y, of the
opening clcavage surface at the crack tip, in the soap-film analogy.

But Griffith's relation, Eq. (19.3), had only very limited applicability to
cxtremely brittle materials such as Blass, because of the very weak resistive
forces which the true surface tension of solids can supply. Ultimately,
Orowan'® and Irwin 192 independently proposed that Griffith's relations
could bc generalized (o tougher materials if the plastic work ¥ done by the
advapcmg crack, could also be identified as 2 resistive term leading to a kind of
cBlective surface energy y,; = y + ¥y and incorporated into Eq.(19.3). In cases
of small-scale yielding, plastic work done is proportional to the distance
mqvcd I_ay the crack, so identifying it as a type of “surface” work is appropriate.
Watl! ¥ in Eq. (19.3) replaced bY Yerr, it was found that the modified Griffith
rclatnqn could, indeed, be applied to the fractuse of ordinary tough engineering
malerials, and the modern field of fracture mechanics was founded. 115 success

WS M. Ohr, 1o be published (1986).
o l Uruwa_n. Trans. Inv. Eny. Shipbuilders, Scotland B9, 165 (1943).
Y2 GG, A. Irwin, fn, Congr. Appl. Mech., Yuh, Unin, Brussels, 8, 245 (1957).
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in tough matcrials is possible because the plastic work done during fracture
can be several orders of magnitude greater than the work done in simply
opening new surface, and thus the vastly different fracture resistance in
malerials such as glass and steel can be encompassed.

The term toughness has been used here several times in a descriptive way.
Quantitatively, it may best be identified with the resistive force which the
malerial is able to exert against crack advance, and a measure of it would be
Yerr- But K and J, at the critical crack condition are also often identified with
toughness, and a fourth measure, to be discussed in a later subseclion, is the
“crack-opening displacement” (COD) measured on the crack at a suitable
point. Note that these quantities are not dimensionally equivalent to one
another, and are defined in different ways. But relations between them can be
obtaincd by theoretical models; so the four quantities do collectively provide a
rather loose operational basis for the general concepl of material toughness.

Since the pioncering work of Orowan and Irwin, the field of fracture
mechanics has progressed by treating fracture as a stress-analysis problem in
terms of continuum elasticity and plasticity. The point of view of this article is
quite different, however, because, when continuum fracture mechanics is used
1o address the question of how the forces are transmitied to the crack tip to
opcen the atomic bonds there, a fundamental difficulty is met. This difficulty is
expressed in the Rice theorem?24¢ alrcady mentioned in Part 1V.18. Ac-
cording to this theorem, in continuum clasticity and plasticity, when a crack
advances, the work done by the machines supplying the external stress is
absorbed entircly by the plastic processes in the medium, and none is left over
for the surface energy of the opening crack. This result depends upon the
assumplion that the stress at the tip saturates to a finite value, as it must for any
realistic plastic yield constitutive law for a material.

At first glance, because of the smallness of the true surface encrgy y, relative
(O ¥, this may not seem like a serious problem. However, the point is that
there is in this approach no way to model the opening of the atoms at the crack
tip as in Part V. This paradox will be further illuminated from the standpoint
of dislocation theory in Part VI1,34. It will be shown there that, il the
dislocation shielding zone (treated as a continuumy} goes right down to the
crack tip, that the local k is strictly zero, and the crack is completely shickded.
The stress at the tip is then given by the finite dislocation friction stress, a,
which is always less than the bond-breaking stress required at the crack tip.
This prediction is thus inconsistent with the existence of a cleavage crack at the
lip. Hart'®* has found conditions, however, under which a continuum theory
can be developed, but, as discussed in Part VII,39, these conditions relate to
behavior near the tip.

"V EL Bart, I S, Solids Siruct. 16, RO7 (1980),
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In continuum mechanics, it has been popular to postutale the existence of a
“process zone™ near the crack tip where the continuum theory breaks down
and events transpire which open the crack. It will be our purpose in this
section {o highlight this zone, and show how the crack-lip stress field interacts
with the dislocations to produce the overall fracture. The complete crack
and dislocation configuration must be constructed in a self-consistent fashion
laking account of the intrinsic structure of cracks in the material on the one
hand, and the dislocation mobility and source distribution on the other. Given
the known complexity of dislocation behavior in materials, especially in
engineering materials, one can begin to appreciate some of the reasons for the
complicated fracture behavior in most materials, and engincering materials in
particular.

The plan of this section is to (1) discuss the general conditions for crack
eguilibrium in terms of the three fundamental crack morphologies, (2) present
a one-dimensional Mode-111 model of dislocation shielding for brittie mate-
riaks, and materials whose cracks emil dislocations, (3) discuss mixed-mode
cracks, (4) discuss moving cracks, and (5) discuss time-dependent mixed
cleaving and emitting cracks.

33. EquiLisriuM CONDITIONS FOR THE THREE
PROTOTYPE CRACK CLASSES

The obscrvationally based descriptive discussion of Part 1l led (o a
qualitative breakdown of cracks into three distinct morphological classes: the
slit crack, the wedge crack, and the externally blunted crack. These dilferent
morphologicat classes also correspond 1o three different broad mechanisms
of fracture corresponding to differing regions on the ductile/brittle spectrum
of material response. (The reader should note that the crack classes to be
described here are based on different physical mechanisms for fracture, and
are, categorically speaking, different from the modes of fracture {Modes 1, 11,
I11) which refate to the way in which external loads are applied to a crack,

a. SVit or Brittle Cracks

The slit crack coreesponds to a crack which is atomically sharp at its tip, as
in Fig. 42, and its most important attribute in comparison with the other two
types of cracks is its ability Lo propagate eapidly. This crack may be a purely
brittle crack as envisioned in the mathematical description of Part 111, or it
may be a crack which has absorbed a finite number of dislocations on its
cleavage surfaces so that the crack surface behind the tip has a greater crack
opening displacement, as shown in Fig. 42b. In either case, because of the
atomically sharp tip, from the elastic point of view, this crack is characierized
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Fui. 42. In (a) an initially sharp slit crack is shown which aclivates iwo sources in ils neigh-
borhood. When the antishielding dislocations which are attracied to the crack sre absorbed by
the cleavage surfaces, they create sieps which lead 10 a finite opening of the crack called the
COD. The COD is related 10 the dislocation Burgers vectors absorbed (and 1o those remaining) by

Eq. (33.3). If the source is not precisely lined up with the crack tip, then the 1ip remaing sharp
locally.

by a local & field at the tip. The atomic structure at the tip corresponds 1o the
“decohesion” model depicted for the simple cubic lattice in Fig. 3.

Itis assumed here that the crack is stable in the lattice in the sense of Part VI,
and that the k to which the crack is subjected is less than that at which
“decohesion™ model depicied for the simple cubic lattice in Fig. 3.

When the criterion for cleavage is met, Eq. (28.5), then the static equilibrium
condition lor the crack and any associaied dislocation cloud {screening and,’or
antiscreening} is that each defect in the total configuration is subjected 1o a net
zero force. That is to say, the elastic driving forces derived and discussed in
Part 1V are exacily balanced for each defect by other forces supplied by the
material. In the thermodynamic sense, this criterion for the britile crack is met
by the Griffith condition, Eq. {25.3)

Se= 2. 331

In this equation, y is the surface free encrgy in the Gibbs sense, and will be a
function of the chemical aclivity of any external chemical species. f;_is given in
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terms of the tocal &,, and when mixed loading is applied, we will assume that
only Mode I assists the crack growth, although some assistance from Modes 11
and 11 is possible, as discussed in Part VI,28.

For the dislocations in the total configuration, in equilibrium, similar
conditions must be postulaled:

(Ja); — bay); = 0, (332

This equation is expressed for the jith dislocation in the cloud in terms of an
effective friction stress g, at the point j. Typically, this stress might correspond
to a Peierls “stress,” or interaction with impurities or a grain boundary. They
should not refer to interactions with other dislocations, excepl in special cases,
because we shall usually include these interactions in the elastic forces
explicitly on the lefi-hand side of Eq. (33.2).

One of the major difficulties met in applying Eq. (33.2) 1o real situations is
that the interactions envisioned in the second term are usually three di-
mensional in character, while the formalism adopted here is only two
dimensional. Thus, some appropriate averaging process (0 collapse the third
dimension is always envisioned, because the enormily of a full three-
dimensional description is far too great to counlenance in ils entircty.

The coupled equations (33.1) and {33.2) represent a complete set of con-
ditions for twe-dimensional equilibrivm. A direct attack can be carried
through when the number of dislocations is small or other simplifications are
made, but generally speaking, successful attacks on the problem involve rather
drastic approximations.

b. Wedge Cracks and Slide-Off

The wedge crack in its pure form is onc where the crack is unstable against
dislocation emission, and its characteristic shape is determined by the
geometry and symmetry of the dislocation slip planes at the crack tip. In this
case, the crack advance is not by opening of bonds, but by ledge formation as
the dislocation is emitted. Thus one dislocation must be emitied for each
Busgers vector increment of crack advance. The wedge is formed therefore
by alternate “sliding-off” on the cquivalent slip plancs at the crack tip, as
in Fig. 43. This crack morphology was first recognized conceptually by
Cottrell'® and is best confirmed observationally in the work of Vehoff and
Rothe,” as shown in Fig. 11. Cottrell believed that the slide-off mechanism
would not be observed commonly because the crack can only continue 1o
advance without limit if the dislocations continue to advance toward the
external surfaces until they exit from the material there. This is exactly what
Vehofl and Rothe observe, of course, in their single crystal specimens.

1% A H. Coureell, Proc. R. Soc. London Ser. A 48, 10(1965).
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r

Fii. 43. In an initially sharp shit crack, when k, < k., as the stress is raised, alternate emission
from the tip on equivalent slip planes intersecting the crack create & wedge crack whose opening
angle & is complementary to the angle between the two slip planes. Whether slip occurs on slip

plancs one or many stom planes separated from onc another makes no difference to the final
result.

¢. Externally Blunted Crack

When a crack exists in a material containing butk sources of dislocations,
then as the external stress is raised, these sources may be activated. Figure 42
iltustrates what happens to such a crack. In the two-dimensional description,
dislocations are always produced from a source in pairs of opposite Burgers
vector. By reference to the relevant force expressions in Part IV, it will be
found that the dislocation attracted toward the crack is also the antishield-
ing dislocation. In the formalism of Part IV, this cortesponds to a negative
Burgers vector. On the other hand, the shielding dislocation (positive Burgers
vector) of the pair is repelled when the distance to the crack tip is beyond the
range of the image force. Generally, then, one will expect that many of the
antishielding dislocations will be absorbed in the open (cleavage) surface of
the crack. Starting with a slit crack, the resull is a crack with a finite opening
called the “crack-opening displacement™ (COD) given by the total absorbed
Burgers vector, Given that the total Burgers vector is conserved during source
operation, i.c., by production of compensating pairs, the COD, aside from a
cosine factor, is just equal to the remaining total shielding Burgers vector,

COD = ;b‘,cos o, (33.3)
0}, is the angle made between the crack plane and the Burgers vector. Note that

the COD by this definition does not include the elastic part of the crack
opening which cven a slit crack has by virtue of Egs. (9.13)-(9.15). This
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F1G. 4. When a slit ceack is blunted continuously by external sources, the crack tip eventually
takes on a rounded macroscopic shape because of the randomness of the plasiic process. The
rounded crack is then best treated from a continuum approaimation.

expression is also valid, of course, i the source of distocations is the crack tip
itself.

If the material surrounding a crack is sufficiently sofi, then, as the external
stress is raised, it may transpire that neither kg nor k,_ is ever reached, and
continued operation of the external sources progressively blunts the crack, as
discussed in Part 1. Figure 44 (and Fig. 7) is a schematic drawing of successive
blunting and hole formation, in the way presumed to lead to futly ductile
fracture. Wilsdorf's observations in Fig. 14 of very clean thin films, although
showing highly crystaliographic features, is apparently also an example of the
same process. Crack advance in the ductile case is possible only because of
the nucleation and coalescence of new holes, and the COD is controlled by the
distance between the large holes. Otherwise the material will simply neck to
rupture on a macroscopic scale, as in Fig. 1.

Analysis of this case is obviously very complicated, and much effort has
been expended on it in the continuum mechanics and materials communities.
Although this work will not be reviewed here, the major result is that the
maximum triaxial stress in front of a blunted crack occurs at a distance in front
of the crack roughly equal to the radius of curvature of the tip. When this
region of maximum stress reaches out 1o precipitate particles in the bulk, they
fail, and a new hole forms, as shown in the figures of Part 11. For a general
review of this subject, see Knott,'®* and Rice.??

In principle, the processes of ductile fracture have little to do with fracture
as we have described it in this article, because only in the earty stages of hole
formation do any events involving bond breaking occur. However, on a gross

103 J. Kwott, Proc. Ini. Conf. Fract., 4th 1, 61 (1977),
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macroscopic level, the failure is cracklike because the COD is given by the hole
size, and this of course is on a scale given by the material microstructure. But
even on an alomic scale, the hole-growth mechanism can switch over (o
cleavage when conditions at the tip change, as for example by chemical em:
britticment. Thus the important conclusion is that it is the relative size of kg,
k., and ks which governs which of the physical classes of fracture oceurs. (Here
ks is a measure of the k necessary to activate sources n the medium ina
continuous manner.)

d. Mixed Fracture Classes

The previous discussion has arbitrarily separaied the three classes for di-
dactic reasons, when the more usual case, and the more interesting one, in-
volves a mixture. Thus, very few materials are so brittie that no dislocations
are emitied, or created by external sources. Indeed, one of the major purposes
of this article is to consider the shielding provided by such dislocations, and
the source of these dislocations must have been either the crack tip or external
sources. If the conditions at the crack tip do not turn decisively in only one
direction, so that for example alternating emission and cleavage can occur, or
alternating cleavage and external source activation, then significant toughness
can be generated for a crack which remains atomically sharp (or nearly so) at
its tip. It is toward such a crack and the conditions for its existence that the
main discussion of this section will be directed.

In the same way, the careful distinction made here between the externally
blunted and wedge cracks is also probably not a sharp dividing line in real
malerials. In the thin-foil experiments of Wilsdorf (Fig. 14), emission and
external dislocation generation are obscrved in the same specimen, Also, the
double-wedge configuration taken by the “holes” of Wilsdorf gencrale long-
range stress nol unlike that of a smoothly rounded crack, so [thal hole
generation ahead of the crack is to be expected (and is observed!). Thus it is
probably moot whether the typical hole-growth mechanism in its later stages
as seen in ductile polycrystalline materials is due primarily to dislocations
emilted from the crack itself or 1o external sources,

On the other hand, in the opinion of the author, the crucial question of
whether a material will be capable of sustaining a briltle crack stably in a
cleavage mode, without blunting the lip and arresting the bondrbreaking
process, will be determined by the emission of dislocations at the tip rather
than by absorption of externally generated dislocations. The reason iis that the
externally generated dislocations must collide exactly with the tip in order to
bluat it, which is an unlikely event, whereas dislocations emitted from the
crack blunt the tip by definition. However, the precise conditions under which
external sources can halt a cleaving crack are important and unknown at the
time of writing,
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34. ONE-DIMENSIONAL DISLOCATION DISTRIBUTION

If dislocations are distribuied along the cleavage plane in front of the crack
in a one-dimensional array, the problem of finding the equilibrium distriby-
tion is amenablc to analytic treatmeni, if the number of dislocations is large
enough to be considered from a continuum approximation. The first such
treatment was by Dugdale (Mode 1),'°¢ foliowed shorily by Bilby et al.
(Mode 111),'®? hereaficr calied simply BCS. In the BCS theory, ihe crack is
considered 1o be a continuum distribution of virtual screw dislocations
whose Burgers vector distribution, fi(x), is related to the crack displacement
uy by the equation

)
Hy =é£—. db = fi(x,)dx,. {34.1)

(Sec Part 11,4) These virtual or “crack” dislocations are set in equilibrium
with each other and with the external siress distribution at the point x on
the cleavage plane. The resultani distribution thus gives zero siress on the
cleavage plane, and therefore “solves” the crack problem. The stress external
to the crack is then just that provided by the “crack™ dislocations, and the
results are equivalent to that of Part 111. BCS, however, go further and let a
distribution of “real” dislocations be placed on the external cleavage plane,
and then solve the total equilibrium problem of “crack™ plus “real” dis-
locations. The external dislocation distribution is presumed (o start at the
crack tip. The BCS theory has been used extensively to intespret the plastic
zone of cracks, because its results are analytic and easy 10 understand. ' The
BCS theory is a direct extension of dislocation pileup theory to a sitvation
where the stresses are inhomogencous, and, because of this simple picture, the
BCS description has thus been very appealing to those familiar with dis-
location theory.

An extension of the BCS model was devetoped by Chang and Oh¢®#-109.110
to explain the experimental results by Ohr and co-workers! 9! 4-117 and

" DS Dugdale, J. Mech. Phys. Solids 8, 100 ¢1960).

'°7 B, A. Bilby, A. H. Cottrell, and K. H. Swindon, Proc. R. Soc. London Ser. A 272, 304 (1963).

18 E. Smith, in “Dislocations in Sokids™ {F. R. N. Nabarro, ed ), Vol. 5, p. 364. North Holland
Publ., Amsterdam, 1979.

1% S. Chang and S. M. Oir, J. Appl. Phys. 52, 1174 (1981).

Y98 Changand S. M. Ohr, Ini. J. Fract. 23, R3(1983).

VIV ) Narayun and S. M. Ohr, Proc. int. Conf. Electron Microsco, Yth |, 580{1978).

hig Kubayashi and S. M. Ohr, Proc. Annu. Meet. EMSA, 17ih p. 424 (1979},

1438 M. Ohr and ). Nurayan, Philos. Mug. Adl, 8) (1980}

"4 S Kobayashi and §. M. Ohr, Philos. Mag. A4, 763 (1980;,

IS M.Ohrand S. Kobayashi, J. Metall. 32, 35 (1980).

'1* S. Kobayashi and 5. M. Ohr, Scripta Merall, 1S, 343 (1981 )

7 J. Horton and $. M. Ohi, J. Maier. 5ci. 17, 3140 (1982).



RODA THOMSON

Fui. 45, Dislocation shielding configurations. {a) A Mode-IH slit crack is depicied with a
distribution of screw dislocations on ils cleavage plane. The solid curve represents & continuous
distribution function of the same set of dislocations, on the interval from x, = cto x, = d.

Chia and Burns''® on dislocations emitted from cracks which showed
a dislocation-free zone near the crack lip. The path to be followed here is a
further simpfification of their work, published independently by Majumdar
and Burns''® and by Weertman er al.'2° Starting with BCS, all the
mathematical developments make essential use of the Muskhelishvili integral
equation of the Appendix.

In the following, the description will be a Mode-I11 crack in antiplane strain,
but the analysis is also applicable 10 Mode | with edge dislocations with
Burgers vectors perpendicular 1o the cleavage plane or Mode Il with Burgers
vector in the cleavage plane. To make the transition from Mode I to Mode |
or 11, simply make the substitution g — (1 — vhie in the equations. In Mode I11
and 11, the cleavage plane is a glide plane, while in Mode 1, the dislocation
motion in the cleavage plane is by climb.

