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THEORY OF POINT DEFECTS AND THEIR INTERACTIONS

by M. H. March
Theoretical Chemistry Department
University of Oxford
! South Parks Road,
Oxford, 0X1 31G
u.K.

1. Introduction

The primiry point defects in metals are defects in the [lwttics: I e |

namely vacant lattice sites and interstitial atowms of the hont meeal! (Ha 6
:i.l:ll:e:rul:i.tiall).H These vacancies and self-interstitials car twtenral bii dnoemaet
with both substitutional and interstiteal impurity atoms. l¥mperial.mt:enit:mn
will be focussed in these introductory lectures on:

(i) The energy E, required to create 2 vacancy, by wmemoving an.ittion
from the bulk metal and placing it on the surface.

(ii) Possible relations, in a simple free-electron menull mwzhaas esen
body-centred cul;;ic Na, beqween the vacancy formation energyli*ill‘l‘ 1and: the gy
required to forn an interstitial in the pure host lattice.

(iii)Vacarcy-solute stom interactions,

Since ever, small concentrations of point defects can hame a | BksmiN i amanr
influence on many physical properties and processes in metal &, i ain, (oY
course, of obvicus importance to determine their energy and .detililed
structure.

As to the structure, this is easily visualized as the wetect iomelf, .
say a vacancy with some relaxation of neighbouring atoms to tcwe wacamt: ijun,
The formation entrgy of a configuration is defined as the diflienenzeiln mneyyy
of a4 sample with and without the defect.

In additimun to formation energy, the migration energy £f a igdven doibeoy
is of considenbl{e inportanf:e. Using rate theory, applied fimet to wuch

defect problems tiy Vineyard‘ (957, the migration energy of u diefect g
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usefully approached as a difference in formationm energy between a specimen
with the defect at the lowest energy “saddlepoint” configuration separating
two stable configurations and a specimen with the defect at one of the
stable configurations.

Though these lectures are primmrily on the theory of point defects
and their interaction, we shall conclude this Introduction by noting first
that the experimental investigation of peint defects In or near tharmal
equilibrium may ba divided up as follows (cf, Sesgar, 1973).

(i)  Detection, determination of the nature and quantitative measurement
of the concentration of point defects in itml equilibrium,

For metals, important techniques here sre:

{a)  the comparison of the relative change of specimen length AL/R,

and of the relative change of the X-ray lattice parameter.

{b) the measurement of the Y rays resulting from the annihilation of
positions trapped at vacancies, to be discussed in detail in ths lectures
of Professor Lung.

(ii) Measurement of fracer diffusion.

Rere, one is concerned in particular with self diffusion, and generally
with the transport of metter, for example, thermo or electrotransport. When
taken in conjunction with measurements of type (i} sbove, such experiments
give informstion on the diffusion coefficients and on the diffusion mechanism
in metal crystals,

(iii) Resonance and relaxstion experiments,

In this type of experiment, information can be gleaned on the jump
frequencies of nuclei snd on self diffusion mechanisms. Important i{n this
category are nuclear msgnetic resonance measursments (MMR), but Mossbauer
studies or ultrasonic relaxation measurements belong also to this
claseification

But to motivate the electron theory to follow, we want to note finally

that empirical relations between vacsncy formation energy Ev' melting



-3 -

temperature Tm and Debye temperature € have been known for a long time.

Although a fully satisfactory theory of these intimate connections has yet 2. Electron theory model relating E‘.' 2nd 8 for close-

packed simple metals

to be furnished, some very definite pointers to the origin of such correlations

can be obtained from very simple physical models: both electronic in nature [ To motivate further the theory outlined below, Table 2.1
and also, essentially, thermodynamic. This affords therefore a natural records the way in which E, for a variety of close-packed
starting point for developing the theory of point defects in metals, metals correlates with the Debye temperature 6, following

Mukherjee (1965).
Table 2.1

Empirical relation between vacancy formation energy E and
Debye.temperature 6

(R denotes atomic volume and M is the ionic mass)

Metal 8.¢K) £ Le\p o/(e sma?/ %)}
Cu 245 1.17 32
Ag 225 1.09 32
Au 165 0.94 31
Mg 406 0.9 au
AL u28 0.75 33
Pb 94.5 0.5 33
Pt 229 1 37
N4 4y 1.5 33

2.1 Jellium model of metal of valence 2

- To gain insight into the origin of the remarkable correlation
displayed in the final column of Table 2,1, consider an elementary
free-electron model of a metal of valence Z. Remove an ion at

the origin by the devéce of placing there a point charge -Ze.



