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430 GIANNI JACUCC]
Prefatory Remarks

Advances in the theory of atomic diffusion in crystals due to thermal
generation and migration of point defects are currently sought in the (wo
distinct direction of (i) an accurate determination of the interaction potential
energy of the crystal as a function of atomic positions, and (ii) a precise
calculation of the consequences of the N-body polential energy surface on
thermodynamic and dynamic properties expressed as thermal averages.

Let us loosely characterize the present status of the theory. Regarding
point (i}, carefully determined potential functions have become available, .
often resulting from sophisticated ab initio calculations, il only for !he
simpler ionic, rare gas, and metallic crystals. Many body effects have also@
been introduced via polarization, screening, and the like.

The theoretical task is far from exhausted, however. An accurate and
manageable description of the crystal energy is awaiting further progress for
large and important classes ol materials. This is the case most noticeably of
transition metals and covalent-bonded solids. For these and other systems
work is actively being done with pseudopotential theories (often pushing the
expansion to higher order), self-consistent calculations, and other methods.
Even for the simpler solids the available theoretical calculations are not final.
Choice of theoretical parameters contained in the ab initio potentials, of the
form for the dielectric function, of the description of the polarizability, and
s0 on, are still a matter of debate. Because of the resulting variation of theoret-
ical predictions, and because of further sources of indetermination in practical
implementations, like inadequate treatments of the long-range part of the
interaction, comparison with experiment is often aleatory and not conclusive.

Regarding point {i1), exact treatments of structural relaxation on the one
hand, and of vibrational energy and entropy on the other, have made possible
the numerical solution of the problem in the harmonic approximation and
assuming memory randomization, using long-developed theoretical treat-
ments based on equilibrivm statistical mechanics and transition state theory. @
Within these limits, important factors in solid state diffusion, like defect
concentration, jump frequency, and the isotope effect, can all be evaluated
and compared with experiment. This achievement is made possible by the "
capability of modern electronic computers to handle large dynamicgl
matrices in a reasonably short time.

However, the statistical mechanics problem should be approached in a .
manner amenable to solution without the assumptions and approximations
mentioned above. The effect of anharmonicity on canonical averages as well
as the role of crystal memory in such dynamical eflects as multiple jumps and
immediate return jumps remain largely open problems. As a consequence,
such fundamental questions as the origin of curvatures of Arrhenius plots, @
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8. DEFECT CALCULATIONS BEYOND THE HARMONIC MODEL

high-temperature deviations from rate theory predictions, and anomalous
isotope effects cannot be resolved. The conditions lor a change of this
situation have been brought about in the last decade by computer simulation
techniques. These methods and their applications to point defects were
discussed in a beautiful chapter by Bennett (1975). Bennett (1976a) also
outlined a complete strategy based on them to calculate the features of point
defect diffusion in simple model substances.

As a consequence, w: should now be in a position to confront the task of
precisely assessing the shortcomings of the harmonic model and of testing the
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gas crystals, alkali metals, salts, or other. But the main thrust is always on the
assessment of the precise consequences of an assumed force law on the
statistical mechanical behavior of the model. This is because it is quite
unknown at the outset what the findings will be, and because these are
expected to be qualitatively similar for large classes of systems.

Because a presentation of this character is best developed from a single
point of view, and even more because that work is better known to the present
author, he shall mostly describe work in which he was directly involved. Part
of it is yet to be published. Some of it is stilt under way. The resulting picture

. ~.adequacy of analytical treatments of anharmonicity in solid state diffusion. will be necessarily incomplete. @ -
- A major decision in preparing the chapter has been the inclusion of a

— . . . . . - . .
_J. TIntroduction rather extensive treatment of a specific investigation, i.e., lattice dynamics

an fec Lennard-Jones model crystal containing a vacancy. This was done to
create the occasion for pointing outl the conceptual and methodological
intricacies of defect thermodynamics. Vacancy formation at constant lattice
parameter, constant atomic volume, and constant pressure will be compared :_

A. PLAN OF THE CHAPTER

’ "'h\_ This chapter is devoted to a description of recent developments regarding
" the statistical mechanical treatment, using the computer, of point defect

diffusion. In recent years Monte Carlo (MC) calculations, i.e., the numerical
evaluation of the configurational integrals involved in thermal averages by
using sampling techniques based on computer-generated random numbers
[see, for example, Binder (1979) and references therein], and molecular
dynamics (MD}) calculations, i.e., the numerical solution of the classical
equations of motion describing the time evolution of a system of interacting
particles [see, for example, Kushick and Berne (1977) and references therein],
have been carried out in this field for a few model crystals along with accurate
lattice dynamics (1.D} calculations, i.e. the numerical evaluation of the
thermodynamic properties of a model crystal involving the knowledge of the
crystal static energy in the equilibrium configuration along with its deriv-
T atives with respect to particle displacements [see, for example, Maradudin
(:jet al. (1971) and references therein]. Yet they have been [ar less extensive and
Ohave covered far less ground that one might have hoped ten years ago. This
may be due to the fact that these calculations require both a great deal of
computer time, and the use of rather sophisticated techniques to extract the
interesting result, i.e, to isolate nonharmonic effects and dynamical memory
effects. Account will be given here of what can be learned from such studies by
comparing the results to LD calculations. Methods will be outlined along
with examples of their application. The necessity for increased emphasis on
the detailed analytical investigation of the N-body potential energy surface to
include anharmonic features should become apparent from this presentation.
The precise nature of the assumed “force Jaw™ between the particles is not

~, Of paramount importance. Of course, care is taken to choose model potentials
O likely to embody the main qualitative features of the systems in hand, rare

&

showing the relation between LD predictions, both at zero and finite tem-
perature, for the different circumstances. The possible size of errors involved
in using approximate expressions to get one from the other, e.g, constant
pressure results from constant volume data, or worse, in confusing one of
these with the constant lattice parameter data, will be thus indicated. System
size and long-range potential cutoff dependence of the results will be men-
tioned. Accurate treatment of these technical aspects of the calculation is
important. Furthermore, classical and quantum mechanical LD results will
be compared for the case of the Lennard-Jones model of argon.

The role of anharmonicity in the Lennard- Jones fcc crystal model has
been studied by Monte Carlo (Holt et al., 1970). Methods permitting the
evaluation of free energy differences were successfully applied to the calcula-
tion of the free energy of formation of a lattice vacancy (Squire and Hooveu;@
1969; Jacucci and Ronchetti, 1980). A comparison of these thermodynasmi
results, including a recent calculation for the vacancy formation volume, with
corresponding LD data (De Lorenzi et al., 1984c), will indicate clearly the
relevance of “explicit™ anharmonic contributions, i.e., additional 10 those
included in the quasiharmonic treatment via thermal expansion of the lattice.

Vacancy migration properties will also be discussed. Monte Carlo
investigations of the [ree energy on the saddle plane are available (Bennett,
1975) and will be compared to recent accurate LD data (De Lorenz et al.,
1984c).

Anharmonic effects on the jump event have been recently investigated by
approximating the saddle surface S, using the Taylor expansion of the N-body
potential energy surface truncated to third order (Jacucci et al, 1984).
Dynamical corrections to rate theory have thus been evaluated for the first

(z\



8. DEFECT CALCULATIONS BEYOND THE HARMONIC MODEL 433

time on realistic model systems. The temperature-dependent fraction of
immediate return jumps and correction to the isotope eflect factor are
obtained to lowest order and compared 1o computer simulation studies.

These investigations provide a thorough testing of the conceptual
foundations of rate theory and a demonstration of its wide applicability to
diffusion in solids.

B. ScCOPE OF MACHINE CALCULATIONS ON PoINT DFFECTS

-+~  Consider a crystal consisling of N interacting atoms disposed either in a
“w-tegular lattice or in a latlice containing a defect. Place it in contact with a heat

~—

N

ath at a given temperature and pressure. The exact evaluation of the energy,
entropy, and volume of this system from knowledge of the interaction poten-
tial is a formidable computational task even for pair additive forces and
N = 100.

Computer simulation techniques, or machine calculations, like MC and
MD have been used extensively to this end for liquids and, more recently,
high-temperature solids. These sampling techniques are needed to evaluate
the 3N-dimensional configurational integrals related to the desired thermo-
dynamic quantities in classical statistical mechanics. No sufficiently accurate
analytical treatment is available for such highly disordered systems.

A quite differemt case are crystals below the Debye temperature, whether
consisting of regular, or defected, lattices. Here the disorder can be subjected
to analytical treatment. Terms beyond quadratic in the Taylor expansion of
the potential energy in powers at the atomic displacements about static
equilibrium configurations can be neglected, the quadratic form diagonalized,
and the integrals over normal coordinates analytically carried out to obtain
precise expressions of the cnergy, entropy and pressure as a function of

{.:i::lmpcrature and volume. The computational task is reduced to the deter-

ination of the crystal static energy ¢ and of the vibrational eigen-frequencies

jo, in the relaxed equilibrium configuration, as functions of the crystai

O

volume. This task still requires the solution of an N-body problem. However,
it can be carried out on modern machines for N up to ~ 100 using standard
computer routines performing function minimization and matrix diagonal-
ization. The results are of course affected by zero variance, these procedures
being analytical, and not statistical, in character. These calculations are
called lattice dynamics,

Al temperatures at which atomic diffusion is important, terms beyond
quadratic in the expansion of the crystal encrgy are not negligible. As a
result, anharmonic contributions to the thermodynamics of lattice defects are
to be expected. Of course, machine calculations such as MC and MD are
exact in this respect. They properly include in the results the effect of all

(B)
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features of a given interaction potential. The reason that existing calculations
of this kind are so scarce is that point defects contribute only terms of the
order of 1/N to the total crystal properties. As a consequence, the sought
result is buried in the statistical noise in standard calculations. One must
revert to sophisticated, if available, difference techniques. Apart from its
use as a means of sampling configuration space to perform thermal averages,
the MD method is the primary tool to investigate in full the dynamics of a
classical many-particle system. Trajeclories of the representative point of the
system in 6N-dimensional phase space can be generated and analyzed.
Jumpfrequencies can be measured in a simple way, at least when the residence
time of the defect is not much longer than a picosecond. The actual path
taken in the jump process can be monitored. Al questions connected wi

crystal memory and persistence in the direction of motion of the defect, muili-
ple jumps, and anharmonic isotope effects are open to direct observation,

Inshort, there exist two essentially different ways to exploit the knowledge
of the N-body potential energy surface ¢. One was just mentioned, ie.,
sampling configurations from a thermal ensemble using the potential energy
as statistical weight in MC or MD calculations to evaluate thermal averages
related to free energies, and jump frequencies. Alternatively, one can invest;-
gate the shape of the surface ¢ directly and make use of the information thus
gained in the framework of an analytical theory. This is the strategy used in
LD. From knowledge of ¢ and t, at special points, thermodynamic param-
elers of point defects are calculated with the quasiharmonic theory of lattice
vibrations, and jump frequencies are derived with the help of transition
state theory.

