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THEORY OF WAVE RADIATION BY SOLITONS IN EIASM2

I.G.Murusidze, N.L.Tsintsadze, D.D.Tskhakaya

The current interest in the study of solitons is due to their
siénificance for the understanding of wave dynamics in verious
tields of physics. Solitons - nonlinear solitary wsves - arise in
various physical processe: having cne common characteristic: Zn these
processes, wave dynamics is defined by the nonlinearity, on the
one hand, and by the dispersion, on the other, - tae factors ge-
nerating two opposite tendencies in the wave process cevelopment.
The essential importance of solitons has been especially clsarly
revealed after the discovery of exact methods of the colutizn of
Cauchy problem for a whole class of nonlinear wave equations, It
has been established that the arbitrary initial disturbance decays
into a set of solitons /1,2/, Apparently, solitons play a funda-
mental role in the nonlinear wave dynamics analogous to that of
blane waves in linesr broblems,

The modern conception of "spliton" has been irsriduced by
Zabusky and Kruskal, who investigated by computer metipes Korteweg-
~de Vries (KdV) equation simulating the ionacoustic wave propaga—
tion in plasma [3/,

Side by side with Kav equation, nonlinear Shrodinger ecuation
(NSE) has been one of the first ponlinear equations describing the
nonlinear wave dynamics in Plasma with equal barticipation of non-
linearity and dispersion. The equilibrium of these two factons
creates the conditions for the arisal of solitonic structires. It
is typical nonlinear dispersion medium, and it is n>t more chance
that the conception of "soliton" arose Jjust at the investigation

of the equations describing wave dynamics in plasnka.
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Eere we present the theory of the process of wave radiation
by soiitons described by the eguations of Zakharov's equations
type. Firgt, we investigate the lonacoustic wave radiation at the
Langmuir soliton motion in the inhomogeneocus plasma and demonstrat
the main points of our approach tc the problem of low-frequency
(iF¥) wave radiation by the solitons of the envelopes of high-fre-
quency (HF) wave fields.

1. Ionacoustic wave radiation at the Langmuir
soliton motion in the inhomogeneous plasma

We investigate the Langmuir soliton dynamics in the inhomo-
geneous plasma within the frames of Zakharov's equations system
modifi=d for the case of inhomogeneous plasma. In the dimansion-~

—ess form, it can be written as follows:
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Lere £  is slowly varying (in time) complex amplitude of the
Langmu:r wave, o7 - IF variation of plasma density caused by
the action of HF pressure force, AN(x) describes the equilibrium
plasma density deviation from the umiform distribution. The system
of equations (1},(2) has the following motion integrals: N - the

number of quanta, B- energy:

N = j/E/zdx
(3
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where % (mass velocity of plasma} is determined from the egus-
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They are connected with LF plasma motion described by Eqrni2.
In the absence of inhomogeneity (A/1(x)=0), one mo-e meticn
integral would exist correspoanding to the momentum of "LanzZmuir

plasmons + inacoustis disturbance field" system:

P32y o)

Piasma inhomogeneity leads the momentum noncenservatiom, and
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the following equation may be written for the latter:

Slf/z 04n(x) dx -

or)

Thus, the inhomogeneity creates the force directed sga-nst
the (jradient of the equilibrium plasma density.

The partial solution to the system of equations {1),L2] in
the homogeneous plasma (AM(x)=0) is well-known., Lt is Zhe soli-

ton-selfconsistent localized distribution of BF field and D_asaa

density disturbance:

P .

E= &nsechf, (x- ) exp (i)

. _ _IE?
on=- 1—v2 (8)

% =[201- V:)]‘F'é-m ;

maere v=X(e)= IX@t) .
dt '

2¥_v . e 2
x 2 ra_{zkoz_?fz' ; V;gn.=‘:°”5£ (9)

Appa-ently, the sovliton propagates in the bomogeneous plasma
et a conssant subacoustic velocity (in dimensionless variables
Y°<7). Note also that soliton (8) represents a stable solubion of
the system (1),(2) within the uniform region where Afix)=0 /4/.