Consider a semi-infinite Mode-I11 crack with its tip at the origin, and a
distribution of screw distocations on the x, axisas shown in Fig. 45. For such a
distribution on the x, axis, Eq. { 15.7) becomes

fi= Kmb _ ub? + Z-ﬁ'ﬂ 1 (ﬂ)"z, (34.2)

[Ixx  dnx It x—x\x

The subscript on x has been dropped here and subsequently where the
meaning is clear.
Making the continuum approximation,

db = p(x)dx. (34.3)

Then

df, = KwBdx  p(pdx)® +dx J‘ M(x')m dx’.  (34.4)

Inx 4nx e 2n{x — x)\ x

YRK. Y. Chizand§. ). Burns, Scripta Metali. 18, 467 {1984).
''* B Majundar and S. Burns, Int. J. Fracs, Mech, 21,229 (198)).
'T 5 Weertman, I H. Lin, and R. Thomson, Acta Metall, 31, 473 (1983).
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If the distribution is in equilibrium, then from Eq.{332)

d .
jg = 4 filx}oy(x), (34.5)

and the equilibrium equation (34.5) can be written
2n Km ) .[ ‘ \/F fixy ,
— - - ——]=— Y —dx'. 34.6
n( Ve )= e (346)

The term in (8*dx?) is of course dropped because it is a higher-order
differential.
Equation (34.6) has the canonical form of the Muskhelishvili integral

equalion, {A.44), and its solution is given by (A.45),

By = _2_((:: — cid - x))”’ J" glx')dx’
x xp x e (X =x/(x~cad-x)" (347

g(x’) = —\/;d,(x) + Kmf\/z—"-

Because 8 is assumed to bezero at infinity, all polynomials in (A.45) are zero. I
oi(x) is a constant, the solution of this equation can be written in terms of
clliptic integrals '° (Fig. 45). The general form of B, however, is seen from the
square-root factor in front of the integral in Eq. (34.7). There is thus a sharp
maximum near the front edge at ¢, and a decrease to zero at point d. A solution
can also be given numerically'?! for an arbitrary function g(x).

The continuum solution is only useful when ¢ « d, and for this case when a;
is a constant, a very simple set of relations can be writien ! 2°

112
k= 3(%) a,ﬁ(nn;c“-' . ;) (348

n
2 172
x=2(;) % /d, (34.9)
‘ K {24\
f= J' ﬂ(x)dx:-’-l-(;) . (34.10)

Strictly speaking, in these equations, in Mode 115, o; must correspond 1o a
friction force on the dislocations, which in the simplest terms would be the
Peierls force of the lattice against the dislocations. More generally, though, it
could be any other resistive force in the lattice, such as interactions with
impurities, or grain boundaries. Such resistance lerms are usually thermally

'3 N. Louat, unpublished results.
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dependcnt, however, and are not entirely consistent with the time-independent
model assumed here.

In Mode |, the stress is usually interpreted as the yield stress, and the reason
for this is best seen from Dugdale’s original figure (Fig. 46). In a thin plate with
a crack under tensile load, the deformation zone is concentrated ahead of the
crack because of the tendency of the plate to thin down in this region, The
overall effect is that of a distribution of edge dislocations running parallel 10
the crack tip, and with Burgers vector perpendicular to the crack plane. The
opening of the crack, COD, is given by the relation, Eq. (33.3). Since the
dislocations are produced by localized yiclding in the deformed region, the
stress in this region is given by the yield stress 6,. Without work hardening. o,
is a constant. Thus, depending upon the details of the modeling, o, in Egs.
(34.8)-(34.10) and the equations leading to it, may variously take on the
meaning of a static yield stress, or a friction force. If the dislocations are
thought of as being crealed by sources in the region of a static crack, then their
local density will be fixed self-consistently by that value of o, which gives a
local stress equal to the yield stress. If, on the other hand, thwe dislocations have
been created, for example out of the crack tip in Mode I11, or Mode [, and are
mobile, they will move into a configuration consistent with the local Irictiosal
resistance forces. These two cases will be discussed in detail in Part VI1,35.

When ¢ — 0 in Eqs. (34.6)-(34.10), the BCS or Dugdale limit is oblained. In
that case flis given by an analytic function,'2? and for a finite crack with tips at
x=taflis

7 .1 1 _ .2
P el e |
(34.11)
ae l, screw
Tl -v),  edge

This distribution contains a singularity at the crack tips, x = ta. Equa-
tions {34.9) and (34.10) are stll valid.

Dai and Li'** have carried out numerical calculations for the equilibrium
of a discrete set of dislocations, with Eq. (34.2) directly, with much the same
resulls as shown for the continuum analysis.

The most isportant result in the BCS limit, however, is that the loca. k
disappears, and the crack is completely shielded from the external siress. This
result was already anticipated in Part V11,32 in the introductory comments.
The point of view expressed in this article is that without a local k at the coce
crack, the stress environment there cannot be adjusted to the requirements of

31 ) Wecriman, Ini. J. Fraci. Mech. 2, 460 {1966).
125 H. Daiand ). C. M. Li, Scripta Mewall. 16, §8) (1982).
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FiG. 46 Dugdale configuration. If & thin plate containing a crack is pulled in tension, the plate
will mp ahcad of the crack on plancs through the thickness as shown, lkeaving edge dislocalions
funiing on the inclincd planes through the specimen. The two dislocations, however, have the
overall effect of a single edge dislocation with Burgers vecior normal 1o the cleavage plane.

local equilibrium for the core crack. That is, if the crack is a cleavage crack, the
local k must refiect the requirements of the bond strengths of the atoms at the
tip(k.), and if it is an emitting crack, the local k must do the same for emission.
O_n the other hand, if the crack is completely shiclded, the stress at the tip is
given by the limiting vatue of g;, which is a parameter describing some kind of
plastic response of the material, such as the yield stress, and does nol provide a
yaluc (_)I' the ultimate bond strength. Thus a completely shielded crack is an
inconsistent solution of the total problem. Nevertheless, Eqs. (34.9) and (34.10)
do not contain the crack-1ip parameters ¢ and k, and are predicted correctly by
the BCS continuum solution. These resulis are useful by themselves, and
indced, books on fracture such as the classic one by Knott,'** and the reviews
such as the excellent recent one by Smith,'°® make much worthwhile use of the
BCS theory and these last two refations.

35. THe FRACTURE CRITERION IN CLEAVAGE

A.s promised in the introductory subsection, Egs. (34.8)-(34.10) provide a
rudimentary form of a fracture criterion. A fracture criterion should predict K,

134 3, Knott, “Fundamentals of Fracture Mechanics.™ Buuterworths, London, 1973,
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in terms of intrinsic materials variables for crack equilibrium, If 4, is a true
friction stress, and independent of the properties of the dislocation shietd, then
Fq. (34.8) is decoupled from the other two in the sense that then the first
equation relates only to the crack tip region. The weak dependence ond in the
logarithm can be safely ignored in first approximation. In eflect, Eq. {34.8) sety
¢ and k so they are consistent with one another, independent of the magnitude:
or exlent of the shiclding zone. In a sense, there is no predicted: K, because i
depends on B or d, which can be set at will. Then, Eqs. (34.8)-(74.10) are
underdetermined until some additional information is provided, such as a law
giving the magnitude of the shiclding charge B.

One way to provide the missing information is to identify o, as a yield stress,
and link it to the local dislocation distribution B by a work hardening law.
Such a law, however, would change the character of the integral equation,
(34.6), and the solution, Eqgs. (34.8)-(34.10) would not be valid. Weertman
et al.'*® have proposed that another, less satisfactory conslitutive law can
be obtained by linking o to the total B by an cqualtion such as

% = 0o(B/B, Y. (as.h

With this equation, the set of equations (14.8)-(34.10) is fully determined, anc
the critical k is given as'°
K = x(k2/c)t+=am
(u’ )u +miam V2Bop
K= :
1]3m

18 4d  4\(1+miim '
' (4 (In~— + *)
c 3

| (35.2)

kf = 4#}'.

In this equation, x depends primarily on macroscopic quantities; whilé § and ¢
are tip rcgion parameters. k, is the critical k for crack advance, and is given here
in terms of the Griffith relation and ¥. In this form, one sees that, in spite.of the
large shielding which might be provided by B, the entire fracture process is
very sensitively controlled by the conditions of atomic bonding al the tip
because of the overall balance and cequilibrium which is required. The
appearance of ¢ in this relation is interesting. In Eqs. (34.8)(34. 10} o; has been
identified as a yield stress, but the model does not let local sowres of
dislocations operate within the elastic enclave x < ¢, and the physical reason
for this is that in real solids, the sources for dislocations are not ibiquitous on
an atomic scale. In this picture, then, ¢ is the distance Lo the first spurce of
dislocations, a paramcter which is linked back to the inhomogeneity or
graininess of the scale of plasticily in a real material. Without this plastic
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"rain size,” of course, the crack would be fully shiclded again, and all the
'abjections already voiced about that situation would pertain.
Eguatipn(35.2) shows qualitatively the required dependence on the physical
| parameierss u, o4 (Which is the initial yield stress), work hardening parameter,
Iete. However, it is based on a very primilive one-dimensional model. Another
| relatbom which uses the inner cutoff idea, but uses a two-dimensional treatment
1af| the iplastic region gives a somewhat different and probably better

i nelation '3
1 +m)ilm
| K!= 2n(-2~:—") / (0d3c)t ~ 2=, (353
| lim'thiis equation, the work hardening law is written
' 6 = ogle/ey)” (354)

iim ithe: traditional manner, where € is the strain, and o is a local function of
I strain, in which the local strain is related to f.'*® Equation (35.3)is a correction
iof |the Driginal expression in Thomson.'?® Equation (35.3) has been tested
Lgainst:steels which have been embrittled with results which are satisfactory,
|but mo iiniensive effort has been made to validate the prediction. The reader
'will find} additional discussion of the elastic-plastic enclave approach by
| Weertman ' 2712 and Fuller and Thomson.'?* .

136 EmpsstoN-CONTROLLED SHIELDING

'When k. = k, dislocation emission occurs. This class of fracture has been
iiudeed iintensively in Mode 1l by S, M. Ohr and his collaborators at Oak
Biidpe,'™ ' 1="17 by Wilsdorf and collaborators at the University of Virginia,®
by P.|Weumann and collaborators at Dusseldorff,>*® and by Chia and
'Burns."'® In a typical experiment, as performed by Ohr, a small rectangular
iypecimen is thinned through its center, as shown in Fig. 12. When stressed in
‘the transmission electron microscope, shear is induced in the thin portion of
ithe foil, a3 shown in Fig. 13b. IT dislocations are injected into the thicker part
iof thic! koil from the thin edge, eventually when the total Burgers vector
component normal to the foil nearly equals the thickness of the foil, the foil
shears aypart, and a Mode-111 cracklike artifact is formed. From the geometry,
iin | pure shear, the “crack™ line would have zero length at its tip, but in the
oy pesinents, some Mode | develops because the crack possesses a small finite
fength all ils tip associated with the dislocation free zone. Figure 13 has already
displayed results for copper.

I3 E. IFuMer,and R. Thomson, AIME Symp. Micro Macro Mech. Crack Growth 49 (1981).
R, Whomson, J. Mater. Sei. 13, 12R (197R).

19 Weortmam, Actd Metall. 26, 1731 {1978).

1T, Wevrtam, J. Marer. Sci. 18, 1306 {1980



102 ROBE THOMSON

The primary results of these experiments are: (1) the dislocations are emiited
on the crack plane (which coincides with a ship plane) from the crack lip as it
grows into the foil; (2) there is a significant zone in front of the crack devoid of
dislocations, called a dislocalion free Zone; (3) the number of dislocations
cmilted is correlated with the thickness of the foi: ie, COD = ¥b, cost),
where 0, is the inclination angle of the slip plane to the normal of the foil; (4)
the distance to the first dislocation is a function of the stress on the crack, such
that when the stress is lowered, this distance also decreases; {5) the distribution
observed is that of an inverse pileup, with & sharp maximum in the vicinity of
the first dislocation; (6) when the crack 8rows inlo a relatively thick portion of
the foil, it often develops more Mode-1 character, so that emission is then
observed on slip planes intersecting the crack plane at a finite angle, blunting
the crack as discussed in Part VI; and (7) quantitative interpretation of the
resulis can be correlated with the emission criteria of Part V] and the shiclding
results of Part V11,34, to which we now turn,

Chang and Ohr'°* and Ohr and Chang®® have interpreted these results in
teems of the one-dimensional continuum model of Part V11,34 with a finite
value of ¢ in Egs. (34.8)-(34.10. In the experiments, o; and ¢ can be measured.
From Eq. (34.8) k,, and K, can be calculated. in this case, of course, the
critical value of k,,, in Eq. (34.8) is the critical value for dislocation emission,
calied in Part VL, k. The results taken from Ohr and Chang®® are shown in
Table I.

Several comments are in order regarding the validity of the models. Firsi,
the experiments are performed in thin foils, and the theory pertains to thick
specimens. In the elastic analysis, the stresses on the foil faces must be zero
[Eq. (7.3)). 11 the crack were normal to the foil surface, and the stress staie
were Mode | or Mode I1, then plane stress {sec Part H1,9) would apply.
However, the crack is primarily a shear crack in Mode 1, and the axis of the
crack and its associated dislocations is inclined 10 the plane of the foil at a
finite angle. Eshelby and Stroh'?® have analyzed the problem of screw
dislocations normal to a surface and shown that screw dislocations in that case
have a truncated long-range stress field of the form r—"/2e- (incorrectly
quoted in their paper), where ¢ is the fojl thickness, because of the image terms
in the foil surface. Edge dislocations retain their long-range 1/r stress fields,
however. For the same reason which leads to the truncated screw stress held,
the Mode-I11 crack if normal 1o the foil surface would also be expected to have
a truncated long-range stress field in a foil. However, the crack and slip plane
are at an inclined angle 1o the foil, so only a portion of the a and o,, stress
.ﬁcld's will be cancelled by the boundary condition on the foil susface. Thus the
inclined crack and dislocation distribution will retain a portion of their long-

1% 1. D). Eshelby and A, N. Siroh, Philos. Mag. 42, 1401 (1951).
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FiG. 47. View of [raciure plane fos the foil. The crack line is a small fraction of the foil thickness,
and the thickness is a function of position in the plustic zone. The stress siase a1 the crack Jine must
possess ul least 2 small amount of Mode | in order 10 open the crack at thal point, but the siress
cannat be two dimensional because of the variable thickness of the crack plane.

range interactions and the crack and dislocations will interact with one¢
another at distances well beyond the foil-thickness distance. However,
buckling in the foil will still serve to orient the system so that the image terms
Can operate to some extent, and will tend to decrease the long-range
interactions further. Chang and Ohr'*® have studied the effect of finite
thickness on the integral equation Eq. (34.6} in Mode 11, but becausc of the
inclination of the slip plane to the foil surface, the configuration is not pure
Mode 1 as explained above.

The second point concerns the question of whether the geometry of the
sheared foil really represents a two-dimensional Mode-111 crack. A view of
the crack plane would schematically be that shown in F ig. 47. Because of the
variable thickness of the foil in the plastic zone, the stress state cannot be
entircly two dimensional. In effect, there must be a higher eflective k at the
crack tip relalive to the two-dimensional k used in the equalions, roughly in
proportion 1o the ratio of the crack-line length to the undeformed foil
thickness. Thus, the foil gcometry generaies an inherent uncertainty in the
two-dimensional antiplane-strain analysis. However, there is no question that
the qualitative picture is correct and the surprising quantitative results shown
in Table 1 indicate that the approximations in the analysis are nol serious or
that they cancel one another.

B is important (o note that these Mode-Iii experiments do nol bear directly
on the Mode-1 emission-cleavage dichotomy of Part V1. The discussion there
emphasized the independence of the modes relative to this question, and
emission of screw dislocations in Mode 11 was shown to be unaflected by
cleavage events in Mode I. There is an observable short Mode-I crack in the
experiments, as shown in Fig. 47, which cocxists with the Mode-111 emission,
but the value of &, at the tip has nol been calculated. (For self-consistency, of
course, it must be at the Griffith value) The gencral configuration of the

9% Chang and S. M. Ohr, Int. J. Fract, 25,3 (198



104 " ROBR THOMSON

overall loading in the (non-21) foil dictates that the k, and k,,, values must be
about equal, but the detailed analysis has not been carried oul. Hence, a direct
quantitative comparison of ky,g with ke based on these experiments cannot be
made. It is very interesting, however, (o note that in the same configuration,
MgO does not emit screw dislocations, but cleaves, showing that the ex-
periments do have a qualitative bearing on the cleavage/emission dichot-
omy. These mixed mode loading questions are further pursued in Part VI1,37.

The Mode-I11 foil experiments do not relate directly to any perceived

macroscopic failure mode in a bulk material, but they throw a very strong
experimental light on two general principles in [racture: They confirm direct
emission of dislocations from a sharp crack tip in fcc and bee metals, and they
confirm the gencral proposition of crack tip shielding including the im-
postance of the local k at the crack tip. However, we suggest there is one
important mechanism operating in the failure of practical ductile materials
where the Mode-II1 (or its sister Mode-11) crack discussed here could play a
role, and that is the observed shear breakdown found to occur between
neighboring holes in the later stages of hole growth fracture. (See Fig. 14.)

Experiments reported by Chia and Burns''® on cracks in LiF do provide
gencral confirmation of the picture presented here in bulk specimens. An
additional feature found, however, relates to the effects of nonblunting glide
dislocations in shielding the crack. Unloading in their case also had the
interesting effect of increasing the deformation zone in a nonlinear fashion, a
result of interest lor fatigue crack growth.

The experiments of Wilsdorf and collaborators® have focussed on the final
stage of ductile rupture of a specimen. Some experiments have been performed
on tl?acroscopic sized specimens, which neck to a fine chisel edge, as shown
in Fig. 5. TEM studies of the thinned neck during final rupture are similar
lo results of prethinned foil specimens stressed in situ in the microscope.
Figure 14 shows that, just before final rupture, a ductile “crack” develops
composed of a regular series of rectangular holes. The nucleation and growth
of these holes has been studied in a variety of ductile materials: Ag, Al Ay, Cu,
and Fe and Be in the pure form and stainless steel and Al alloys. Both
polycrystalline and single crystals were included. For a general review of the
rqsuils. sec Wilsdorl.® The major results were: (1) the voids are nuclealed in
dislocation cell boundaries; (2) the holes formed take a highly crystallographic
shape determined by the operation of dislocation sources either at the sharp
corners or from bulk sources very near these corners where stress concen-
trations are high; the void in other words grows at each of its corners by the
slideofT mechanism for an emitting crack; and (3) there is an observable
difference when the strain rate is “high” typical of that to be expected in a
schimcn deformed in an Instron machine, and “low™ corresponding to a creep
regime. In the “high”-strain range nucleation and growth take place by both
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dislocation avalanches and twinning, with resultant regular hole formation. At
lower strain rates, individual dislocation events are observable, but the overall
results are less regular in appearance, corresponding to the ability of the
dislocations o achicve lower-energy configurations by strain annealing. The
first stage of hole initiations is the growth of a rapid dynamic brittle crack (o a
length equal to the length of the final void, and then it stops. Blunting then
takes place slowly by deformation at the crack tip. The initial fast dynamic
growth is not consistent with the subsequent behavior as a ductile process. In
Fig. 48, a high magnification micrograph shows the initiation of a hole in a celt
boundary.

Analytic treatment of the emitting cracks of Vehoff et al. (Fig. 11) and the
growing voids of Wilsdorf and co-workers involves the application of the
wedge-dislocation interaction analysis of Part 11, and has not been carried
very far as yet. The reader is referred to the paper of Chang et al.?*

37. SHIELDING BY EXTERNALLY PRODUCED DISLOCATIONS

Even for a stable cleavage crack which does not emit dislocations, external
sources for dislocations nearly always exist in a material, and when sufficiently
close to the crack, the stress concentration can cause them to operate. Lin and
Thomson'?! have investigated the shiclding provided by a single external
source (Fig. 49) and analyzed the stress on the source and the shiclding of the
crack tip as a function of the number of dislocations produced. Neglecting the
effect of tedge formation by the antishielding dislocations which might be
absorbed by the crack, they show that the back stress of the dislocations on the
source is stronger than the shielding of the crack tip, because the source is
closer to the dislocation pileup than the crack is. Thus, as the external stress of
the K field is increased, the cleavage criterion at the crack tip will ultimately be
achieved again for a finite number of distocations produced by the source.
Thus, neglecting the effect of crack shape change due to dislocation absorp-
tion, the crack will remain brittle in the sense that the sources will provide
only a fimited and finite shieling for the crack. Brittle crack propaga-
tion will then always be possible for some value of external K, which depends
upon the source location and source hardening parameters.