One can take the latter point of view and extend the Taylor expansion
approach beyond harmonicity. While the harmonic treatment truncates the
Taylor expansion of the energy surface 10 second order, the third-order terms
can be calculated as a next step. Lowesl-order anharmonic contributions t
the free energy can be evaluated in this way, as well as lowest-order dynamica
corrections to rate theory in the form of the occurrence of immediate return
Jumps or deviations from harmonic isotope effects,

Whether the evaluation of local properties of the N-body surface at
special points (minima, saddle points, etc.) limited to third derivatives of the
crystal potential energy @ with respect to atomic displacements is an ex-
hausting undertaking, or even a relevant one, cannot be said at the start.
Whether strongly anharmonic hills and canyons dominate the shape of the
surface on a distance scale that is smail compared with atomic displacements
characteristic of diffusion paths, thus hindering the possibility of projecting
the behavior of the surface looking out from special points and using only

the first few terms in the Taylor expansion, is a matter to be settled by exten-

sive testing. In view of the considerable success met by the harmonic approxi-

()
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mation, it seems certainly highly desirable and probably & rewarding en-
deavor to investigate the role of the next order in the expansion and to
consistently extend the theoretical description. Such an investigation repre-
sents a formidable computational problem, but it will probably bring about a
most important advance in the fundamental theory of point defect diffusion.

R C. PoInNT DeFects IN MACHINE CALCULATIONS

Well-localized point defects in otherwise perfect crystals are especially
suited for investigation by using machine calculation methods on a crystal
comprising a few hundred particles with periodic boundary conditions.

~~Short-range interactions between point defect pairs can also be handled in

wthis way. Information thus obtained is sufficient to describe the thermo-

dynamics of point defects in crystals in the low concentration limit. At high

concentration of lattice defects, eg, in superienic conductors, deviations

~~, from isolated point defect properties should be expected. The time-honored

' Born-von Karman cyclic conditions are still a good way to minimize the

effect of surfaces or interfaces. The limit of large system size has, of course, to
be considered.

In computer simulation studies certain types of defects can be spontane-
ously generated by thermal fluctuations. This is the case of Frenkel pairs in,
e.g., CaF; (Jacucci and Rahman, 1978). However, because of the absence of
sources and sinks for point defects (e.g., dislocations, grain boundaries,
surfaces), in most such studies unpaired point defects like vacancies are not
generated or annihilated. Furthermore, the free energy required to generate
Frenkel pairs is too high in many systems, ¢.g., monoatomic solids. As a
consequence, dynamical simulations of the migration of an isolated vacancy
or interstitial in otherwise perfect crystals are easily carried out by artifically
introducing a single defect into the lattice from the start. The situation is

uite different in superionic conductors and on crystal surfaces. The genera-
(2 tion of point defects on surfaces costs much less [ree energy than in the bulk.
High concentrations of adatoms and surface vacancies are commonly
attained above one half of the bulk melting temperature. As a consequence,
point defect pairs spontancously appear within a few picoseconds on the
top of the few-hundred square angstrom surface being simulated (De Lorenzi
et al., 1982). The regular lattice structure of the surface is readily spoiled and
the very description of the system in terms of point defects breaks down, as

it happens, e.g., in bulk Agl or certain oxides.
A last remark is in order about machine calculations. The techniques
employed in them have become rather involved and many practical details
_ inftuence the final result. In a sense they have lost the character of directness
\._) and sell evidence that theoretical work often has. They are really experiments,

/
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436 GIANNI JACUCCI

albeit numerical and on model systems, and should be regarded and treated
as such. In reporting them it is essential to state precisely the nature and
order of all the steps taken. All relevant technical details affecting procedures,
routines and compuler usage are essential parts of the experiment. Failure to
record and convey 10 others all relevant aspects included in the calculation
results in the impossibility 1o repeat the experiment recovering the same
result. This general remark is expecially true for defect calculations, because
defect properties are of order 1/N. In order to assess whether a theoretical
prediction of defect properties is really sound, it is essential that the model
and techniques employed be consistently and extensively tested, so that all
aspects of them be well understood by the authors as well as by others. Thle
is seldom done. The one bad feature of this state of affairs is that often nobod
knows how to assess the degree of confidence of numbers provided b
calculations and being compared to experimental results!

I1. Lattice Dynamics

A. BRUTE FORCE VERSUS ANALYTICAL APPROXIMATIONS

Until recently, coherent use of well-developed statistical mechanical
concepts was hindered by computationat limitations. Use of drastic approxi-
mations both in the models ¢xamined and in the technical procedures
employed biased the resulting theoretical predictions in an essentially un-
known manner. Starting about 25 years ago, a great deal of effort went into
the development of valuable analytical schemes for calculating defect
properties with an acceptable computational burden on available computers.
Careful theoretical backing was provided for the various approximations
involved. However, the precise determination of point defect properties has
turned out to be an extremely difficult task that is very often out of the reach
of simplified schemes.

It should be clearly stated that the older schemes are no substitute for
current codes. The latter are specifically svited for handling disordered
systems and investigating the N-body potential energy surface exactly. The
carlier schemes are still of value insofar as a careful comparison of their
predictions with the results of modern accurate calculations represents a
test of the adequacy of well-identified theoretical approximations. But,
unfortunately, their use for such careful compansons is rare. In our opinion
the use of old schemes has somewhat outlived their research value, The
effort needed to precisely identify their limitations has outgrown any useful
knowledge they provide.

To some, this transformation of the theoretical work -in the direction of
“brute force” methods may not be palatable. However, a comment similar to

)
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ours was made almost 15 years ago by Maradudin et al. (1971, p- 196), where
a complete account can be found of the approximate methods that were
introduced (o study frequency distributions and related properties such as
zero-point energies and Debye thetas in crystalline solids:

In the final analysis, however, the advent of high speed computers
may render obsolete approximate methods for the calculation of oy
[and the frequency spectra, etc.] ... it is only necessary 10 solve for the
eigenvalues of the dynamical matrix for a very large number of direction
in g-space; [frequency spectra, etc.] can then be evaluated numerically
= to almost any desired degree of accuracy.

»~  Here are some examples of highly idealized models and approximate

\.ubrocedurcs that were employed for defect studies in order to keep the

computational task within the capability of available machines.

) (1} Regarding the interaction potential:

(a) limitation to first near neighbors only, or to the first few shells,
(b) approximation of the potential and forces at distorted lattice
configurations using truncated Taylor expansion of the potential
function from the regular lattice configuration.
(i) Regarding the determination of relaxed configurations:
(2) limitation of the relaxation to the shell of first neighbors of the
point defect, or to the first few shells,
{b) approximation of the relaxed displacements as a truncated
expansion in powers of the forces resulting from creation of the
defect; a linear response scheme was used more often than not.
(i) Regarding the thermodynamic framework :
(@} formation of the defect at constant lattice spacing (without
further discussion of the effect of imposing this condition, rather

O than constant pressure on the prediction of defect parameters),

{(b) neglect of thermal expansion.

@ {c) neglect of finite temperature effects related 1o the crystal

entropy and free energy when considering volume thermal
expansions,

(d) neglect of the contribution of atomic vibrations to the pressure
and to the compressibility.

It is only fair to repeat that not all restrictions are removed in up-to-date
calculations. Apart from the fact already mentioned that fully anharmonic
machine calculations are still very rare, and that the treatment of many-body
forces is mostly limited to schemes including polarizability, it should be
emphasized that the panorama of properLD calculations is far from complete

L ) even for the simpler model crystals, i.e,, rare gases, alkali halides, and alkali

@
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metals. The situation is quite the opposite: The picture is so fragmented that
it would be quite embarrassing to have to produce a detatled evaluation of it.

The author prefers to take up an example and 1o present il in some detail
for the purpose of illustrating what can be learned from careful LD calcula-
tions. The scope of the calculation remains that of collecting in a consistent
way information of a qualitative nature on defect properties, in view of the
fact that the relevance of the models studied to the natural substances they
are intended 1o model js stiil 1o be satisfactorily assessed. However, theoretical
calculations of defect properties of these model substances now can, and

should, be exact from the point of view of statistical mechanics, be it for the )
simplified quasi-harmonic hamiltonian of LD. O

B. LD ForMuLas

Let us lay down the expressions of relevant thermodynamic quantities in
LD. The free energy F of a vibrating crystal is expressed in terms of the
potential energy ¢; and the normal mode frequencies w, calculated at the
relevant minimum R, in IN-dimensional configurational space as

]3”-3 N-2 _ﬁw
(Fo=do+1 % hu, + kT 3 m[; -exp(k T)] (1a)

which reduces at high tempcratﬁres (ie, ho/kgT « 1) to the classical
approximation
IN-3

F=tot kT T Inl

(1b)

Having periodic boundary conditions in mind, one sees that the three

transfational degrees of freedom of the center of mass have been excluded .

from the sums. For pair potentials the potential energy is written as
N
b= X vir)+ 4 ()

i<j=|

with the term ¢, containing the correction due to long-range cutofl of pair
contributions excluded from the sum for r, i > I.. The normal mode frequen-
cies w, are simply related to the eigenvalues 4, of the dynamical matrix | dimll:

W, = /A, /m )

m being the mass of the particles, here taken to be the same for all. Other
relevant quantities are the internal energy U, the entropy S = (U - FYT,

®
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and the pressure P = —(9F/dV)y: P, is best evaluated numerically by using incremental ratios built from
[ 3N-3 IN-3 recalculations of the o, at two closely spaced values of V.
Wg=¢y+3 ¥ ho,+ Y ho, (da) It is important to realize that the virial formula in Eq. (7) differs from the
25 s explhw,/kyT) = 1 A asual formula based on the thermal average of the virial sum precisely by
U = ¢y + 3NkyT (@b) the term P,,(T];F ) -JN—J )
IN-3 _ lr,
_ ho, IN-3 h - | = ~{— v P.=P, + BT 8 .
Sk = —ka{ )) ln(l —exp — ﬁ) + Y ___e::_;(%:?;k_n} (52) P (5V)r (3V)< Z‘,} ar, ru>r+ =P, + P(T) (8
8 - 'y
N-3  (he ’ As a result the substitution of the thermal average of the virial sum with the
rn 8= “"n[ )X ]"(k .;.) - l] (5b) value of the sum calculated in the most probable configuration, i.c., the £y -
equilibrium configuration R,, may lead to disastrous resuits, because it

S’

@ 24 disregarding the volume dependence ofG)
v, P=P, +P . — _9% _ HF — ¢g) essentially consists in using P, alone disregarding the volume dependence 0

o e + FAT)  with P, and P (T)= - (——-“0 A the w,. This is only correct at T =0 and in the classical approximation.

av av
Laboratory experiments are mofe commonly done at constant pressure.
P (6) Machine calculations are mote commonly done at constant volume, i€, -
) g e e ot . O the ingihe basic box of the eyl boundary o g o vlume s @
- scription, i.e., ¢ and the e, , must change. Otherwise, the pressure MC an chemes have also used. k1
fe‘““f"-les& exactly harmonic description will be I'ecovcred,gwherc ther:?s no more or less imposed choice in LD. In the static lattice, with thermal vibra-
lnterna! pressure. Given the interaction potential law, ¢, and o, will be tions frozen out, the pressure as read by the virial formula does not contain
g;fti_em1ned lfor the different equilibrium conﬁgural‘ions corresponding to ' P.(T). This term, of course, can be e‘valu.atod s.eparately and a'dded on to get
. The e s e d by B @1 P o B et en . and . Ths dic o showld b gen
' X . . 1] . =
™ Thermal volume expansion is automatically included in this description. eralized, if appropriate in view of the anisotropy of the solid, to constant
is is because P from Eq. (6) depends on the temperature at a gi stress or constant strain conditions. The formalism is easily extended
.y given V. X ) M
Fixing the value of the external pressure £, and letting T vary produces the accordingly, by the introduction of the components of the strain tensor as
LD equation of state for the crystal, i.e, the volume V for which P from Eq. variables on which ¢ and «, depend.
(6) equals F,, at a chosen T. The thermal expansion of the crystal volume
being one of the effects of anharmonicity of lattice vibrations, LD is also C. FINDING EXTREMA

called a quasi'-harmonic treatment. It cannot be overemphasized that a
thermodynamically consistent implementation of LD requires that when
@ thermal volume expansion is considered and ¢, recalculated at different