Wwe zre aimed at the investigation of the soliton dynamlcs at the
transitlion from the homogeneous region into the inhomogeneous one,
vhere A/l#0, Thus, the following initial problem is stated:

Yot the solitary wave propagating in the homogeneous plasma as a
eoliton (B) collide upon an inhomogenelty at a certain moment of
time. The subsequent evoluticn of soliton at its motion into the
inhcmogeneous region is of interest, According to the stated prob-
tem, We gseek for the solution of the system (1),(2) in the general
form assuning [£ /= §(x-X(t), ¢ )
rate of the HF field localization centre) is, generally speaking,

, where X (£) (the coordi-

£ nonlinear function of time. It denotes that the soliton as a
vhele moves in a nonuniform manner, and the explicit /E/ depen-
cence on T takes into account the poasible distortion of the
golitary wave "forn", In this case, the solution of Eqn(2) may be

represented as

SRt} = — ’E? X(f)’(:; -+ 87%(x,t)
- X

(1o
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Eqn(11) is a general solution of wave equation (21, It is
obtained under the conditions corresponding to our initial problem,
namely, the existance of goliton moving in the homozeneous plasma
at the initial moment of time &= L .

The solution (10), to a certain extent, ls of Zcrmal character
until we find the solution of integro-differential scuztion obtgi-
ned instead of the systen (1),(2):

i 26 L2 poE 4 JEVE

S o —

Erahs =5 ~OE=0

(12)
where O/]¢ is determined from 11).

In Eqn{10) for Sn(x,t) y three terms of different chapacter
may be singled out., The first term corresponds to the d=nsity per-—
turbation moving with HF field. Two other terms are unized in
6/ls(x,t). The connection of this part of perturbation @ with
the field £  is nonlocal. Tt ig evident from Eqn(11)} that the
arisal of two latter terms in the expressien for 0N is connec—
ted with the soliton nonstationarityi.e, with its acceleraticn
X(i‘) and shape change at the motion in the inhomogeneous plasma,
Besides, it is mostly important that the part of density sertir-
bation connected with &N (x, t) is not localized already i the
region of HF fielg concentration, In may detach from HF field ang

bropagate afterwords in the forum of ionacoustic waves, i.e., tae

golliton radistes L¥ waves,
Therefore, the term &7sE  in Eqn(12) is considered as a
reverse response of the radiation to the source, i,e., as the ra-
diation recoil, We assume that such reverse action action of ra-
diation upon the soliton is weak: /[&/s /< JE/?

we seek for the solution of Eqn(12) in the following form:

+ Respectively,

£=F + E,+ ...
IEI» IE /> IE,] .. . “13)
Ther. we obtain the following hierarchy of equations:
BE D E
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Here &/l (£,) implies the expression (11) with the solution
of Eqn(14) (acceleratedly moving soliton) substituted instead of £ :

£, = &n sechix, (x-R(t)) [exp (i)

(16)
where Ky = [-2 (7 - %2)./.-2_6‘; V= XJ-({)E d:—(f
ad
2—- v 9 C# 2 - .
ox "2 Hy 2&2‘4!"4”(”‘(“))7%#) (%?(_f?(i) /Ffﬁ‘) 17

V" is not constant any more, and we obtain it from the "mo=

tion equation" /5/:
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This equation may be obtained using Eqn(7) for :he momentum,
keeping in mind that (8¢/L.,)<<7 (wnere Al is ths solizon
width, and [, ~ /a%/‘_ Pndn(x)/hf:]

The equation of the second approximation (150 allows uws %o
define the soliton shape change &, due %o the accelerated soli-
ton motion and to the "scattering" of the arising iomacous=ic per—
turbation on the soliton preper (the term &/E, im the riskt-
hand part of Bgn(1%)). The field . E, is concentrated! within the
region of soliton localization, In fact, we should firstly note
that the "source" of the field £, is localized in tihe region
of the soliton concentration, Secondly, outside the mource locsli-
zation region, the equation for E, becomes Shrodigger equaticn

for the "particle" in the given "field" 4/A(x} ,: Ita bolution

under natural zero initial conditions (at #=7¢, * e =0, V(e)=1;,

£,=0 ) is rather trivial: £,(x¢)=0 (x-%(e)i>al). The plasaca
generated within the soliton localization region canadt leave tkis
region and remgins locked in the density well,
1t is evident from the structure of Eqn(11) for 6fs that
the magnitude f\‘/ldf/(filf)z«f irepresents a small parabeter
allowing %o neglect, in the first approximation, the weverse in-
fluence of radiation upon the soliton., It means that Auring the
passage of ithe distance of the soliton width order Al!l:é"\f 1/ke by

the ionic sound, the change of the soliton velocity lalnegligisle

in comparison with the ionacoustic velocity. This conditien rexinés
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of a wsll-known condition of the radiation d&lpolity in the redi-
ation theory, It 1s clear from Equ(41), as well as from Eqns(14)
and (13) that, to the first nonzero approximation in this small
parameter, the radiastion ia caused by the accelerated soliton
motion, and not by ita deformation making the contribution of the
second order in the small parameter. Therefore, in the so called
dipole approximation, we may write the following expresgsion for
&§ns proceeding from Eqn{11) and using Equ(16)

