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The presené pPaper considers the problems of spontanecus
asgretic fiald,generation,heat and particle flux ead formation
in collisionless plasmas under the lafiuence of the ponderomo-
tive force. It was shoun [23] that in the hydrodynamic apprexi-
mation tho spontansously generated magnetic field makes no
diract offect on the developrment of Langmulr plasma tirbulonce
one has to take into sccount both nagneto-modulational and far
Purely relativistic effects, i.e. the velocity-dependence of
the sloctron mass,

Tha effect of spatial and time inhomogeneity of the pungp-
ing flold on the particle distribution in both isotropic and
magnatoactive plasmas is studied, Inhomogensity of the sxtormal
fleld is shown [24] to produce particle and heat fluses im the
plasza,

1. At present, the problem of low-frequency (LF)} spotane-
cus magnetic fleld generation attracts certaln attentlon dus to
its importance for understanding the dynamics of Langmuir plasma
turbulence (see, o.g. [1], [9], [11]).

Papers [1-3] , which we will be henceforth referrsd to sa
DKK, study the spontaneous LF magnetic flald effect on the nom-

linear dynamics of Langmuir waves in plasmas and, in particular,
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on the modulatinnal instability and the ccllapse.

In our opinicn, the papers of BKK contain certain fncen-
sistencies., With the latter being removed one comes to modified
conclusions on the nature of nonlinear processes under conside-
Tation. -

1. In the hydrodynsmic approximation the spontansous LF
bagnetic field makes no direct sffect on the nonlinear dynamics
of turbulent plasmss. In the expression for the fast current,
BXK disregarded the term proportional to the velocity of the
slow slectron motion. Thi; term compensates the current density
due to the spontaneous LP nagnetic fileld.

2. According to the results of BKK and neilecting the skin-
effect, the LF vortex current contribution is proportional to
tie relativistic factor %' , where Vi is the high-fre-
quency {HF) elsctron volééity anplitude and ¢ is the ‘light
voloeity. The contribution of the Purely relativiscic effect,
1.e. the HF -olectric-field-amplitude-dependence of the electron
mass, 13 shown in the present paper to bs of the same ordsr of
mzgnitude. When compared to the magneto-modulational effect, the
rclatlvistic effects turn and to be the main reason for the HF
wave modulational instability to occur.

We start from the kinetic equations for the slectron and

ion plasma components and Maxweil equations:

_gt;g*_ I'J‘:‘ V)ﬁ-’ - Fﬁ—! (é' +(-:£—-£\7( BI)‘_?&JP( =0 (1.1)
13~+d \'f‘hDL +&(§j+(1‘_[\7_ﬁ})§7_@ =0 (1.2)

4 v & = g f( bo-fe, 1y (1.3)
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wt:__ = -4 Q.B.

& at (1.3)

divth =0 (1.4

whara ?— is the esloctron charge, m, and v, are the slect-

ren and ion masses, respectively,

From the kinetic equation (1.1), we obtain the ones Ffor

the electron distribution function moments n. = jﬂ dv ’

e tL :JVP(dV

an divreu =0
31_’1‘ (Vite (1.7)

- + (@, ——s-?m-i—\‘f’n g-['v?,fﬂ,, (1.3)

My hy

the pressure tensor being

=W (V-d), fdv

The system of equations obtained is not closed since it con-

tains higher mom nts P .

As it is shown in the paper [4 |, this system can be

closed both for the unperturbed state and for the lnduced os-

cillations with double plasma frequency We ('AJe - (q_:_e_‘n.]"“)
My |
As for LF oscillations, the relevant procedure is aot adequate'.
With the HP fleld present, the values of laterest for

contain both slow time dependence and fast depondence with the

characteristic time t ~wet . Therefore, we may assume esach

of the values = ( 6 h.e u) to be of the f{ollowing

forum:

A-CAY+ A
{1l.u

where the brackets denote avaraging over the time segmant T .
We restrict the consideration to the case when the fast
ion motion may be neglected, and the constant magnetic fleld
is absent, B = (0 . Moreover, we introduced the following'
potation: { J.) = V) s (B = 3B (where 3G is the LF
perturbation of the magnetic fleld); Jfe7= /% tiy ( ho is
the unporturbod. slectton density, while /.; is the LF pertur-
batian of the electron density due to the averaged HF potential
influence on the LF motion (rn,»ny) ).
According to [ 4] , [13] , we present all fastly varying

values in the serles forms

A= A expl-iwd) r A exp(-2iwet) t e C (1.10)

nssuaing [E‘I 2 I\E—?[ L€l ne>neng, hg

CARZT I\ZI , That allows us to develop the perturbation
theary. In the first psrturbation order, the slectron velocity