We have illustrated how LD calculations are based on the delcrmination
of the static equilibrium configuration R, of the crystal. Ro is defined at Qg

values of V cqrresponding to values qf T derived from some equation of state fixed mh".“e (qr strain). The atomic positions correspond to a ﬁ:lly relaxeld
(o necsarly he LD o) the ariins ofu hod s be considerd conraton . 3l e ae o and B4R} 0 L RS
We see from Eq. l;s;l:ﬁa\;a:ﬁ;“::: 2{,:, il}dl:o(?::imes\:eon'::a‘l:g“:i(;gh::r om obvious. lngdcl'ecl l'ormal)ifon call::’:.lla.ti;ns R, denotes also the relaxed crm-
variations of ¢ with V, the other from variations of w, with V. The first term figuration of the crystal containing the defect. In defect migration studics,
is easily treatable analytically, giving the virial exprt;ssion transition state theory requires use of the thermodynamic quantities given
o3 by Egs. (1)-(7) evaluated at the saddle point R, for the 3N — 1 dimensional

P = - ( N ) T Bv("u)r +P M space normal to the cigenvector with negative eigenvalue, i.c., obtained by

W) e e letting the reaction coordinale § equal zero, in order to estimate the jump

frequency. In both cases, one nceds o locate an extremum of ¢, Ry, of R,

/'-‘\ Wh P i i H
&é) ere P, indicates thf: cotrection due to long-range cutoff. On the contrary, (R, being also a minimum). The location of one of these points is identified

® @
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with the help of one of many function minimization routines applied to
|[Vo|?, or even to ¢ itself for Ry, starting the search from estimated con-
figurations (Bennett, 1977). The chosen procedure has no relevance to the
final result if one makes certain that the right extremum has been exactly
determined within the numerical precision available. This is easily checked
because, fortunately, the property of an extremum is a local property where
V¥¢(Ro) = 0. The neighborhood of R, is first attained with routines that
converge rather slowly but have a large radius of convergence. Then a few
iterations of the extremely fast first-order Taylor expansion of the gradient
bring the system exactly at R, within the precision of the computer:

A¢(R) (R — R,) = VH(R) )

This, of course, requires matrix inversion, but the time involved is negligible
with respect to that for the matrix diagonalization to follow.

Lattice dynamics, as with other techniques employed to study the N-body
potential energy surface ¢, is based on local differential properties of the
surface. Therefore, it is essential that ¢ be continuous and differentiable, at
least in a reasonably large domain including the special potnts R investigated.
When ¢ is given as a sum of pair interactions that do not go smoothly 10
zero, but are cutofl at r,, care must be used in the investigation of ¢. When-
ever two nearby configurations are compared, such as the evaluation of
incremental ratios in computing P,, the list of interacting neighbors must be
employed and kept unchanged. If the list of neighbors is kept constant during
the search of R,, however, one last iteration of Eq. {9) must be tried as a
check with the list recalculated in R,. Because the shape of the surface ¢
far from R, as well as all thermodynamic consequences thereol, are solely
predicted {rom shapes and curvatures of ¢ at R,, great care is required in
dealing with such technical points in order to avoid gross miscalculations,
Whether the curvatures of ¢ at R, and R,, and eventually their spatial
derivatives involving ¢, are indeed sufficient information to accurately
determine defect free cnergies at a given temperature is of course a different
issue. But in order to properly test this very important point one has 1o be
exceedingly careful in treating the N-body potential energy surface, In MC
and MD calculations this problem does not exist because the representative
point directly samples the various relevant regions in configuration space,
and ¢ is properly recalculated ai every point. Any residual roughness of ¢
due to cutoff effects is buried in the statistical noise.

Often model pair potentials are not very short range, and it is not possible
1o place the cutoff within the basic box to which periodic conditions apply,
Use of larger boxes is hindered by computer limitations on N. The solution
is 10 el each particle interact with all the images of the other particles
within the appropriate cutoff distance r,. Many shells of boxes surrounding

I
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the basic one may be included, for in LD calculations the time needed to sum
up pair interaction is not the main limitation as in MC or MD. Again, all
should be controlled by repeating the calculation for different values of N. In
any way, use of short cutofl distances may result in much larger deviations
from the sought result.

As a practical matter we remark that the classical approximation to the
free energy equation [Eq. (Ib)] can be obtained without performing the
diagonalization of the dynamical matrix || ¢,,|. Its determinant D =7, 4,
15 invariant under coordinate transformations, and can be computed for
the cartesian coordinate form of the matrix. For equal masses we have

IN-3 hw, IN-3 hw, h AIN-D
e"p( L I k,,T) = 1 7= (k,,Tm’”) VD

x

In the evaluation of D cure must be taken to deal with translational invariance
and the three nuli eigenvalues thereol. The simplest way is to change these
eigenvalues from zero to unity, leaving the rest unchanged, by adding to the
hamiltonian harmonic potentials of appropriate force constants relative to
displacements of the center of mass along the three cartesian coordinates,
The sought value of D consisting in the product of the 3N — 3 relevant
eigenvalues is then obtained from the matrix || ¢, |, modified accordingly.
il the masses are not all equal, the situation is, of course, more complicated
[see, for example, Vineyard {1957), Jacobs et al. {(1982)]. Otherwise, proper
diagonalization is only needed for the exact quantum mechanical formulas
[although the first quantum correction to Eq. (1b) is expressed in terms of the
mean sqaure value of w, or the trace of | ¢y}, also invariant] and for the
saddle point calculations, 10 determine the directions spanning the saddle
plane, normal to the reaction coordinate, and the isotope effect factor. For
many applications it is sufficient to determine the eigenvector corresponding
to the lowest (negative) eigenvalue, i.c., to the reaction coordinate.

lil.  Vacancy Formation in fcc Lennard—Jones Crystals

A. LD ror THE PerFECT L] CRYSTAL

We shall discuss in some detail a recent LD study (De Lorenzi et al,
1984¢) of vacancy formation and migration in a simple model for rare gas
crystals: the Lennard -Jones (612} pair potential

v(r) = 4e[(o/r)'? — (a/r)°]

Within the framework of classical mechanics, thermodynamic quantities
like F and P scale with ¢ and ¢ in this model. As a consequence, results in

(1)
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its li = Pa3/e, obtained in calculations
educed units like F* = Ffe and P* = Po’fe, ©
:)erl'ormed at the state point (V* = V/o* T* = kgT/e), can be referred to
argon, e.g., by using appropriate values for g and-£:

F= F‘EM- P= P’EA,/U:,

Quantum mechanical expressions, however, do n'ot sca_le. Fixing ll"iek\.ralue
of Planck’s constant h in reduced units a(mc)"” is equivalent to pu‘:1 lln%h:
specific atomic element. This is consistent with the common fact t ae he
magnitude of quantum effects is different for crystals of the various rl:'lr %he
clements at corresponding state points, We must lhert;l'ore specia lz: )

quantum mechanical results to one element. Argon is chosen, and for

w— simplicity all results will refer to it. The values employed for the parameters
\._Jare ¢ = 3405 A and t/k, = 1198 K.

C

Table 1 contains thermodynamic data for the perfgct crystal in the ‘l'cc
lattice structure at four different state peints. Cprnputauom were done using
a cutoff value of r, = 4.5¢. Long-range corrections ¢_to U and P.to P w;re
added to the results. The basic box contains N = 108latoms._ All sums thus
contain 3N — 3 = 32! terms and the center of mass is considered fixed. A
different treatment of the center of mass contribution to the .lhermodyna_mllc
properties would make a difference of order | /N to the quantities per parl;c e.

The most striking features of Table | refer to the pressure da'la. The four
state points have been chosen on the equation of state of crystalline argon at

TABLE |

LATTICE DYNAMICS RESULTS FOR AN FCC LENNARD-JONES CRYSTAL
WITH N = 108 AToMs AND CUTOFF DISTANCE r_ = 4.5¢"

kT 0 03339 (~40K) 04923 (~60K)  0.6678 (~80K)
: 9535 09734 0.9974 1.0323
O :,N —gzzio —0.4024 0.1277 0.7718
‘ P ~0.1873 0.1285 0.4432 0.9662
@ r ~2.5510 —1sm ~4.5514 —5.5804
F -0.2022 ~0.1940 —0.1848 ~0.1725
UIN —8.5551 ~7.4940 —6.9206 -6?;@:1)
UJN ~ ~18250 ~73405 —68377 - g.zm
SN ~8.5551 —8.4957 ~8.4002 ~8.224
o.IN —0.0964 —0.0944 —0.0922 ~ogesi
SINk - 2.1449 3.5314 "
$,/Nk ~ 23838 3.6209 43070
£ oo 0.0219 00278 3'3‘;.', :
(Kyd 0.0164 0.0204 0.0263 .

* The value of A is 00295690 ./mc. Energy is in units of £ and pressure in units of
¢jo’; K, is the isothermal compressibility.
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vapor pressure, i.e, P « | in units of ¢/¢. Therefore LD values of |P| «l
would indicate that

(i) The LY model provides a satisfactory description of the equation
of state,

(i) The values of ¢ and £ employed in converting V and T to reduced
units have been chosen satisfactorily.

(i) Quantum effects are either small (both | P| and | Pg| <« 1} or satis-
factorily taken into account (only | P,| « 1).

(iv) The residual anharmonicity of lattice vibrations, after the volume

dependence of the w, has been taken into account, contributes only a small -

term to the free energy of the crystal; this contribution should be small at
low T and vanish for T = 0 in classical mechanics. g

In fact, Table 1 shows that

(8) Py is quite close to zero at smali and intermediate temperatures,
{b) Pis close to zero only at intermediate temperatures, and
(c} P, is large and negative everywhere, but much more so at high T.

Observations (a) and (b) indicate that points (i) and (i} are satisfied, ic,
the model is not bad. Furthermore, quantum effects are rather large in argon.
They are never really negligible in the pressure, the deviation from the
classical value exceeding 0.55/a° below ~40 K.