P - 2
(X t)= L X(t-x+X(eNaLE: X=X{t) X—ZL+te—Xp
s( 2 (7= *(t-x+x(¢)f (tg A % Ie “

1 X{E+x-X) sl EE —
+ 5 : 2 (8 x=X() _H xtt-t.=X

2 (i+ R(E+x-5())°? ( ﬁua Vv (19
where 1+ is determined from the equation

Xt (¢t-t+)-Xx(t%)=0

Sussequent calculations depend on the specific shape of the
plasma inhomozeneity profile Aquk) « However, one may conclude
from ths analysis of the structure of Eqn(19) thet 6V75(Xff)
represents plasma density perturbation which is not concentrated
in the soliton localization region, and whose fronts become more
and more distant from the soliton centre ' (¥) moving to the
left and %o the right with the ion—sound velocity. Here, it is
appropriate to give the analogy between the charged particle and
the soliton, which explains well the physical sense of the inves-
tigated phenomenon., A part of the density perturbation, propaga-
ting subsequently in the form of ionacoustic waves, breaks away
from the accelerated soliton which undergoes profile deformation

8ice by side with acceleration (i.e, soliton radiates), in the
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Bame manner as the electromagnetic field created by the czccele-
rating charged particle breskes away from the latter and propa-
gates in the form of radiation.

To estimate the rate of energy and momentum loss due tc the
ionacoustic wave radiation by the soliton, we apply tae equations

for the energy and womentum densities:

( 91?/51 - IE) SR - Jn ) JE]E 2800 aAn(x,

aE’BE" DEIE 2

,at = @K 2L-2¢ 9 )+e@nfc5n)(g E_Eﬁ)f] /5'?+l£l)u
where

P= I(EQE" r)E

7 ( Fon E,_a—;)+ udn

: z 2

K= [2£]%4 (anron)iEr® L350
and perform the integration of these expressions over the "wplume"
whose boundaries are located in the "wave zone" far frem the ra-
diation source, i.e, fx7_ X (t) > VY4 , where X<

hand and left-hand 1limits of the integration region., Then we ob-

are right-

tain the following expressions for the momentum apd energy Tluxes
pessing in a unit of time across the planes located in the points

X: normally to A-axis:

X"

jmx = cSn (x t)-8n (x f)J 5//*/ DMJ

(20>

,03; 53&{)(: -~ (JI?SQ(x:r) # Jﬂslfx;(—))
* (21)
It follows fronm (20) that the momentun change of "sol:tgp +
acoustic field" systen beccurs both due to the sound radiatior and

under the action of the inhomogeneity. Under certain conditip- ’
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th? momentum may remein unchanged at the sound radlation: the
diZference between two positively defined values in the right~hand
part of Eqn{20) points to this fact.

The intensity of energy loss, &s it should be expected, accor-
ding to (21) depends on the squared amplitude of the radiated waves,

Note that Eqns(20),(21) are general; it means that they define
the momentum and energy change not only for an isolated soliton
raciating ionacoustic waves, but also for other localized sources,
for example, groups of interacting solitons or other nonstationary
localized formations representing solutions of the system of equa-
ticns (1),(2).

2. Radiatlion of ionacoustic waves by solitons at
the passage through the "transitiopn" layer

We consider the solibon overcoming the "transition® plas-
ma layer, i.e. region of finite width in which Plasma density un—
dergoes & jump, changing its value. Outside the layer plasma is
agsumed to be homogeneous, It is c¢lear from the sbove consldera-—
tion that the soliton should accelerate at the passage of the
trassition layer and, hence, it should radiste. After overcoming
thia inhomogeneous layer, the soliton moves with a constant velo-
city again, end ceases to radiste.