Electrone will cleaarly be repelled from thisg 'vacancy', and
one will consequently find a screened potential energy V(r) des-
eribing this point defect:

2
Vir) = Ze_ exp(-qr) (2.1)
r

where q-1 is the Thomas-Fermi screening radius. This length
can be thought of as the product of a characteristic volocity,
which in an electron gas is clearly the Fermi velocity ve

and a characteristic time, which can be shown to be the period
of the Langmuir plasma oscillations of the electron gas, narely

2"/“ﬁ)' where dp is the Langmuir plasma frequency

. 2 /mi
Hp = (%mp e“/m) . (2.2)
where Py is the conduction electron density and m the electronic
mass.

Use of first-order perturbation theory, with the unperturbed
wave functions as plane waves exp(ik.r), enables cne to calculate

the change in the sum of the one-electron energies, AEB say, as
8Es = ™1 {vepar = 2 e (z.3)
5 dr 3 f *t

where Fe is the Fermi energy. Plainly, being perturbative, this
result (2.3) ig strictly valid only for low valercy Z,
As already mentioned above, the energy needec to form a

vacancy is that required to remove an atom from the bulk metal

and place it on the surface, If atomic relaxation is

neglected; a reasonable agsumpticon in the close-packed metals

under discussicn, then one increases thereby the volume occupied

by the conduction electrons by the atomic volume R, This

reduces the kinetic energy of the conduction electron gas, and

one finds, following Fumi (1955), a decrease of (2/5)ZE1.

Thus, one may write as & firast approximation to the vacancy

formation energy Ev:

)
E, = [% - gJZEr ~ aZE, (2.4)

where in this model

e 1is simply 4/15,

Now lets us returan to the MNukherjee corredation in Table 2.1,

and consider next, by a closely related argument, the calculation

of the Debye temperature 6. For an isotropic solid, this 1is

related to the velocity of eound Ve by (see, for example, Mott

&nd Jones, 1935)

Vs

ql/3

3
an

|

1
¥ b (2.5)

B

One then follows Bohm and Staver (1952; see also Bardeen and

Pines, 1855) in deriving an expression for the velocity of sound A\

by starting from the ionic plasma frequency (4lp1{2e}‘]l)1/2.

replacing the ion denaity Py by Po/Z, and in the resulting

expression, screening Z by Fourier tranaforming eqn (2.1) to

obtain-

deez
k

4nZe
k™ +q

’ (2.6)



the electrons this time piling up round the positive ion
carrying charge Ze to screen out its Coulomb field over a
distance wqul. In the long wavelength limit k-+0, needed
obviously to celculate the velocity of sound, eqn (2.6) meass
that Z is to be replaced in the ionic plasma frequency, after
replacing Py by polz, by Zkzlﬁf, which converts an 'optic'

plasma mode into the accoustic mode
W= vsk, 2.7)
the above argument leading to the desired result

i
Vg~ EE] VI' [{2.8)
3M
Eqn {2,8) demonstrates that in a métal the velocity of sound
1s reduced from the Ferml velocity v, by a factor of order
(m/M)!.
The final step is relating Ev and ® is to use eqns (2.4)
and (2.8) to eliminate ZEI, when one finds (March, 1966}

2

3
E-I HVB.

v (2.9)

This eqn (2.9) is important in the sense that it exhibits the

fact that E. is basically related to a 'phonon energy' lvsz.l

Combining eqna (2.5) and (2.9) leads immediately to the relstion
exhibited in Table 2.1,

g = Cconstant
R

M

Ev] ) (2.10)

To recover the constant correctly in Table 2.1, one could
choose o, ssy, in eqn (2.4), to be 1/8 refiger than 4/15 given
by the above model,

It is worth emphasizing at this point that the relation
between 6 and Ev has resulted directly from a study of the
response of the free electron gas to (i) the repulsive potential
(2.1) created by the vacancy and {(i1) the sttractive potential
of a (vibrating) lon, Eliminating the response function
between 6 and Ev’ and thereby some of the free-electron natu.e
of the model, demonstirates the deeper connection of Ev with
# phonon energy in equs (2.9) and (2.10).