Observation {c) indicates that the contribution of thermal vibrations to
the pressure have a huge effect on the equation of state. We may expect in
general that LD calculations neglecting P, can meet with disaster at high T

When the volume dependence of @, and the w, are correctly included in
the calculation of the pressure by adding P, and P,, much of the anhar-
monicity of ¢ is accounted for in these quasi-harmonic calculations. This can
be argued from the fact that the LD equation of state does not depart too
much Trom that of the real crystal. In particular, P is less than one-fifth of@
F, lor the state point of argon close to melting. @

The residual anharmonicity quoted in (iv) is, of course, not taken into
account by LD. This fact probably causes the positive deviations of Pyand P
from zero that grow towards high T In fact, these deviations can be taken as a
measure of the residual anharmonicity. A direct comparison of LD and MC
data on the same model would definitely confirm this interpretation. The
comparison indeed exists, and it had been carefully carried out by Holt et al.
(1970). We note that LD results from Holt et al, ( 1970) and this work coincide
to the reported precision when account is taken of the slightly different
choice of state points. :

From the resuits reported by Holt er ai. (1970) we see that the effect of
residual anharmonicity is to lower the value of P in MC with respect to P in

(i6)
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LD by about ~0.17, —0.45, and —0.91 in units of g/, at T ~ 4(?, 60, and
80 K, respectively. The deviations of (U — ¢, ¥ Nk, T [rom the c.lass:cal yalue
of 3in LD are also negative in MC. The measured values of this quantity at
the same state point as previously specified are: 2.89, 2.85, and 2.79. The
effect on the values of U/N listed in Tabie I is to lower them from —7.49,
~692, and —6.22 to —7.53, —6.99, and —6.36 in units of c, the effect of
residual anharmonicity on Uy, probably being not too different. If we correct
* the value of Fy in Table 1 with the deviation B, — P,,, measured by Holl
et al. (1970), we get the gratifyingly small vatues of —0.04, +0.01, and +0.06
at T ~ 40, 60, and 80 K, ie., a good description of the argon cryslal..
“{)  The LD values for the crystal entropy per particle are also a fair estimate
~~ of the properties of natural argon. The values in Table l_can be transformed
\_Jinto excess entropies S, /Nky with respect to the classical ideal gas at the same
density and temperature. The values obtained for T ~ 60 and 80_ K are —5.62
and —4.89, ie, about 0.19 and 0.35 high with respect to experiment for Ar,
“™ and 0.29 and 0.43 high for Kr (Squire and Hoover, 1969). Note that these LD
k‘.D values do not include the correction term —In(2eN)Y2 ~ —=0.030 from
Stirling’s formula. Furthermore, they are probably affected by small crystal
corrections of order In N/N.

T T T T T 1 1 T
'./"‘\-l-
: il
18 IFg~F21=77¢ 00
o 1
+%BAH‘M\._.‘ 1
-0 N 4 ."\.\ —
. .‘\,_A
o,
~20}— —
-30— E -_
- I RO SN N N B N
-4 -R) -26 -0 0O 08 26 323 451 519
pA

Fig. 1. Use of the graphical method for evaluation of free encrgy differences in the case of
little or no overlap between the energy difference distributions h*(A) and h;(A). Dalfl are takc'n
fram the comparison of an L] crystal of fce structure to the corresponding quasi-harmonic
model. From the graph we get B AF per particle = 0.143 + 0.002 at T = 0.5 and p= 10
[From Rahman and Jacucci (1984) |
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Whether the observed deviations from experiment are due to the neglect
by LD of anharmonic terms can be checked using MC data. Rahman and
Jacucci (1984) have measured (he free energy difference between the fcc LI
crystal, at T ~ 60 K for Ar, and the corresponding harmonic solid (i.e, the
LD approximation). Monte Carlo calculations based on the acceptance
ratio method (Benneit, 1976b) and graphical display (see Fig. 1) gave
(Fry — Fip)/NkgT = 0.143 + 0002 for a 54 particle system. Previously
quoted MC energy values gave Uy — UpYNkgT = ~0.15 at this tem-
perature. As a result, we have (Su ~ 8,0 Nky = —0.29, or S,/Nkg =
~5.62 ~0.29 = —59], which compares favorably with the experimental
values of —5.81 (Ar) and —5.9] (Kr). (Note that anharmonic contributions
lower the energy, but lower the entropy twice as much, so that the effect on
the free energy is a net increase.)

B. LD For THE LJ CRySTAL CONTAINING A LATTICE VACANCY

Resuits for vacancy formation may be oblained by comparing properties
refative to the regular lattice crystal C, containing N atoms with those
relative to a crystal C, containing N ~ | atoms, and one vacant site, both
systems being subjected to periodic boundary conditions. Extensive prop-
erties of the regular lattice must be reduced by the factor (N — 1)/N belore
taking differences, eg.,

AU = U(N — I, v) — U(N.O}N — 1yN
AS = S(N — 1,v) - S(N, )N — 1IyN

Because an extra bulk atom resulis upon forming the vacancy in a lattice. In
fact, the Nth atom is missing from the system C, containing the vacancy con-
sidered above, and it is not practical to introduce it anywhere in the lattice
of the periodic box. Its properties can be taken 1o be identical to those of any

one atom in the regular lattice Co. Hence the factor (N — {)/N is 1o subtract .

its coniribution from the extensive properties of C,.

The vacancy formation process can be investigated in three different
thermodynamic conditions: constant lattice {CL) parameter, constant atomic
volume (CQ), and constant external pressure (CP). In the CQ calculation the
lattice of C, is squeezed so that its total volume V be reduced by the factor
(N — 1)/N to leave the atomic volume Q) = V/N unaltered. Of course, this
procedure produces different values of the lattice parameter of C, for dif-
ferent values of N. As a consequence, N-dependent correction tetms may be
expected to be substantial. In the CP calculation, the lattice parameter of C,
is varied until the reading of the pressure coincides with that of C;. The
resulting variation of the lattice parameter will be found to be smaller than in

(i2)
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€9 calculations, for a given value of N. Relevant vacancy parameters are
identified as limiting values obtained with these procedures for N — co.

The values listed in Table 11 were obtained along these lines with N = 108
{De Lorenzi et al., 1984c). The cutofl distance of the LJ potential wasr, = 4.50.
Long-range corrections are not included in the values shown in the table,
i.¢., uncorrected values for the pressure P — P. have been employed in
evaluating AH and AG, CP calculations refer to equal values of the uncor-
rected pressures, and so on. As a result, the data reported can be regarded as
referring to a consistently treated interaction potential model, ie, LJ +
cutoff at the specified distance r,. Thermodynamic checks can therefore be
carried out precisely. In fact, long-range corrections due to cutoff are not as
straightforward for C, as for C,, and a consistent treatment for the full LI po-
tentia! is difficult. Cutoff dependence of the results will not be considered here.

We shall now briefly discuss these results, perform a thermodynamic
check of their internal consistency, and verify quantitatively whether certain
approximations often encountered in cvaluations of defect properties are
indeed acceptable. The discussion will be based on the material presented in
Table If. Table 111 is included to display the role of quantum eflects in argon,
which are found to be rather small. For a further discussion of these effects,
as well as extrapolations to large N and cutoff corrections, see De Lorenzi
et al. (1984c).

As a first observalion, we note that the formation volume at constant

TABLE I}

VARIATION OF LD THERMODYNAMIC QUANTITIES OF AN LY CRYSTAL
UPON THE FORMATION OF A LATTICE VACANCY®

kT 0 03339 (~40K) 04932(~60K) 0.6678 (~80 K)
(A9, 2.4493 2.3249 2.1451 1.7988
(AS), —6.504) -6.7191 ~7.1558 -~18234
(49, 30112 2.4658 2.1846 1.0130
(AL, B.4185 8.3810 8.2929 8.0894
(alh, 6.4502 53525 4.1880 2.7451
(ALY, 8.5583 8.4312 83111 7.6440
(AP, 0.0309 0.0064 0.0014 ~0.0182
(AP), 0.5460 0.4404 0.3464 02175
AV, 1.0628 10155 1.0043 09184
(AP, 8.4185 7.6047 7.2349 6.8882
(AP, 6.4502 7.6160 M 1969
(AG), 61781 74019 7.5468 7.8685
(AH), 6.1781 §.2252 8.6242 8.5449

* All quantities are in reduced units; the valucs refer to the classical approximation.

(@)
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UPON THE FORMATION OF A LATTICE VACANCY

TABLE Il
VariaTions of Quantum LD THERMODYNAMIC QUANTITIES OF AN LJ Crystal

GIANNI JACUCC]

kT (] 03339 (~40K) 04932(~60K)  0.6678 (~80 K)
(AS), - 19835 1.9464 1.6533
(AS)y - -5.6931 -6.7356 ~7.6816
(AS), - 1.8743 1.7808 0.7126
(an, 79311 3.2018 8.1865 8.0202
(A, 8.2061 6.1690 4.7028 10714
(AW, 19315 8.1697 B.1168 1.5180
(aP), -0.0160 —0.0063 ~0.0066 -0.0235
am, 0.5707 04582 03572 0.2237
(AN, 09716 0.9858 09810 0.8993
(AR, 19313 7.5395 7.2265 6.9250
(AR, 8.2061 8.0699 8.0244 8.2012
{(AG), 7.9454 7.8531 7.8530 8.0992
(AH), 1.9454 8.4792 8.7313 8.5751

pressure is predicted to be always within about 10° of unity. As a conse-
quence, CL values are much closer to CP value than to Cf) ones. The obtained
CQ values are indeed remarkable: (AS),, is large and negative, and (AU),
decreases roughly linearly with temperature, so that in AF = AU — T AS
the temperature variation of the energy and entropy terms cancels 1o a large
extent. Constant Lattice parameter and CP values for AU are much less
dependent on T, and AS is much smaller and positive in those cases; as a
consequence, AF is again only moderately dependent on T.

Second, (AU),_at T = 0is not too different [rom —U/N of Table 1. As T
increases, however, — U/N decreases while (AU), remains remarkably
constant. A similar comparison for (AF), and —F/N shows that —F/N
increases with temperature while (AF), decreases. In conclusion, the forma-
tion energy of the vacancy is not accurately described by the opposite of the
energy per particle, relative deviations of about one third being observed
close to the melting temperature.

Third, {AF), and (AG), are always only a few percent apart. This is a
gratifying result and it constitutes the first indication that the thermo-
dynamics of the vacancy formation process are correctly described. It is in

fact a general result (Flynn, [972) that in thermodynamic transformations
involving volume changes one has

(AF)g = (AG) (10

to order AV/V, or 1/N in this case. This resuli conveys the information that
energy and entropy changes in the iransformations with and without lattice
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dilatation balance oul. Therefore, only a thermodynamically consistent
description can reproduce it.

C. TesT OF COMMON APPROXIMATIONS

The basic approximation to be encountered in this type of calculation is
the static model, i.e., the neglect of entropy and related contribution, resulting
from lack of knowledge of the w,. Therefore, the only quantity entering the
description is ¢g. Quantum mechanics is, of course, out of the reach of this
approach. However, since the contributions related to entropy are invariably
multiplied by the factor T, this description becomes exact at T = 0 in

~~ classical mechanics, the expected errors growing with T. One simple check

O

O

o

\---’

of the magnitude of these errors can be performed on the mentioned equality
(AG)p = {AF)q (to order 1/N), that can also be written as

(AH)e = (AU)q + T[(AS) ~ (AS)] (1)

This relation is particularly useful whenever CQ calculations are to be
preferred, e.g.. for metals described with the pseudopotential model {Jacucci
and Taylor, 1979). The outcome of these calculations is (AU),, and (AH), is
the sought result, being the slope of experimental Arrhenius plots. We sce
from Table [ that the neglect of the entropy term in argen at high temperature
brings disaster: (AU), is only about one-third of (AH)p. It has become
customary in these cases to evaluate separately the entropy term using a
value for the thermal expansion coefficient ap independently available (ofien
from experiment) and the approximate relation (Flynn, 1972; Jacucci
and Taylor, 1979)

T(AS, — ASy) = T AQ, 0p/K; {12)

based on the evaluation of the entropy change upon expansion of the regular
lattice Cy. 1t is indeed found that the estimate of Eq. (12) provides the desired
value of the entropy difference term within the LD model to order 1/N, How-
ever, in the model argon being investigated MC values ol (TAQp 2, ) Ky, = P,
are some 15% lower than LD values at T ~ 80 K (see pressure comparisons
for the perfect lattice reported above; the discrepancy would be even larger
were it not for a partial cancellation of differences in g and K;). As a result,
the value of T(AS; — AS,;) at high temperature predicted in this way is
accordingly lower than what it would be using LD consistently.