We characterize the transition layer by the parameter Ag -
the differential of the plasma density values on both aides of the
layer, ani by the parameter K defining the spatisl scale of the
"jump" region. The transition layer is given by the following

medel function
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AA(x) = ?{ (7 %xx) (22)

In this case the equation of the soliton motion (18) azgquires

Ak
At
We assume that at the initial moment of time +- 7, tae coli-

the form

X(¢)= — (23)

ton 1s located to the left of the transition layer, in the poirt
with the coordinate X5 (X,<0, k/x‘,[}')’f), acd moves to Sae right
velocity Vt; + Proceeding with the above-stated analogy bebween
the soliton and a classical particle, we also assume that its
“kinetic energy” is much higher than the “"potential"™ barriar height,
i.e. Vf/(g,/ﬁ/) 34 . Then, solving Equ(23), we may write ths expres—
sions for the explicit time dependences of the velocity and the

acceleration of the soliton centre:

)= (- o )~ f thenen v o)

(24)

x(t)=- fx §ec/£2(kv:,(r‘- L)+ KXo )
(25)

kqns(24,25) show that the difference of the soliton veloci-
ties before and after overcoming the density Jjump Ay= 2#,"%
and the soliton wundergoes the acceleration during the interval
of time Afn 1/1:’\,5 equal to the time necessary for the soliton
to travel through the transition layer.

Having obtained the explicit expression for the solitoen

acceleration, we may ¢alculate the ionacocustic wave radiatien

- -

uslng Ban(1 )t &f, (o) Swkh. (GTne)+ G“(x,f))

2y ko

W Uk -thrlistrt-x)

G(xt)=z _
(v ;1)3 c‘g”z"kr% {t‘:)’—fu + 5.,:) (28)

The analysias of this expression shows that the density pertur-~

bation looks like two pulses of opposite polarities. At the drag of
the scliton, the sound is radiated in the form of density "well"
along the direction of the soliton motion, and in the form of den-
sity "hump" - along the opposite direction. At the soliton accelera-
tion [')f< 0) » the "hamp" propagates forward aleng the motion di-
rection, while the well ~ in the opposite direction. As it has been
expeetad, the spatial width of these pulses is defined by the sound
velocisy multiplied by the time of the soliton travel through the
trangision layer, which equals Cs /K Ve in the dimensional form.
Estimasing the total energy removed by the radiation using Eqn{27),
we obtain W = 3(?- fz"‘z 5,"4

? Ko
S_milar IAW radiation is caused by the passage of "supersonic"

soliton of the electromagnetic (e.m.) wave of the transition layer.
The character of high-power e.m. wave propagation in plasma is de-
fined both by striction nonlinearity and by the relativistic "weigh-
ting" of the electrons oscillating in the HF wave field. The account
the lajter e=fect leads to the poesibility of the e.m. wave propa-
gation in the form of soliton moving at the velocity exceeding the
ilonscoustic velocity. Such solitons may be described within the
frames of the system of equations (1),(2) in which the first equa-
tion is substituted by the following e:-ation /f6,7/:
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where U= 53‘7:"/(”%5 2) for linearity polarized e.m, wave,
Assuming ¥ oo {1- Y‘t(f)/ =1 s We restrict ourselwes tc the consi-
deration of the "supersonic" goliton: )—;2(1') 34 ,18lnce Fect .
Note that Kgns(24) ard (25) for the velocity and acecelerstion are
valid for the supersonic seliton. Bqn(26) for the iradiatisn is
also valid, but one should keep in mind that, in contrast tc the
"subsonic" Langmuir soliton, we should assume VoS»y in (26).
Lesides, one should take into account that the condition If!<eg;j?z
is satisfied when obtaining Eqn(26), which denotes [that du-ing tae
soliton travel across the distance of the order of iits willth, its welpcity
change is small, Taking into account the facts stated abcve, tne
analysis of Eqn{26)} shows that the IAWs radiated by the "“surersoaic"
soliten represent two pulses propagating to the right and the left
at the ion sound velocity. Soon after their formation, both pulsas
rapidly begin to lag behind the "supersonic" solitons The enerzy
removed by the radiation in this: case equals W= :'l‘i‘ % EF

Typical patterns of space-time cdistribution of radiabed Iida
and solitons are given in Fige. 1,2 end 3 . Fig.1 shows & "sub-
sonic" Langmuir soliton and the IAW pulses radiated by it zt va-
rious moments of time beginning from the moment of their Zenerab_on.
Fige2 shows the pattern of the spatial density distributiosr in tke

radiated wave (1) at the moment when the "supersoniz" soliton (2]

-1 -

is situated in the middle of the "transition" layer (the vertical sca
of the scliton (2) being reduced), And Fig.3 gives the spatial dis-
tributior of the radiated IAWs (1) and "supersonic" soliton (2) at
varicus moments of time after the soliton (2) has passed through the
"transition" layer.