0. =V, expl-iwt)+ v exp(iwet) , where V "f»‘f&é

. The electron distribution function in the unper-

turbed pilasua

Eef(v-d) i

satisflas the equation

f*r .ot |.6 exp-nact)r € C. ]‘*bi}' =0 (1.12)

e Ay

The relation (1.11) implies tha major part of electrons
to move as a whole. As follows from (1.1) and (1.11), the ad-

ditional tirm PJ in the distributlon function ’ff satisfias
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Then it is convenient to make the subseirute the variab e

V— 6 «U, and thus to rewrite (1.13) as

ey Gl O C G E) [ 5,0 o\ s e =
%f{ + (ufu.,v),-L - é(,;U“_L) {(uﬂi,y)u, +_'2.‘<€)¥ (;)1.

+ L[G.,?&r@j}_‘.?

mMel Mg

(1.14)

Now we separate the time scales in this squation. We presesrt
the function jpdr as g saries:
_L' ={d)+ ¥t @\F(—iwut)+ {:exp (_e;mt) + 0

In the first order of the Perturbatlon theory we obtain:

{ - u_b,e-(g,v)\_/:-%{;; (z.18)

When deriving (1.1%}, wo have assumed that w:>> kv, where

Vie =(Ia )t is the alectron thermal velocity, k' js =he

™M

characteristic scale of the [IF notion. Substituting :this axpres-

sion into the Pressure gradient which eutors (1.8), +e ohta:in:

Ve Do L_J).L(Jj;_ﬁ.vhd.\f Vi = -3V Wn,
(1.125)
Substituting (1.16) inte (1.8) by means of the well-knewn Jno-
cadure [5] . [61 . we obtain truncated equation for the

slowly varying complex amplitudy, £ :3,}: » of the HF elect-

- b -

ric field at the principal frequancy ), 3
.= 2 = ot + -3 =
LE, ff_w“(.g Qodiv & _EL_: il £ L‘g! %:’-Ef

where Te i3 the electron Debye radius.

In this equation ws take into sccount both e¢lectron non-
linearities and a weak relativistic offoct (the last term in
(1.17)) associated with tho dependemce of tho‘pumpwwave»nmpli—
tude electron mass. Morsover, equation (1.17) takes into ac-
count the effect of the yenerated IF magnetic fleld {see BXK)
which produces the term Lﬁtz.[é..SBJ in (1.17). We show
in what follows this term to be of the same order as the rela-
tivistic effece. Therefore, it is necessary to take both these
inzo acceunt in order to obtain a correct pattern of the phono-
memon.

To close the equation (1.17), ona has to calculate Ay ,
{A y Ny ;; in terms of the disetrlbutiona function mements

<3}  end 1.

M:j(-f)dﬁ , \qvfggli({)ol(}

A AIAL

=
)
W
A ]
k=
<
< |

(1.13)
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(The terms n, and V, mnay be calculated from the hydro-
dynamic oquations with the pressure gradient dlsregu‘ded). Hav-
ing calculated the moments J] (560 (1,15)) made use of (1.18),

ung can easily obrain the following relations:

t_‘_: /! ﬁ-‘ - ' .
3:\_:.; =t 6:\—;‘;?[{1_5([) + JI\’(": .J,JF.J( (1.19)
v, - Le' lgrzy . 242! :
T TEFTTEZLQ\‘J EdvEy (1.20)

Now wa derive the equations for slowly varying values cﬁi N
Vi, ™ . We first write the equation for {1> that may be
obtained from (1.14) by means of averaging over the time ipter-
val T . Here we assume {°(5) to be the Maxwell distribution

functien and employ the relation Eg = Rl “wt ¥V, . Then

the required squation becomes:

‘AD O RSP TA (L €Y+ V'Vlr) +

25
(1.21)
+ ke (l) V)JS a—i“ = 0
fare o
whara
= (V9N - <o (1.22)

Using the solution (1.21} for <1?) and relation (1.18},
oné may obtain expressions for \71 and W] . Here it is con-

venlent to use Fourier transformation

<R Gy S exp iR T v ise)avdl
(1.23)

Having defined from (1.21) the Fourler amplitude ({7, for

the Fourler component of the drift valocity vJ; , we find:

Vi = 1-:): °3n - ;[V'l:ﬂ. (i_ f'l )}) m‘izl[k. L- 5‘)3(!_ '“1]}“

LELE) kllj(p] [LL_J: K- 0 18)) -

L}Qléitﬂ&il j'(P)T

(1.24}
where x
]gzi%_ , J,(x): xexr(-g_ﬁ).‘[dtexp(%_‘)

In what follows wu uso tho following asymptectics of the

function 3, (x) :