Another feature of the static approximation is 1o neglect the entropy
related term P, in the pressure. We already noted that the size of this term is
by no means negligible for the external pressure of the regular crystat. Let us
sec what the value of (AP, ), is and compare it with the sum (AP,), +(AP), =
(AP)_. 1t is found (De Lorenzi et al., 1984c¢) that (AF,), is 0.0567, 0.0828, and

@n
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0.1136 at T ~ 40, 60, and 80 K, instead of the values for (AP}, of 0.0064,
0.0014, and —0.0182 of Fable IL. This means that the formation volume
{AV), predicted using {AP 1y, or (AP,)q, comes out to be much too large. In
fact, in the static approximation it is found that (AV)p = 1.24Q and 1.500
al T ~ 60 and 80 K instead of 1.0 and 0.92! Even the sign of the relaxation
volume is wrong. This huge discrepancy of the static approximation (o
(AV)p Irom the LD value is probably the most noticeable effect of neglecting
F,, and represents a very important discovery in the work of De Lorenzi ef af.
(1984c) described here. Although argon (and its models) is expected to be
badly behaved in this respect, because of the relatively high value of its

Griineisen parameter, from now on the effect of P, on defect properliesO )

cannot be disregarded light heartedly. _

The results of the static treatment are thermodynamically consistent only@
if read at F,, = P, and T = 0, where they are also exact in the classical
framework. Values corresponding to different lattice parameters will then
refer to different external pressures at T = 0. Altempts Lo interpret the data
in terms of different temperatures assuming thermal volume expansion are
bound to meet with inconsistencies, because of the neglect of the contribution
of Sto F, or of 85/8V to P. or both. For instance, Eq. {11} holds exactly at
T =0 in the classical static model, with P = F, given by Eq. (7), for any
given lattice parameter:

(AUY, + P,(AV),, = (AU), 3

If otie now desires to use the same data, obtained from knowledge of ¢,, o,
and thetr volume derivatives, to exploit or check Eq. (11) in full, i.e., at finite
temperature T, one must alter both sides to include entropy contributions.
In the left-hand side P = P, + P, will replace P, throughout, and in the
right-hand side the term T(AS, — AS;,) will be added. Performing only one
such modifications will, of course¢, unbalance Eq. (13). An approximate
treatment consistently neglecting P, but properly including S, produces{’
{AFjg~ 806 and (AG)p~ —1.86 at T ~ 80 K in complete disregard of
Eq. {10) and grave prejudice of the stability of the lattice held at constant &
external pressure!

The moral of these findings is that now is a good time to stop [ooling the
experimentalists. Predictions from unreljable procedures cannot be sold as
reliable with the only excuse that they are the best one can do. The calculation
of defect properties has turned out to be a very difficult task, and the use of
approximations is seldom forgiving. Most of these approximations now can
and should be dropped. Remaining sources of indeterminations must be
spelled out and their effect analyzed carefully.

The only source of indeterminations of the LD treatment of the L) model

presented above sits in the residual anharmonic effects atready mentioned @

@3)
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for the case of the regular lattice. These will be treated below, apart from cut-
off and finite size effects, for which the reader is referred to the original work.

D. CompARisON wWiTH MC RESULTS

The free energy of formation of lattice vacancies in LJ crystals was first
measured by Squire and Hoover (1969} using MC and a path integration
method. The calculation was repeated by Jacucci and Ronchetti (1980) using
the acceptance ratio method, and has been recently extended to include the
evaluation of the formation volume {De Lorenzi et al., 1984c). In these calcu-
lations one measures the free energy Af associated with reversibly removing a
particle from a perfect crystal, keeping the lattice parameter constant. The

{ree energy contribution G/N of reintroducing the particle in the bulk of the

system must be accounted for separately. This is commonly done by using
MC energies and pressures, and experimental excess entropies. Eventually,
the excess [ree energy should also be measured by MC in the model system.'

The formation Gibbs free energy is obtained as (Squire and Hoover, 1969,
De Lorenzi et al., 1984c).

(AGlp = Af + GIN (14)

The formation volume requires a finite difference evaluation of the derivative
of Af with respect to volume. A small statisticat uncertainty on Af must
therefore be achieved. Furthermore, this delicate difference operation may be
spoiled by problems connected with cuioff of the interaction potential. In
the work of De Lorenzi et al. (1984¢) LD results for various system sizes and
cutoff distances were compared, providing an indirect check of the adequacy
of the MC procedure used to measure AQ, in a 108 particle system.

The LD value of the pressure is large and positive along the experimental
equation of state of rare gas solids, while the MC pressure is fairly low. Since
a term PV directly enters in G, and hence in (AG)e through G/N, the com-
parison of the two sets of data (MC and LD) should be done disregarding its
contribution. Larger discrepancies are unnecessarily obtained otherwise.
The comparison is then done on the quantity {AG) — PQL

The LD value of this quantity exceeds the MC value by 6%, at 60 K and
10% at 80 K (these deviations double if the term PQ is not subtracted). Since
the difference in the Helmholtz free energy per particle {~0.07 at 60 K, sce
above) is only one fifth of this, almost all the large explicit anharmonic
contribution 1o (AG) comes from Af, ie, [rom the lattice relaxation around

! Lowercase f is used to stress the difference of the quantity Af presently in hand. which
refers to the comparison of two crystals, with and without defects, i.c., consisting of different
sumbers of atoms ¥ — | and N, and AF defined previously, which referred to the same number
of atoms.
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the defect. The conclusion is easily checked by a direct comparison of Af
values. The effect of anharmonicity is to lower the frec encrgy of forma-
tion, with an increase by a factor ~4 of the number of lattice vacancies
at 80 K in Ar. .

An interesting result of the work of De Lorenzi et al. (1984¢) is that the MC
value of the formation volume, AQ/Q = 1.21 £ 005for T ~ 60K + 80K,
is intermediate between LD and LS values, LD being too low and LS too
high, by over 207%,.

E. RELEVANCE FOR LD CALCULATIONS IN METALS

The test of approximations performed above is particularly interesting
with respect to the case of alkali metals, for which lattice statics calculations
that use accurate interaction potentials exist (Jacucci and Taylor, 1979). The
relevance of the entropic term of Eq. (11) is clearly recognized in that work,
and its contribution evaluated using experimental values for compressibility
and thermal expansion. The contribution P, of vibrations to the pressure
was, however, neglected so that all calculated volumes are confined to the
LS mode!. Despite the presently described evidence that the latter approxi-
mation is indeed very bad for rare gas crystals, LS results for alkali metals
met with precise agreement with careful expetimental data. For Na and K
adding the migration energy, obtained by MD by Da Fano and Jacucci
(1977), 10 the static formation energics one can derive the temperature
dependence of the self difTusion coefficient. Strikingly good agreement found
for both metals with the slope of the best-fit formula of Mundy's data
{Mundy, 1971; Mundy et al,, 1971) points to the fact that monovacancies
can explain the curvature of the Arrhenius plot of Na.

TABLE 1V

Twe TEMPERATURE DePENDENCE OF AH, (MIGRATION)
For AL CaLcuLaTeD Using VR, ) TRUNCATED
AT 1.8 & (LATTICE SPACING)

T AU TnAS, — AS,) AH, (migration)
15 0.45 0 0.45 (041
350 0.40 011 0.51
450 0.38 0.16 0.54
05 0.34 027 0.61
860 031 0.38 0.69 (0.607
960 0.29 0.48 0.77

* The values in parentheses were obiained by using
¥(R, Q) properly summed.
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On the basis of this evidence, one is inclined to think that the approxi-
mation invoived in neglecting P, in alkali metals will prove to be much better
than in Ar. This is in accord with expectations on the role of anharmonic
effects in these materials.

On the other hand, the other LS approximation of neglecting T(AS, —
ASy) in calculating finite temperature enthalpies from constant volume
energies is always bad. A striking example is given for Al (Jacucci, et al., 1981)
by calculations of the migration enthalpy (see Table [V). From the LJ study
of this section we can infer that if the volume changes are evaluated using

. ( D only P,, as in this case, the correction is probably overestimated.

-~

A

9

O (Vineyard, 1957)

IV. Vacancy Migration

A. RaTE THEORY FORMULAS

In the limit of classical mechanics rate theory is used to calculate the
vacancy jump [frequency. Calling § the saddle surface, or “watershed,”
separalting the regions 1 and 1’ in configuration space corresponding to the
defect being located at two neighboring fattice sites, one writes the jump
rate as (Vineyard, 1957)

o [T fsexp(=g/kaT) ds )

2n I, exp(— (kg T) dt
The integral in the denominator extends over one of the two equivalent
regions. in using Eq. (15), it is assumed that no memory of previous jumps is
kept, so that the equilibrium distribution is established before each jump, and

that no recrossings occur, i.e., that the surface S is crossed only once during
the jump event. In the quasi-harmonic approximation I' is written as

l 3””3(”1 s T W

where again the center of mass motion has been exciuded, The w,, are the
normal mode frequencies at the saddie point, and @ = 3N — 3 is the index
of the imaginary frequency relative 1o the reaction coordinate, that has been
left out from the product at the denominator. In this approximation § is

replaced by the hyperplane S, tangent to S at the saddle point. We choose 1o
rewrite Eq. (16) as

T = (@/2n) exp(AS/ky) exp(— AU/kgT) (17)

@s)
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with
N-3 IN-4 @
@3 = [} .. AS=kg ¥ In— and AU =¢, — ¢,

Values of AU, AS, and & can be calculated by LD in the quasi-harmonic
approximation, as for vacancy formation quantities. Results obtained by
De Lorenzi et al. (1984c) are listed in Table V.

The calculations are done at constant £2 and at constant P. These con-
ditions refer to the saddle point configuration with respect to the equilibrium
one, i.e., they are chosen to be at values of P and £ appropriate to the forma-
tion of the defect at constant pressure. Building (AG)y and (AF), from AU,
AS, and {AU), Eq. (10} is seen to be again rather well-obeyed.

Results of Table V warrant a discussion similar 10 that presented for the
formation data of Table 11, that will not be repeated here. As in that case,
the cutoff value was r. = 4.5¢ and the data have not been corrected for
long-range cutofl effects.