3+ Ionacoustic wave rediation at the collision
of Langmuir solitons

%¢1. Collision of solitons

The aystem of Zakharov's equations (1),(2) describes not only
single solitons of the type (8), but also mllows the solution in the
forn of the ensemble of N solitons with, generally speaking, aif-
ferent velocities and amplitudes located at the distances exceeding
their effactive widths, In the general csse, it is impesiible as
yet to describe analytically the subseguent evolution of such a
multisoliton structure of the self-consistent field distribution and
plasma density within the frames of the syatem (1),(2), i.e. to
follow the processes occuring at the mutual approach of the solitons
wher they begin to interact. However, if we neglect the inertia of
ions and describe the system within the fremes of KSE y the
pattern of the soliton interaction ia the following, Approaching
each othex, the sclitons merge. We obtain & non-gtationary formation
which decays again after & certain time into sclitons coinciding exact
ly with the initial ones. The only result of the collision is the
change in the soliton phases: the rapid soliton becomes shifted for~
ward along the direction of its motion with respect to the place
where it ghould have been situated without the collision with another
soliton, while the slower scliton becomes shifted backward, Here the
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total shift of each soliton is equal to the algebraic sux of its

shifts at the pair-wise collisions, which points to the pai--wise
character of the interaction. Thus, after a certain time interval,
the multisoliton structure is restored again, but it has the form

N

velecity.

of solitary pulses located one after another with increasing

The non-stationary character of the soliton dynamics at their
interaction point to the necessity of taking the ion inertis into
account. It has been shown by numerical experiments [8,9 aired at
the investigation of the Langmuir soliton formation and interecticn
dynamics within the frames of the system of equations (1),(2), thes
the soliton-soliton interaction is accompanied by the IAW radiaticn.
In Ref.[ﬁO] an attempt of the analytical approach te the soiution
of the IAW "drag radiation" problem at the soliton interactior has
been made. In this paper, the authors neglected the reverse irflueace
of the radiated waves upon the solitons in the assumption of weak
interaction; however, the soliton collision was presented as a sinlle
linear superpcaition of soliton fields, A similar problem was snaly-
tically investigated also in Ref.[11]. However, while neglecting the
reverse influence of the radiation upon the soliton dynamics, the
authors have proceeded from the fact that the soliton collision is
described by the multisoliton solutiona of NSE y Which i«
not always reduced to the linear superposition of solitons sven in

their "weak interaction”.

Thus, we consider two solitons of the type (8) in th= homogenecus

1 - .
PRASTA £ = Vo(1-v7) K sechn (n-xaj - it ) exp(i ;)
2
F= - ! : 2 .-
on; 2 k5 sech ki (x—Xoj = Vi E) (28;
vy 2 R o
% = # x—f-(kj-—:_:_.)r.(.}t})g:cmyf"/j-f,z.
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Let these asolltons be located at a large distance at the ini-
tial moment of time t=t, . We also assume that the solitons appro-
ach sach other in the course of time. Until the inequality I¥®-X o)y
»W&,&D is valid, where ?gj(t)gxga' it , j=1,2
gate towards each other, without any mutual influence.
sn

s the solitons will propa-

We seek for in the form

Sh = -x/EIz—f- 871,

(29)
where W>0 1is constant of the order of a unity.

Then vhe system of equations (1),(2) acquires the form (A’?so),-

,25 (;af +%/E|E —snE=0 (30)
2 _ 9 ’a’/E/‘ 2YES?
'?fz (ax)éﬂ -f(’ Je)fax?.
(31)

It is clear from Eqn(31) that 5/7350 if we consider the so-
liton moving at a constant velocity V:]/'I——X'- Evidently, the den-
81ty perturbation due to the soliten interactin is connected with
5)75 . The term &/5E  in Eqn(30) may be considered as a reverse
respcnse of the perturbation tc the source.