This model has not been adequately pursued to explore the toughening
properties of a discrete distribution of external sources for dislocations.
Crossover to the ductile fracture mechanism is inherent in such a model,
however, if the shape change in the crack can permanently lower the local k
below k while external sources continue to operate. This question is closely

131 _H. Lin and R. Thomson, Scripta Metall. 17, 1301 {1983).



Fii. 48. Innistion of a hole near a crack |
Wilsdorl)

n the Wilsdorf configuration.* (Couresy H. G. F.
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Fii. 49. Operation of a Frank-Read source ncar & crack tip. {py is 1he distance 1o the source
and { 10 the dislocation loop tip.

related to the phenomenon of blunting the tip by external sources already
discussed in Part VIL33, It is important to find out by further theoretical
modeling as well as by experimental investigation if external sources can by
themselves provide a path for the cleavage-ductile transition in 3 material
without invoking dislocation emission from the crack tip.

Dislocation shielding of cracks in any real case is probably due (0 a mixture
of external sources as well as emission. For example, any emitted dislocation
pileups will certainly interact with sources in the medium, and the overall
shiclding will be a mixture of the two types. Modeling of such situations
probably is best accomplished by material-deformation constitutive laws,
which suggests that an ultimate “solution™ of the practical problem will
probabily involve a continuum solution of the outer parts of the deformation
ficld with a discrete approach to the inner region reminescent of the lattice
modeling of ParL V,

38. MoDE-] AND Mixen-Mobe PROBLEMS

The shielding problem in Mode 1 is sufficiently difficult that relatively little
analysis has been carried out for it except for numerical calculations in the 1D
BCS approximation. We have given the general 2D results for interactions
between cracks and dislocations in Part 1V, however, and some general
comments can be made here regarding the character of these interactions,
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The shiciding relation, Eq. (16.7), can be written for the real and imaginary
components for the contribution K, of each dislocation to K as

bzcosg + ﬂ’.“"g(b| COSJ—O + bz sil‘l?‘—ﬂ)],

(K = _ﬂ—_"[
1 —v/2nr

2 2 2
. (3s.1
S b cosg+-sﬂq b cos-?g-b sins—o)]
‘K‘)“ = (I . v,\/z; ] 2 2 2 2 1 2 .

The overall shielding situation is somewhat complex, because, not only is there
an angular dependence in (Eq. 38.1} which changes sign with 8, but for any
Biven crack, there can be a mixed-mode loading. By a mixed mode, we mean
that the external loading of the crack can be a combination of Modes 1,11, and
111. The loading in turn will in general produce the dislocation distribations
typical for such loading through dislocation emission,

The characteristic distocation distributions (from emission events at the
crack) will be those depicted in Fig. 50. Figure 51a shows the shielding of a

]
———— Mode 1
N\
1
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®

Fiti. 50. Typical dislncation configurations for pure loading situations. Mode | produces
shielding dislocations on slip planes a1 an angle to the crack plane.ib,), = —{b.)y:lb,), = ). In
Mode 11, the dislocations are produced on the plane of the crack, but some cross slip can be
expected. In Mode 111, no specific stip plane is necessary because of the screw character of the
dislocations, but in practice, the distocations will tend to be formed on the crack plane. In each
made, as the crack moves forward, the dislocations will be left behind as a wake.

———
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FiG. 51. in (a), the K, shielding contribution 1o Mode I of a distocation with Burgers vector
/2 YJSL0bis dispiayed as a function of angle @ relative to the crack lip. See Eq.{38.1). In (b)
the shielding of & nearly pure edge dislocation in Mode [{ (b = (5,0,0) is shown as a function of
angle to the crack tip.

dislocation with Burgers vector b = (1/Z,1//2,0) as a function of angle
relative to the tip. Maximum shielding occurs roughly at the 6 ~ x/2 point,
Disfocations on the two slip planes shown in Fig. 50a contribute symmetri-
cally 10 X,

When a Mode-11 dislocation interacts with a Mode-] crack, cross slip is
assumed to spread the dislocations off their initial slip plane, which is
coincident with the crack planc, into a thin region on cither side of the crack
plane in a symmetricat manner (Fig. 50b). The second term in the first equalion
of Eq. (38.1) is the relevant one, and it is antisymmetric in 8. Thus no net
contribution to K, will be made by a symmetrical distribution of Mode-H
dislocations.

Figure (51b) shows the shielding of a dislocation in a pure Mode-11
configuration as a function of angle @.

When a Mode-H crack interacts with a symmetric pair of dislocations in
2 Mode-l configuration (Fig. 50a), all three terms contribute in Eq. (38.1),
because the Burgers vector has both x, and x, components. However, the first-
term contribution is zero because (b1}, = ~(b,),,. The second term is an odd
function of #, and hence one dislocation again cancels the other. The third
term also contributes zero because (b, )sy = —(b,),, and the angular function is
an even function of @,



110 RUBB THOMSON

Mode Il is essentially “orthogonal” to the other two modes, and no
ms occus.
cr('?::\:]e:c!r&;r" result is thus that, so far as shielding is concerned, there are no
significant cross terms in the shiclding contributions, and the mades can be
considercd individually. This result, of course, dcpends on the assumption of
symmetry. When a single dislocation is being emllt.ed from a Mod.c-I q‘nc?.
then there is a contribution to Ky, and a reaction in Mode I1. This paint is
er discussed in Part VI1,39.

rm';"l‘le most interesting mixed-mode crack is one where sufficient Mode |
exists to ensure Lhat the crack develops an open surface on the crack plane, but
where the primary loading is Mode 11 (the “Ohr” configuration of Fig. 13)or
Mode L1. In pure Mode I or 111, of course, the bonds :!rc not se!:aralcd across
the crack plane, and no physical crack exists, as dlscussed_m Part VI28.
Suppose initially, then, that a sharp stable Mode-I crack exists so that the
Griffith relation is satisfied at the crack tip,

ki = 4y(1 — v/ 38.2)

No dislocations are presumed present initially. As Mode-11 Ioading is :_lpphe.d.
the local k;, starts from zero and increases. Because of the clastic lincarity
of the Mode-I and -II stress states, the Mode-l stress is not Fhanged hy. tI!e
Mode-11 loading. As noted in Part V1,28, the fracture criterion at the tip is
slightly modificd, because the bonds at the tip will be sheared, and in geacral,
less &, will be required to hold the atoms open there. Howcvc'r. we expect this
ellect 10 be small, as proposed in Part V1,28, Thus, as k, is mcr'cased..no
additional cleavage occurs, but Mode-II loading can induce dislocation
emission, and the standard dislocation emission conditions of Par! V_I oa the
crack plane will be valid. We now presume that the clrack.plane isa shp.planc,
and the standard one-dimensional dislocation distribution of edge distoca-
tions will be generated, controlled by the local emission criterion in Mode 1
and the total externatly applied K,;. In this mixed-mode case, the Mode-11
dislocations exert little shielding on K, of the crack, as explained carlier in this
section. So long as Lthe Mode-I-type dislocations are not produced by cither
emission or external source activiation, the crack can cleavc_al very low k,
values, yet gencrate an indefinite nomber of Mode-II dislogauons W_l!]’l large
amounts of plasticity. Thus in this mixed-mode case, high ductilily and
cleavage comfortably coexist. '
Lynih"“ has in fict observed phenomena very simi!ar to that described
above in chemically embrittled metals. In his cxpenm;nlg. the exlan_al
chemical environment presumably modifies the Griffith criterion lhroygh its
effect on y so that a cleavage crack is stable. Large amounts of deformation are

325, P. Lynch, AIME Symp. Liquid Metal Embritilement (1983).

PHYSICS OF FRACTURE 111

then observed close to the cleavage plane, as described above for emission in
Modes Il and I11. These ideas suggest in practice cleavage [racture should
commonly exhibit this type of shear-mode emission because of the difficulty of
ensuring pure Mode-1 loading.

An important proposal has been made by Sinclair and Finnis®® that the
cleavage/emission balance can be aliered after emission of a group of dis-
locations has occurred. Their proposal is built on a cleavage criterion like
Eq. (28.8) and an assumption that emission occurs in Mode | in an asymmetric
manner so that mixed loading at the tip occurs, We have argued that Eq. (28.8)
is not the correct cleavage criterion, but there remains the issue mentioned in
Part V1,28, where cleavage and emission are finely balanced against one
another, that mixed-mode loading might still alter this balance. Indeed, in the
“Ohr" configuration of Fig. 13, a smalt and presumably stable Mode-I crack is
observed as schematically shown in Fig. 47. This crack does not emit in the
Mode-I configuration of Fig. 50a, as demonstrated in the electron micrograph
of Fig. 13, even though the malterial is the supposedly intrinsicaily ductile
melal, copper, where stable Mode-I cracks are not supposed (o exist in pure
Mode I. This result has not been anatyzed yet in terms of the available slip
syslem geomelry and stress state in the films. Two possibilities exist. The first is
that some Mode-I1 loading exists of sign and magnitude sufficient to raise the
emission criterion from Eq. (28.2) relative to the cleavage criterion, and the
second is that the Mode-H1 loading changes the cleavage/emission balance at
the crack tip. This is an important issue, and requires further study.

Having explored shielding effects on the crack, we turn now to some
theorems regarding the forces experienced by the dislocations. The first
theorem which can be proved is that in Mode I, for two symmetrically placed
dislocations with the configuration of Fig. (50a),

(Jea hip piane = 0. (38.3)
The second theorem of interest relates to the relation (15.10). In the
deformalion theory of cracks using the J integral, it is shown that in the limit
of small-scale yielding where the region of deformation is small compared
with the crack size and the specimen size, the force on the total configuration is
given by the gencralization of Eq. (15.10); that js,

2 2 2
Re(f..)=i’i'-%§'.'—’u - +§;—". (384)

This theorem is also valid when the deformation field is composed of singular
dislocations. The reason is thai the far-ficld asymptotic form of the stress in
Mode 111 and the potential functions in plane strain are all dominated by the
1/\/7 term given by the far-ficld K field in cach case. (See Eqgs. (10.3), (10.11),
and (10.12)) The next term in the cxpansion at infinity is not the simple
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dislocation term in l/\/;. but a higher-order term in l/\/;’-. In the fimit of
large |z|, the integration of these z° 2 stresses around a contour where
lz| »[{,] on the contour (§, is the position of any shiclding dislocation)
in cither the J-integral expression, or the Eshclby theorem [Eq. (14.8)],
conlributes a zero contribution to f. The reason, of course, is the image that
the dislocation develops in the open crack which cuts off its long-range 1/z
ficld.

Using Eq. (38.3) and the shielding results of Eqs. (15.6) and (16.7), some
simplification in the force cquations is possible. Writing

K=k+Kp, (38.5)
which will be valid for each mode, then Jor each mode,

b
Re(/od = Re £, + Re (1), = %

(38.6)
_Ju Mode MI
Y=Vl =v)  Model, L.
Using Eq. (38.5), Eq. (38.6) becomes
KK, K2
R y=—2_ "0 7
LU == -5 (387)

Since the first term is linear in K, it represents the direct force term on the
dislocations, while the second term is the combination of image and
distocation-dislocation inferactions, Using the shiclding relations, Eqgs.(15.6)
and (16.7), these become in turn for each dislocation

Re(fohot = Kb Re(1/./20T)),  Mode 1il

Re( foghe = %[b”m% + m—;q‘l(b”oos}% + b,,sin%)]. Mode |
§

Re( fogho = 8 [b”cosﬁ - M(b”sinﬂ - b,,oosiﬂl)]. Mode II

/2;"-1 2 2 2 2

(38.3)

The term in K, is a double sum over the dislocation distribution. The terms in
hyb, represent dislocation - dislocation interactions. The b} term represents the
self-image term. These expressions are not written here, but are explicit
manifestations of the more general expressions in Egs. (16.13) and (16.16),
which can be useful.
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In the only serious attempt at Mode-1 shielding calculations to date, the
BCS modct has been extended by Riedel'*? and Vitek ' ** (o the Mode-I crack
with a pair of slip planes intersecting the crack tip at an angle of +0. The
resulting singular integral can be converted to one of Fredholm type which
can be numerically integrated. The numerical results compare in zll major
aspects to the full two-dimensional continuum plastic-deformation theory
results; so the approximation that slip only occurs on two symmetrically
oricnted slip planes is apparently a good one. This work, however, did not
include considerations of the local k and local crack equilibrium. The results
suggest that including such a dislocation-free zone in these calculations would
lead to a quile satislactory description of shielding in Made I, and hence to
a realistic toughness relation. Sinclair'** has carried the problem one step
further, and made a numerical calculation for a wedge crack created by
emission of a symmetrical distribution of dislocations on symmetrical slip
plancs making angles of +8 to the symmelry plane of the wedge. In all these
cases, onc of the important results is the generation of a maximum dilatation
at some distance ahead of the crack tip, which is thought to be correlated with
the generation of new cracks in the hole-growth model.

39. GrowING CRACKS

" A growing crack differs from a static one in two important respects, A
growing crack has a past history in the sense that its deformation zone has
passed through the specimen and left behind a wake of work-hardened
material extending some distance on either side of the open flanks of the crack.
Secondly, a growing crack is also a time-dependent phenomenon, and will
involve rate-dependent dissipation processes in any plastic response of the
material, and may also involve dynamic or inertial effects as well. Both of these
aspects of moving cracks lead to important physical effects different from
static cracks. ‘

a. Quasistatic Cracks

In the quasistatic case, inertial effects are neglected. Hart '°? has treated this
problem in an ¢legant approach using a continuum (but two-dimensional)
form of the shielding theory in Mode I11. In his work, the crack is assumed to
move with constant velocity, and the dislocation density is generated by a

134, Riedel, J. Mech. Phys. Solids 14, 277 (1976).
134 V. Viteh, J. Meck. Phys. Solids 24, 67, 273 (1976).
13% ). Sinclair, Nucl. Metall, 20, 388 (1976),
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deformation-rate constitutive law which is consistent with laws describing
creeping maierials, bul is not a strain-hardening law. In his earlier work, the
deformation zone is also assumed 10 move with the crack, and the problem of
the wake is not addressed. In later work, yet 1o be published, however, the
wake i3 included, so that a true dissipation takes place. The feature of Hart's
work which will be familiar 10 the reader of this article is that a local k is
derived. For a moving crack, even in a continuum theory, this is possible so
long as the creep deformation near the crack tip is sufficiently slow so that the
crack ip is not completely shiclded. This requirement becomes an assumption
for Hart’s treatment, and it turns out 1o be attainable provided the creep law,

€= Ao* + d/p, (39.1)

in the vicinity of the tip has an exponent, n < 3 and far from the crack lip,
n>3. Hui and Riedel*** have published a general analysis of the asymplotic
forms of the stress fields at the crack tip and at large distances with creep laws
of the form of Eq. (39.1). When n > 3 near the crack tip, no k field is possible,
and the field is dominated by the plasticity. That is, the crack tip is esseially
fully shielded, even though it has a siress singularity.

The interesting predictions of Hart's analysis are that (1) the crack must
have a finite velocity, or the creeping material at the crack tip will complctely
shield the tip and destroy the crack & field, and (2) that for high velocities a
breakaway phenomenon occurs corresponding to the crack ostrunning the
ability of the malerial to form a significant shiclding charge of Bargers vector.
In the analysis, this breakaway actually corresponds (o an analyticaily double.
valued solution (Fig. 52).

The work of Hart and of Hui and Riedel is of considerable interest, because
it shows that, when the crack is moving, rate-dependent continuum solutions
can be construcied which are not limited by the Rice theorem 345 discussed in
the introduction, Part VI1,32. When v — 0, as Hart shows, the creeping
material at the crack tip will eventually damp out any static siress concen-
tration, and the k ficld will be destroyed. Then no atomic-bond-breaking
process at the tip can be invoked, because ai best the stress field is restricted to
the much lower siresses altowed by deformation pracesses, and Rice’s theorem
applies. When v is greater. than some critical value, and when n < 3, then the
plastic creep does not have time to fully shicld an atomically sharp crack when
it moves in10 a new region of the material, Then a local k can be sustained, and
the bond-breaking stresses at the tip can be achieved. But if n > 3, then these
results are no longer possible, and the atomic crack breaks dowa. One might
say the physical reason for this breakdown is that the condition described in
Part V11,33 leading to Fig. 44 obiain, and Rice's theorem takes over.

Y% C. Y. Hui and H. Riodel, Ins. J. Fract. 17, 409 (1981).
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| ¢
Fii. 52. Predicied form of K{v) for & creeping crack afler Hart.'** The curve siops at (he
lower Jimit for v and has » branch with negative slope corresponding to dynamically unsiable
Hales.

These rate-dependent results for moving cracks are closely related 1o the
general point of view of this article, that conditions in the near tip region of a
crack involving the distribution of dislocation sources and their ease of
operalion determine whether the sharp crack can be sustained. The condition
n < 3, physically, is another statemenl of the same general type. Indeed, as we
will show below, one can derive some analogous moving-crack behavior on
the basis of the shiclding ideas developed here in Part VIE34.

Imagine that a brittle crack is moving at velocity v, and that a dislocation
cloud has been attached to the crack by some prior event which will not enter
further into the analysis. Suppose the slip plane for the dislocation is parallel to
the crack plane, that the Mode-H| analysis applics, and that the entire config-
uratien is in steady-state motion with velacity . With the use of Eqs. (34.8)-
(34.10), the configuration is consistent with a steady-state velocity if the
friction stress is determined by the stress-velocity law for the dislocations,
o;(v). For a given B, and K, the size of the pileup, d, is determined by Eq. (34, 10).
The velocity is then determined by Eq. (34.9). Equation (34.8) is a relation
between k and c, because all the other parameters in Eq. (34.8) have been
determined by the external conditions or by Eqgs. (34.9) and (34.10). Thus if the
crack local k is a function of v, or in a quasistatic imit simply given by the
Grillith relation, k? = 4uy, Eq. (34.8) sets ¢ so this local & can be maintained.
Hence a K(v) law is gencrated consistent with the distocation a,(v) law and the
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Fii. 53. A simple two-ship-plane model of a dislocation shiclding configuration. The closest
approach of the first dislacation to the crack is ¢*.

shiclding relations for all velocities v, However, unless the dislocation slip
planes are exactly coincident with the crack plane, there is a lower limit to c,
and a maximum limit 1o K or ». This configuration is shown in Fig. 53, and is
due to the fact that when the closest distocation is on a slip plane a distance c*
above or betow the crack plane, the lower limit of cin Eq. (34.8) is ¢*. For k
values above this initial point, the shielding of the crack tip “runs out of
steam,” and the crack breaks away [rom its dislocation shield.

An actual physical situation approximating the above description is that
found in LiF in early experiments on dislocations interacting with cracks by
Burns and Webb.'*? In their case the slip planes of the dislocations were
inctined 10 the plane of the crack (in the x, direction), so that the dislocations
wrapped around the crack to form a hairpin shape. The limiting value of ¢ in
this case would correspond to the distance between neighboring dislocations
in the x, direction, and o, would be the sum of the actual g; for the part of the
dislocations looping around the crack and the line tension of the straight
segment forming the wake. The interpretation and analysis originally given by
Burns and Webb is not inconsistent with this picture, and their experimental
results showed the kind of breakaway proposed above.