B. ANHARMONIC CONTRIBUTIONS TO THERMODYNAMICS

The calculation of T in Eq. (15} is essentially a free energy difference
problem. It can therefore be approached by using methods based on sampling
of the type encountered earlier for the calculation of the free energy of
formation of defects. In fact Bennett (1975) has invented one such method to

TABLE V

VARIATIONS OF LD THERMODYNAMIC QUANTITIES OF AN LI CRYSTAL
CONTAINING A VACANCY UPON RAISING FROM EQUILIBRIUM
TO THE SADDLE FOR VACANCY MIGRATION"

O

©

k,T 0 03339 (~40K) 04932(~60K)  0.6678 (~BOK) @
(AS), —1.1950 —1.2284 —~1.2742 ~1.3506 @
(AS), 3.1612 31575 3.4404 39543
(aln, 5.2652 48035 43064 1.6314
aw, 6.3061 6.3192 6.4588 6.6048
(AP, 0.2402 0.2008 0.1669 ©0.4242
(A, /0 0.4897 0.4847 0.5098 0.5542
(AP, 5.2652 524037 49148 45313
(AG), 5.2094 5.1666 4.9209 4.5078
{AH), 5.2094 6.2209 6.6178 7.1485
@ 15.7509 14.8043 13.7263 12.3219

* From De Lorenzi ef al. (1984). Definitions of AS and AL/ arc in the text. Values of
the geomelrical mean @ of the normal mode frequencies at equilibrium are also given
(in reduced units fe/me?).
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evaluate . For LJ at T ~ 60 and 80 K, Bennett finds In[F{me/ei'#]) =
—75+ 10and —5.0 £ 0.5 The LD estimates from Table IV are ~ 9.2 and
—6.1, showing a rather large discrepancy between the quasi-harmonic
approximation and fully anharmonic rate theory predictions. Because in
Bennett’s work direct jump frequency measuremenis were also made and
gave the value of —5.3 + 0.2 for the logarithm of the jump frequency at
T ~ 80 K, in agreement with his anharmonic rate theory prediction, we
conclude that (i) rate theory is reliable, while {ii) LD evaluations at high
temperature may not be. In this case LD predictions are low by a factor
anywhere {rom 2 to 5.

It should be noted that previous evaluations of Iy using Jattice statics
values of (AU), and an effective attack frequency v* in the place of the LD
factor (®/2n)exp(AS), accidentally yielded better agreement with anhar-
monic jump rates {Bennett, 1975). The LD value for (AS),/kg is larger than
unity in modulus and negative in sign. This somewhat unexpected fact
lowers the value of the LD prediction for [ below previous estimates,
thus destroying the apparent agreement between static predictions and
dynamical results.

This is the first accurate comparison between harmonic and anharmonic
rate theory predictions. That LD overestimates the barrier to atomic jumps
may in fact be a general feature (Jacucci et al., 1981: De Lorenzi et al., 1982).
The extension to metallic and ionic crystals is very desirable.

C. DyYNAMICAL CORRECTIONS DUE TO SYSTFM MEMORY

Molecular dynamics studies of vacancy migration have revealed that
memory effects are indeed present {Bennett and Alder, 1968; Bennett, 1975;
Bennett, 1976a; Da Fano and Jacucci, 1976, 1977) as a tendency of the

., vacancy to persist in the direction of motion in successive jumps closely

)

{(; spaced in time. The most relevant consequence of this fact can be described

as the occurrence of multiple jump processes in which the vacancy is displaced
by more than one lattice spacing in one complex dynamical event. These
events are clearly separated from regular single jumps in the distribution of
time delays between successive jumps (see Fig. 2). In lact, the average delay
allowed in multiple jumps is only about 107, of the Debye period. One may
consider the second jump to be a dynamical consequence of the first. The
distribution of time delays for longer delays closely follows an exponential
decrease appropriate to randomization of the system memory between
successive jump events, The contribution to diffusion of multiple jump events
must be evaluated separately.

Double jumps have been observed in foc and bec lattices. They appear to
be a general feature of solid-state diffusion, quite independent from the model

(34
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Fig. 2. Time delay between successive jumps of s vacancy ; dashed lines indicate the separa-
tion of double events into the exponential long-time behavior of the randomized system and
short-time behavior due to dynamical correlations. [From Da Fano and Jacucci (1976) and
Flynn aud Jacucci (1982).]

potential employed. The question is rather what [raction of double jumps
occur at the melting point of crystals, than if they in fact exist. The activation
energies {E, ) for double jumps are much higher than those (E,) for single
jumps, possibly higher than the double of it. Da Fano and Jacucci (1977)
found the values {in electron volis} for E, and E; in Na, K, and Al to be 0.12,
0.08, 0.42 and 0.55, 0.40, and ~2, respectively, although it must be pointed
out that multiple jumps involving more than two atoms were broken down
into double jumps in the bookkeeping.

Because of their high activation energy double jumps do not contribute
appreciably {o atomic diffusion except in the close neighborhood of the

melting point Ty,. Even if they rise to 257, of the total jump events in Na, @

where they have been cbserved in greater number, when T =~ 09 T,, their
relevance is much reduced. For instance, in K they drop from 17%; at 330 K
10 9%, at 310 K. As a conseqtuence, the double jump is not a possible candidate
to explain the curvature ol Arrhenius plots over large temperature intervals.
Failure to clearly state this point in the originat work has perhaps mislead
some authors. Double jumps are most probably responsible {Bennett, 1976a;
Da Fano and Jacucci; 1977) lor the notorious “premelting phenomenon,”
e in Na, i, an anomalous sudden increase in diffusivity accompanied,
also in Na, by an anomalous decrease of the isotope effect factor.

The double jump must be regarded as a second diffusion channel available
ta the vacancy. In fact, there are many such channels for the vartous possible

angles between the two atomic displacements, plus multiple jumps involving @

(
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more than two atoms. In addition, vacancy jumps involving the displacement
of only one atom to a second nearest-neighbor site have been also observed
in Na (5% at T,,!) and in K.

Another observation of peculiar dynamical events in vacancy jumps
(Benuett, 1975) refers 1o the fact that the system trajectory in configuration
Space may cross more than once, in a short time, the hyperplane 8, tangent 10
the “watershed” S at the saddle point. Here 8, is orthogonal to the direction of
the eigenvector n, having negative cigenvalue, and it is easily identified in
the simulation by the vanishing of the reaction coordinate £. Because Eq. (16)
gives an estimate of I'; on the assumption that all crossings of §, are success-
ful, these immediate recrossings are an additional source of error of the
quasi-harmonic formula.

The problem of the recrossings is more general, however. Also, the
watershed § in configuration space does not exactly separate trajectories
falling in the two neighboring minima. This would happen only for purcly
viscous motion with no inertia, but not for newtonian motjon. In the latter
case, § can indeed be crossed more than once within a short time {Flynn,
1975) just because it is curved. Therefore, a more correct way of wriling
the jump frequency is

Fr=re (18)

with I given by Eq. (15), and ¢ a conversion lactor representing the fraction
of forward crossing of § for which the jump is successfully completed,
Equation (18) is more general than hitherto implied. Here I'" and ¢ can, in
fact, be defined with reference 1o any convenient hypersurface between r and
' (Bennett, 1977); S, can be used to this end. The walershed § has the only
advantage to maximize ¢ In any case a correct estimate of I' requires an
evaluation of c.

In summary, evidence gathered by MD studies indicates that dynamical
cvents at variance with the assumptions of randomization and single cross-
ings are restricted to short times, On the basis of this observation, an analysis
of the origin of dynamical correlation efects has suggested (Flynn and
Jacuceci, 1982) a way to correct the predictions of diffusion coefficients from
rate theory. The basic idea is that since these dynamical effects are restricted
to short times, they can be related to local geometrical properties of the
potential energy surface.

The rate at which return Jumps occur may be calculated directly as the
outcome of trajectories almost parallel 1o § that cross S twice because S is
curved. This happens if the momentum along the trajectory is high enough to
ensure a radius of curvature of the trajectory larger then that of § (see F ig. 3).
Similarly, the frequency of multiple jumps can be evaluated from the thermal
expectation rate of trajectories that cut the relevant dividing hypersurfaces

(29)
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Fig. 3. Schematic representation of a curved saddle surface and the potential energy at
neighboring points. The location of a volume element at x, 5 is indicated, 1ogether with a (ra-
jectory which is parallel to S inside the volume clement. Return jumps occur when the radius
of curvature p(s, x} of the trajectory is greater than the radius of curvature p(s) of the saddle
surface at the same value of s, so that the irajectory cuts § twice. [From Flynn and Jacucci
(1982).)

Fig. 4. (a} A row of aloms with 2 vacan sitc. (b} Schematic diagram of the potential encrgy
contour for motion of atoms 2, 3, and 4, and the saddle surfaces S, §,, and §, for successive
jumps of atoms 4, 3, and 2 into the vacancy. Progressively longer heavy arrows indicate the
Jump of atom 4 from the initial configuration, the double jumnp of atoms 4 and 3, and the triple
jump of astoms 4, 3, and 2 in a single dynamical event. It is possible, in principle, to calculate
the rate at which multiple events occur and hence (o correct errors in the rate theory predictions.
[From Flynn and Jacucci (1982).]
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Fig. 5. Potential energy surface showing the path Lo double jumps of the vacancy in the
fec LY crystal. (a) V plotted along two normal mode directions, {, and {,. from the inflection
poi.nt; {, (running from right to left) is the unstable mode corresponding to double jumps;
{;isthe dgcomposilion mode for the jumping pair: it has zero frequency and exhibits a flexus
of nonvam.shing slope. Along this direction the potential falls from high values to the equilibrium
&.:onﬁgurauon corresponding 1o the vacancy being in the middle. Usual saddle points for single
jumps connect this configuration to the neighboring ones. The plot spans 1.45 in {, and 0.6¢
in {; resulting ina maximum variation of ¥ of about §5¢. (b) Atomic displacemcntls invol\.'ed
in modes {, and {, are prajected in (i) the (110) plane normal to the atomic jump and (ii) the
paraliel (100) planc. Circles denote atoms in the central plane, squares denote aloms belonging
to the two adjacent plancs above and below. [From De Lorenzi et al. (19844d}.}
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in direct succession (see i’igs. 4 and 5a.b). In both calculations local properties
of ¢ (e.g., curvatures of S at the saddle point) are used to evaluate the first
correction term in a T expansion of these anharmonic contributions. This
analytic program can produce predictions useful also at high T if the Taylot
series converges quickly.

The calculation of the isotope effect in tracer diffusion is also affected by
dynamical contributions. The dependence of " on the mass of the jumping
atomn comes both from I’ and c. If T is defined with respect to the hyperplane
S, the contribution of T to the isotope effect is cqual to the harmonic AK,
and the only source of anharmonic contribution is ¢. Bennett (1975) has
deviced a difference method to evaluate dc/dm by MD with reference o the

o

planat So. Again, it has been proposed to use knowledge of the curvature of § @

at the saddle point to evaluate anharmonic contributions to the isotope
effect to lowest order in 3 T expansion (Flynn, 1975).

It should be emphasized that a coherent program using modem calcu-
lations based on sampling, i.c. MC and MD, can be carried out to evaluate
I of Eq. (15) and ¢, as well as their mass dependence, at least with reference
to S, (Bennett, 1976a). This last limitation is dictated by the necessity of
having a simple criterion available 10 decide whether a given point is on the
surface of interest. No such simple criterion, based on local propertics of ¢,
is known to exist for § itself. Furthermore, MD can be employed to measure
jump frequencies directly. However, all these calculations are still rare.

V. Analytical Treatment of Apharmonic Jump Frequency

If the analytical approach based on the Taylor expansion of ¢ to third
order were successful, it would provide a theory of dynamical effects, the
predictions of which would be valid for different materials and different
temperature and pressure, given analytically in terms of potential energy and
atomic masses. The structure of the theoretical results would make intuitively
clear what factors cause ratc theory to break down, and which physical
systems are most likely to exhibit these effects. Therefore, analytical calcula-
tions of first order correclions to rate theory, including the fraction of retdrn
jumps, anharmonic isotope effect, and deviation of the flux I’ through S or
S, from Eq.(15) because of higher-order terms in the variation of the potential
energy ¢ (sec parts a, b, and c of Fig. 6), should be carried out numerically on
realistic models. These first-order corrections could, in turn, be compared
with available MD observations. ‘This work is in progress (Jacucci et al.,
1984; De Lorenzi et al., 1984a; De Lorenz et al., 1984b) and a partial
description of it will be anticipated here.