J,(x)=_1 g L(})f-xexp(-f‘) (1.25)

for x5! | lRe x! >»!Im w.{
and _fr(,()—_-L(zI)f)( » when x|« |

We could have obtalned a rolation similar to (1.24) Ffur
tne ion drift velocity as well, liovovor, we assure beiow the
phase velocities of LF wave puisa‘tinns to be high as compared
ta the lon thersal valocity, . -» KV, , and then gonexal
hydrocynamic equations ars applicable for ths description of
ion mction.

lrom {1.2Z1) and the Poisson equation, one can easily ob-
taln an equation for the Fourlar- suaponent h} wunich way ho

Written in the general form as follows:
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<t - oL tos t ‘p \'J"-(I
Voo W (f_— J‘.l‘i\}) = - “‘J".\J’—‘}\“;’" - AV,
Vet e, K (- 1.1, .
r = ) (1.26)
where By - fa;
M

Now we write one more oquation for the L} perturbation of
the magnetic field 5?; « It 13 ossy to obtain from (1.4) anc
(1.5)

(.{1__02 N ) S—[-’v - 41}511, sl (\vl -y _.<{',_’:1i.> )

¢t . (1.27)
where
By o gE ¢ f-) )
< 5 ) I(Ih‘m.m,( ' 11.28)

Note that the ion drife velocity is related to the magnat-c

field LF perturbation as
wt ;i = - 2.9
™ C (1,29
Thus, we have obtained a closed systen of equaticns (1.17),

(1.19), (1.z0), (1.24), (1.26), (1.27) describing the dynamics

of longitudinal and transverse HF and LF fields in a plasma vith non

relativiseic temperature, 7. . m.c® . These equations are of
genoral nature, since they take into account the followiag nan-
linear effects in the qQuadratic approximation with r9saezt to
the HFfleld amplitude: striction nonlinearity, excitatlos of LF
magnotic fleldst relativistic and electron nonlinearl:iaes.
These equations are applicable for the description of momnlinear
offects in the plasma both in. the "hydrodynamic" 1im-.t {1.e.

when the LF motion phase velocities exceed the eleactron thermal
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relocity, 2 53k, ) and in the opposite '"kinetic" limie,
when .55 KV , Below we consider these cases separately,

b) We consider the case of the phase velacity of -
duced LF osclilations being much higher than the electron
thoroal velocity We 7242 3> KV, « Then we easily obtain the
following expression

_a_.\}-l = . @
at . Me

Py ol
\E)* ViV (1.30)
from the relation (1.24).

Taking the cur) part of the equation (1.30), we obtain,
within the context of {1.5) the following useful relation:

T = wel ot v,
(1.31)

Ttis enables us to write the final eqiation for the magnetic
field perturbation. Using (1.31) and Reglecting the displace-

ant current and the ion contribution in (1.27), we find

1 e

(-A B i);u - t,i—.'s’_..d ‘wt(ﬁd-‘fft v ) (1.32)

L4
It Is to be noted that a similar equation for $8 was
derived in the paper [3] from the hydrodynamic equations.
The right-hand part of their equation 1s as follows (see

£q. (3.21) of the present paper):

e otaok [FE*]
Y Mgy C

(1.33)

As 1t is shown below, the latter expression is valid
o1ly in the kinetic cass { & Kv¥y), while the calcula-

tlon of the '"slow" current in the hydrodynamic approximation
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carried out by the above-mentioned nuthors is incorrect.
The equation for the electron density perturbation

in the hydrodynanic limit may bo writton from the relation

{1.26) under the wssumption (2 >> K\, (p=t ) . Itis

of the following form:

7{1”1 - ([,.-'ﬂ f-) a el
3 gttt 16 7m '
i (L.34)
Moreover waking use of the Polsson equation
({ ;v <€-> = 4 i ((5-;1.‘ g )
{1.35)

- .
(2n. is the ion density perturbation) and the hydrodynazic
squations for ions

%{Sn‘ + nedivv =0 N (1.36)

A = 2o KED

2 (1.37)

one can easily obtain

hyg = (// -+ ——'— 2 )ﬁ‘ll

1oy AR
wit 3L (1.38)
It follows from (1.34) and (1.33) that
..E.Sh—i = 4 EJ—L_
BYA /6 Tm, (.39}
and
h = \;—"1, 4+ A —[E—L.—«
! 78 75 Iy g (1._40)

Thus, wa have obtained s closed system of oquations -ip
the hydrodynamic approxinasion 1.17), (1.19), (1.20), (1.30},
(1.32), (1.34), (1.38) with regard for the striction non-
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linearity, LF magnetic field exclitation, electron and relati-
vistic nonlinearities, and quasi-neutrility viglation 1in
the LF motion. Taking into accoumt relation (1.31), one can
ouslly show equation (1.17) not ¢o contain axplicitly the LF
excitation of the magnetic fleld gE\ . According to (1.17),
the LF magnetic fleld can effect the HF field dynamics only
through the terms involving the drift velocity Vi (note that
la geweral Tot. v; » O and the curl part of Vi is related
to ST; ).

