|

' o e

INTERN‘;\TJGNAL ATOMIC ENERUGY AGENOY ﬂ

UNITED NATIO[\B EDUCATIONAL, BCIENTiFIC AND COLTURAL ORGANIZATION
N : \

]N'I‘F‘]QNATIONA'L \(/ENTRF‘ FOR THEORETICAL PHYSICS

34100 TRIESTE GTALY: - 1.0.B. 898 - MIRAMARE - STRADA COSTLIERA 11 - TELEPHONE : 2240-1
) }Aur_m CENTRATOM - TELEX 4803882 -1

[T T

SMR/208 - 7

ums's«/*/

SPRING COLLEGE 1IN MATERIALS SCIENCE
ON
"METALLIC MATERIALS"
{11 May — 19 June 1987)

THEORY OF POINT DEFECTS AND THEIR INTERACTIONS
{Part 11}

N.H. MARCH
Theoretical Chemistry Department
University of Oxford
1 South Parks Road
Oxford OX1 3TG
U.K.

These are preliminary lecture motes, intended only for distribution to participants.

— 4

5. Theory of point defect interactions

This is the point at which we must turn to discuss the
interaction between point defects, We will first treat, in some
cetail, the so-called electrostatic model of such interactions
in a Fermi gas. Later in the section, we shall then pay some
sttention to the contribution of size effects to vacancy-solute
‘nteractions in dilute metallic alloys.

[ | Electrostatic model

Below, for simplicity of presentation, a semi-classical
zrgument will be employed, following Alfred and March (1957).
mLe essential result is, in fact, valid in a fully wave-mechanical
-reatment, as established by Corless and March (1961).

Let us suppose that point defects, 1 and 2, carrying excess

charges Z,e and Z2e, are embedded in the bath of conduction

1
3lectrons, such that the screened potential energy due to ion 1
alone is Vl and that due to 2 iR V2. Then in the linear (Born)
approximation of section2, it is evident that the total potential
¥ due to the two defects has the superposition value

V=V, +V (5.1)

2
Hence each point defect is surrounded by its own displaced charge
which, in suck a linear theory is unaffected by bringing up further
defects.

The interaction energy between the point defects, separated
by a distance R say, may now be obtained directly by calculating
the difference between the total energy of the metal when the point
defects are separated by an infinite distance, and when they are
brought up to the mutual separation R. Clearly this process is
to be carried out in the Fermi sea of constant overall density
and the result for the interaction energy between the point defects

will depend on the conduction electron density, or equivalently

on the Fermi energy.



5.1.1 Changes in Kinetic and Potential Energy

Let us consider separately the changes in the kinetic
and the potential energy. The act of introducing a pcint defect
carrying a charge, Ze say, into the Fermi gas changes the kinetic
energy, sinece, in the semi-classical Thomas-Fermi method, the

forerunner of modern density functional theory, the kinetic energy

T is given in terms of the electron density p(r) by

. ( .y 3 2
= ¢y (D(E) 3 3 dE o s 3h? 313 (5.2)

10m B

amd hence, if the point defect perturbs the initially iniform

density po by Ap = P -po, then the kinetic energy change from

the unperturbed Fermi gas state is clearly, for small Ap, given

by
T-T =E tpdr + E d A Z 3
5 £ r £ r (ap)” + 0(ap™) (5.3)
3p0
Onc notes that the first term on the right-handside involves
simply

the normalization condition for the displaced charge, or

in other words, the condition that the defect charge Ze is screened

. i AL‘
completely by the redlstiptlon‘ of electrons. Clearly such a term

can make no contribution to the energy difference between infinitely

separated point defects and the pair of defects at finite Separation

R.

Onc is now in a position to calculate the changes in both
Finetic and potential energies when the defects are brought together

from infinite separation. One can, in fact, readily write down

the following contributions:
(i> The interaction tnergy between the charge Zle of one defect

and the perturbing potential V2 due to the other.
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(ii) The interaction energy between the displaced charge
%f v round the first defect and the potential V2 due to the
]
re 1
other.
(ii i) The change ir kinetic ernergy.
These three terms are evidently given by:
(i) z;2,e%exp(—qr)/R (5.4
(ii)  -¢* dr v.v, (5.5)
: dne -1
Gin) [ -g® 2 E, dr ¢ (v, + v )2y Py ?
| Tne? L I L T ]
apo
= 4 |
dege | dr ViV, (5.6)

whers (1iii) follows essentially from eqn (5.3). Thus the contri-
bution (1i) is precisely cancelled by the change in kinetic
energy and one is left with the final result for the interaction
energy AE(R):

= 2,2 e2 (5.7

172

But this is simply the electrostatic energy of a defect of charge

AE(R) exp (-qR)}/R
Zle sitting in the electrostatic potential (Zze/r)exp(—qr) of the
second defect. Before the argument presented above was given
by Alfred and March (1957), Lazarus (1954) had anticipated that
such a result should hold on physical grounds, in the context of
a discussion onimpurity diffusion in metals. It must be stressed
that this electrostatic model is only precise if one restricts
the discussion to the framework of the linear theory treated above.
In realtity, the work of Corless and March (1961), and the
independent study of Blandin (1961), shows that in a full wWaye
theory, the interaction AE(R) is oscillatory at large R, the
expoﬂ@ntial decay in eqn (5.7) being an artifact of the usec of

the semi-classical theory (analogous to using 'geometrical optig')

instead of the fully wave-mechanical theory of Corless and March

"3-
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.2 Size versus bonding effects on vacancy-solute interaction