(32)
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Fig. 6. (Continued)

A. THE SADDLE SURFACE S

Consider the potential energy function ¢; the gradient V¢ = (d¢/dx, -

/0% 35 defines a vector field in configuration space. Constant ¢ contours
consists of 3N — | dimensional hypersurfaces, everywhere orthogonal to
V¢. The vector field has singular points where ¥¢ = (0, Among these we are
particularly interested in stable minima, where all the eigenvalues of A¢ ]
are positive. Consider two nearby local minima, along with all possible
trajectories in configuration space linking the two. To each trajectory one
can associate the maximum value taken by ¢ on it. The point identified by
the lowest value of these maxima will be called the saddle point P,. In P,,
V¢ = 0 and all but one eigenvalue of A¢ are positive. We wish to define a
suitable “watershed” hypersurface dividing the space around P, into two
regions surrounding the two local minima. These regions have the property
that any curve everywhere tangent to the vector field V¢ belongs entirely
either Lo one or to the other region and terminates in the corresponding local
minimum, unless it belongs entirely to the watershed and terminates in the
saddle point P,. The watershed hypersurface shall be named the saddle
surface S.

The 3N — | dimensional hypersurface S is everywhere orthogonal to
constant ¢ contouts, and its normal n obeys the equation

n-ve=10 (19}
in all points.

Furthermore, § contains the saddle point Py. [ts normal n, in P, coincides :
with the direction of the eigenvector of A¢ having negalive cigenvalue, The
hyperplane through P, and normal to n, is therefore tangent to S in P,. It is
called the saddle plane S,. )

B. TavrLor EXpansion FORM FOR S

We wish to find the Taylor expansion form for the equation of § about
Py. From now on we shall use the reference system with origin in P, having
the principal axis parallel to the eigenvectors of Ag at P, . Call z the coordinate

(o)
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inn the direction of the unstable normal mode, or reaction coordinate. The
saddle plane is described by the equation

z=10 (20)

The equation of an hyperplane through a point P with normal n = (n,...,
Mye-s Han_ g, M) IS
IN-1

z~2(P)=— ¥ %[x, - x(P)] 21)
i=1

- We can verify that the saddle plane has a normal n, of components, n(Py) =

0, n,(Py) = 1, as it should have.

O The equation fot S is of the type

@

z = F{{x.}) (22)

with F(P)) =0 and aF(Py)/dx, = —n(Py)/n,(Py} = 0. The first non-
vanishing terms in a Taylor expansion of the function F in powers of the
displacements x; are of second order. To this order, § is approximated
by the quadratic form

IN-
=3 2 Fxx
=1
Now
Pr_3(8)_ 8 m)_1(nin_m)
ox, 0%, x\dx,) ox,\ n) nm\ndx; 0x
so that

*F oF an, 6n,)
=|l—) =] =—{\z—} = - 23
fy (ax, axi)l'o (a"J a"i)ru (3x;)rn (‘3"‘ Po @)

Note that the coefficients F,, are the opposite of the elements of the curvature
matrix

oy,  ony
x O
c=| : : 24
ony  dny
ax  oxy

calculated in P,. They can be related to derivatives of ¢ using the fact that §
if a solution of V¢p°n = 0, or
IN-1

md,+ Y ndi=0 (25)

i1l
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where ¢, = d¢/dx; and ¢, = d¢/dz. Equation (25) holds for all points of S.
Therefore, we can impose the condition that the derivative of the left-hand
side of the equation along any direction in space contained in S, must vanish
in P,. lerating the procedure twice, we find after some algebra that

6",

b + 5;1

on
Sy + 5}“’;@; =0 (26)
ot, remembering Eq. (23),

F) = ¢,,/(du + ¢y = ¢.,) 27

all quantities being evaluated in P,.

o

@

Equation (27) is the main result of this section and it shall be used in g

Section C as the base for the description of S, with a second order Taylor
expansion of ¢ about P,. Neediess o say, the procedure used to obtain Eq.
{27) can be iterated any number of times to get higher-order coefficients in
the Taylor expansion {(De Lorenzi et al., 1984a).

An additional important feature of S being present in many different
circumstances can be derived by symmetry arguments. Imagine that the
saddle point geometry is equivalent looking from a positive or negative
value of z. Then the derivatives, with respects to displacements along the
unstable normal mode, of the eigenvalue ¢, must be zero, viz,,

bu=b-a=0 (28)

No such requirement exists on ¢, for i # j, since the symmetry ¢,_; =
@y = — ., is sufficient for the two sides of § to be equivalent. This
symmetry property is to be found in many important instances of solid state
diffusion, e.g., vacancy diffusion in fcc crystals. In all these cases Eq. (22)
becomes
1 38-1 381
£=3 Y. ¥ Fpux @9
i=1 J#i=1
because F, = 0. The matrix ¢(P,) has diagonal elements that are all zero. It
can be diagonalized by finding normal modes of the saddle surface quadratic
form having cigenvalues —p; !, i.e, the inverse of the radii of curvature.
The equation for § becomes
1 AN-§
=—3 X A’ (30)
2 =1
Because of the invariance of the trace, the sum of the principal curvatures
—(p,)”* must vanish, so that 337 (p,)"! = 0. The eigenvalues of ¢ are in

Ge)
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fact seen to come in pairs having opposite sign. As a consequence the saddle
o Q @ o ©0 surface § has itself the shape of a many-dimensional saddie (Figs. 7 and 8)}
o In conclusion, a Quadratic description of § in Powers of the displacements
(b} from P, is simply done in terms of third-order derivatives of @ at Py of the
. . LJ crystal type ¢, and of the eigenvalues of the d namical matrix also at p , the
" Fig. 7. (2} Plot of the 3""""‘_"“"‘""11“’:?“‘1‘:;:: :;t‘::‘:: (‘::';m::: :,T;:‘::,:.:gf:?lcong V? and cocfﬁcie:'lls F; being given by Eq. (27). In graclicd cases, numerical k?lOW[-
:I_onngn:jhie ::':]::g(.lf;sr:ixt’::l:ol’glomic displacements involved in v and v; . (c) Surface .
[ °

i rvaiure; the
along the twin directions of principal curvature v, showing the second largest cu

plot spans 20 al ong rrec| iO LI (] e 13 - . . - -
+ and and 0.75¢ along z. (d) Projections of atomic displacements [CO ]' ttons due ti []i] cu.rvai‘ lres IOFS’ in iml.f i tensi
@ I"l v vy I d v_"l[ mm";); Lorel;zi et al. (1984b).) (Figure continues on next page.) O , in y ' €xtension ;
involved in v, and v; . [F . 4 higher orders is usion processes. The
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Fig. 8. Distributions of squared principal curvatures of the saddle surface for vacancy
jumpsin Lennard- Sones 31 and 107 atom cyclically repeating crystals. The atomic displacements
in a direction of highest principal curvature are shown again. The twin directions of identical
principal curvature are related by mirror reflection from the (110) plane through the central
atom. [From Jacucci er al. (1984).)

C. A NUMERICAL PROCEDURE FOR EXTRACTING THE
COEFFICIENTS F,

Given Ag(P,). its eigenvectors in cartesian coordinates, and the respective
eigenvalues, and given the possibility of evaluating V¢ at any point P, a
numerical procedure has been developed 1o obtain the notmal coordinates
derivatives ¢,,, enteting the cocfficients F;, (Jacucci et al., 1984). This problem
cannot be approached analytically in general for N =~ 100. Imagine having
computed all third-order derivatives of ¢ in cartesian coordinates. The
problem of transforming this matrix to normal coordinate derivatives is a
formidable computational task. One must adopt a numerical procedure
that yields ¢,,; directly.

Starting from P, consider a displacement § along the direction x,, and
evaluate ¢,(x; = 8, x; = z = Q,j # i) = v,. Then consider a displacement 25
also along x;, and evaluate ¢,(x; = 28, x, = z = 0,j # i) = v,. If 4 is small
enough, we shall pick up only the leading term in the power expansion of ¢,
with respect to x;. Calling n the order of this leading term, we write

d’:(xl! xj =2 = o,j # i) = GX: and V= vl{z). (31)

Gn)
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We can get n simply as

n=In(vy/v,¥n2 (32)
If we find n = 2, then we can evaluate ¢,,,, because near P, it must be
¢z[xlvxj =z=0,j#i)= *‘#xﬂxlz {33)

Ifwe find m = 3, then ¢,,; must be zero. Let us extend the discussion to include
cross derivatives entering F;; for i # j. For simplicity we shall consider the
important case in which ¢,,; = 0. Consider a displacement & from P, along
X, and at the same time a displacement 4 along x,.

From displacements & and 25 we get v, and v, and from Eq. (32) . If O'

n = 2, we have O

#.(x; = x,, =2=0,j#i# k)= '}(Q":nxrz + 2d,uxx, + ¢:uxf)
= XXy (34

Again, if we find n = 3, then ¢,,, is zero. In practice the procedure is repeated
for IN(3N — 1)/2 times 1o fill the symmetrical ¢,;; matrix, and hence F,=
—¢;;. The stability of the results with respect to the parameter & is found in
typical applications to span several order of magnitude. Once the saddle point
is well located within the precision of the computer, results for the various
quantities of interest (listed below) are stable to one part in ten thousand
(Jacucci ef al., 1984).

D. DynaMmicaL CORRECTIONS TO RATE THEORY DUE
TO A CURVED §

Knowledge of the cocflicients F,; permits the calculation of dynamical
corrections to rate theory due to the curvature of the saddle sutface S, as
proposed by Flynn (1975} and Flynn and Jacucci (1982), and carried out by
Jacucci et al. (1984). The procedure is to construct the “watershed” corre-@
sponding to the energy barrier to atomic jumps, calculate the gross flux
across it by rate theory, and subtract dynamical return jumps (coming from
both sides!) to get the net flux. These calculations involve thermal averaging
ovet the appropriate surface, which can be done part analytically and part by
MC once § is approximated by Taylor expansion including third-order
terms in ¢.