If, on the other hand, the crack generates new dislocations from sources in
the medium as it moves along, a shiclding charge is built up and then left
behind as a wake as the crack moves on, Speaking physically, the shiclding
charge gencrated would again lead to relations between the external K .o (or
yield stress), and the size of the deformed region satisfying Eqs. (34.9) and
(34.10) provided the system is steady state. Again, the conditions on the local k
would involve the distance to the first shiclding dislocation. This distance will
always be greater than zero, because sources of dislocations are always
distributed in the bulk matrix on a very helerogeneous scale, Since & is
determined by this close-in dislocation distribution for steady-state shiclding,
there will again be a limiting lower bound for c associated with the dislocation

'S5 Burns and W W, Wehh, J. Appl. Phys. 41, 2078, 2086 (1970).
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source distribution. Since Bisa decreasing function of V because of the rate
dependence of dislocation generation, there will always be a limiting velocity
where the required shielding at the crack lip cannot be achieved, and the crack
will break away from its shiclding charge.

Thus the shielding relations of Part V11,34 lead to the same breakaway
physics as Hart's continuum analysis. However, the shielding relations show
that the breakaway is intimately connected with the dislocation structure close
to the crack tip, whereas the physical basis for breakaway is less clear in Hart’s
analysis,

The prediction by Hart that the crack will be completely shielded in the
creep regime at very low velocities so that stationary cracks are impossible is a
statement which should be taken seriously for some cases. Jt suggesis that a
material can behave in a brittle way for sufficiently high strain rates, but blunt
out any brittle crack at low strain rates by deformation in the buik. Materials
which are britile at room temperature (even though some deformation may be
present), but ductile at very high temperatures for ordinary testing machine
strain rates, suggest this behavior. On the other hand, of course, there are
many cases where a static description of a shielded stationary crack is a valid
picture,

The discussion of this subsection raises an important property of moving
cracks, namely that when shiclding distocations are present, and the crack
moves, then a wake is left behind as the crack moves. For purposes of
modeling the toughness of the material, the existence of the wake is a crucial
factor, because it represents a part of the dissipation, and it contributes (o the
overall stress. Hart has dealt with this term in an analytic way in work yet
unpublished for the Mode-I11 continuum solution, but Hirth et al.'?® and
Thomson and Sinclair*? also discuss the problem from the standpoint of the
forces on the total configuration. This problem has also been extensively
investigated in the continyum plasticity approximation.!*®

b. Inertial Effects

The mathematics of time-dependent crack motion is subtle and lascinating,
This resutt will not be surprising to those familiar with the analysis for
dynamic dislocations.2® For a reced review of the clastic problem, the reader
is referred 1o an excellent paper by Freund.'4®

The steady-state stress problem is relatively easy 1o solve, and complex
function methods quite similar to those of Part i lead to the result that the

') P Hirth, R. G, Hoagland, and C. H. Popelar, Acta Metall. 32, 171 (1984).

13% ), Rice, in "Mechanics of Solids™ (H. Hopkins and M. Sewell, eds ), p. 539. Pergamon, Oxford,
1982,

‘4?1 B. Freund, Mech. Today 3, 55 (1976)



v ROBB THOMSON

moving csack is again characterized by a K field, but that the value s
decrcased by comparison to the static value. Thus

Kip)= \/—E—h(u) J.“ (vt - x)"'? o(x)dx, (9.0
[}

i i i-infini here h is a nearly
in complete analogy lo the static semi-infinite crack, but w

linear function of ¢ given in Fig. 54 for Mode 1. In Mode I, uyc ancnlz
contraction comes into play on the displacement and stress functions nlihc
expected way on the x axis. Thus, the complex function, #(z), of Eg. (8.2)
becomes

1 —pfc\M* ( x—uo 33
alx = i) = (| ¥ u/c) W
where 1, is Lhe static crack function and ¢ is the shear sound speed. In this case,
the function h(v) becomes simply

1 - g/c\V* ﬁ)”‘ 394
h(”)=(i+v/c) (l'—c’ : (394

Further, the instantancous force on the crack tip can be found (140) and is
given in Mode I by the result

J = (KS/EXI — v )glv), (39.5)

where K, is the static value of K, and g{v) is again shoufn in Fig. 54 ‘This result
states that, when a fracture criterion such as f = 2yis given and y is a constant,
then the external load as specified by K, must be inc['eased to supply_ the
energy Lo open the crack surface. The extra energy input is, of course, put into
the radiation field of the crack.

hiv)

glv)

1

V/vn
Fii. 54. Funclions g{v) and h{v) for Eqs. (39.5) and (39.2).
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The startling result for non-stcady-state motion is that an elastic crack has
no inertia. As a source of stress in a medium governed by a wave equalion, one
would expect a radiation resistance inertia for the crack such as exists for the
classical electron and for the dislocation.?® In Mode |11, the solution has been
discussed by Eshelby, and in an clegent paper,'*! he shows that the lack of
inertia follows from the fact that the Mode-111 crack solution is a *distortion-
less” solution of the wave equation. That is, a general solution of the wave
equation in two dimensions exists of the form

|
o= ;ﬁf r e, 396)

z=re",

from which a crack solution can be constructed for arbitrary motion. The
characteristic crack 1/z'/? function is thus a fundamental form for the two-
dimensional wave cquation. The result which can be constructed easily from
Eq. (39.6)—and the argument is almost transparent from Eq.{39.6)—isthata
crack can be stopped suddenly from a state of uniform motion, and the precise
steady-state stress distribution is radiated out from the center with velocity c.
Since the radiated solution is precisely the static solution, no radiation re-
sislance is exerted on the crack. This surprising resull is true cven though the
crack is equivalent to a virtual distocation distribution over the cleavage
surface, and these dislocations, singiy, do possess an inertia, The point is that
the coherent interaction between the crack dislocations cancels the inertia of
the collective motion when they move as a crack.

Freund has shown'*® that the full static solution is not radiated when a
crack is stopped similarly in plane strain (Mode  or 1l)for all angles. However,
the static solution is gencrated along the crack line in front of the crack, and
thisis sufficient for the Mode-1 and Mode-11 cracks to possess zero inertia also.

The foregoing results are valid only for semi-infinite cracks. Freund shows
that for finite cracks interactions between the crack tips modify the non-
steady-state character of crack motion in an essential way, !0

40. Time-DEPENDENT CLEAVAGE/EMISSION CONSIDERATIONS

There has already been occasion (o note that several cases exist where brittle
cleavage cracks appear 1o be observed running at high speed in materials
which are demonstrably ductile in the sense of the criterion, Eq. (28.5).

4t 1. D Eshelby, in “Physics of Strength and Plasticity™ (The Orowan 65th Anniversary Volume,
A. Argon, ed), p. 263. MIT Press, Cambridge, Mass., 1969,



Pugh'4? has shown that a crack in brass started at an embrittled site is ableto
propagatc for a distance of the order of tens of micrometers in fast cleavage
before coming to rest. There are similar findings in pure copper under
corrosion conditions.'*? After nucleation at sites in distocation cell bound-
aries, Wilsdor( finds that last cleavage occurs in foils of copper and gold under
stress for distances of the order of a few to 10 micrometers.® Ohr et al.'® report
that cleavagc is initiated in Al in the configuration of Fig. 13 and again runs as
a fast cleavage crack through the foil for a distance of micrometers before
arrest. Gerberich'** has shown that cracks in Fe/Si single crystals can be
made Lo propagate as cleavage cracks at high velocities with some, but small
dislocation activity, whereas stationary cracks in this material take the wedge
shape, according to Vehofl and Rothe.® The observations in thin films may be
affected by the thin-fifm geomelry, e.g, by rapid slideofl, but the results in
thicker specimens are not subject to this objection.

These results suggest that the competition between cleavage and emission is
velocity dependent, and proposals along this line have been made by various
authors. Jokl et al.'*> proposed a mode! of combined emission and cleavage,
where shielding of the crack plays a part in the emission criterion, Rather
crude assumptions are made, however, about the basic mechanisms compet-
ing al the crack lip. Knott'*® has proposed a very interesting model for virtual
dislocation emission, in which an emitted dislocation falls back into the
cleavage surface after the crack moves on. Such a mechanism would lead to an
enhanced cffective y for a fast-moving crack, because of the energy dissipation
of dislocations popping in and out of the crack, but would yicld a clean
cleavage crack as a result. Paskin et al.** have simutated fast moving cracks in
materials which are ductile for static cracks, and the cleavage is clean. On the
other hand, a paradox exists, because if a crack has 2ero incrtia, an emitted
dislocation will stop the ¢rack. Once stopped, of course, by postulate, the
crack will simply emit dislocations as the stress builds up. Thus, an adequate
understanding of the dynamic crack-dislocation interaction does not yet
exist,

Appendix

In this appendix, some essential basic mathematics of elasticity is collected.
The Appendix is in three parts. In the first, the governing equations for plane

" E. N. Pugh, in “Atomistics of Fracture® {R. Latanision and J. Pickens, eds.), p. 997, Plenum,
New York, 1983,

IS & Sieradsky, R. Sabatini, and R Newman, Met. Trans. A 15, 1941 (1984).

4 W. Gerberich, unpublished results.

" M. Jok! V. Vitek, and C. ). McMahon, Acta Metall. 28, 1479 (1980},

H% ) K nolt. in “Atomistics of Fracturc” (R. Lalanision and ). R, Pickens, eds.), p. 209. Plenum,
New York, 1981,
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strain are developed in terms of the Goursat potential functions. in the second,
a gencralized conformal-mapping analysis for these functions is developed. In
the third part, the mathematics relevant to the use of Musk helishvili's singular
integrals is presented.

. PLANE-STRAIN FiELD EQUATIONS

The mathematical development of this and the following section is based on
papers by Stevenson,'*” and Tiffin,'*® but some of the same results will be
found in the Muskhelishvili treatise.'® In plane strain, the displacement «,
satisfies and uy = 0. u will be taken to be a complex vector

u=uy + iu,, {A.1)

and

90,0 @ _0 9
dx, 9z oz o, \dz oz

Derivatives of u (which is not yet assumed 10 be analytic) are given by
23—: =0 + 2iw, 0= s W o i(uu ~ ). (A.2)

0 s the dilatation, and % the rotation.
The equilibrium equations (7.1) become

Oy +0y,;=0,

{A.3)
%222+ 0,=0.
Multiplying the second equation by i and adding yields
—a—( 2i g =0 Ad)
;%1 %+t Ulz)+6_z.(01t+021)'— (A

This equation states the condition for the existence of a potential function F,
such that with Eqs. (A.1) and (7.2),

oF . Ju
"'?’z:=0||—ﬂzz+2|ﬂ|z=‘ﬂ5;_, {AS)

doF

(_.); = ﬂ|| + dzz = 2(1 + ﬂ}ﬂ. (A(‘}

47 A C. Stevenson, Proc. R. Soc, London Ser. A 1R4, P29, p2IR (1945).
VR Tillen, Q. J. Mech. Appl. Math. V. 152 (1952).
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Equalion (A.5) is immediately integrable to give .

duu = f(z) - F(z,7) (A7)
Substituting Eq. (A.2) into (A.6) gives
1 oF du

From Eq. (A.6), because s real, 0F /32 is real, and Eq. (A.8)is also real. Hence,
substitution of Eq. (A.7) into (A.8) leads 10

z- 5(:—:—‘2‘5[3{ + (%’zi)] = 202} + 7 (A49)
The function ¢ is defined by Eq.(A.9). This equation is now integrable, giving
F(z,7) = 2[p(2) + 20%(2)] + 29 %3). (A.10)

The star operator is defined by
%) = ¢(F),  eic. (A1)

and is a convenient way 10 show explicitly that @ and y are functions of Z,not

2.
Now Egs. (A.5), (A.6), and (A.7) take the form

a1 + 033 = 2[p'(2) + ¢T2), (A.12)

921 = Oy + 2oy = 2Z9"(2) + ¥'(2)], {A.13)
2pu = xo(2) - 2¢') - ¥(2), (A.14)

k=3-4v (plane strain). (A-15)

Equations (A.12)-(A.I5) are the new field ¢quations of plane-sirain clasticaty.
They are expressed in terms of the two independent complex funclions, wl(2)
and ¥(z), even though the stresses and the displacement funclions are nol
necessarily complex functions of z. If the displacement is a single-valued
function of z (and perhaps 7), then the elastic probiem aulomalically satisfies
the incompatibility cquations discussed in al| elasticity books. In the form of
the theory used here, however, they need not be addressed explicitly. For
example, if dislocations are present as singularities, then ¢’ and ¢’ have poles
at the position of the dislocation, and the 4 function is multivalued there, wilh

Aul  =b=b, +ib, {A.16)

g™

We will not consider continuous distributions of dislocations, but in that case,
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the appropriate Burgers-vector densil ¥ function can be defined. The functions
@ and ¢ are the standard potential funclions of Goursal,'*” c.g,, as used in
Muskhelishvili.'* In planc strain, the Burgers vector defined by Eq. (A.3)
corresponds 1o an edge dislocation with components b, and by, and 1o a crack
in cither Mode 1 or Mode 11,

The general elastic solution, combining antiplane strain with plane strain,
with a screw component of a Burgers vector as well as edge components, and
including mixtures of Modes L 1L, and i11, is a simple linear combination of
siresses and displacements calculated from the three independent poten-
tial funciions, »(z), ¢{z), and ¢(z) with stresses and displacements given by
Eqs. (8.1) and (8.2) and (A.12)~(A.15).

Generally speaking, since ®. ¥, (and n) are complex functions, solutions are
obtained for an elastic problem by applying considerations of analylicity and
function theory to the potential functions in the light of the boundary
conditions set on the problem by the exisience of free surfaces, behavior of
stress at oo, multivaluedness of u, eic.

2. CONFORMAL MAPPING

One of the important ways to solve two-dimensional boundary value
problems is by means of conformal mapping, in which complicated problems
are iransformed into simpler soluble ones. The same is true of elastic prob-
lems, except that in this case, since lensors arc involved, the analysis must be
generalized beyond that familiar in electrostatics or hydrodynamics.

problem) into the ¢ plane (the simpler problem) and the real coordinates, x,,
X3, into the new coordinales, Y1, ¥2-Inreal coordinates the transformation law
from the tensor Ay.(xy,x;) into the new tensor A (Y1, ;) is given in
slandard notation

A;..---(J’:-J’z) = ﬂuﬂu""u---(xhxz)'
Byiby; = LT

3 (A.17)
x, _

Here the B are the rotation matrices, and the tensors are not separaied into
their contra- and convariant paris. The advantages of this form of the
transformation law is that stress tensors do not change their dimensional

* E. Goursal, Bull. Soc. Mark France 26, 236 (1898).



1.4 ROBR THOMSON

units when transformed into a new coordinate system. (See Morse and
Feshbach'*®.) The B are functions of position in general.

A rotation suitable for transforming vectors and tensors which are complex
functions is now required. If the mapping of z into ¢ js given by the functional
relationship

z = 2(§), (A1)

then the rotation angle a of the x, coordinate into the ¥\ coordinate at the
position z is given by

dz
d§

and the transformation law Eq. (A.17) for a complex vector A(z) into the new
vector A4({} is given by

dz = e dg, (A-19)

A1) = e™" A(2). (A.20)

A problem in nolation arises here, because the standard notation for a
transformed quantity is the prime as used in Eg. (A.17). In the complex plame,
however, the prime will be reserved for differentiation with respect to 2
complex variable. Hence the subscript T will be used to denote a transformed
quantity. Since z' in general is a function of position, the rotation angle varies
also with position z. The reader is also reminded that the functional form of
A:(&) is recovered from the substitution

Ar($) = A1 (C) = AE)e™ = A(z)e ™™, (A21)

In this article, it will be implied that when the new coordinate ¢ is used as an
independent variable in a function f, the functional form is defined by
1@y = fz¢n.

Transformation laws can now be written for the relevant elastic quantities.
In antiplanc strain, relative to rotation in the Xy, x3 plane, u, is a scalar
quantity. Also o, relative 1o the same rotation transforms as a vector.
However, since the complex “vector” defined in Eq. {8.2) is related 10 the
complex conjugate of the “true” vector d5,. the function transforms as follows,

a. Antiplane Strain
ur(g) = u(z({)) = u(z), (A.22)
or({) = e“0($(2) = e*o(2). (A.23)
In plane strain the following relations hold.

4% P Morse and H. Feshbach, “Methods of Theoretical Physics,” Vol. I, p. 21. McGraw-Hill,
MNew York, 1953
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b. Plane Strain

(o)) + a3)y =0y, + 0,3, (A.24)
©22 — 01y + 2i0),); = e¥0y, - 0y + 2ia,,)
= E‘:'LQ“,;: — o + 2!'0”]. (A.25)
2'K)
Uy = ey, (A.26)

The first of these equations follows because the contracted stress tensor is a
scalar, the second is from direct substitution in the tensor transformation laws,
and the third because u = u, + i, is a true complex veclor.

With these transformation laws, the transformed elastic field equations
become of the form following,

c. Antiplane Strain

url) = f ImEn(z)] = ;’; Im{n(=(N). (A27)
d
;= e®a(z) = 29"23 = 29";5 ﬂ'___’!f:éf)) -~ [A.28)
d. Plane Strain

@1y + 022)5 = 2[9'(2) - @'(2)] = 2[VE) + BiE)), (A.29)

(22 — a4y + 21}y = 28:"(;(*—20'(0 + "'(f))

) o 2'(d) )
(2'(61 m+z'(¢} (4] (

2umy = e~ [x@(2(8)) ~ 2($)D(¢) - P((EN) {A.31)
) = dﬂ(_z(C_}): ol2) = @(z{¢)) = IZ'(C)WCMC. (A32)

d{

etc. In these equations, the derivatives of the potentials in the ¢ plane are
awkward to handle, so for both ¢ and ¥, the capital functions ® and W are
defined in Eq. (A.32).

The sirategy in the use of the conformal-mapping procedure for Egs.
(A2N)-(A.32) is to map the original complicated boundary into a simpler
gcomeiry, c.g., a wedge into a half-plane, etc., and solve the new transformed
boundary problem in the simpler gcometry. There is a “trap™ in this strategy,
however, when a mapping function is used where the scale factor h is not unity,
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then the two coordinate systems are not physically equivalent, since the scale
of length is different in the two. Hence, 4 comparison of {wo a priori solmtions
in two such coordinate systems wilhout considering the scale facior for lengih

¢, ¥, etc., and the transformed displacements and stresses are, of course, given
by Eq. (A.27)~(A.32). When these potentials are written in terms of the new
coordinates §, however, it does not mean the new functions are then the new
transformed potentials, which would relate to the new stresses by relations
such as Eqs. (A.12)—(A.1 5), etc.

In order for this strategy (o work convenicntly, it must be true thal the
boundary conditions are “covarianL.” That is, if on the initial boundarus,

ayn, =0, (A.33)
the condition on the new transformed boundary is also given by
ayn; =0, (A4.34)

This statement is proved by direct substitution of the transformation lavis. If
there are external forces exerted on the boundaries F, then these are, of COlirse,
transformed into the forces F;.

3. Tue HiLBERT PrOBLEM AND THE INTEGRAL EQuaTiON
OF MUSK HELISHVIL]

In treating slit cracks and dislocation pileups in the text, the clegant
mathematical theory developed by Muskhelishvili and the Russian school has
been invoked.'® These results will be summarized here. The reader is also
referred (o an alternative real-variable treatment of some of the same singular
integrals by Bilby and Eshelby in the Appendix of their article in “Fracture '

In the fracture problem in Part 111, it js desired to find the complex potential
function generated from a stress distribution on the crack surfaces. To thisend,
we write the Cauchy formula for g function f,(z) at an arbitrary point not on
the cleavage surface in terms of an integral over the contour of Fig. 55

L faw, 1t f fo0
ST i v el

ast [ L0,

J5
2ni c_,C—z (Ajj
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Fic. 55. Contour for integrals in Eqs. (A.35) and (A.43) The contour encloses the cul L
CORMaIng & poic al 1 for Eq. (A.35), and circles around 1y for Eq. (A.43).

Mathematically, the cleavage surface is a branch line, and is denoted by L. £,(z)
is assumed to be analytic cverywhere in the complex plane excepl on L, and to
approach zero at oo in such a way that the integral over €, is zero. £ and So
are the limiting values of f,({) on the positive and negative sides of L. Hence

_ 1 [ a0
Jold =55 f._ Ll (A.36)

g0 = £3)~ f5().