(1961; see also Ziman, 196¢p.

o Benedek (1987) has considered very recently relations between
However. while the above treatment leads to razlatively

L . ; . i vacancy-solute binding energies and bulk properties in metals.
small vacancy-solute finding energies, in particular, in

. . ) A A o Below, an outline of his arguments, and a summary of his conclusions,
agrecment withiexperiment, in a fully realistic theory size efiects

. will be presented.
(i.c. relaxation round the solute) have to be inconpmrated, and

. His work is based on the analysis by Rockosch (1983) of
this will be taie focus of the remainder of this section.
diffusion data by means of the so~called five freguency model plus
an ansatz due to Arnhold (1981) to find vacancy-solute binding
free energies Gvs for 7 Cu-based and 5 Ag-based alloys.
In the light of this set of data, Benedek considers the
relation between vazcancy-solute binding energies Evs and three
'bulk' properties:
(i) The valence difference AZ = ZS - Zh
(ii) The slope of the solidus curve and
(iii) The lattice constant change per unit solute concentration.
The third of these was found by Rockosch to display a strong
correlation with Gvs' In the work of Benedek, simple models are
developed which predict linear relations between vacancy-solute
binding energies and either dTmich or da/dcs, the subscript s
denoting solute, and h denoting host.
The second of these relations is in excellent overall

agreement with the values derived by Rockosch.

5.2.1. Slope of melting curve

The possible correlation between the melting curves of
alloys and Evs has been noted previously by Gorecki (1874) amongst
others. The treatment by Gorecki is based on the assumption that
the concentration of vacancies at the melting temperature is
constant along the solidus curve. Benedek reports, without

detail, a different model which predicts that Evs is proportional

~4- -5-
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to the slope of the solidus curve in the dilute limit,

E = A d_nTm
vs __—.—dcs

(5.8)
where the proportionality constant is related to the vacancy
formation energy of the pure host Elv and the coordination
number 2 by
= _E, fg - (5.9)

A Elv.z

However, the guantitative agreement between egn (5.8) and
experiment is found to be poor, and this relation will not be
pursued further here,

5.2.2 Lattice constant change

As already mentioned, Rockosch exposed a strong correlation
between Evs and the lattice constant change daldcs. In an Appendix,
Benedek's use of the ’‘quasiatom' (or ‘'embedded' atom) concept
(Stokt and Zaremba, 1980; Daw and Baskes 1284) to obtain a
proportionality between Evs and d 1na/dcS is summarized.

Specifically, he finds

Evs = A d 1lng

5.10
dc ( )
s
where
-1
A = - 929 d 1n nat(Rl) : (5.11)
d 1n Rl

llere 2 is the bulk modulus, D is the atomic volume and a; is

T
the atomic charge density of host atoms determined, say, from a

Hartree-Fock calculation (Benedek has employed the wave functions
given by Mann (1¢68) to find some values of A for particular hosts:
these being in cV: Cu;l1.23; Ag: 1.29. Ni, 1.50, Al, 0,83 and

Nb, 2.31).

>of

/
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: The above equations predict that ‘oversized' solutes, i.e.
those for which daldcs?ﬂ, have positive binding to vacancies.

In Benedek's model described in the Anpendix, the 'driving force!
;for this binding is the preference of such solutes to reside in
regions of low electronic charge density.
'to Benedek is manifested both in the positive dilatation of the

lattice surrounding a solute atom and in an attraction between a

solute atom and a vacancy. In this picture, oversized atoms arc

also expected to segregate to voids and free surfaces, where the
background electronic charge density is lower than at bulk
substitutional sites.

Figs, 5 and 5.

show EVS for

as a function of d 1n afch

“u- and Ag-hased alloys respectively. In the casec of Gu, most
of the points fall on a linear curve, although the slope is about

25% lower than that predicted by egn (5.11). No explanation is

offsred by Benedek as to why Ge does not fit the general pattern.

In the case of Ap, shown in Fig.§5 4 of the solutes closcly
follow the prediction of eqn (5.10). For the Ag{Zn) systlem,
howzver, the observed binding energy is positive, whereas eqn
(5.10) predicts a negative value, since the solute is undersized.
Benadek proposes a possible explanation of this discrepancy, to be
briefly referred to below. Nevertheless, all the other values
of Evs given by Rockosch are predicted teo within about 25% by
eqn (5.10).

5.2 3 Discussion

Benedek proposes that Ag(Zn) is anomalous in that the
tendencies of 'size' and 'bonding' are in conflict, i.e. d lna/dcq
and -dlnTmldcS are of opposite sign. 1In all of the other systoms

analyzed by Rockosch, both of these parameters are positive.