To press this latter point, Table 2.2 records results from
non-linear electron theory, for essentially the same model as
gbove, due to Stott et al (1970) for valencies from 1 to 5.

Table 2.2
Non-linear electron theory resulte for vacancy formation energy

Ev in units of ZEf

Cu Mg Al Pb Sb
0.194 0.166 0.156 0.138 0.134

Change in eigenvalue sum
plus kinetic energy change
Exchange energy correction 0.153 0.130 0.098 0.096 0,087
Self-energy correction -0.24 -0,21 -0.22 -0.19 -0.19

E_/ZE, 0.1 0.09 0.03 0.0 0.03

N.B. Stott et al (1970) estimate errors in last don to range

from #0.04 for Cu to about 0.02 for Bb.

The main point to be emphasized here is that the first row
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of Table 2.2 shows the non-linear apalogue of eqn (2.4).
However, Btott et al correct these results for (i) the self-
energy of the charge displaced round the vacancy and (11i)

the exchange energy (they find correlation to be of minor
importance in this application), these contributions being
seen from Table 2.2 to be large and opposite in eign. Huge
cancellation is then seen to occur for polyvaleat metals, so
that the linear model result (2.4), namely EvIZEI = constant
is transcended by the non-linear finding that EvIZEt decreases
strongly with increasing valency Z, as 18 quite apparent from
the final row of Table 2.2,

To 16ad into the following section, if one uses measured
melting temperatures Th to form kBTmIZEf, this guantity is
found to parallel closely, as a function of valence Z, the
variation of EV/ZEr in Table 2.2, Another way of expressing
this is to note that Lindemann's law of melting is regained
when Ev in eqn (2.10) is replaced by kBTm' Therefore, in
section 3 below, a quite different approach will be introduced,

designed to expose such a relation between Ev and Th.
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3. Pair Potential theory of E ; relation to thermodynamics
v
and to Tm

In thie section, a quite different point of view will be
adopted to the electron theory treatment of gection 2., B8Since a
main objective will be to link Ev with the melting temperature
Typ» 1t is natural now to think of E, in the hot crystal. Since
it is known experimentally that Ev is only weakly temperature
dependent in metals, there is no need, with present Accuracy of
available theory, to dietinguish Ev in the hot crystal from the
T = 0 value discussed theoretically in section 2.

Bhatia and Mareh (1984}, showed that in condensed phases
of rare guses, Ev in the hot crystal could be approximately linked,
via pair potential theory, to the liquid structure factor S(k)
at the melting temperature Ty More specifically, these workers
used the direct correlation function e(r), with Fourier transform
&(k) defined by

(k) = S(k; -1 (3.1)

to show that

[Ev + * Bﬂ} [ kBT [c(r-o) + 21

’ (3.2)

Ta

B-1 being the isothermll.compressibility KT and 4 the atomic
volume as before,

However, it is known empirically, as referred to above,
that EkaBTh 1s relatively constant and the present section is
concerned with understanding this particular correlation, which
18 evidently more specific than that embodied in eqn (3.3), which

in any case was denﬂ@éd for condensed rare gases.
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What will be demonstrated below is that the vacwncy ‘formuflion
energy Ev can be usefully ldiscussed in relation to 1liquid propertiles ,
already invoked through c(‘r=0)|Tm in eqn. (3.2) of Bhwkia and
March., Specifically, the discussion below relates EvsmnprmximnKMLw
to departures from the so-called Joule's Law in the demsae Ligubsd
metal phase at Tﬁ, which law is stated as the independzmce of
the internal energy U on vwolume.