lé can be shown that if the characteristic space (L) and
time (f.) scales of the slow motion satisfy the condition
{{-_; Y “;_‘;“_){c , the striction nonlinearity may be neglected
as compared to the relativistic nonlinearity [ 7]. Moreover,

1€ L 2> i: , then the electron nonlinearities may be neglected

as compared to the relativistic nonlinesrity. As shows, the oqua-

tion (1.32) in this case the c ontribution of the terms asso-
clatad with the generated LF nmagnetic field‘éﬁi in (l.fT} is
also negligible.

Then we obtain the following nonlinear equation for the

HF fleld amplitude:

LEt - & whwtB e we et IETE *{E!E:":‘”):((;-“)

3
2oy 16 Indctwe

It is evident from the equation (1.41) that ths characte-
ristic tims of nonlinear processes which are governed by the
relativistic effect, is of the following order:

. i’\/’,z : = Lz
S Ve = on (1.42)

31‘
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According te {1.32), the genaration of LF ragnetic fields
occurs with tho same charactsristic times. (Note that the authors
of the paper [10 ] cams to a similar conclusion). However, the
back Influence of this LF magnetic flaid on the IIF fleld is 1lm-

slgnificant.

As one can see from {1.17) and (1.32), in case [ << E:¢ '

tha relativistic effects and the terms assoclated with ¢/ ace
of the samo order of magnitude. On the contrary, 1n cas.-Lu—;r
the relativistic nonlinearity (as well as the terms associated

with the generated LF magnetic fleld) 1s much smaller than the
¢lectron nonlinearitles, and the characteristic time of the pro-
cesses under consideration is of the order of the electron nom-
linearity characteristic time

. 1
{4 . w e 44K£ * -
Te : ( POV ARV (1.43)

These are the chnractefistic times of the LF.magnetic fleld
generation. ;

Thus, the case of so-called "magneto-modulational” Llnsta-
bility, 1.9. the case of IiF wave instability produced by the
generation of LF magnetic fleld, 1s actually excluded in the
hydrodynamic approximation. Nevertheless, the magnetic fleld
generation takes place, and characteristic growth rates sf
the magnetic fleld generation ar; determined by the relatrivis-
tic and electron nonlinearities in case of f? 2> 3%f}ff or
by the strictlon effacts in case of i" ( WAL

c} We consider the most interesting "kinetic" case, l.e.
assume the phase velocity of LF porturbations to be much .low-

er than the slectron thermal velocity and much higher than
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tha iton thermal velocity (g,vhha Q- %) . Then it is aasy

20 obtaln froa (1.24) the followlng relation for &=/ .

1<JL\7;=_L10£;O+6 / ‘ ,_LJJ,, ’ﬁt }

e e U Vre (2,‘-)1 oz

(1.44)

Substituting (1.44) 4into (1.27), taking into account
»1.28) and (1,29), and neglecting the displacement current, one
cam sasily deriya &n equation for the quasi-static perturba-

tien of the magnetic fiald

£SB - w'Sn i 2 fag Seli )
oF e LJ * i T
= JéLﬁ_r mufnﬁ_[g E'f
ff""q_h‘.lgk 4

{1.45)
Eq. (1.44) was written by BKK without the term %gifﬁ
The integral term In (1.44) doescribes the ponlinsar Landau
SJnuing or, in other words, the anomalous skin effect of the
ganeratod LT nagnetic flold. Now we obtain an equation for

nJd . It follows from (1.26) for KV o £26 KVie, Tre< T

2

Yol oo a7 500

(%%cha}nl_,‘-

.—_(!“_’ A/f‘llj

JL PG Hm,
(1.46)
In (1.46), we take into account both the terms -fv %il
aJ, &

ard the sound wave damping (the integral term in the left-hand
part of (1.46)}}. A simp's analysis shows that in contrast to
the integral term in (1.35), the one in (1.46) makes a consider-

akle contribution when the phase velocity of the forced wavas
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is of the order of the lon-sound velocity ¢, =(?EJ§ [12’.
Since we are not interested in this case hereinafter, we shall
neglect the lon sound damping in (1.46).

Thus, we have obtained a closed system of general squa-
tions (1.17), (1.19), (1.20), (1.24), (1.46) in the kineti=
approximation which describes'the dynamics of the HF and ths»
related LF fields, Note that this system of equations for tie
one-dimensional case S =2 ()  has been 1nvesiiglted in ths
paper [ 6] } the authors found new regions and branches af
modulatioqal instabilicy both for longitudinal and transvarse
waves and showed the supersonic compression soliton to be asle
to propagate in the plasma.

llete we are interested in the LF magnetic field geneva:ion
by UI waves aand in the back influence of §73 on the HF wave
dynumics.