This equation is a solution of a form of the Hilbert problem. That is, it gives
J(@)interms of anintegral overa boundary. It should be noted that Eq.(A.31)
and other similar results in this Appendix are valid only when J(2) is suf-
ficiently continuous on L, and ai its end points. )
In the fracture problem, the known stress function on the cleavage plane is
not fg ~ fg but f3 + f5.To Proceed in this casc, a property of the function

212 =[(z - a)z + a)] ' (A.37)
s noted. Thatis,on —a <t < a.
@)= ~1 (A.38)

Hence, the ratio f,(z)/ 2(2) has the property

(] - [ta] 3 BIC]Litss 0y

x2) 1z) A P X



Substitution of Eq. (A.39) into (A.36) yields

Y
fake) = 2ni Jyxt(0fe - 2) N

kO = fo(0) + f5(0).

.
In this discussien, the function y thus serves the role of an integrating factor,
and Fq. (A.40} is a solution of a second form of the Hilbert problem, suitable
for application to fracture when the function k is known.

The solutions, Egs. (A.36) and (A.40), are not the most general functions
which can be generated, when ¢ and h are known, because analytic functions
can be added to them, which are continuous on the boundary L. Thus, when F,
is a polynomial of degree n, a more general solution is

_x@) [

/) h=f* 47" (A4I)

A similar generalization holds for Eq. (A.36). The polynomial is, of course,
fixed by the behavior of f at o, Fusther generalization of Eq. (A.41) can be
derived when L consists of multiple segments, not necessarily straight.!* in the
special case of a set of segments lying on the x axis, the integrating factor iy
simply composed of a product of functions, Eq. (A.37), one for each segment.
The results for this latter case have been summarized by Head and Louat,!?!
but these more complicated cases will not be required in this article,

The second invocation of the Musk helishvili theory isin Part VII, where the
problem of a piteup of dislocations in the presence of a crack is addressed. In
this case, it is desired 10 inver( a singular integral equation similar to those
above, a solution which was first given by Muskhelishvili.'>* In this
devclopment, the so-calfed Plemelj equations arise, and we begin with their
derivation,

Consider the Cauchy integral

J' o) 4o (A42)

(-t
on the contour given in Fig. 55. In this case, {o is on the conlour L. Then

o=i§~1“idc=i L5004 P [ £ol),
2ni

— i it -1, 2ni J ot —1,
| ofl) ! T © I Jot§)
Ini 5 E—;—;d{ + Imi ' E——Zodc + Pmi .L. md{ {A.43)

"' A K. Head and N. Louat, Aust. J. Phys. B, | {1959).
37 N. Muskhelishvili, “Singular Integral Tquations.” Noordhoff, Groningen, 1953.

(A40)

*

¥
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P {without subscript) denoles the Cauchy principle value, and f,(cv) = 0 so
that the integration over C.. is zero. Rearranging terms, Eq. (A.43) becomes

EJ‘ 9(t) dt = ki),

niJt—1,

a=10- 10, (A4

h=f*)+ f ().

Equations(A.44) are the Plemelj equations,’?® and their inversion is desired for
the solution of the dislocation pilcup problem, That is, i represents the known
external stress on the dislocations, and g represents the dislocation distribu-
tion which is sought.

The inversion of Eq. {A.44) is obtained immediately by the application of
Eq. (A.41) first to calculate £*(¢) and then o calculate f*(1). Noting the
properly, Eq. (A.38), then subtraction of f*(t) from S (1), yicids

_X (8] h(t) .

glto) = i PJ‘L mff’ + 17t} F(ty). (A.45)

The polynomial is determined once more by the property of f at . Again,

though there will not be a need for it in this arlicke, when L consists of a sct of

segments on the x axis, the solution proceeds from an integrating function

composed of products of functions like Eq. (A.39), and a general prescription
will be found in Head and Louat.'*!

AUKNOWLEDGMENTS

It is » grest pleasure 10 acknowledge my collengues 2t NBS for the years we have spent in
collaboration in this feld. Special thanks are due to E. Passagliz and 1. -H. Lin for their careful
reading of the manuscript.






Actar mesadl. Yol 34 No. 2 pp. 18T 206, 1986
Prinied m Growt Brituim

OVERVIEW NO. 47

CLEAVAGE, DISLOCATION EMISSION, AND SHIELDING
FOR CRACKS UNDER GENERAL LOADING
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Absteact—The purpose of this paper is to ider the conditions for the exi of a ¢ age crack
in a lattice and its response 1o all 1ypes of external loads when shiekied by neighboring dish The
theory will be constrained 1o cleavuge on one plane and crack branching is not permitted. In the firs) part
of the paper, general relations are derived for the elastic interactions between a cleavage crack and »
dislocalion and between pairs of dislocations in the presence of the crack. These results are expressed in

terms of the local k-field of the crack tip, the shiclding ions from the dish - ny, and the
complete specification of the forces on the lwe types of defects. In the sccond part, criterin for crack
cleavage and emission under static conditions are devel ped for | loading. 1t is found that for

reasons having 1o do with the busic nature of a cruck on the atomic level, that the condition for equilibrinm’
of & cleavage crack involves primarily only the mode ) part of the local k-field, and that smaller
cotitributions from modes H and 111 depend on subile deiails of the atomic bonding in the crack core.
On the other hand, disiocati ission depends on the full specification of all ihree components of the
local k-field. The complete description of the crack lip conditions i3 then found to be posible in terms
of a simple crack stability disgram in the three dimensional Joca! k-space. The primary sesult is that
combined cleavage and emission states are possible under mixed loading wherein & cleavage crack can
generate significam plasticity in mode 1 and 111 dislocation canfigurations. In the third part. the overall
static equilibrium configuration of the shielded core crack and its dislocation cloud is considered. Genera)
theorems developed show that for symmetric dislocation configurations, mode | configurations only shield
the k, loading at the crack tip cic. and that the slip force mulually exerted on two symmetrically
dislocations is exactly zero. Simplified fracture loughness relations are also derived. Finalty, the overall
picture developed for a shielded cleavage crack under " I loading is ired

Risumé-—Le but de cet article et d'étudier les conditions d'existence d'une fissure de clivige dans on
réseau et sa réponse i tous ks types de charges externes forsqu'clle est écrantée par les dislocalions voisines,
La ihéarie est Lmitéc au clivage sur un plan et ta mmification de te Fssure n'est pas permise, Dans la
premiére partie de cel article, nous obtenons des refations péncrales pout ley interactions Elastiques entre
une fissure de clivage et une dislocation et entre une paire de dislocations en présence de I Rssure, Les
résultats sonl expritmés en terme du champ-k local & Fextrémite de ta Rssure, des contribusions & lécramage
par ley dislocations et de la spécificalion ¢ pléte des forces sur les deun types de défauts. Dans la seconde
partie, nous développons un critére pour Je clivage de fissure et Fémission dans des condilions statiques
pour une charge générale, Pour des raisons lides 4 la nature fondamcntale de la fissure & I'échelle stomique,
I condition d'équilibre d’une fissure de clivage met en Jeu essenticllement le mode 1 du champ & local

k #1 les contributions plus faibles des modes 18 et HI dépendent de détails subils de L Naison
atomique au coeur de Ia fissure, Par contre, I'émission de dislocali dépend de la spécification compléte
des trois composanies du champ & local. On peut alors décrire complétement Jes conditions & 'extrémitd
de |a fissure d partir d’un diagramme simple de stabilité de Iz fissure dans I'espace & local tridimensionnel,
Le premier résuliat o3t que des élats combines de clivage et d’émission sonl possibles pour des charges
mixtes o0 une fissure de clivage peut produire une plasticité notable dans les modes H et HI de

configuration der dislocations. Dans 1a roisiéme partie, nous ¢ idé In e “, i ‘d“éwilibn
statique globale de 1a fissure de coeur écrantée et son nuage de dislocations. Des théorémes généraux que
nous développons montrem que pour des configurations de dislocath symétriques. let configurations du

mode | écranient seulement la charge &, 4 I"extrémité de Ia fissure etc. et que In force de glissament caercée
mutueliement sur deux dislocations placées symétriquement esl exactement nulle. .Nuu!: ob.tﬂ:om

2 des relations d'end 4 la rupture simplifiées. Enfin, nous ré
pour une fissure de clivage écrantée dans le cas d'une charge quelconque.

Zmuammenlsssung—In dieser Arbeit werden die Sedingungen fr die Existenz eines Spalirisses in einem
Gitter und dessen Verhalten unter verschiedenen duleren Lasien fiir den Fall betrachtel, daB der Ri8
durch Verstizungen abgeschirmi wird. Die Thearic ist aul Spaltung auf einer Ebene beschrinkt,
Rifverzweigung 18t nicht miglich. Zuerst werden Hgemeine Z hinge abgeleilel, die die elay-
lischen Wechselwirkungen zwischen cinem Spalind und einer Verselzung und die zwischen Verseiz-
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ungspaaren in Gegenwart des Riswes hetreffen. Die Ergebaisse werden anhand des lokalen & -Feldes dee
Rillspitze. dem von den Versetsungen herriihrenden Abschirmbeitrag und der sollstindigen Beschreibung
der Kriifte auf die bheiden Defoktanien dargestelit. Dunach werden Kriterien fig Spaltribbildung und

~uushreitung unter allgemeinen Lusi hed

RuRgen enlwickelt. Wegen der im Grunde stomaren Natur eincs

Risses crgibt sich dad die Bedingung fiir dus Gleichgewicht cines Spaltrisses im wesentlichen nur den Teil
der Mode-l dey lokalen &-Feldes umiaBr und dab) kleinere Beitrage von den Moden H und HI van

A

Feinkenen der atomaren Bindung im Ritkern abha 2

s hiingt die Emission von Verserz-

ungen von der Gesamiheit der drei Beiirdige zum lokalen k-Feld ab. Daraus ergibt sich, dal dic
Bedingungen der Ribspitze mit cinem cinfuchen Diagramm der Rilstabilitit im dreidimensionalen lokalen
4 -Raum beschriehen werden kann. Als wesentliches Ergebais ergibi sich. du unter gemischier Belusiung
sine Kombination von Ri- und Emissionszustinden moghch sind, bei der der Spaliril zu einer
betrichitichen Plastizitit mit Versctzungskonfigurationen der Moden 11 und 111 fiihren kénnen. Des

wird die p ische Gleichgewichiskonfiguration des Risses mit abgeschirmiem Kern und
dessen Versetzungswolke behandell. Eqtwickelte ullgemeine Theoreme zeigen, dafl. bei symmeirische
Yersetzungskonf b Konligurationen der Mode § nut die k,-Last an der Ribspitze abschirmen

kann, usw, Dabeiaisl die gegll.-mcitig aul 2wei symmetrisch angeordnete Versetzungen ausgeiibte Gleitkryfy
null. AuBerdem werden vereinfachte Zusammenhinge fﬁ_t dic Bruchzihigkeit abgeleiter. Zuletzt wird das

gesamee, fiir einen abgeschirmicn Spaltril¥ unter e

INTRODUCTION

In tais paper we develop a generul theory of crack
shickding by dislocations in the material. The ides is
that cracks and dislocations are singularities in the
elastic ficld of the maerial, and 1hat their collective
response to the externat applied siress can be
addressed in elastic ferms. The equilibrium static (and
dynamic) configurations are obtaincd by a batance of
forces on euch mobile defect. and it will be found that
in tetms of the force tending 10 propagate the crack
through the material. the other defects generally
shicid the crack from the external stress. In the
langwage of fracture mechanics, the toughness of the
material against crack propagation is due 10 this
shiclding.

f is not necessary to apologize for the use of elastic
theory in this connection. Since the defects in a
materigl only interact nonclastically when their cores
overlap, the elastic approximation is a good one for
normal materials, and breaks down in ways Lhat are
easy to Wrack, as for example, when dislocation
creation, annihilation, and other such defect “reac-
tions™ occur. This point of view is, of course, con-
trary to that adopted in the cominuum plasticity
theories commonly used in continuum treatments of
the plastic field, because we wish to deal here, a1 least
in principle, with the dislocations which are the seat
of that plasticity. Theories of this kind have already
been proposed and used to treat antiplane strain
crack prablems by a number of authors [1-1. In
addition, & 2D continuum dislocation shiclding
theory has been developed by Hart [8]. again in
anti-plane strain. [t is the purpose ol this paper 10
extend and generalize these results into the plane
stedin cuse, because of the additional important
degrees of freedom und greater realism gained.
Sinclair and Thomson {3] have already given some
resulis for the gencral anisolrepic case. and we will
cxtend their work. There is also a close relutionship
between this work and the *DBCS™ crack of Dugdale
[9) and Bilby er af. [10], its gencralization Lo plane
stram by Vitek {11] and Riedel [12], and the
“augmented BCS model” of Chang and Ohr 4. 5).

Belastung abgeiei Bild gef:

Our theory is constrained 1o the Iwo-dimensional
case. Three-dimensional elasticity for interacting dis-
locations and cracks is intraciable except for the
simplest configurations, but fortunaicly considerabic
insight in many fracture and deformation problems
can be gained by remaining in 2D. Thus, the aciual
3D configurations will be *smoothed™ inte 2D. To
oblain quanlitalive results in any particar crystal,
anisotropic theory is the mode of choice. However, in
anisotropic work, it usually becomes necessary to
revert to numerical methods for specific results, and
the more anaiytic and. therefore physical results
possible in the isotropic Lheory are sometimes lost.

The general plan of the paper it 10 develop the
gencral elaslic analysis in the first part, investigate the
conditions for cleavage and emission in the second
part. and apply the results 10 crack configurations
and toughness relations in the third parl.

The principal new physical results obtained here
are (1) the swability of a crack against dislocation
emission in a material depends upon the locul loading
conditions as well as the physicul paramcters. These
results are described in lerms of a simple crack
stability diagram developed in Part 11, and (2) the
shiclding exeried on a crack by distocations emitied
from it exhibits an "orthogonality"” property in which
different loading modes with their characteristic dis-
location configurations do not interact. These results
are described in Part 111,

PART §: GENERAL RELATIONS

1. Elastic potentiols in isotropic elasticit y

The siatic elastic field equations are oblained from
the combinalion of the force balance equation

K=o, th
and Hooke's faw
Oy = Aaeyyd, + prtuyy +u,,). (2)
They take the form
(At puy+ pu,, = 3}
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a, is the stress iensor, i and p the elastic constants,
u, is the displacement field, and . is the body force
density. In 2D, v, is & function of X, and x; only. In
anti-plane sirain, w, = u, =0, and in plane sirain,
4, =0. In anti-plane strzin, the fickd equations be-
come the Laplace equation for & = 0, and thus Hycan
be written as the imaginary part of an arbitrary
anaiytic function

1
n:-;;lw(:lﬂ(z)]

2 mx, +ix,
and Hooke's law becomes simply
oz} may(r), x,) + ioy, (x 0)=2) (%)

where prime denotes differentintion. Likewise, if
4y = 0, which defines plane strain, it can be shown [13}
that the ficld equations are satisbied if there exist two
independent complex functions, ¢(z) and ¥(2) such
that

2pu(z) = xp(2) - 29°(2) ~ §i7) (6a)
Fuln ) + 000, 0) = e (2) + 97(2)] (6b)
(X, 1)) ~ &, {x,, x;) + Limyy(x,. )

=23 (z) +¥(2)] (6¢)
where

w(z) = wy{x,, ;) 4 by(x,, xy)
K=i—dy, ]

These equations are satisfied everywhere except for
regions containing the crack tip and dislocation cores
[13. 14], where ¢ and ¢ become nonanalylic. Since we
wish 1o consider distributions of cracks and dis-
locations explicitly, we shail do 30 by introducing
functions with the appropriate singularities at the
defects. A general solution in 2D is composed of &
simple lincar combination of anti-piane and plane
sirain displacements and stresses.

We will consider a single crack situated at the
origin, Fig. I, with ita cleavage plane on the negative
X, unis. Equations for a finile crack are simple

2x, x;)

‘¢

hL:)

Xy

Fig. 1. Coordinate system for crack snd dislocation. The

crack Lip is at the origin with cleavage plane along the

negative x, axis. The disiocation i at {. Compl iabk
are introduced with z = x, + ixy.
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generalizations of those we shall write, but ncit ing is
Bained except algebraic complexity from aswming
the cleavage plane to be finite, so we assyme it
exiends over the entire negative real axis. The stress
boundary condition on tkis plane is

a:)=& x <0 8)

Because of the choice of this geometry, it will prove
convenient to replace the third potentinl funciicn, [
with the function, w(z), defined by

W(z) =z + "

and the field equations, (), then take the fom
Yw=xg—(z-Ng' -a (10a)
O top=Ng +97) 110b)
=gy =+ +(z -y 10c)

The reason for using these modified potentin  func-
tions is scen from the third of the equations, where
iLis noted that on the negative reai axis, the laft side
of (10c) is zero.

As shown by Rice [15], for & single ended crazk, the
fields induced by force distributions Fiy and F, which
are applied 1o the crack surfaces (o create the caack
siresses are given by

'
W) f Fiul'lg(r, 234t

]
*(2)= f Flo)g(s, 2)dr

i
!(Z)-m NG

Firy= F(0) + iFy(1) 1)
and
@'z} = p(2) H2)
The mar operator is defined for any function by
%) =) )

Thus /* is an analytic function of z, while Jis pot
(Tt is customary to use the notation J(z) for the mar
operator introduced here. However, the wsage of I
can be confused with the complex conjugate 7ir),
especially when the dependent variable is not indi-
cated explicitly. Hence in this paper, the bar notaton
will be rescrved exclusively fcr the complex conjegate
Operator.) +F w F 4 iF, and + Fg are applied to
the upper surface, and — Fand — £, 10 1he lower, Fa
it an anti-plane shear stress acting on the clewvege
surface generating a traction Torce in the x, direction,
F, is an open mode tensile stocss distribution, and F,
is an in plane shear siress. They define the traditional
modes {1, [ and 1, respectively.

The distributions, F and Fyy. 00 the crack surfaces
arc related 1o the applied sresses at the exiarnal
boundary of the body, and 10 stresses induced or (ke
crack surfaces by internal defects by the standasdt
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argument which says that the induced stresses on the
crack surfaces must be cancelled by the F and F,
distributions. The resulting siresses near the ip arc
K-Belds, such that

Ky
e — 14a)
" 2/ 1xz !
R
- 14b)
i 2,/2xz ¢
K=k +iKy {14c)

with expressions for X which follow immediately
from (1) and (12). Again, a general crack stress field
is composed of a lincar superposition of K, K, and
Ky stress fields, caused by F,, F, and Fiy force
disiributions on the clcavage plane. To avoid prob-
lems associated with the infinite crack limiy, we will
stimply 2ssume that the loaded crack has a far fickd
stress field given by [14).

The development 1o this point is “well known™,
and serves principally to establish our notation,
When a dislocation is present at a point, {, with
Burgers vector (b, b,. 3, ) in the presence of the crack
(assumed for the moment 1o be unloaded and stress
free with all F =0), the potential functions, », etc.
will be compased of the iwo parts

LAt S ]
P=pt @
W =y + (15)

where iy, ¢t¢. are the potentials for the dislocation in
an infinite homogeneous medium, and n,, etc. are the
additional terms which assure that the stress bound-
ary conditions on the cleavage surfaces sre satisfied.
Thus

Re{n'}=0 (i6a)
<0, ;=0
¢+ =0 (i6b)

The functions, n,, etc. can be written from the known
dislocation solutions, and are given by

by
ax{z —{)

- 17)

.

,'--'——_C {17h)

o 2 M -Da

- TE(F
“br

A= T 0 ,

The reader unfamiliar with the form of g, and wy for
dislocations can check the stresses derived from [{E}]

{17%)

bmb iy,  (17d)

with the standard solutions [16]. The second term in
{17¢) is required by the necessary translational invar-
iance for the dislocation solution in {104} and (10c).

