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Abstract: We report on an efficient way of calculating for
high energies the final state interacticon of a hadren with
a target nucleus. In particular we study the
electromagnetic nuclecn knock out form factor. In essence,
the method rests upcn the fact that the plane wave
approxi mation should be a reasocnable approximation for high
energy projectlile. In each partial wave we calculate the
difference between Lhe exact result and the plane wave
approximation., This is shown to converge at least twice as
fast than the separate partial wave expansions of the exact

form factor or of Lhe plane wave approxi mation,

Electromagnetic knock out or production of hadrons from
nuclei invariably leads to the study of final state
interactions and hence to the evaluation of distorted waves
[1,2]. This is not to be viewed only as & nuisance but alsoc
as a valuable source of information on the propagation of
hadrens in nuelear matter [3,4). However to discover

pessible non trivial aspectis one must first preoceed to a
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precise evaluation of the standard distorted wave which
describes the interaction of the outgoing hadren with the
nucleus via a complex energy dependent optical potential.
This is known to be a difficult technicsl problem at high
energies since in genersl 8 very large number of partial
waves is needed in a straightforward partisl wave expsnsion
[5).0n the cther hand one expects on physical grounds that
at high energies, around the quasi free kinematics, the
final state interactioen becomes comparatively less
important and the quasi{-classical or etkonal approximeticons
can be used as a guidance.This strongly suggests that one
should calculate first the plane wave approximstion , whieh
physically implies noc final stste interaction with the
residual nucleus, and treat as a correction the difference
between the exact result and the plane wave approximation,
We now present & schematic model calculation where we
only consider the distorted wave associated te the cobserved
outgeing nucleon,
The transition form factor for a nucleon geing from an
initial bound stete pmc?) to & final scattering state

vﬁ-:)C?D with the momentum transfer a reads
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where plmC?D i¢ a smolutien of the bound gtate

Schroedinger equation C« m < O
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RyCr> being the rediel pert of g, (F). The single particle
Hamiltonian H with the radial finite range potential VCrd
is given by
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and the scattering state fulfils CE_ = k’/amND
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In the absence of final state intersction the plane wave
npproximatio;\ to the transition form factor is the Fourier
transform of the bound siste wave function evaluated
al. momentum f-a
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The integraticon in (52 can be made more efficient by
relying on the range of the potential itself. One uses the
Schroedinger equation in momentum space
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One thus gets an sccurate value of (5) with fewer
integration points since the integretion range is now cut

off by the range of the potential. The exact form factor
can how be svaluated ps
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We then use & standard partial wave expansion for the

difference in the expression above. - The scattering wave
function can be expanded as
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where uLCk.r) iz the positive energy solution of the radial
Schreoedinger equation., Equation €BY can then be expressed
in terms of the cne dimensional integrals:
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wvhere the Bessel functions JL(krD arise from expanding the
partial wave expansion of the ocutgoing plane wave ({n CQ),
The radial integrals {n eq.€11) provide a direct measure of
the distortion effects in each partial wave. These effects
become clearly more and more important as one goes away




from the quasifree region or to lerge (K - gj.

This technique has been used in the course of some
work concerning a high energy approximation for one nucleon
knock out form factors [2). We have reanal yzed and extended
Lhe numerical calculstions presented in [2) bearing special
attentien to the convergence of the partial wave
expressions. The transition form fector isx evaluated for e
single particle model, specifically s square well and a
Woods=-Saxon potentials., We present here results for »
square well, whose depth is 486.06 MeV and whose radius is 3
fm. Note that a square well calculation provide, ms can be
seen in [2), a significant test of the methed. The s-wave
binding energy is 31.2 MeV and the p-wave ocne 18,5 MeV.
Calculations have been performed for outgeing momenta of 3,
4 and 5 fm~' and momentum transfers q = 3, 4 and S fm o,
Typical example of the convergence C k = q = 4 fm-l. £ = 'c.p
study is presented in the table. The correction A = Agor
for the s~wave can be very ascurstely calculated with 18
partial waves whereas the plane wave contribution converges
for much larger values CL‘max > 35), We have obtained
similar results for the Woods-Saxon potential and salse for
the p-wave knock-out form factor. Results of the same
quality were cbtained for an asymmelric configuration k » g
and different angles between KX end g in the forward
hemisphere (with respect to E;' which we take as the angular
momentum gquantization axisd); typically for k = 3 fm
g =4 m L or k =4 fm -1. q=3 tm one needs at most
15 partisl waves while at k = 8 fm >, q = 5 fm 2, 20
partial waves are needed, The number of partial waves
ro)quired to evaluate the form factor is thus reduced by
more than a facter of two in all the cases considered. The
main differences between the exact calculation (8 and the
plane wave approeximation (3D warise essentially from the
central partial waves., As @ final remark we stress that
Lthis technique is straightforwerdly spplicable 1in cases
where the knock out is included by a non strongly



interscting probe such that only one wave function is
distorted Csee eq.C10D. ' '
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Table
S-wave knock-ocut form factor for a square well potential
(see textd: g =k = 4 rm"i. kK - ﬁ = 0 (ReA - real part of

the final stste correction. PW¥ - plasne wave approximation,

BAC « PW 4 Pad. Tm& ~ {maninaryv bartd

B 6L ReA PW ReS ImS=ImA
- red fmala fmS/a rms/a rms/a
of| o0.70 |- 0.81.10°°]| 0.15 8.27.10 2| ©.38.10 ¢
2| o7 |-o0.27 0.73 0.45 0.44
4| o.72 [-o0.38 1.15 0.7¢ .68
e| o072 [-0.38 1.33 0.98 0.83
s | o850 |-0.31 1.26 0.65 0. 64
10| o©.43 1.5 .10 2| o.e8 0.07 0.45
12 |8.3.107%| 3.03.107%| o.e1 0.85 4.08.1072
14 |2.5.12072] 2.38.10™3| o0.36 |-0.385 i.27.107°
16 |1.0.107%| 6.50.107°] o.21 0.21 2.15.10°°
18 [1.7.107%] 1.00.107%| o.12 0.12 2.08.1077
20 [1.8.10°8 6.45.10°°| &.0.107%|. 6.0 .107%| 1.23.107°