As it was nentioned above, such problem has been solved
in the papers of LKK. However, th;y took into account only :ha‘
striction effect and the effact dus to the excitation of LF
magnetic field ( f{f?,fé] term) 1in the squation of (...7)
type. Meanwhile, it is clear from Eqs. (1.17) and (1.45) that
whan the integral term (1.45) may be neglected, the relativ:stic
terin and the one associated with the LF magnetic field genara-
tion ars of the same order of magnitude. Meanwhile, 1f the ron-
linear damping is dominant in (1.45), the relativistic effect
in (1.18) is greater than the tarm given riso to by the LF

magnotic field excitation.

To illuatrate the above sStatements, we investigatdifke stabi-

lity of monochromwatic HF Langmuir wave with respect to peder-
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tial perturbations. llare we assume that w;‘>{i%k and dis-
vogard the vlactron nonlinearitlus (as it is shown in [4 ], the
electron nonlinoarities make no effect on the modulation insta-
bility of Langmuir waves).

W3 rewrite the I wave amplituds in the form

. e - Siatedr ;nt-:ﬁff
E = e.«p;(m.-'.-.-us,u[ﬁ,+ £ BVEN
and
i o = stk freE
= ettt ok c dhe

(1.47)
Substiruting (1.47) into (1.17)}, {1.45) and (1.46) by means
of the standard procedurs (see, e.g., BKK)}, we obtain the
following dispersion ralation:
d!?.t/bn'l:; :O
LK - 4,28,
(1.48)
[

whara
by :LWrJL-%a@thrﬂ)ril&ﬁﬂ{thwfeJ

£
&' we

A, = gﬂLL,_/ma(B-'&)ﬁZmaeuaA@,]

-r £ S
‘3 omtc we

z @

Py o= b ‘[cws(@_— L-),) .2 cos O, -0y 6“_}

& me W
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.. Jrrrig 0 e
B,‘! = f'é—'-l E:t'o‘)d). B E‘.‘v ES S’TL:_;: YIS
o
By = k1FL v, Bay = ki .
16 o b, P ‘ om0~
By = 'l ok , 4"":.” = e il San
et €
1"—"’92 = :_t__ . .Sihc)-, B, = ccz 4 A2 tee” /
trvre € g chye k!
whore
B, = ‘ B: = arcceod -.__ﬂ,{go _,l'_cf-,i.st_}_
¥3 ig’w s * ’K‘;/'/k.:x_f
and
L]
= A T fec » !
We = RweTort o o3 eEL? (1.49)

75 m e

Along with the linear shift of the Langnuir vave frequ-
ency, we take into account in (1.49) the nonlinear frequency
shift asmociated with the relativistic the pumping-wave-ampli-
tule depondence of the electron mass [8]).

For the sake of simplicity, we restrict ths ccgsiéaration
to the case of fiJ-Ea. Moreover, we neglect the terms associsz-
od with the LF eloctron density perturbation in the dispersion
equation (1.48) (as it was shown in [ 1], the condition
:{I-‘ »él Er}:-)"‘ 1s to be then satisfied; in such case the effact
of LF magnetic field exceeds the striction Influence. The dis-

persion relation acquires the following form:

-" . PR R 2

- TV L S T YV L liaf = 4 A -
I/ ! i - i .

. Z] : fa < Kolpint

N L ‘ { tf S e {}'r-- ()
i RN rk SO

{1.50)

The second term in (1.50) is due to relativistic affoce,
wkile the last term is given rise to by the quasi-static mag-
netic field generaction. If we neglect the reslativistic effect,
wa obtain the disporsion equation in\rsltlgltoa in [ 1 ].

dow we cor-uidur the case of K. >k ; then the term rTespon-
slble for the generation of the LF magnetic field 50 in  (1.50)
uay be neglected in comparison with the relativistic effact.
Then in the case of Iv.1/¢' >4/, £} an instability occurs,
“he instability growth-rate attains its maximum value for

< :j;— 'Lgﬂ' L and is equal to

,_]ir\ JZ,..... =z —1,. “ule L\/J‘J"
fe ¢ (1.51)

Tha quasi-static magnetic fields will be excited with such
ETIWth rate. Now we consider the case of A.& & . In case

cf [V\{;J > zf_u » the nonlinear Landau damping for the quasi-
static magnetic field in (1.50) may be disregarded. Then the
melativistic torm is equal to a half of the term assoclated
with 5?8 by a factor of 2, the relativistic effect inhibiting
9o instability development. The instability governed by the
nagnotic field perturbation occurs for NMellZe s 12 (o ¥,

Iz growth rate actains its maxipum value for K”:z‘{/; é_/!-"'ct.'