-"1-
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In the present context, Benedek also inquires about binding

cnerpies for systems for which (dlna/dcs, -dlnTm/ch) are {+,-)
and (-,-). The evidence for such systems is scant. Alloys in
the (-,-) category are cxpected to have a repulsive interaction
(i.¢. nepative Evs) between solute atoms, and vacanices from

the standpoint of bLoth 'size' and 'bonding'. One example is
Cu(ki). For lhis system, Benedek quotes an analysis of diffusion

data by Herzig using the method of Rockosch which yields Evs =-0.03eV;
vy (5.10) also gives a value of 5-0.03eV. However, the close

wrreement here scoms somewhat fortuitous: a similar analysis of

dilfu=ion data for Cu(Co), which is also of (~,-) type, gives
“vu o4 0.02eV, whereas eqn (5,10) predicts EVS = _@¢,01eV.
txmmples of (+,-) systems are Cu(Pd) and Cu(Pt), but no
experimental values of Evs seem to be available, Benedek makes

Lhe tentative suggestion that egn (5.10) should work reascnably
we ll for (+,4) and {(-,-) systems, but cannot be regarded as

re biable for the (-,+) and (+,-) cases.

:LﬁguxJJ

Appendix

In this Appendix, following Benedek (1987) a relation-
ship between EVS and dlna/dcS is derived using the 'quasi
atom' (or embedded atom') model (c¢f Stott and Zaremba, 1980).
The primary quantity con which these workers focus is the energy
Ef(n) reguired to embed an atom with a particular atomic number
into a homogeneous electron gas with density n. When an atom
is embedded in a 'real' solid, the background electron density
is, of course, non-uniform and must be approximated either by
the superposed charge densities of the surrounding atoms at
the embed&ing point or by a suitable average in the region of
the embedding point. If one denotes the energy function of the

solute (host) as Es(n) (Eh(n)) then the simplest approximation

to the vacancy-sclute interaction is given by

-Eyg = [Ega)-E_(n )] + [E (n )-E (2 )] (Al)
where ny is the background charge density at a substitutional
site in the host and o, is the background charge density at a
neighbouring site to a vacancy, lattice relaxation being
neglected.

Benedek then aﬁgées that the first term in the square
brackets on the right-hand side of eqn (Al) should be dominant.
Since the perfect lattice is in equilibrium, one has

dE, (n, ) dE, (n )  dn
nohto h™ h by (A2)

da dn

-3
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and therefore LE (n_)-E (n yv(n, -n )2 is second-ordizr  and
h*'a h*"'v h “v "
presumably small relative to Es(nv)-Es(nh), which 'is: firet
1
order in (“h'nv)' Benedek then further approximaies eqn §ALY {
by expanding to first order tc obhtain \
i o= - . i
_Lvs LS (nh)(ny nh)“ TN

]
Since n,-n, Is negative, this relation requires th&m:ﬂsj(m$}M@

for positive wacancy-zolute binding energies Evs' Benddes  points
out that truncation of the power series for Es at Iirst ocder
makes the present treatment formally equivalent tc pair putenmtizl
models.

The next step (Benedek 1987) is to relate the darivat.ve
Esl(nh) to the lattice constant change induced by wll loying. i

For a cubic mestal, the volume change associated witthh a simgle

solute atom is given by Hardy (1968) as
AV = G/33 (A

where B is the bulk modulds. G here is the trace off the'strengab’

tensor;

G = § By Rys A )

where the sum in egn (A5) is over lattice sites Ry fAlsc‘Tl
is the Kanzaki force on atom 1 duc to a substitutional  tmpurity
at 1 = 0. 1In the case of a dilute alloy with solute corcemtrat o

¢, one can write |

-AO -

32.
c Y/ = 36a/a (A6)
where § is the volume of the unit cell while &g is the

change in the average lattice cconstant. Continuing egqn (A6)

with eqn (A4) yields

]

dlna

dCS

. (A7)

©w I
ol
=

For simplicity, Benedek pow terminates the summation in egqn (AS)

at the nearest neighbours. 1In that case

G = ZF1R1 (a8)

where 2z 1is the coordination number, F1 is the Kanzaki force on
the first-neighbour shell while Ry is the near-neighbour distance.
Within the embedded atom model, the Kanzaki force can be

approximated by

dE_(n, ) dn
F, = 2 —s b _h, (A9)
2 dn de

As a result of eqn (A2), Eh does not appear in egn (A3). Con-

bining eqns (A7) - (A9) yields

—ES = dlna onn
deg dnh/dlnR1

{(A10)

Substitution of egqn (A10) in egn {(A3) vields

- A)-



9 B g(n,.-n_)
. h
L = v dlna . (A13)

dnh/dlnﬂl dcS

Further simplification is possible if the charge densities

are related to the host atomic charge density Noy by super-
pusition. Then using

n,o-n, = nat(Rl) {Al1Z2)
and

dn zdn

h =
at (A13)

dlnit1 dlnR1

oiee can rewrite eqn (All) as
;’
Evs _  -9BR dln nat(Rl) dha (ho4)
z dlaR, deg

which is the desired result (Benedek, 1987).

-\ -
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