In the plane strain part of the problem, it appears
that the unknown functions, ,. and un, are indepen-
dent of one another. However, from the boundary
condition, (16b)

—leetw)mip,+wk x <0, =0 (I8)

In the lefi side of this equation, both ¥o Ak (i, are
continuous functions on the cleavage plane cul, C, 50
@ =w*on C. Also, p,]* = g,]" and wi]* =wd)-
for the upper and Lower sides of the cut. On the right
side. @ is not an anslytic function of 2, and is replaced
by ®*, which is analytic. However. [from the
definition, (13), @]* = w*)". Hence the boundary
condition written in terms of w* lakes the more
complicated form

~(eptw]* =]+l
—los+agl” = 0] + '), 19)

Since the leflt sides of (19) are continuous funclions
on C, subtraction gives

loi—a¥] ~fe; -wi. (20)

This equation shows that @i —w! = y(z)is a con-
linuous complex function. Since the 1 unctions ¢, and
ay were assumed to have no singularitics in the enlire
z-plane outside the cut, C, because they correspond
10 no new sources of stress, ¢; —w® =y i3 a con-
stant by Liouville's theorem. This constant is iaken
10 be zer0, because it is further assumed that no
URNeCessary siresses at oo are added by the funcions
@ and w,. Hence, except for an irrelevant constant
term

LI 2n

Now, the solution for the dislocation-crack fields is
immediate, The physical meaning of the boundary
condition equation, (16}, is that the n,, etc. lerms
represent cancelling forces exéried on the boundary
equal to the negative of the n,, etc. terms. Hence,
from the general Greens funciion solution, (1), the
result is

Nifz)= +r Fultdgl, z) de

by
Fiym— ;a—(l?ﬁ +C.C

£ ]
THOLS +I Flgr - z)as
F = —(9;+w}). (22)

These integrals arc most easily perforreed in the
complex ;-plane, Fig. |. When the integrations for 'S
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and o are udded to the », and ;o oblain the total
dislocation ficlds, and these in turn are added 10 the
K-fields of 1the crack. the result is

gl oo )

+ Pon (23b)

+

K
2/ 2nz
Wioaat (7) = 250 (2) — @80 (2) 4+ w0, (2)

(23c)
— @3'(2) x wylz)

where fy, @, and w, are simply the stresses
imposed on the uncracked body by remote loading
plus “images” of dislocztions in external surfaces,
plus higher order non K-ficld tenms in the elastic
Belds of finite cracks.

These equations are written for the total . etc. of
& collection of dislocations situated at the points {;
with screw components, by = by, and edge compo-
nents, b.(j) = b{f) + ib,(j), because of the lincarity
of the clastic solutions.

The reader is cautioned about the Jogical consis-
tency of the equations (23), however, when terms at
infinity are included. For example, for a constant
stress o, at infinity, K —cc. In this paper we are
always concerned with K-field dominated problems,
where the geometrical effects of crack shape and
loading are factored oul—lhat is, in the limit where
the product (o, ,/a) is finite, where a is the crack
lkength. Nevertheless, we have included these “hid-
den” variables, n,,,. in (23) because in certain expres-
sions having 10 do with the force on dislocations, we
wanl to exhibot explicitly the forces which such
caternal stresses have on the dislocations, even
though for the crack part of the problem, one has the
difficulty alluded to above. '

Equation (23a} is already contained in Ref. [3), and
(23b} and (23c) are contained in unpublished lecture
notes of Rice. Thesc results are in & more tractable
form than those of Vitek [11) and Riedel [12], and
equivalent 1o the bess explicit results of Hirth and
Wagoner [17]. 1t will prove very useful to retain the
ficlds expressed in terms of the complex potential
functions, rather than 10 autempt to wrile the far
more complicaled stress lensor components. Modes !
and N are already explicitly generalized as the real
and imaginary parts of X, and the anti-plane strain

fields, being independent of plane strain, are simply -

additive 1o the latter in order to obtain the general
two-dimensional resuit as explained earlier.
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2 The shiekied crack

The dislocation fickds above contribuie to the
K-ficld of the crack. because of the singularity i
duced in 4. eic. at the crack tip. The local singu!rgrit_-
at the crack tip is, however, still of the form 17,/ la-
ull three potentials. I the local k at the crack lip i
defined by

ky = ]“": lz'i;—lv‘ 2nz) (24a
k -nk|+l'k.,-|in: 20/ 202) {24y
then

ky = Ky - Z'H:lU)

bij) | B
kh }-f{—-—-—_+;—_} s
mlJf 2 Zx(, 21{,

{see Ref. [3)), and

k=K -T k()
]

k) H {b-U) b,()

= 2i(l—-v) ’2lc;+ /hfI

35.-”)“: - Z,)
(2n, 2

where K, and K are the far ficld stress fields of the
loaded crack.

Avcording 1o these equations, the stress singulacdity
at the crack tip is reduced (shielded) by dislocations
of positive Burgers vector, and enhanced (anti-
shielded) by dislocations of negative Burgers vector.
The stress singularity at the crack tip is characterized
by the local siress intensity, &, and k, which differs
from the long range or macro K-fickd, X,,, and X. For
the semi-infinite crack the long range stress fiekd s
still dominated at infinity by the X -field, provided the
dislocation distribution is restricted to finite distances.
from the crack (small scale yielding approximationt.
(In this section, for reasons already given, we imagine
o, =0)

+ 26y

2. Forces om 2D defects

In its original 3D form, Eshelby's theorem for the
Langrangian force on a defect is [18)

Ju= j( W, —o,u,..)dS, an

where /., is the summed force on s coliection of
defects enclosed in the surface, W is the elastic energy
density function, and § is any surface surrounding
the defects. The surface is arbitrary 3o long = it
encloses only the defects in question.

For our purposcs, in 2D, this theorem may be
written in terms of the potentials, 5, @ and . After
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direct substitution for the stresses from (6} and (10)
the 2D result s

I= 5 I Resln)

+4(1 ~ rIRes(p'w’ ~ 97 = zpp'g7]
+H1 =~ v)Res{e"])
f=f+ %)

The integral in (27) becomes in (28) simply a sum
over the enclosed residucs of the potentials. In this
latter equation, the anti-plane and plane strain sofu-
tions are explicitly added. According to this equation,
the 10tal Force on a collection of defects is simply the
algebraic sum over the individual defects, as it must
be in a linear theory. The reader can verify that the
Peach-Kochter force on » single distocation follows
from (28). and that the self force on the dislocation
is 2ero. The anti-plane forms of this equation have
been given carlier [3], These equations are anticipated
by the work of Budiansky and Rice [19). For a
different treatment of the force problem, the reader is
referred to Chang [20] and to Hirth ef of, [21].
For a single crack, (28) reduces to

1 kI—-%
- | k2 -
f=3 [m+(l v)(ki+ 3 ')]
k =k + iky. (29)

The real and imaginary parts of this equation are

I
Re{f} -ﬂtkl,ll+(l = v}k + k3]

Lif}=-~ 'T" kka ©0)

The real part is the clpssic Irwin result (22), while the
imaginary pert is & force normal to the cleavage
plane. Stricily speaking, this is a non-physical motion
in which the entire crack, including the cleavage
plane, moves in the x,-direction. Since a crack is
cquivalent 1o a distribution of dislocations on the
cleavage plane {23) with an infinite density at the tip,
one would imagine that this force is also that for
crack bramching in the x, direction. Unfortunately,
direct treatments of the branching probiem 24] show
that in addition to the term k,k,,, terms in k{ and ki
are also present. The mode NI crack experiences no
branching force. An important result of (29) is that
the force on the crack depends only on the local k at
the crack tip.

The Force on a distocation st { in the presence of
& crack and embedded in & cloud of other dislocations
at{, is considerably more complicated. It is composed
of three terms with distinct physical meaning, There
is & term bilincar in X and b, which is the direct force
by the crack on the dislocation. The sign of this tlerm
depends on the sign of the dislocation. A second term
is quadratic in b, and is aiways attractive toward the
crack. This 1erm is due (o the self image of the
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dislocation in the crack. The third term is bilinear in
b and b{(;}). where b(j) is the Burgers vector of
another dislocalion in the cloud. Thus
=S +L!+Efa, +fo (3i)
i
In order, the three terms are

goKub, 1

VIR 22l
x{Kb. - xa.+££§?l_b - A’E,}

23%': o
R £

u (4 (33
" en (e )+

Lal-e 28]

-3(1+ JE]} o9
i

x {(b.b.U) +5.6.U0+ 85,0
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These cquations tuke simple forms for the radial
componemis refative 10 the crack tip. Physically, this
case is importam when this direction is conlained in
a shp plane Jor the dislecations involved. For this
reason we niroduce rotated slip planc coordinates,
Fig. 2. If the new cootdinales are lined up so tht the
new x, is in the slip direction, the new . is in the
climb direction. and ¥ is the rotation angle between
the onginal ¥, direction and the slip planes, then lor
any complex vector, A, its value in the slip plane
coordinales is

A = A, as)

In the slip plane coordinales, the first iwo force
equations taken the form

-

2/ 2nr

x {K. sinz cos1/2 + K,

Kyh
Re[fim) = 0 ooy 2/2 4
2nr

x(2m53—:+sin= sin aIZ)} (36)

_ p
Re(f} = 2 [b:+|%;]. an

These expressions are for the real, or slip part of the
force. In these equations, b, is the real edge com-
ponent for the Burgers vector (i.e. not a complex
number), but has an algebraic sign. Hence, the direct
crack term [y, is positive or negative, depending on
the sign of the Burgers vecior. As it turns out,
shiclding dislocations arc basically attracted to the
crack, (For certain angles this relationship is reversed
for mode 11 loading.) The image force on the slip
plane is always atractive,

PART It: EMISSION AND CLEAVAGE CRITERIA

General relations were obiained in the previous
scctions for forces on cracks and interacting dis-
locations. The first application of these relations is
10 the question of the siability of a crack aguingt

Fig. 2. Slip plane coordinutes. in slip plane coordinates, the

new coordinates are related 50 the new 3, direction lies ulong

v, and 2 is the angle of rotation between the original X, axis
lying on the cicuvage plane, and the new.
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spontaneous dislocation emission, This probleny has
alrcady been treated for pure mode 1 [25], und our
purpose here is to cxtend the earlier reasoning t¢ the
mixed mode case. The stabitity of an atomically sharp
crack in the latiice follows from a comgarison of the
ceitival & -field al which a dislocation is emitted from
the crack (k,), with the crilical & -field: for cleavage
(k). These quantities will be derived in tum.

L. Caleularion of k, in mixed mode loading

The critical k¥ for emission, k,. is obtained by
calculating the force on un emerging dislocation ss a
function of its distance from the crack tip, snd 13 &
function of k. In this calculation, (31) and (32) are
used with X set equal to the local k, and without
counting the interactions with other idistocations,
under the assumption that they are far from the crack
core. When there is not a well defined dislocation free
zone near the crack lip wherein the field is characier-
ized by the local &, this culculation breaks down. The
force is then given as the sum of (36) and (37). See
Fig. 2. Except for specil cases of k,, loading when the
ky term in (36) goes nepative, the funcuon,
Re{/™*(r)}, is shown schematically for 8, >0, b, > ¢
in Fig. 3. It will ulways have a negative range in the
elastic fimit, and an emerging dislocation will experi-
ence & barrier to cmission. However, when the cores
of crack plus dislocation overlap, the elastic kmn
breaks down, and (37) is valid only for ¢ > r,, where
ryis » measure of the collective core size of distoca ion
plus crack. Emission will thus occur spontancously
for all k > k, where k, is defined as that k for which

Re[f/™} w0 and r =, in (37). Thus

bk fi(a) + bIk, fi(a) + &y, fi(a)]

# b )
- bf —
2\/2”,( * I-»
Sie)=isina cosa/?

f:(a)-emj—d+!sinu sinaf2

2 2

fila)=cosa/2. : 138)
Equation (38) is the emission critericn in mixed
loading. The svailable dlip systems and cleavage

! et (Ductiie)

1, (Brittie} r

Fig. 3. Elastic force on s dislocation. The furce is shown

schematically a3 a funciion of 7. 7, is the cose madius, and

is shown lor two possible values, corresponding lo stable
(brittle) and unsisble (ductile) cracks.
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o
km km.
Fig. 4. Emiwion surface. The surfuce is the graph of

£quation (38} which pives the critical values of &, ky and k,,
for emission of dislocations.

plane fix b, 8, and 1. r, in general will depend
somewhat on slip and cleavage sysicms, but will be
assumed here 10 be & material constant, Equation
t.‘v_B) defincs & planc in (k,k, &, Fspace a3 shown in
Fig. 4. The intercepts at cach axis of (kykyky, ) space
fieﬁne the critical stress intensity factor for emission
in pure loading modes ind arc denoied by k), e1c. as
siven by

b, I

kpm e __ (alll
T

ko= o

FAL PR
ki arc functions of angle . They are shown in
Fig. 5. For alt values of k above the planc in Fig. 4,
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SPontancous emission occurs, while points below the
plane correspond to cracks stable against such spon-
lancous emission. Near the plane, il is possible for
thermal Auctuations 1o overcome the energy barrier
for emnission, but that possibility is nol pursucd here.
It is an obvious conclusion from equalion (38) and
Fig. 4 tha! the appropriate mode I loading will lower
the &, loading required for emission. Nole, of course,
that by the same token, because of (he algebraic sign
of k in (38), that the opposite mode I loading will
raise the &, loading required for emission, Similarly,
if b, #0, the mode III loading will cither lower or
reise the &, loading necessary for emission in the same
way, depending on the relative signs of b, and &,,.

2. Cleavage criterion

The second part of the argument concerning crack
slability pertains to the criterion for cleavage, Sinclair
ardt Finnis {26} have suggested thal an appropriate
cleavage criterion wouid be given by balancing the
erack extension force with the surface tension of the
opening crack. Thus

i
E{kﬁuﬂl-vl(ﬂ.ﬂliﬂ-l?- (40)

In lhis equation, we have added the term in k,,,
which did not appear in Sinclair and Finnis’ condi-
tion because of the particular problem under dis-
cussion by them. The subscript ¢ relates 1o the critical
value for cleavage, just as the subscript ¢ relates 10
that for emission.

But equation (40) is patently invalid for one ex-
treme case, and we will argue from this case that (40)
isin fact not the appropriate cleavage criterion. Thus,

] -
. s .
w2 a 4 @
= N 2 —
o=y
!
8 N -
o & ' -
4 : 1 ®
L 2 , -
. > 0 i
o F E
a’-‘-— ¥
-8 !
-8 !
8
o[ &
’—.
'xaé'“ 4
2
0 ot 1 1 1 ! 1
0 20 4 & 80 100 120 140 W0 10

a, degrees

Fig. 3. Angulsr plots for ky,. The intercepts k., K

and &, are plotied in (a), (b}, and fe), respectively,

s functions of the angle, a.
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Fig. 6. Pure mode 15} cracking. () A cut is mldt_: betwm

Iu':: rows of aloms denoting the crack, (b force is lppl_ned

in mode 11, and (c} bonds are allowed to reatiach, forming
a dislocation.

suppose that k,, = k, = 0. Then the conslructim'l' of
Fig. 6 shows that at the critical k,, for bond breaking
by shear, the final result is simply the formation of a
dislocation. The reason is that in order 1o form a
crack, some amount of k, is required 1o hold the
surfaces of the crack behind the tip open so that
rebonding of the surface does not take place. If
bonding is allowed, of course, the result is simply
dislocation formation. The crucial question then, is,
how much k, is required?

In order 1o pursue this question, suppose a crack
is loaded in mixed mode | and mode 1. Then the
elastic force a1 equilibrium by (40) would be
24E
[

But, according to Barenblatt [27), if’ k,, were c&u_sed
by a (constant) tensife siress equal to the theoretical
tensile strength of the solid which operates over a
core or “cohesive™ distance, 4x, and similarly, if k,,
were caused by a stress cqual (o the theoretical shefr
strength operating over the same core size, then &, in
each case is roughly given by

ko~ %s,\/a_x. (42)
Then (41) would read

ki aki= (41)

WE

L+ e 25, @)
where g, in each case refers to the theoretical sttqulh
of the solid in tension and shear, respoclivcl):. Slpce
£, is always lacger than g, [28], the major contribution
in {43) is from the mode | loading. The worst case
listed in Kelly's review [28] is for NaCl, where the
estimated ratio of g, 10 g, is g, /g, = 0.65, 50 that the
shear mode comtribution in (43) is ~40%. In the
other cases listed, the shear contribution even for
brittie materials i3 of the order of 10% or less.
Nevertheless, the brittle materials where the crack is
stable against spontancous breakdown from dis-
location emission are also those where g, approaches
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closest 1o g,, and given the qualitative charnter ‘of
these results, and the fact 1har they invoke slhl't!lcs
in the cohesive region of the crack tip, the qucsdion
remains open 1o more sophisticated atomistic ﬂ.ady
It is also conceivable thai for cases where the smlslity
of a crack is finely balanced between cleavage and
emission, that the &, or k,, contribution o the
cleavage crilerion could become importasi The
authors are aware of only one study of the cln:"lge
criterion in atomic simulation of a crack wnder mived
mode loading [27), and the general results wese c!m
ky loading did not sensibly alter the cleavage ortanion
for small values of k,,, but that crack brasching
intervened when significant shear loading was im-
posed. Since crack branching alters the entire phys-
ical picture, our discussion applies only to those cases
where branching is not involved. Thus, as an approx-
imation, we will uss the simple relation,

2Ey
‘-’f."—_;'i {44)

as the cleavage critetion. From its derivation, Ehis
equalion is a necessary elastic opening displacer-znt
criterion for the crack, not a bond breaking or 1:ue
cleavage crilerion. The difference belween lhese two
criterin is the lattice trapping regime. This sirple
form for (44) will be reasomably valid for force aws
which are smeared oul as in a metal, and beys alid
for highly directed bonds.

3. Crack stability

We are now in & position 1o write down » oon*le
emission/cleavage criterion by combinin.g eqaskion
(44) with (38). This is done in Fig. 7, in terma of

b

L
ig. 7. Crack stability diagram. The 'lllc_rlu:liol of the
:;e'n.ge surface and the emission w_rfm: gives the mh_ily
critesion For the crack (emission, line as shown). F.egion
beneath the emission surface and above lhc clan;e sirsce
is a stable region for the crack. In (b) no interseclion ecoars
in the first oclant.

19 LIN und THOMSON:

which we shall proceed 1o present the conclusions of
this pan.

Figure 7 is 10 be imerpreied in the following way.
The cleavage crilerion is satisfied “above” the k,
plane, (k, > k, ), and the emission criterion is satisfied
Tor k values "above™ the k_plane. For points above
both planes, both emission and cleavage are passible;
for points above the k, plane but below the &, plane,
emission but not cleavage is possible; for points
above the &, plane but below the k, plane, cleavage
but not emission is possible, and for points below
both planies, neither emissicn nor cleavage is possible,
Clearly, &y, and &, may take negative as well as
posilive values, afler the loading sense is specified,
thowgh negative values of k, will not have physical
sense,

it is importamt to stress that the specific
configuration of the surfaces in Fig. 7 depends on the
geometry of the particylar slip system envisioned,
including the magnitude and sign of the Burgers
vector screw and edge components. Since for ahy
assumed cleavage planc and crack line (x, axis), there
are a finite number of allowed slip systems, a diagram
must be constructed for each. Normally, of course,
duc to the crystallography, there is usuilly consid-
erxble symmetry in the problem. We also note that in
these plane- and anti-plane problems, dislocations
which arc skew to the crack line are nol encompassed.
The fact that such dislocations are observed in most
crysials, gives rise to an important limitation to the
theory. Such dislocations are nonhi ting dis-
locations, but can give rise to jogs on the crack line
and cleavage plane.