3.1 Departures from Joule's Law_in dense 1iguids

The usualrthermodynamidﬂ formula relating the gpecifin
heat difference cp—cv to the coefficient of volume expmnsinn amnd
to KT is readily shown to yield the following result For [the natilo
of the specific heats y = cplcv :

o+t 1 3y "k
EEhT PEgT [ v ]T 2 B

y= 1+ &(0) LCS
i®v

Here the formulaiis written for a liquid state (p,p,T) with B(o)d,

the long wavelength 1imit of the structure factor SCki) lin egn. (8.1,

related to KT byia well-established result of fluctuakien theory:

8(o0) = pk“T Ky (R.40
The introduction of (BUIBV)T into eqn. (3.3) was accowmplishs=d
by utilizing theithermodynamic relation (see, for example, Zemsnsky,

1851).

(3.8

au ‘- [ﬁ]

Below, eqn. (3.3), together with experimental results for v, ¢,
gnd S(o), will b2 used to estimate the departures for Joule"s
Law in some densz 1liquids.

3.1.1 Estimates of (BUIBV)T in dense liquids

For a dense licuid like, first of all, argop, mear !ita
triple point, it is well known that pkaBT<<l and one xan Hherziomne

neglect it in eqn., (3.3) to obtain
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[ ] | ( Ly-1)a lkB) | |
‘ 8(o)

For this case of argon near its triple point, yu 2,2, c.8 2.3k

(3.8

B'
8(o)s 0.06, snd one finds from eqn (3.68) that

e (%)) ¢

confirming that this is indeed the dominant term in the bracket

(3.7

of egn. (3.3).

For a liquid metal, say rubidium, near freezing, yx1,23,
c, =3.4kB while S(o) 20.023 and hence from eqn(3.8) one finds
the quantity in eqn (3.6) ~ 6.

Below, pair potential theory will be employed to relate
such estimates of departures from Joule's Law in dense liquide
to vacancy properties in hot close-packed crystels.

3.2 Relation to vacancy formation energy

To relate (3U/3V) to vacancy properties, Faber's (1972)
pair potential formula for the vacancy formation energy Ev' in
the r-space formulation of Minchin et al (1874) will be invoked.

This formula, restricted to close-packed solids because of its

neglect of atomic relaxation round the vacant site (cf. section 2),

can be written in terms of the pair function g(r) and the pair
potential
¢{r) as

E, = ”g J g(r) &(r) dr- (3.8)

and following Bhatia and March (1984) it can be usefully evaluated
from the liquid peir function g(r) near freezing, to yield then,

&8s discussed alrerdy, the vacancy energy in the hot close-packed

_crystal.
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What will be accomplished below is to relnuelﬂv:tu
(BUIBV)T, utilizing microscopic liquid state theony. | Flrsi, we
derl with the simplesp case,exempliftied by liquid urgon lim whiich
the pair poteatial ¢{r) is independent of the deneiity: p. Them,
invoking the usual liquid state theory for the internal emengy T,

one finds
[% "o P'; I%F log(r)1 (r) dr (3,91
T - .

Utilizing the result (3.8) in eqn(3.9) and dividing both sides by
pkBT ¥ields (March, 1987),

1 3w -« B _
l_""al I?JT] o B

T J LD ey ar 190y
5

’?

Using empirical data, %t is clear that the dominant term in i the
vacancy formatdon energy of hot close-packed crystalla 1ike |wmgon
ie that arising from departures from Joule's Law,  the *oorrectlion
term' in eqn (3.10) 1nyolv1ng the density dependence wif tihe palir
function,

Thus one is led to the approximate result

E
E-E‘—;T; i- m?li,f [?T‘JJ e, (8. 013
Rashid and March (1987, to be published) have shown ‘thut:egn (1. L0L0
also works for many close -packed metals, though not For| tiws omen
body-centred-cubic metals (e.g. Ka), This, ae we dlscuss In the
following sectipn, is due to the neglect of atomic| relaxntion
round the vacangy : a dominant term in the vacnncylfmmmnttmm|emwruy
in open 8structures,