&nd 1s equal to

T Rnas = owe Mo (1.52)
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In the case of v |/v, < Vi /e . the nonlinear daap-
ing of the magneto-static perturbations 1s dominant, and the
relativistic term in (1.50) is much greater than the term aseon-
clated with 56 . In contrast to BKK resules, in this case the
modulation instability does not ocuur and the quasi-stwtic mag-
netic fleld generation may be neglected in (1.50). Then the re-
lativistic term is smaller then the term connected with S0
by s factor of 2, the relativistic effect hindering the insta-
biiity development. The instability defipned by the magnetic
fleld perturbation takes place for (v i'/:' > L?é‘Kj‘ . Its
growth rats resches 1;3 paximus value at . 1 Mgl !

T T

and equals
T S aar = w1l
' -?ﬁj (1.52)

In case of Wel/y, & /e , the nonlinear damping
of the magnetostatic perturbations is dominant, and the rela-
tivistic term in (1.50) is much greater than the term cssoclat-
od with fh . In contrast to BKK results, in this case ths mo-
dulation instability doas not occur and the quasi-static
magnetic fisld is not gemerataed.

d) Lat us consider the problem of the oxcited LF amgnetic
fleld influence on the Langmuir coilapsal 5] . This problem
has been also discussed in BKK papers. The authors of this
paper have come to the conclusion that the magnetic field ex-
citation favours the Langmuir collapse development. It may be
easily shown that the relativistic effect favours the collapse
too. In fact, neglecting the eloctrén nonlinearigies im (1.171

and repeating the calculations carried out in the abovementicned
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paper, one finds that with regard for the relativistic effact,

thave appears an additional term
_ Vet - =y a4
£ [dT(aEr e ETE ) (1.53)

in the expression for the plasmon energy (see Eq. (1.13} in
the paper [2]). This term is of the same order and sign as the
term due to the generated LF magnetic field; acoording to (2],

the latter i3 equsal to

(1.54)
Howsver, ss it was mentioned above, the elactron nonlinea-
rities may be neglected in compariscon with the relativistic ef-
fect and the effect associated with ga only under the condition
that 1,>>‘£& . Thus, thess effects Influence the collpase

only at the initisl stage of the caverne decrease, After the

characteristic dimension of the caverne becomes smaller than

fh , the alectron nonlinearities arise, which determine the
character of the further process. The problem of the electron
nonlznearity 1nfiuenca on the Langmuir collapse has been dis-
cussed inf 4], (14],

II. Recently, much attention has been paid to the problem
of HF electromagnetic fileld effect on the kinetic phenomena in
plasma, such as particle velocity redistribution and forma-
tiom of hot electrons [15,i16] . It was shown in [16] that, in
2 collisional plasma hot elsctron '"tails" are formed on the
Maxwell of distribution function dus to the anomalous diffusion.

Similar particle redis: cibution, howaver, corresponding to the

formation of hot electiuons, can occur in collisionless plasma,
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43 woll as under the effect of the ponderomotive force. For
instance, ths ponderomotive force affect on the phasa-space par-
ticle distribution was studied in (17] . Paper 18] is devoted
to the kinetic treatment : the powerful electromagnetic fleld
interaction with the plasms, Rol;tlvistic motion of slectroms

in this fisld is taken into account. However, the results of the

above papers were obtained with regard for the 1patial depemdence

of the field amplitude Ef(a) only, the slow-tims-dependencze
being neglected. A new ponderomotive effect was faund and ana-
lysed in (19] ., I¢ is associated with the origin of particle
and heat fluxes, This effect is caused by the time-dependenca
of the pump fiaild amplitude. The plasma was assumed to be
charged (ambipolar diffusion, decaying plasma), then thers
accurs a strong electromagnetic fiedd in the equilibriun State,
and the equilibrium distribution function is given by the Max-

wall-Boltzmann distribution, 1.s.

SR el )

which inpltes that the wavs enorgy is much lower than the alact-

Tostatic energy
eP/Ta wa I'EV/J’\Te

On the other hand, under the effect of the powsrful elactro-

magnetic field with plasma, the ponderomotive force causes the
charge separation and formation of the potential field, which
in turn modifiss the particle distribution in the ordinary space.
Just such approach was employed in [18,20].

This paper considers the ponderomotivy\force affect on the
kinetic phenonmena in a magnetoactive plasﬁa. Thoe mathenatical

Procedure is similar to that given in [ 18,20, . In contrast tm
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{19] » the time-dependonce of the Punp wave uaumplitude was shown
not to be the only rcason of hoat and particle flux formation.
Availability of the magnetic ficld provides conditions Tequired
Zor the formation of heat and particle fluxes even in_tho case
vhen the wave amplitude is time-independent. This paper dis-
cusses also the problem of the hot electron origin and gives
relevant expressions for doensity and pressure associated with
the diffusion term in the kinetic squation.