The expression of the return jump fraction R'/R through the saddle
surface 5 is (De Lorenzi et al., 1984a)

RY _ kT M50 1 kT
— ) =180 =_P_ F} 35
(R)S —¢u e ;l‘f “¢zzlr§=l Y ( )

in terms of normal coordinate derivatives of ¢, or in terms of principal radii @

(éo)
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. . . : hrough solutions of the uztion of motion under &3 and cross S but not §;, whereas
of curvature of §. Similarly, the fraction of 1mn-fed|atlc rf(;gzzfumps : # the correspondi::: trajectory through § does also C€ross S, under the action of
the saddie plane S, is found to be (De Lorenzi ef - . The ratio of the flux of the * missing” trajectories over the total magnitude

R kaT 3030 @2, (36) of the anharmonic contribution to the flyx, is independent of (he temper-
(ﬁ) = W ) *Z: 1 bty ature, i.e., this problem js present in the lowest-order perturbation. A second
R o T idered; S-shaped trajectorics source of discrepancy in I, s and Ty | as evaluated by the formulas above,
In both calculations only U-turns are consuderc",h ';Sh they may exist. consists in contributjons from complicateq trajectories undergoing severa|
. crossing three and more times are dlsrcgar(llt’:d.lf:1 ilT:rci tial properties (up recrossings. This point will receive further attentjon below. Here we wish (o
Furthermore, since the den_vauon is based Ol:l .oca‘nd before recrossing may underline that dynamical fecrossings of § apd 8o have a quite different
{0 second order), trajectoties that changedl o T]res[imatc the fraction of origin. Those of § are related to high momentum trajectories almost paraliel
- O be spuriously included. Both errors tend to ove 1o 5. Those of 5, are related to low-energy trajectories reaching S;, but not
L return jumps. i ; ; ross the somewhay higher watershed s
O Another quantity of ime“’Stl’i;:i::é‘:;gﬁ?ﬁ;?;z;:;: ;gpgrriig in In conclusion, the net fluxes through § and s, can be evaluateq by using@
~ rate I' through the free energy rela luation of this correction ferm to $3- I is found to be somewhat larger than I 5o+ the discrepancy being a fixed
Eq- (15). Unfortunately, a complcle o I:‘E;‘ l th-order terms in the expan- fraction of contributions to order kgT. The predictions for I s are believed 10
lowest arder in T dem.ands the inclusion ood")m’- omputational capacity if be more reliable, and shoujd be employed, €., in the evaluatjon of the isotope @
I‘,-) sien o1 . This task is out of reach of thedd 3;)5 KdeThird-order terms of ' effect factor AK, in place of I so- Numerical evaluation of the fluxes for
“ autacked analytically, but can be appro:c fl lj}(,mu 'hS where z = 0, but Specific cases, €.£. vacancy migration in model fec crystals, cap show the
the form ¢.,;zx.x, ‘?0 not conmbut§ 10 the flux do nsl CO(;]'tribUlC to thermai magnitude of (hese anharmonic corrections in typical solid-state diffusjon
contribute to §. Third-order terms like d)m)"ixﬁrk to the flux through S of the instances and indicate whether terms of lowest order i ko T may be expected
averages, on symmelry grounds. The conlribution 4 to be sufficient 1o accurately describe jump rates close to the melting point. A
former third-order term is tDe Lorenzi ef al, 1984z) detajled comparison of the predicted fAluxes with MD data would be of great
R” —kgT W71 iy (37 help in. drawing ‘lhcsc cor?clusi_ons. The rcmainir?g sources of anharm_onic
(“E)s 4 Lt + b — &) corrections, not included n this treatment, are (i) fourth-order lerms in ¢

L contributing to order k, T to I”, and (i) higher order terms in ky 7.
in this.approximation is ' !
so that the net flux I through § in t

Before closing this section, we note that two anharmonic contributions

, M (38) affect the isotope effect lactor AK (Flynn, 1975). Ope comes from the varij.
Is = Tl ~ (RY/R)s + (R"/ Rs) o ation of the direction of the normal mto §, the other from the mass dependence
; through S, in the same approximation is of the fraction R /R of return Jumps. The first term is absent when calculating
il the et fux T l“g oF (1 — (R'/R)s,) (3% ' AK using the saddle plane, because g js always equal to 8 on S, Further-
55 = Loll — So

) more, by using (R'/R),, from $3, the fraction of Teturn jumps from 5, is @
. . ic flux of Eq. (16). . found 16 be mass-independeng {De Lorengzi ¢ al,, 1984q),
O e s b o *’

]':s and I are in ’

j i i initnum of ¢,
i rgument that all trajectories going from a minimum of
. S-I:;(e t;’p :::05:1?'0? (ghe neighbor minima B must cut any e;m:Ialbht:hc_ln.:dl:fgt observed differ
face it should be realized that this res
does not apply here. However, 1t- 8| _ _
::g:l?::s to the highly idealized hamiltonian of potential energy ¢, given by

nce of the two fAuxes: I #15,.

E. Numericar REsuLTS anp CoMPaRIsON WITH MD
r aN-] N1
by = 1 b2t 4 1 5l + i z ¥ Daiixix; (40) Numerical resuylys on model systems appropriate 1o Al, Ar, and Cy were
3 27 2 5 2 obtained by Jacucei ef o (1984). The investigation included 4 careful check
from Py, and the minima of ¢ are of cutofl and sjze depcndencc§. as well as calculatjons for various densities
-~._ Infact, ¢ _,dbcaerg ry:: gscn;l:lzmiz :: ::] 3;1); r::'ajef;:ories may exist that are and temperatures (De Lorenzi e al., 1984a), @
not reproduced i 3 ’
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TABLE VI

Retunn Jump Rates CLOSE
TO THE MELTING POINT

Jump rate {3}

Mectal N=13 N =107 N-+x

Al 5l 4.6 4.4
Ar 335 43 4.6
Cu 40 — -

The main resulis can be summarized as follows:

(i) The mean curvature of the saddle surface is similar for the various
potential functions used (Lennard-Jones and Morse} and comes from only a
few directions in the saddle plane.

(ii) (R'/R)is invariably of the order of 5% at melting, so that statistical
theories of diffusion are indeed valid, and the first ordet in kz T should be
quite sufficient (see Table VI). L

(iii) The temperature-dependent correction — K, T, to AK related to
the variation of the direction of m is very small, less than 2% (see Table V11).

{iv) The correction term originating from the mass dependence of the
return jumps is large and positive, and unambiguously predicts unphysical
results upon mass substitution. This isotope effect “catastrophe™ points to a
basic flaw in the formulation of rate theory.

These results are of central importance for the theory of diffusion in
solids. Their confirmation in MD studies is of great interest. Let us focus on

TABLE VII

HARMONIC AND ANHARMONIC (AK = K, — K, T}
Isorore ErFect Factons

Meal N K, ~K, T, aK
Al 3l 09229 00188 09041
107 05133  -00194 05939
255 09125 - -
~wo 09124  —00i% 08929
Ar 31 09609 —00139 09470

107 09714 -0.0167 0.9607
-+ 0.9789 -00178 0961

Cu 3 0.9365 -00153 09212
107 09363 — -

@)
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the resuits for LJ at ~80 K: (R’/R) ~ 005 and (R'/R), =~ 0.09. Carelu}
measurements of R’/ R and AK were done by Bennett (1975) by using specially
devised MD techniques. Both quantities were measured with respect 1o S,,
for the present case of vacancy migration in foc LJ crystals.

The reported results are R'/R = 10% and AK = 089 + 0.05. In the
harmonic case these values are 0 and 0.98, so that anharmonic contributions
are appreciable. The agreement of the two evaluations for (R'/R);, is partic-
ularly rewarding, in view of the fact that Bennett sees all return jumps, while
the calculation of Jacucci et al. (1984) estimates only immediate return jumps
related to the curvature of . These, therefore, represent substantially all
return jumps.

One further step is needed, however, to clear up the situation for the@

isotope effect. Complicated trajectories that cross the watershed three or
more times, or start heading for a return jump and then change their mind,
have not been accounted for, as mentioned above. Albeit very small, the
number of these trajectories may be so strongly mass-dependent that the
isotope effect cannot be accurately evaluated within the above analytical
scheme, while the conclusions for Ty remain essentially unaltered in practical
cases.

It is obvious that the possible cure of the errors in the bookkeeping of re-
crossings rests in the implementation of an exact jump condition that elimi-
nates immediate return jumps. The existence of invariant manifolds in phase
space that cannot be crossed by trajectories provides a critical jump condi-
tion that can be used in this context. A (6N — 2)-dimensional surface can
be defined in phase space, called the center manifold, made up of trajectories
indefinitely trapped in the saddle neighborhood. These trajectories are, of
course, highly unstable and, if perturbed, fall into one of the two wells. In the
harmonic approximation, the equation of the center manifold is z = Q.
# = 0, and the trajectories on it correspond to many dimensional harmonic
motion. Presence of the term 4z T2) . é,,x;x, displaces the center manifold
from the watershed, and the two surfaces are quite unrelated.

The center manifold can be used to calculate the fiux in such a way that
there are no immediate return jumps (Jacucci et al, 1984), as shown in
Fig. (9). It is found in this way that the anharmonic jump frequency Iy is only
slightly larger than [, as expected because of the overestimation of return
jumps. Furthermore, no isotope effect catastrophe is met. Calculations using
these ideas are being carried out (De Lorenzi et al., 1984d).

In conclusion, accurate jump rates can be calculated by using the notion
of anharmonic saddle and geometrical constructions like the watershed and
the center manifold in phase space. An impraved, and for certain aspects new,
conceptual basis for jump theories is achieved, and the validity of statis-
tical jump theories is demonstrated for diffusion in solids. The path is

o
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inaccessible =z
Regwn

Fig. 9. Crossing surface in phase space with no immediale returns. The center siable and
unstable manifolds cannot be crossed by trajectories. They meet on the center manifold and
precisely separate trajectories crossing the dividing surface in opposite senses. Returns must
go around these invariant manifolds and cannat be immediate. The flux toward onc of the two
sides is obtained by integrating over half of the dividing surface. The latter can be chosen rather
arbitrarily as long as it is bounded by inaccessible high-energy regions. [From De Lorenzi et af.
(t984).)

therefore open to precise future calculations of Jump rates and of relatgd
thermodynamic parameters for model systems using realistic interatomic
forces.

¥I. Conclusions

Important results have been achieved. Comparison of Monte Carlo data
with accurate quasi-harmonic lattice dynamics results for formation and
migration of lattice vacancies demonstrates reliably, for the first time, that
the harmonic model overestimates both contributions to the Jree energy of
activation of diffusion in rare gases.

In addition, it has been analytically shown tha the fraction of unsuccessful
crossings of the “watershed™ saddle surface in Icc crystals does not exceed
5% at melting. Jump frequencies are therefore accurately given by rate 'theory
and may be cotrected for dynamically inevitable immediate return jumps.
This result is obtained by extending to third order the Taylor expansion of
the potential energy in the analytical approach to rate theory.

The very success of the perturbation approach is possibly the most
important new finding. It reopens the analytical path to the understanding
of diffusion in solids, a path that appeared for some time bypassed by com-
puter simulation. Reentering the stage, analytical mechanics seeks its revenge
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with elegance: The critical jump condition in phase space is eflectively
provided by invariant manifolds at the singular point, and the expression of
these manifolds 1o first order in anharmonic perturbation is sufficient.

Further development and implementation of machine calculation
methods, as they are coming within the reach of existing computers, for the
investigation of point defect formation and migration in crystals will no
doubt constitute one of the major areas of activity in this field during the
coming years (see also Jacucci, 1984). A substantial advance in the under-
standing of point defect diffusion is to be expected as a result of using well
handied statistical mechanics methods,

Challenging calculations to be confronted next, along the lines exposed
in this chapter, are:

(i) formation free energies, enthalpies, and volumes using MC and
MD in metals, starting from the alkalis for which excellent ab initio pair
Potentials exist, and in simple ionic solids;

(i) jump rates for vacancy migration in bee crystals; here the confor-
mation of the saddle region should be more complex than in the fee case,
Possibly featuring a metastable transition state;

o
&

(i} multiple jump rates in various circumstances from knowledge of

local properties of the N-body potential energy surface:

(iv) extension to highly disordered systems, e.g., superionic conductors
(Flynn, 1979) and liquids (Stillinger and Weber, 1983), of method and
concepts developed for point defect diffusion in crystailine solids.
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