¥e summarize by qaying that Ev is related toi#ng'hw
departures from Joule's Law in the liquid near Ireezing, Um

discussed for a:gon and fubidium above, the right-hamdaude af
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eqn (3,11) is a large, rather constant)numher ~ 7 - 10, explaining

thereby the observed empirical correlation between Ev and kBTE

in ¢lose-packed solids,

e turn below, to the case of open body-centred-cubic
structures, exemplified by the nearly free electron metal Na,
on which we shall focus in the following section, Here, it will

be argued that relaxation round the vacahcy is of great importarce

in caleulating Ev'
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4. Role of relaxation round vacancies and self-irieritiitbulm ‘ a%JEJ/ The third aspect {éEated in this section is the vacancy
in open body-cenired-cubic metals: especénlly ikl meoale tormation volume, Although this is not immediately related to

The focus of this discussion is on (1) relaxmiiton: reusnt the local ionic relzxation round the vacancy, it turns out

that one can estimate it fr th -

vacancies in the alkali metals and (11) self-intermtiitivls Jin e from the Mukherjee-type of relation

b open body-centred-cubic (bce) structures ‘ referred to sbove., The ratioc of formation volume to atomic

such o - vd- .

volume is then found to consist :

On quite general grounds, it 1s to be expectdt ithit fin eist of two terms: a negative one

from a h nic t

such open structures, relaxation will play a siganlificunt ryle & harmonic treatment and a larger positive contribution

from the variation elasti

in calculating the formation enmergy of point defecits. |¥ilomss of elastic constents with pressure, i.e.
an anharmonic term.

and March (1281) have therefore studied two aspedlm ol :lontly.

relaxation in bce metals, 4.1 Long-range ionic displacements round a vacancy in metals
(1) the long-range ionic displacements The sssumption will be mode here that a linear theory 1s
and valid to discuss ionic displacements far from the vacant site,
(11)  the relevance of local relaxation in aallcubeting Then one has the response function T in terms of the phonon
vacancy formation energies. Irequencies wy,, as (cf Flores and March, 1981)
Point (1)) will be treated with some generallyy dnwsaethon
4.1 below, where attention is focussed on the sepimmte mpn- I(E) - 1_ E exp(ik.;)g ‘e
ot N kp ke kp (4.1)
tributions from the elastic, long wavelength, reglmn &f “tths "
phonon dispersion relations and from the Fermi suf'wce wff faius v kp
on the phonons. Point (ii) i1s then treated more wyreck fhcal.ly
by referring, to the rlkalis, for which, with weal.mlectrpn-iion where Rkp denote the polarization vectors, From this linear
interactions; and consequently almost spherical Fermin sur¥acwes., response function (4.1) ome can construct the ionic displacement
it is reasonible to adopt a Debye model for the phomons, Iwiith th“‘/ R(R) at position R from the foduss T as
implied negliect of the Kohn anomaly. This is shown tbelow' du
lead again, by quite different arguments, to a Mukielr Jees type 3(5) - IE(B'E')E(E') . (4.2)
of relation, .much &s that discussed for close-padimil rietmls R’

in mection 2.
It is now clear from eqns (4.1) and (4.2) that the long-

range displacements reflect the singularities in the phonon
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dispersion.relatioq& ”kp' These singularitieu,:ﬂnlmaumlw,‘&mw
known to be of two kinds:

(1) the long wavelength elastic region whemelﬂ(“mluq
and

(i1) the Fermi surface region as it isg refilected im the
Kohn anomaiy which exigts in the phonon spectrun.

The form of the long-renge displacements is then; given by

RO o uelastic(%) + pfermi surfnce(E) . (4:3)

Of course, in eqn (4.3) 1s implied the use of exucit| fe .
measured) phonon properties in regions (1) and; ( 14);, naturall Ly
in a cubic metal crystal the elastic coustunts:cll,:cnﬂ|umﬂ
C44 Bre notj independent of the presence of thei Nerml surfisoe fn
any first principles theory.