Consider an electron plasas, exposed to a HF fleld of a

circularly polarized wave

fE,(a,i)coA(ui-ﬁd.e}; Eo(e,b)sinfut ijz} ;1)

The external magnetic field B. is directed along the axis 07
and the particle distribution is assumed to vary along the axis
oz .

The induced magnetic field Possessess only X - and Y-
Couponents

8,2 ,,ui-cja'*' ‘9_“:_‘-&. 5 By .,ﬁ)"’,faf 252, (2.2)

Apart, the ponderomotive force results in the shift of
the bulk which gives rise to the potential electric fisld
=5 z-%Y. This system i3 described by the particle distri-
bution function ( f ([h ,Q,‘ut,gjt) ) » which satisfies

the Vlissov kinetic equation [21] « Lot us change the variagbles

ard introducing a new function

% (u.,U,,UE,l,h) = f{‘h = S(E,‘*g‘!J C] ))Jf

L%

U) - ) ( f’,r kt[\/_f':},))“') -’..’4) ff,(. }
12.3)
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which i3 the distribution function in the coordinate syst=m os-
cillating with the external fleld frequency. For the new dis-
tribution function (2.3), the kinetic squation bscomes
'}f,, 2, 1 N (AT TN I Y
st Ve S KFS '_‘i( m "‘<-{ "(L e (’ ]) ”} (2.4)

where ™ is slectron mass at rest, !'. and ', are tha

elactron thermal velocity companents, U and Uy * are the ale-

ctron oscillation velocity components in the external field.
Solving characteristic equations of motion for aslectrons,
it 13 not difficult to obtain (due to high inertia the ioas

are assumed to be stationary):

By = o Fol w- ke . s vl e d
o t%fﬁfﬂT-rz sen (h‘d jk a)

U, = 2E. - K l.": (_").4('@{ _jA Az )

Lia ¥V} [N SIFES

(z3)
where 0. - <B./mc¢  is the electron cyclotron frequemcy.
Using {2.5), equation (2.4) can be rewritten as

+J _J_
ot * { )U‘ (‘z ) (df) t
‘f‘r--jid' Uc[Uj M("Jé “j’l:J'd )— U ‘S.i.h(.'.J{: —-}k‘lrf )J %—i =
_ (2.6)
where
A_Uﬁ = \’.[-— a:(u}—ﬂu})j(u_Klji—SZ}

.3 1s usual for the guasilinear approximation, we present

the £, iction ¢ as a slowly varying part and a fast oscil-
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lating addltion:

’2‘ = F ¥ ::E ¥ \”,l) = F
Tle relevant equations for [~ and F~ are of the form
‘8 F o CuPNAE el e i)
:’_[E- t L"[ '?.]E—- T dji- ( 'nj) ;—l{; J‘;(A:_'_L,J \JUJ{ ) .

<ok delupeer(ut - [eda) o esasal < JZ)J'-if

a2 dLha

2.7

OE ek ez (o) 3-S5 ()57
B ~—i~“3:'t { & Da[U1t~A(wt j)- J-' YN TN jt-)x {a) ]J,, s
b E ' 2.8)

Hsre the sverageing over the period of the external field
oscillations hss besn carried out.

Solving equation (2.7) by the method of characteristics,
ws obtain

oy ; ~— . - . - - (’
- 3y orlon g g ) sin oz R 4,

whare L .

Boedi L AR d-wm )%t
Substituting solution (2.9) into (2.8) and taking into

account X 1, |w- 52| , we obtain an equation for tho slowly

warying part of the distribution function

i ~ - 1
“aF rLad _ ook AaNe pF U L dYe 2 (g F Yo
%7 + 0g.9% + {1\ ™ )‘.‘m. Z 3z 9t I 8% ( )
- l.--_ 2,,( vl-_ -)_JF 1 ‘)Urif_‘ Jz!
- %li 3{7" )= /4,3* } %’f gﬁ ¢ ‘f]f‘r RV T Deadle
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whera the fallowing notation is introduced:

N k(u“fu,')l;alu,zluj is the electrom thermal
volocity.

Equation (2.10) describes the basic quasistationary state

of the plasaa, Equutlon (2,10} may be solved by the parturbation

mathod, under tha assumption that £ -f o F Foe F,

then in the zero-order approximation we have

UAFDF‘rl—j)}L :5.3 i =
D Ue

EYAR 2 ’32 (2.11)
Bquation (2.11) is solved by the function
Fo = Cev\,n{_m_u.\ ,.__J}.’_ .o gt

Wiz 27 ) (2-12)

where T is the plasma temperature in energy units, C s
the integration constant.