There are several physical constraints or conditions
which must be combined with Fig. 7in describing a
crack self-consistently. First, as discussed earlier, for
a ceavage crack to exist in static equilibrium condi-
tions, it is necessary that the cleavage condition be
exactly satisfied. Thus, enly points on the k, planecan
describe such a crack. Likewise in equilibrium, only
points cither on or befow the emission surface are
possible. IT a crack exists above the emission surface,
then emission occurs until the shiclding of the emitted
dislocations moves the local & vatue back onto the
emission susface. Points befow the emission plane are
permitied, of course,

It is important to note that the elastic opening
condition, (44), is a necessary condition for the crack
to exist, but that the Yefi side of {40) is a true clastic
driving force, once the existence of the crack js
nssured. Thus, when significant components of &,
and/or ky, are present, the minimum driving force
possible on the crack can be sufficient to drive i1 to
high dynamic speeds. The condition for overalt
uability as we have sated i1, however, is a stati¢
condition, and presumes that conditions have not
developed in such a way on the crack that the crack
breaks away as a dynamic cleavage event before the
emission can intervene, Obviously, events at the crack
tip have an unstable quality when time dependence
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and dynamics are allowed, which are beyond the
subject of this paper. but which will be very im-
poriant in determining the final behavior of the
crack/dislocation system. With this essential qualifly-
ing statement in mind, we will pursue the static
stability conditions on the crack.

Figure 8 depicts the fute of a cleavage crack which
has emitied dislocations in three important cal-
cgories. In the first, Fig. 8(a), dislocations are emitted
in a blunting configuration, i.c. the dislocations have
A non-zero edge component, b, 30, We shqll term
these mode | dislocations in an obvious notation. The
result of multiple emission of such dislocations is 1o
converl the sharp crack into & wedge. Usually, for
simple crystals. symmetric slip planes exist as shown.
The angle of the wedge opening is determined by the
ungle a between the slip planes and the cleavage
plane. If the cleavage pianc is also g slip plane, then
two additional special cases of dislocation emission
&re possible, labelled mode If and mode 11T in Fig. 8.
Mode Il emission corresponds to emission of edge
dislocations, and mode NI emission to screw dis-
locations. The notation in each case is due to the fact
that from equation (36) the maximum emission force
for mode | dislocations is for ananglez > 0{ata =0
the emission force is zero in made 1); while in mode
IT and i11 the emission force is at of near @ maximum
at a = 0. Mode IIl is “orthogonal™ 10 modes | and
I, and these latter loadings exert no emission force
on mode 111 screw dislocalions. A result of consid-
erabie importance is that combined mode Il and/or
mode 11l emissions do not blunt the crack. That is,
the crack remains a fully rigorous cleavage crack afier
mode 1l and mode 11 emission.

Keeping the previous points in mind, we now
consider several cases of emission/loading combina.
tions which will illustrate the use of the siability
diagram given in Fig. 7,

(a) Consider the mode [ emission configurations
depicted in Fig. 8{a). We assume that the dislocation

“

& Mode |
L] Emission
[
! X
(1]

Mode T
- 1 1 i1 j Emission
- () ,

Moce T
2 s em g Emen
®

ic)

Fig. 8. Dislocation configurations in emission. (a) Mode I,
b} mode 1. and (c) mode [II.
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has a screw component and an edge component [see
equation {38)]. We further assume &, < k,, so that the
k, and k_surfaces inlersect in the first octant. Thus,
in the region near the k, axis, no ¢mission is possible,
and the crack remains a pure cleavage crack with no
emission. However, with added &, and/or kg, the
intersection of &k, and &, surfaces occurs on a line
labeled the emission line. On this line, emission
oceurs in the assumed mode | emission configuration.
In the pegative k, or k,, directions, stability of the
crack against emission is enhanced. Normally, as
noled carlier, a sccond slip plane exists at —a
symmetrically placed as in Fig. 8{a). Assuming for
example, the lc.c. casc with cleavage on (110), the
stability diagram is the mirror image of Fig, 7a in the
kky, plane. Thus, in Fig. 7(a), whereas negative
and ky, increase the stability of the crack against
emission on the initial system, on the second slip
sysiem, negative k,, will have the opposite effect. The
screw dislocation in this system may be either positive
or negative, so changing the sign of b thus has the
effect of switching the direction of stability relative to
k,,- This analysis for the case considered thus shows
thai the region around the k, axis possesses & region
of stability, but that going away from it in any
direction leads to emission on one system or its
mirror. Analysis of other crack/slip systems will
require a similar reasoning.

(b} Again, in the mode I emission configuration
with both b, and b, # 0, assume that k, > ki as
shown in Fig. (b} In this case, throughout the Ist
octant, emission precedes cleavage, and no sharp
crack is possible at all in this region. However,

ission can be inbibited by negative loading in ky,
or ky, and the cleavage crack stabilized. As shown in
the previous example, however, usually one has other
possibilities—by reversing the sign of b,, or consid-
ering other mode 1 slip planes—in which emission
will be still possible,

(c) Mode 1I edge dislocation emission. In this
configuration, we are by necessity in the mixed
loading case, becausc the cleavage criterion in k, must
be satisfied. If the dislocations emitted on the cleav-
age planc are pure edge, then no force is exerted on
them by &y, loading, and the stability diagram is two
dimensional. Also, there is no force on the dislocation
from k, because a =0 in (36). Hence, the stability

e
E
Keof
Allowed
“” Loadings
X k
Fig. 9. Mined &tk loading with emission in mode Il a1
point E.
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kn
: E
Y
L™
Allowsd
-~ Loadings
L
Fig. 10. Mixed , /k,, loading wilh emission ia mode LIl a1
poini E.

diagram is the simple construction shown in Fig. 9.
Thus, the allowed loadings are shown along the
hatched line in Fig. 9, and al the point £, emission
takes place. As noted above, this crack can emit sny
number of dislocations in the mode i configuration,
and still remain a fully brittle cleavage crack.

{d) Mode 111 screw dislocation emission. As above,
the stability diagram is again two dimensional be-
cause mode 11 loading does not put a force on the
assumed screw dislocation. The stability diagram
that shown in Fig. 10.

{c) Augmented mode [11 screw dislogation emis-
sion. Suppose again that the crystal is oriented for
made 1M1 emission. However, in additien, suppose
that mode 1 emission slip planes also exist. Now the
stability diagram becomes complicated by additional
emission surfaces. H we assume k, =1), then the
stability diagram remains two dimensional, bt
an additional mode | emission line is imposed. See
Fig. H. Two possibilities are drawn. {n one, the &,
line is below the k. line, and no cleavige crack 13
possible, because blunting takes place in mode [
emission before the k_ line can be reached. However,
if the ky, line is above the k. line as showi by the full
k,, line, then stability is again possible, and mode 111
emission can occur.

{f) Augmented mode 11 emission. In this case,
loading in | snd I[ is assumed, with mode:] snd mode
11 slip piane both present. The stability. diagram is
sgain wo dimensional as shown in Fig. 12. In this

ke
Case Can)
[ 3 b
- e K,
Ky K
Fig. L1, Augy d mode HT emission. IT ecnission in mode

| it permitied as in case (s), then mode | sid mode 1B
emission are simultancously possible at E,. In case (b}
emission oocurs ut E,.
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b kg, linay

/ﬂuun
m:amm\;\ Mode T Emission

e k
Fl;. 12, Augmented mode 1l emission, When loading is
mixed mode | and mode I, but emission can OCCur i mode
{ and mode 11, then two cases are possible depending on ky,
lgu. For (a). mode | emission only is possible because ky,
line croases the cleavage line at a lower value of ky,. For (b},
mode Il emission oocurs first tlong the cleavage line.

case, the k,,, lines is horizontal, because fora =0, the
contribution to mode 1] emission force s rero from
the & loading. The k, emission line is also drawn, and
as 'Ic.! loading is increased along the &, line, ky
¢Mission or &, emission will take place first depending
on where the relative crossings on the k, line take
Place. Given that only one k, emission slip system is
possible, then by choosing the sign of k;; or the sign
of l.i.le mode 11 Burgers vector properly, it will be
possible to achieve the &, emission without triggering
the k) emission. But, if more than one &, emission slip
fystem exists, this may nol be possible,

PART UlI: APPLICATIONS TO MODE | AND
MIXED MODE LOADINGS

In the previous two parts, the necessary general
relations governing dislocationjcrack interactions
and the criteria for crack cleavage and dislocation
emission have been derived. The stage is thus set for
applying these results 10 the overall behavior of
crack/dislocation configurations in a material under
load. A completeiy successful theory along this line
would jead to material toughness relations, and we
will go as far in that direction as simpie two dimen-
sional dislocation models can carry us. Neediess to
say, that will not be very far in direction of
completcly deterministic theory, but it will be possible
to derive some general and qualitative results which
will be useful,

The complete ioughness problem consists of soly-
ing the force balance equations for the crack and each
distocation scll-consistently in order to obiain the

—I—-sin 8 cos 382

Al ~v)

1 1 |
om | — - 5in @ si _
v l_'(omﬂlz 2nn0|m30[2) =

0

cqmplcte equilibrium configuration of (he crack-
disiocation system. That is, in order for the total force
on cach defect 1o be zero, the elastic forces calculated
in Part | are balanced by other lorces exerted by the
latuice. Thus
ki —v?
f= i = ) 2

SMaap “5)

The first equation is the cleavage criterion of (44). In
the second cquation, o, is the usual friction stress
invoked by dislocation maodelers, and may, variously,
be due to thie Peierl's force, forest dislocation, im-
purity interactions, eic. depending on circumsiances.

A many body problem of such magnitude 15 not
tractible, and drastic approximations are necessary ko
g0 further, In this paper, we will proceed first to
develop the shiclding relations for the crack. Some
physical insight into the overall problem can in fact
be gaincd from (his discussion by itsell and without
solving the complete equilibrium problem of (45).
Then we turn to some general theorems which can be
proven for the dislocation cloud, and fnally, we
Present & qualitative toughness argument for the
mode | crack,

The general character of the formalism developed
will allow us 1o consider the mixed mode case, in
which a variety of slip planes are-active. A qualitative
exploration of the mixed mode situation along the
lines begun in Pant 11 will be one of the most
interesting results of the paper.

1. Shiclding relations for the crack

Equations (24) and (25) for Part | are the basic
equations relevant to the ensuing discussion, and will
be exptored here in some detail. It will be useful 1o
break up the general relations 10 display their com-
ponent parts. Thus, from (25) and (26), for each
dislocation (suppressing the index J) we write for each
component of the Burgers vecior

kPl L2y pn b

Varr - fonr

.&ﬂ-kﬂ%.?*n Hby

n,/]nr

kB mk ﬂ_ A
L=kl e {46)
In these equalions, r is the distance to the diglocation
from _the crack tip, and @ is the angle measured from
the tip. The various cocfficients kg comain the
angular dependence of the shielding, according to

|—'I_—v(eosﬂf2+%linﬂsinlafz) [i]

(sin 8 cos 38/2) 0 . (47

0 cos 8/2
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We have ploticd the four independent angular
dependent terms in Fig. 13 for positive Burgers
vectors, The sign conventions are such that H_’,_. k%,
and k5, are shielding coniributions for the positive b;
and small angles, #. That is, the k® comnbuuu_n in
¢ach case is such as 10 decrease the external loadings,
Ky, Ky. and K, at the crack 1ip. Thcicurve of
Fig. 13(a) shows that k3, and & £ changes sign as the
dislocation moves from in fromt of, Lo behind the
crack, i.e. the dislocation changes from shielding to

k?1 hd kg?

(@)

b
kD
L)

L ]
@ : 7 K
8

@
K
8

Fig. 13, (8) Anguler dependence of kf = k3 [sce equation
(46)). In this and the following polar plots (b-d), _8 has the
range 0.< @ < x. Thus, lobes of the figures extending below
the horizontal axia correspond 1o negative values of & for
the corresponding values of 8. (b) Angular dependence onl'
k} [see equation (46)]. (c) Angular dependence gl‘ L3]
fsee equation (46)} (d) Angular dependence of k) {see
equation (46)].
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antishiclding when @ > x/3. The degenerate character
of the matrix also shows that plane sirzin and
antiplane strain are “orthogonal™ wo one anolhet, so
that they can be discussed separately,

One of the important applications for these equa-
tions will be for dislocations which are emitted from
the tip. In this case the & = v, and Fig. 8 is relevant.
For this case equation (46) becomes

b .
kP m——— _ (3sinacosa/?) {48a)
"2 aar -y
[y —

I/2xr(l—v)

x(2cos2 cosa/2 ~sinz sina/2) (48a)
b, wm b cosa + b sina. (48¢)

" Figure 14(a) and (b} show the function kP and &8

from (48) as functions of the angle a.

A word is necessary here regarding the functional
dependence of (46) and (48) for negative angles, a.
For mode 11 dislocations, where b, = ( 100), and for
screw disfocations with b, = (001}, the variation in
is a3 given in the equations. However, for mode |
dislocations, Fig. B{a) shows that for emitted dis-
locations that blunt the tip, there is & reversal of I_he
by component of the dislocation for equivalent dis-
locations at +a. Then in the “slip plane coordinate™
expression for b, (4Bc), equivalent dislocations have
reversed Burgers vector; ke, b— —5 when g ——a.
Thus in (482) and (48b), K is overall an even
function of «, and & is an odd function of « for mode
I distacations! Figure 15 incorporates this effect of
sign in (47) and (48).

)
[
"l
ke
{b)
k{l [see

N
O

Fig. 14. (a) Angular depend of k? [see equation (48))
(b) Angular depend of kf q 48)). See aho
comment on negalive lobe in Fig. 13 (8} caption,

While on this point. we note simifar conclusions
follow for any screw component of an emitied dis-
location in mode I. That is, the screw component by
(46} will gencrate a & f, shiclding comtribution at the
crack tip which feads to & reformutsted (38) which
has the form

)
h.(N}-‘;‘% kRim| +C. {49)

Here k's are writien as functions of N to denote the
shiclding that 1akes place. and Cis the remaining part
of (38} which is not 2 function of N_[For (49) 1o be
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i
= X [=H T~
Datex0
L + smail:asd 0
H * 0 + o
g o 0 0 +

Fig. 1. ShieMing mairix. See equation (47). The rows
coerespond (o the three modes of shiclding. and the columns
correspond to the three types of dislocation configuration
shown in Fig. 8. The first two columns correspond 10
atymmetric and i ission in the 1 configuration,
respectively. The (+) sign in the tabie denotes positive
shiclding for positive b, and that the shiclding i symmetric
in the angle, a. The (1) sign denotes 1hat the shickling is
Sntisymmetric in a, so that symmetric emission’ yields zero
shielding,

In further study of (46), it is important to note that
the physical constraint of any crack system is that the
crack must satisfy the cleavage criterion {44), and
thus it is necessary that ky be finite. The various
relevant special cases can then he developed as in
Pant §1 for mixed loadings of interest. This is done in
Fig. 15, in terms of a matrix. The rows of the matrix
correspond to &7, ic. the rows depict the change in
k& far each mode of loading due to the dislocation
configuration. The dislocation configurations are
given by the columps. Two mode | configurations are
given, however, corresponding (o symmetric and
one-sided or asymmetric emission,

The matrix indicates that the off disgonal elements
Are 2210 OF near zero except in only one case. That
is, the dislocation configuration of g given loading
mode does not interact with other loading modes (are
“orthogonal” in this sense) except for one striking
case. The exception is that the asymmetric mode |
configaration interacts with the Jocal ky. The sign of
the shielding interaction in that case is such that
emission of dislocations asymmetrically in mode [
retards additional emission through {46) and (38) s0
that increasingly higher values of k; must be exeried
in order to attain the emission condition. Sinclair and
Finnis [26] have suggesied that through this mech-
anism, eventuatly the cleavage condition could be
reached, and a brittle transition achieved. Such o
transition depends upon asymmetric emission, how-
ever, and since the intrinsic conditions at the crack tip
would gencrate an alernating emission on symmetric
stip planes, any transition observed depends upon
Iocal inhomogeneities in the material which cause &n
asymmetric loading at the crack tip.

valid, 2 must be sufficiently in-the forward direction.]
Again, the critical value of k, increases with N,
provided all the b, are in the same direction. But, if
both signs of b, are possibie. which is always the case,
then aliernating emission of one sign and the next
occurs and no net k,, is gencrated. I there are
inhomogeneities at the crack tip which lift the intrin-
sic symmetry present, then a brittle ransition can
again take place. (We note that this argument as well
as the one by Sinclair and Finnis has only 2 rough
qualitative validity, because after repeated emission,
the shape of the crack is wedge shaped, and the sharp
crack results are not valid.)

The striking conclusion (with the one important
exception) that the dislocation configuration pro-
duced by one mode does not shield or interact with
another, what we shall term the “shieling orthogo-
nality”, it an important result, and bears on a variety
of caperimental findings. We shall return o it for a
fulter discussion at the end of the paper, where an
overall picture derived from shielding theory is com-
pared with the experimental world.

2. Some general theorems

In this section, we prove three general results which
can be obtained from elastic anelysis lor dislocations
and cracks. They sre important, because the complete
crack-dislocation configuration is unsolvable, gnd
thus whenever generat theorems can be proved, they
arc often of great usefulness.

(@) Total force on crack distocation configuration.
The total force on the crack plus its entire dislocation
shield can be written in the notation of Part I simply
A3 the sum

Jmi=f+ ;L- (50)

This force is summed not only over each defect in
the total configuration, but over the plane and anj-
plane strain components as well. We will be interested
only in the real pari of this force, because as ex-
plained in Part I, the imaginary part of the force on
the crack does not correspond to & physical motion
of the crack.

This sum can be computed by a term-by-term sum
of the various contributions to the overall force, buy
there is & more elegant method. It has been pointed
out in Part | that the asympiotic forms of the
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potentials a1 > are simple & -felds capressed in lerms
of the far ficid paramciers. K, X,,. By the residue
thearem, this contour integral is the same as if The
actual stress field with all the singularitics at the
dislocations and at the crack were replaced by a
sitmpic (mixed) A-field based a1 the crack tip. The
residuc from this total cifective K -fickd then Trom (30
gives the force on the total distribution, as

b,
Re{fu} '27 [Kiu+ 0 —e2tKT + K3 (S1)

This expected result is that obtained by the standard
J-integral formutation when applied 10 a continuum
plasiic field in the small scale yiclding limit.

Since the force on the crack itsell. 7, is given in
terms of the local k field there, {26). cqualion (50} can
be written in the form

. .
Re {;L}‘s; {Kji, = &iy
+{l —v}(k’f—k.’i-ﬁf.—kf.}}. (52)

Another form of this equation is obtained by using
the general relation k5 + k,, = K,,. eic. to obtain

“’(ZL)" 2—| P+ 2hy kG
¢ H
+ (L~ vHKPr + 2k kP

+ K+ 2, kD). (53)

These results are entirely rigorous, bug they apply
lo 2 rather resiricied physical situation. That ia, the
force is the real component. in spite of the fact that
in mode 1. the slip sysiems will be a1 some anglke 1o
the cleavage plane, and the real compeonent of the
force is partly a climb force. Thus, physically, when
the crack moves forward, the rigid mation of the
dislocation configuration cannot generally move
rigidly with it without & mixed climb-slip motion. For
this reason, models have been considered {6} where
the slip system is paralle] 1o the cleavage plane so this
objection is removed, but we will consider a different
siralegern here.