It is known from elasticity theory that uel"§Mi¢(ﬁUIhu

gliven g:pymptoticully at large R from the defect mentre'ﬂﬂ

elastic a L1 B 1 1 BE L
(R) v -l — o+ + R T
¥ I % 8uM FL r3 ETLR E-T!;H I;?:LRJL

where it proves convenient in eqn (4.4) to subsume (the plustic
properties into (aui;ably averaged) longitudinalnnndltnnmnwmmma
velocitiea of sound WL and BT (ftor derlvution.ammml?lumeu amd
March, 1881),

The second contripution from region (11) abowe, :can he
obtained tor a given Fermi surface topology, from the Angueman te

of Flores et:al. (197P) on the screening of a defwcit in nomettal .

18.

For the case of a spherteal Fermi surface of diameter 2kf

one finds

cos2k R
uFermi surtuce(m " _th- ,

(4.5)
which is evidently a shorter range term than the displacement
in eqn (4.4).

Equally important here 1z thet, because of the wesk
electron-ion interaction in the alkali metals, one expects
EFermi BUrface 4, have a relatively emall emplitude. Though
clearly involving approximatiocn except in the limit R tends
to infinity, the above Arguments stirongly point to the con-
clusion thet, in the specific case of the alkali metals, the
long wavelength contribution to the ionic displacements will

be numerically dominant over the contribution from the Kohn

anomaly. This assumption then allows apalytical progress to

. be made, by permitting the adopticn of & Debye model for the

phonons.

4.2 Forces and local displacements in 8lkali metals

We turn then from the long-range ionic digplacements to
 the local relaxation round a vacancy in the alkali metals,
‘Though it 18 clearly an inessential approximation, which could
(be lifted, should it eventually prove hecessary by using
numerical summation techniques, we shall KBsume below that all
,terms in the sum over force vectors can be omitted other tan
for those acting on the nearest neighbours. Thep Oobne can write

for the displncements, from eqn (4.2)
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RRY =} ALE)
nearest
neighbours

LR-RIER')-

For the becec structure shown in Fig. 4.1, let F1:Me'th011¢muu
acting on each nearest neighbour due to the vac:mqy,lwhimegmi

is the vector from the vacant site to atom i.

4.2.1 Assumption of complete relaxation

Following Flores and March (1981), we shall pmoceed| oo
estimate the force Fi in the model in which, in iuny openstrue-.
ture, it is assumed that 'complete relaxation'' goours,
Furthermore, for the limit R tends to infinityp, ithe reapoass
function T can be replaced by its asymptotic elmstic Form,

when one obtains (see the Appendix of Flores and Marsh 1081

. g 2 R -
‘8 bF =, , 147D
Ty 3ﬂ02L rd

¥
h being the nearest-neighbour distance for thel o BErMe tauwe .
Whereas' the conventilional approach would find e relexstion
from & model of the force F due to the vacancy an Ithe nearast
neighbours,: the model of 'complete relaxation': of ithe mpem

structure i3 specified by writing

2

4nR%u = -p 04.:8)
or
. - R .
complete = == 4.9y
reldiion 4n EE

20.

Thus by utilizing eqn (4.7) in thie model of complete

relaxation one finds

l"cq:m:plete - -3M URL . (4.10)
relaxation 8h

Once the force F has been determined from the above model,
one can now ciklculate the displacement near the vacant site,
where the full expreasion for T is to be utilized. However,
Flores and March then insert the Debye model for the phonon
frequencies at this stage, their result theo being

= 0.078h. (4.11)

tlhearest-neighbour
In their calculation, the ratio of transverse to longitudingl
velocity of sound has been assumed such that Uleva = 4,
though the result (4.11) is pot sensitive to reasonable varia-
tions around this value.

It is worth noting that had one invoked a purely elastic
continuum model, eqn (4.11) would have been replaced by -0.061h,
instead of -0.078h in the more realistic approach outlined above,

One ceh compare the result (4.11) with that obtained by
other workers, usually from direct pair potentinl calculations.
Thue, the work of o (1971) led tc the inward relaxation in the
alkali metals of about 8% of the nearest-neighbour distmnce, in

oxcellent agreement with eqn (4.11).
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The conclusion from this comparison seema to be that <he
agsumption of 'complete relaxation' expressed in eqns (4.8)
and (4.9) is an excellent one to use for bec alkali metals,
We turn then below to use it to calculate first the vacamcy

formation energy and then secondly the formation volume.