In the first approximation (for the function < ), we

obtain
+ X %’ﬁt P2

(2.13)
whers 1(-: ; ‘\/II‘ “tw’ . The last term in tho 9quation (2.13)
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appears due to the fact that when equation (2.11) was solved,
the tize derivative of the zero distribution function was not
considersd since, for &_‘))l_!: :ﬁ_; » it 1s much smaller
than the second and the third terms of the equation (2.11).
dowaver, one cannot neglact the contribution of this correc-
tion in the firse approximstion ( £ 1is the spatial scale of
the plasma, L, i3 the Dabye radius), '

Taking inte sccount (2.12), we find from the equation (2.13)
= s ] y 2 5 .t -
R - T PO T T

z %%ﬂ‘f—.‘?f ‘%—‘&zfdr X
PESROF ) e g e

__Eo”,(_?g ) d-c%e_ug'] @.14)

Substituting the sclutions of (2.12) and (2.14), one can

write the expession for /~ as

!—,_(_;J\P[ dn et

2 T{/.» 5'?".!2)

.z L
+ «"-4{;—,@4-.@’&;4&/.

¢ t .
i O g e, fog)

(2,15}
- m gt I /ey R
whare i-XT__ r-r—-/e +4’_,).=)

In (2.15) integrals in the squars brackets are, obviously,

much less than unity, but thoy are just ths reason for the formation

of the particle and heat fluxes. The deminant cont; thution in

Particle donsity and pressure is due to the functic .fwithout



lategral terms, 1,0,
3 LR S'f‘h)l
this condition yields

and

}\°TN0A‘3( ?_(jl-&d’)?ﬂf)s/
2
and the pressurs caused by the function f is of the ferm
P 0T {14 2% mud
n.7 {1 e )

Let us find the corrections to ths particle density and pres-
sure as well as the expression for the particle and heat fluxes
caused by the integrel terms.

For the particle density

v 2

ah o= o {9y,
. (2.17)

The mean velocity is dotnrmlned by

<vo o= ugpdu (2.18)

For the prassure
N hwh‘s (0. - <u2>)Pdu, (2.19)
To find the heat flux, we use the standard expression

g = o f(u.r U)) Ty,

(2.20)
where
Pl cepfesel. ey g )
] 1.21)
M(E, 5 - f}'(“j‘;‘-' r)-&u (r:_ g)“‘dz 25 J{Jr‘#'
' ST e L
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if the oxternal magnetic fleld is absent <2 = U , then se
equat.ons ﬂ;'15‘2°22) are ln accordance with the results obtained
in {20] under the condition D/ (nonrelativistic
Iimied, '

Unliks the isotropic plasma, esquations (2.21-2.22) show that

the constaat magnetic fleld appreciably modifies the equation

-(2.22] and the terms associsted with the magnetic field are much

greater thaa the last term in the equation (2.22).

Farticle and heat fluxes, the density and pressure modifi-
caticns are mainly due to the magnetic terms.

. hote that the intsgrand in the aqun£ion (2.22) depends on
() and T (d.e. Ve = Ug (3(TIT) ).

Lot us consider for example the effect of a stationary so-
liton moving with a group velocity U; on the transport phe-
nomena. In this case U: in the expression (2.22)} 4is expliclt-
ly dependent only on E(t) ; besring this in mind, one can

integrate in the expression (2.22), which becomes

MiT,m L) = %[ﬁ(“%-f wfasz'wlf (2.23)

wheTe

.3

Ue

[

Ut
__—F i Uiﬁ

and e Vg, A — 1s the characteristic soliton width.

(2.24)

In this cass, one can make use of (2.17-2.20) and thus
Eind the parcicle density, mean velocity, modifications of the
pressure and the heat flux for the field of the typs (2.24).
The calculations yield -

AN e - BTN ) <k Lo(2-uyt) (2.23)

ZNUNM—RY
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WO S ek (2 o) (2.261
RS

AD = gﬁﬁggg%r_miuck*fu(a-\uL) ‘ (2.271

2 R N S T ch™ L (o uyt) (2.281

v ”l.('“". -2 )

As follous from {2.25), Av, can change the sign dspending
upon the sign of the differemce w - 2. Physically it 1s asso-
ciated with the fact that the striction interaction leads ta
the plasma migration out of the strong field rnﬁgo fer W
and for W X plasma is compressed [22]. It is worth menm-
tioning that under ths action of HF electromagnetic fisld on
the plaswma, the ,quasistationary electron distribution Ls be Max-
wellian with the new temperature / + §£§%2€%ﬂke (it fol-
lows from (2.15), The addition to the temperature results in
the electron redistribution and the 1nqrense of the number

of fast particles on the tatl of the Maxwell distribut-on.
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