Consider the construction first proposed. by Sin-
clair and Thomson [3]) shown in Fig. 16. The dis-
locations in the shicl are assumed to have slip planes
at some angie ta to the cleavage plane. We presume
the crack has achieved a steady static quasi-static
motion in which an effective local net Burgers vector
is established in the region surrounding the crack. As
the crack extends a distance éx, a sclf-similar shield
is formed at the new crack position, X +dx, by some
combination of dislocation motion and generation
&nd a wake of debris is created belween the iwo
points x and x + &x. If this debris is proportional to
the local Burgers vector density, f(x). then the work
done in translating the effecrive distribution B(x) in
the clement of arca dA to the new position is given
by

W = o (f)B(x)dA 5x 54
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Fig. 16. Moving crack with sell-similar shicid and wake. For

a moving cruck. we assume that in steady state, & sel-similar

shick is generuted at euch position, wnd 1hal the sncrgy of

moving this shieid is equivalent 10 creating 8 wake for cach
| dislocation in the shicld.

where g, is an effective drag siress on the dislocations.
In actual practice, this work is primarily pesformed
by heat generation, but dislocation langles even with
A residual net Burgers vector also result Thus &
simulation of the aciual dislocation shield can be
achieved by posiulati E @ net disiocation Jurgers
vector distribution on “transport planes” pamllel 10
the cleavage plane, and with a drag siress o 3). The
cormplexity of the deformation problem then & swepl
up into the function o,, and § is presumec 10 be
determined by a self-consistent balance of the forces
on the defects as proposed in the introduction of this
part in equation (45). In this simulation, it is im-
portant that the Burgers vector not be assumed 10 be
paralle! to, the cleavage pianc, 30 that the moeion of
the effective distribution is not & pure slip motien, but
neither will one be justified in invoking simple climb
processes. o, in fact covers a multiplicity of such
“sins”. Only when the diskocation shickd is in the pure
mode 1l or mode If configuration will simple
straightforwerd  slip  dislocation  simulation be
Justified.

With this physical picture, however, onc can make
contact with simple (tacture mechanics concepas. For
example, the elastic force on the dislocation in ©62) by
the equilibrium postulate in (45) in the contauum
limit is

Re{df,} = ad B (x)dA. (5%)
Integrating this expression 10 obtain the total force
on the dislocations

Re {;L} - J.ﬂﬂrlﬁ)dﬁ- {56)

If it is memningful 10 define a mean value for o (and
this possibility depends upon the physics of the
deformation process), then (56) can be writien mmply
as

m{;f,} =g(a)f Bm Ip dA L))
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where 8 is the 101l Burgers vector in the shiclding
cloud. Because of the essentizglly tensor churacter of
(57), and the other complexities inherenl in our
definitions of ¢,, we have indicaied that i should be
considered a function of 2. That is to say g, in the
“climb™ oriemation when 2 = 2/2 should be quite
different from o, in the “slip™ orieniation, 1 = 0.

In any deformation fickt, and for any dislocation
process, total Burgers veclor is preserved, when al-
lowance js made for the surface steps where dis-
locations are annibilated or created at surfaces, or at
erack tips. Hence, we have

|81sina = COD (58)

where COD is the plastic part of the crack opening
displacenent, and x is defined in Fig. 17.

Combining (58) with (57) and (52), we have the
standard fracture mechanics result

coD = 222 (k7 _kijtl - ), (59)
2y,

In this expression, we have not included mixed
loadings with X;, and X,, becausc of the subtleties
already described in that case, and because the rather
#ross averaging envisioned in this simulation will do
considerable violence 10 such detailed questions. g, in
(59} is usually taken 10 be the yicld stress, which it is
certrinly closely related 1o, but we leave it in this form
to emphasize its physical meaning as developed here,

(b) Newton's Third Law for crack and dislocations,
The real part of the force exerted by a crack on its
dislocation cloud is equal and opposile to that exer-
ted on the crack by the cloud. This theorem follows
immediately from (52) when the cxternal X -fiekds are
tnede zero. That is, since X, = K, = Ky =0, then
Fowa=0 it (51}, and

Re{f, + };J',}- 0. (60)

In this casc k = — & for each mode of loading and
S = 0. Thus

Sponent

-%:urﬂ.r +{1 =KD +(KEVY (61)
and

!Re{ILlL:._ = Re {5‘3. + ;L} (62)

(c) Iuteraction force between symmetric  dis-
locations. Consider a symmetric pair of dislocations
shown in Fig. 17. We will show that the slip foroe of
interaction between any two such distocations is 2810,
That is, when the term £, of equation (34) is writlen
in the slip coordinate sysiem, the component of force
on the slig planc is zero, This is & remarkable result,
and is not suggesied intuitively by inspection of the
configuration together with the various types of

OVERVIEW NO. 47

Fig. 17. For two-edge dislocalions symmelrically placed
reiative 10 the cleavage plunc, the distocations—dislocation
force component in the slip plane 1 zero.

(indirect) images generated by the second dislocation
in the crack.
For this configuration, the following expressions
are valid
bumb e

by —ben"
E:-I
Jufiren ()

Then by direct substitution into (34), the result of &
ledious algebraic reduction is

Re(/2r} wo. (6)

This result is also true for two screw dislocations in
the same symmetric configuestion, shawn in Fig. 8(a).
[The reader is reminded that (64) refers only 10 Lhe
part of the force on the dislocation at { which is
bilincar in b and b. The self-image lerm and the
direct forces due 10 the crack and external stresses
are, of course, not zero.} This result will be uselul
when considering symmetrical distributions of dis-
locations at a crack.

3. Toughness relation for mode |

Ohr and Chang [4, 5] have augmenied the BCS
model of 2 mode Il crack [10] by postulaling a
dislocation frec zone at the crack tip. This
modification makes it possible 1o introduce the local
& at the tip, which in the BCS model is zero, and then
1o derive the overalt equilibrium crack-dislocation
configuration. In doing so, they make ihe prablem
one dimensional, because Lhe dislocations are
assumed o be distributed in a continuum approxi-
mation on the cleavage plane in front of the crack. In
mode I, the dislocations must be distribuled on 2 slip
plane at an angle to the cleavage plane as in Fig. 8,
and the dislocation—dislocation interaction terms, Jun
assume the extremely complicated angular dependem
form given in (34). Even if only onc arm of the
dislocation distribution in Fig. 8 is considered a1 a
time, the form of (34) for £, is not one dimensional,
because of the image-like terms which arc generated
at the complex conjugate points, {,- Thus, the con-
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tinbum analysis developed for the mode [N
configuration cannot be applicd rigorowly. The only
term in (34) which Jends itsell to a onc-dimensiona) ‘/B
continuum model is the “frec field™ 1erm 1.(r — (AR Y
but using an approximation based on this term one
is'led to & zero dislocation free zone, which does not
Jead to the mede {II limiting condition. and is thus 'y
unphysical. Consequently, we have adopted another [}
a
3

approach, which does lead to an estimation of the size
of the dislocation Iree zone us well as the deformation

20ne.
Suppose the crack/distocation configuralion is
composed of a super dislocation of strength B on _ \B

each of the two slip planes emunating from the crack
tip and a single {mini) dislocation of strength &, which
we identify with the last dislocations emitied from the
crack. Sce Fig. 18. If 8 b, then R »r,, where R and Fig. 18. Configuration for toughness relation. A weer
r; are the distances to the super dislocation and mini- dislocation pair of gth & m di R and » xini
dislocation, respectively. The force balance problem  dislocation pair ut r, ure !Ll:x tlln sytmetric oip pluwes o
for this configuration can be solved by noting that the .

Jar for symmetric pairs of dislocations (i c. mini/mini

and super/super) is zero by theorem (64). Furiher. 1he '
positions of the super dislocations will be insensitive  'When the focal & reaches the critical vatue fo- an
1o the presence of the mini-dislocations, although  equilibrium crack, the image kerm in this expresion
not vice versa. I o, is ihe friction stress on each s negligible when a,/jt < 1072, as will be assumed.
dislocation, then the force balance on 2 mini- At this point we must relate the super dislocation
dislocalion is

_ bk sin 2 cos 22 b

KN I ™ T

+I®(R. 1), (65}

Since Rxr, and Bxb, the 1erm fo7(R, ) can be  ywith the approximation that KO~ i
simplified 1o give

that the total net force balance on the wo saper
dislocations is given by

'—2"”—” (KOF = 280, con s %)

1-v

i LA A K1, 0y
Vi A PLLLLL LY. e e =
2/ 28n, Equations {70) and (68) are thus two indepencen:
3uB sin x cos /2 equations for A and k, respectively. If we note that
x (——-—»«*" a V)m ) d; in real crysials should be related to & through &

work hardening relation, then (70) and (68) can be
b sin x cos 22 combined 1o yield the desired toughness relation.

2\/27” Thus, we write -
vr"ﬂ-(E) )]

x[xo_b‘ybsin:cos-xﬁ] (66)
and the fina! result after the climination of aand 3

(1 ~v)/2nr,
where K is given by k = K = K®. We shall drop the  '70™ (71}, (70), and (68} becomes

subscript denoting mode | loading, but the analysis I=v ., By fkysinzcoyg/2\"+mm )
below only applies to that case. ducosy g\ T '2'\/2—*— ';;"— .

koo JnBsinacosa/2  Jubsinacoss? . (67y [Equation (72) is written for the critical value of an
(I =v),/2aR (1 —v),/2nr, equilibrium crack, with

In terms of the local ., (65) becomes k- duy ' i

k sina cos a/2 b I—v
= 2./ 2ar, * dn(l —v)r, An equation with the same form as this one can be
obtained from (57), where £f,=~ () ~ vIK 2 from
& sin 7 cos /2 "(33). (With symmetric dislocation distributions, cady
2/, &7 contributes.) But the meaning of g, in (57) is quite
(68)  different from the interpretation in (70). In (70) it s

LY

x(3sin*rcosfa/d - 1) =

AM I8

strengih B to o, and to X. This can be done by nating '~
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assumed that 4 real dislocation disiribution is pro-
duced on the slip planc, however. in the reasoning
leading up o (57), the dislocations are the “geo-
metrical” residue of a more complicated deformation
2one of & moving crack. in which @, really describes
& more general dissipation process than simple dis-
location stip. Thus, both physical configurations are
described by the same equalion, {72) and (73), but
have different meanings in the fracture mechanics
sense.

4. GENERAL CONCLUSIONS

In this section, we summarize the overalt conclu-
sions of the paper, and apply them to two selected
speciul cases.

(2) A general isotropic elastic analysis of cracks
and dislocations under general loading has been
devetoped which includes theorems for the forces on
interacting sharp cracks and dislocations, taken
cither individually or collectively. This analysis is
presented primarily in the first part, but the collective
response is discussed in Part HI. In modes § and I]
the analytic results display considerable complexity,
especially when it comes 10 wriling the dislocation-
dislocation foroes in the presence of the crack, Fortu.
nately, the shielding contributions of the dislocations
1o the tocal crack tip singularity are relatively simpie,
however, and are amenable 1o scparate detailed
analysis.

(b} The dislocation emission criterion for a crack is
derived for a static crack under mixed loading condi-
tions with results which can be displayed as a planar
surface in k-space (i.e. kk;k,, spacc), Fig. 4, termed
a crack stability diagram. The emission depends upon
the particular slip system considered as well as the
loading condition, and & scparate emission planc
must be drawn for each possible slip system. How-
ever, generally it is expected that the slip syslems will
break down into what we cafl mode 1, mode I, and
mode 11 dislocation configurations shown in Fig. 8.
These are the-natural disiocation configurations gen-
erated by the three pure modes, scparately. An
important result is that only dislocations in the mode
I configuration blumt the crack. A number of special
cases were analyzed and will be summarized bejow.

{c) The cleavage criterion under mixed loading was
examined, and to a first approximation, it is found
that the cleavage criterion depends only upon the
local mode 1 siress intensity, k,. This resull differs
from a prediction based on a simple balance of forces,
but seme minor dependence on ky and ky, can be
produced for cerain types of force laws. Even these
minor effects of &, and &y could be important in
altering the balance between emission and cleavage
when that balance is a very delicate one, but our first
order result is that the cleavage criterion depends
only on a Griffith condition for k). This cleavage
criterian thus plots in k-space a3 a plane paralte] to
the ky &, coordinate plane.
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(d) Cleavage vs emission lor » given slip system is
then determined by inspection of the stability dia-
gram in & -space composed of superposing the emis-
sion and cleavage surlaces. Emission will occur when
the emission surface lics below the cleavage surfuce,
and vice versa. The crack can also branch 1o a new
cleavage system under mixed loadings, but this possi-
bility is not included in the analysis of this paper.
Neither are dynamic time dependent eflects consid-
ered which can also play an imporiant role in the Fina)
crack behavior.

(e) Generally speaking, there exists no intrinsically
brittle or ductile materials, because if the approptiate
slip system exists for a given cleavage plane, emission
can be induced by an appropriate loading condition
{always provided branching docs not intervene). For
example, if 4 crack is stable against emission in pure
mode L and if the emitied dislocation possesses a
screw component, then the imposition of sufficient
mode 11 wilt reverse the stability so that emission is
favored, and bluming of the crack will resull,

(1) An even more striking prediction s for simul-
taneous cleavage and emission undes mixed loading.
That is. suppose the crack is stable in mode I, and
then mode N or mode 1) loading is imposed such
that emission occurs on slip systems coincident with
the cleavage plane in the malerial. In this case, the k,
loading and emission are independent of one another,
and the emission does not affect the k) at the crack
lip. That is, no shiclding of &, occurs. Conversely, no
mode IT or mode NI “crucking” ean occur without
sufficient mode 1 at the crack tip 10 hold the crack
open. A number of special case loading/emission
configurations are explored in Part 11 in Figs 9-12,

() Afier dislocations have been emitted in consid-
erable numbers, the resuhs quoted above ure
modified and extended by the shiclding effects of the
dislocations. Again, the analysis is simplified by
considering only the three simple mode I, 11, and 1|
dislocation configurations. The mixed mode loading
situations then are summarized in Fig. 15 of Part 111,
and cxcept for asymmetric emission in the mode |
configuralion, the shielding i3 nearly “orthogonal™,
That is, mode II distocations shield mainly mode 11
loading at the crack tip, ctc. The analysis of this
paper addresses only sharp cracks, of course, and
therefore applics only to cases where Lhe crack tip
blunting effccts can be neglecied. Within the sharp
crack regime, however, the orthogenality of Lhe
shiclding leads 10 rather simple rules for erack be-
havior. For example, in the mode 1! configuration—
in equilibrium, the local & must be located on the
cleavage surface in the stability diagram in order for
the cruck to remain sharp. As K, is added, emission
in made Il 1akes place such that the mode I shiclding
st the crack tip lowers the local stress intensity faclor
30 that the local & is located at the intersection of the
mode I emission surface with (he cleavage surface.
Crack growth takes place when the local & moves
above the cleavage plane.
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(h) Under certain limited conditions, the shiclding

by the emitted dislocations can alier the cleavage/
emission balance at the crack tip. This possibility has .
already been pointed out for dSymmelric emission in
the mode | configuration by Sinclair ang Finnis [26).
But il emitted mode 1 disfocations have a screw ()
compaonent, if only cne sign of screw is emitied, then
crossover from emission to cleavage can again be Ammml
induced. In both cases, such a result requires that the
normal degeneracy which exisis at the crack tip be
lifted; i.c. cither asymmetric emission of edges or
emission of only one sign of screw component.

(i) The Ohr Configuration Paradox, Such consid-
erations as in paragraph g above should apply 10 the

thin film crack/dislocation configuration studied by e

Ohr and coworkers [30]. The configurstion is shown

in Fig. 19. The slip plane is oriented a1 an acute angle -84
——————

to the planc of the foil, and the crack is in a mode
1T emission configuration. But the foil hasamode]  Fig. 20. (a) Slipfcrsck plase configurtion for Ohr
stress on the crack as well, and we have argued that figuration. (b) Emission in mode | (minor component)
this stress mmust be present 1o hold open the crack. Ohr aod mode I (major companent).
and coworkers find that ductile f.c.c, metals as well
43 some bee metzls exhibit this configuration, The
“paradox’* consists in the fact that in the [c.c. metals,  strain stress states for pure screws.) Since it is believed
ky <k, is supposed 10 hold and for the mode | the intercept of the &y, line on the &y axis lics below
emission configuration, we argue that the emission the ky. intercept for the o, mcials, this crac line
surface always lies below the cleavage surface. The cannot be & sharp cleavage crack under the loading
crack-slip plane geometry is shown in Fig. 20(a), conditions which pertain nt the tip. Three possibi ities
where there is found 1o be only one mode | slip plane  exist to explain the observed short equilibrium sTack
which can inlersect the crack line in a blunting  which is observed. The first is that the stresa condi-
configuration. But on this stip plane, the crack has a  tions in the thin films are not adequaiely descrbed by
choice of two Burgers vectors, with opposilc screw  the analysis. We believe this is not the case, 13 that
components. A given mode 111 loading will split the  the overall physics is, in fact, described by the two
cmission surfaces for these two Burgers veclars as  dimensional solutions, though the magwitudes cf the
shown in the stability disgram in Fig. 21. Emission  stresses are modified. The second possibilisy is that
for one of thesc dislocztions will be inhibited by the  the proposed simple cleavage criterion i modified by
mode 111 loading. while the other will be enhanced.  the mixed loading so that the cleavage cnierion falls
Since in the experiments, extensive mods [{] emission  below the emission condition as discussed in Par: 1).
occurs, il can be presumed that the locsl & is on the  We do not believe that the fe.c. melals are & ikely
&y, line shown in Fig. 21. (This line is parallel to &k, case where the force laws are sufficiently directional
because of the independence of anti-planc and plane  thata sirong mixed loading effect would occyr “oe the
clezvage criterion. However, this possibility thould

g, not be completely ruled out. The third poss:bility,

&, Emiasion Lines

L9 k
Fig. 21. Stabiliny diagram for Ohr configuration. Two

Fig. 19. Ohr crack configuration. The foil iv pulled in  emission lines in mode 1 emission lines are shown for e two |

tension, bul the crack moves along a dip plane which is

wrew hetched in Fig. M (a. The
orwnted at 45 10 the direction of 1ension.

npem:ng poiat i shown 1 E.
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which we lavor, is that the crack. in fact, is not sharp.
but has emitied on the mode | plane as well as (he
mode HI planc. 1T the wdge dislocations emitied in
mode | are not so numerous as the screw disloculions,
but are present so that there is 4 finite COD at the
tip as in Fig. 21. then the crack will remain apparcntly
sharp. but the small &, (i.e. &, < &, ) will be sufficient
1o hold the cruck open even though the Griffith load
is not reached. Such a crack, however, will nol cleave
because &, cunnol be exceeded quasi-staticaily be-
cause of the intervention of mode I emission. This
general picture seems to be confirmed by the fact that
when the cruck moves imo a thicker part of the
specimen, mode [ emission is observed. This multiple
emission casc may be a general phenomenon for
ductile maierials, where shear “cleavage” is observed
in & material where no true cleavage should exist.
More extensive analysis of the Ohr experiments is
indicated, and one obvious problem remaining is that
the cleavage condition proposed here needs experi-
mental verification.

(J) Embriviiement of ductile metals—we believe the
general results of this paper may have a bearing on
the observations that a kind of embrittlement is
induced in intrinsically ductile metsis whercin a
significani but highly localized deformation remains
which is localized on the crack plane [3H]. If in these
metals the local cleavage critenion &, is lowered by
the slandard argument that the intrinsic surface
energy is lowered by the external embrittling agent,
and if the cleavage plane is also a slip plane, then the
arguments of paragraph (g) above couid pertain, in
which the material shows both the characteristic of a
highly brittle material, because cleavage is possible,
and also exhibits large amounts of localized plasticity
through the mechanism of mode Il and/or mode {l]
emission in a mixed mode stress state at the crack tip.

(k) Finally, the analysis has been applied (o the
probiem of toughness in a simplified shielding
configuration in planc strain using a super dislocation
analysis. This analysis confirms the general findings
of the simpler mode 11l modeis developed carlier by
others, and emphasizes the important roke of the local

& and 1he dislocation free zonc (also called the mner
elastic enclave) for the overall material response.
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