We seeck for the solution of the system of equations (30,31)
in tke forn of series:

E=E+E,+
&5 = Efy + O sg *+ " "

Bl IE,| > JE,[ ... , [§71s,/5>/3Dse ] .. (32)
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Neglecting the reaponse 0f the pertirbation in the first 8pOoro-

ximation, i.e. &1 £ y We obtain from (30}, (31)

2L L 6 | e —p

DT Dx2 ‘35
2°_DF 5t
3t 4 '3)()6” ("0-?; -r‘-(f—'X)a /Eo
124)
{98 2°F,
rat +~;a—-—-+2;e/E/E1+X£E (5775-150
(35}
= - 2°
( ) X *(7'36)59)43525*5))
[ (35

Now it is clear that in order to find plasma density perturim-
tion in the first approximation, we should first solve Eqr(33) uniex
the respective initial conditions, Since at the initial mcmant of
time we deal with two splitons moving towards each other, $4e corves-
ponding solution of Eqn(33) should describe the process of ske "epl-
iision" of these solitons. It i1s the so-called two—selliton sclution
of  NSE /2/ describing the "scattering" of the gimen solitons on

each other. We represent the squared modulus of two-soliton solution

Sl = X Cﬂy +2 2 /f Tope (Fhxthe o th~the,)—

2
X1
C e esep {37
where 2chx-sho C&qu c}an
xaz k‘,-(x— Xog'_‘g, C_) 3 #}":Wf—fcxf‘fﬁh
4 ¢ belio - ?
e — kb, — i ~ F_I'" = I/?_M’
1 ¥ kL K = p :kﬂ&ﬁfe
Z / ‘ & % : (28)

of = f& (} - L6 iy iy :)

(V=i lom st v ac, )7
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Tkis solution corresponds to the initial distribution in case
o€ the soliton with the amplitude K4 located to the left of the
szcond soliton.

Wiile the inequality  X,,(+) — Yo, ()% wax(k,L)is fulfillea,
the third term in Eqn(37) is exponetially small, and the solution
represents the sum of two separate solitons moving towards each obhe
While the sclitons spproach each other, the contribution of the thi;
term increases, and by the moment of time when ;iz(f) ::32,1Cf)
the representation (37) acquires, in a certain semse, a formal cha-
racter. since it is already impossible to single ocut separate solitc

In enotder limit with X, (4) Ko, (%) »ma*f‘iz,a L, ) , we deal
egaln with two solitons, but now thelr centres are shiftad:

. _ Z K4
Ly . o -+ ke
z 2z & 2
*lxXor=ig Vi) e (- xep+E-0t) (39)
The first (more rapid) soliton seems %o be effectively accele-

rated at the interaction with the second (slower) soliton which un—
dergoes a drag. It may be qualitatively explained as the consequence
of the apliton motion across the density well prepered by the other
soliton. However, such an explanation is not always useful, especial
taking into account the fact that one cannot speak about separate
s2litons at their mergence, since it is impossible to single them ou
on the tackground of nen-gtationary pattern, However, in case of wes
in%eraction, the representation (37) as 8 sum of "golitons + inte-
raction” is unformal even for the moments of time when the solitons
become overlapped, and the above explanation of the shift of soliton
centres is quite satisfactory,

It is evident from Eqns (37),(38) that in case of weak interac~
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tion of solitons the value
76(1“1

= : <<
(o-vi)'+ 4 (% +4,)7? (40)

plays the role of a small parameter.

€

Taking (40) into account, we may write down the following expres-

sion instead of (37)

2
—ZE/E,(X,{)/?.—_ ___Ksz_____ e_fsz _g?z cos g

T Hbr ) i, T iy
45

whare
X (t)= Xpst Vit + 2——’2 (ﬁxs_s—f- (- 1)3_1) , w=1,2

L42)

Bgna(41),(42) allow us to vizualize the process of tbhe approach
of the more rapid soliton to the slower one "falling" irbtd the der~
sity well of the second soliton and accelerating at the :same time,
Thus, it passes the region occupied by the second solitan at the zave-
rage velocity exceeding its initial velocity, and, as a.result, be-
comes shifted forward along the motion direction.

The slowing-down of the second soliton may be explained in a
gimilar way. When the more rapid soliton overtakes it, It becomes aa
if "drawn into" the density well of the rapld soliton, acquiring
the acceleration directed oppoaite the motion, Thus), the secord sc-
liton travels across the region occupied by the first scliton at the
average velocity below its initial velocity. Therefore, fthe second
soliton becomes shifted backwards with respect to the place wkere

it would be located if the collision with the first solitton did not

occur.

Thus, Eqn(42) for the coordinates of the soliton centres clerly
phows that the shift of the soliton centres does nor occur in a Jump-
-like manner, It is accumulated gradually and represents the result
of the accelerated scliton motion during their cellision, It is evi-
dent from (41) that the solitons undergo both the acceleration and
the profile deformation at their collision.

3.2+ IAW radistion at the soliton collision

Having established bthe character of soliton interaction at their
collision, we can find now the generated IAW radiation using Eqn(34).
Without any restriction of generallty, we assume that V= "Vz'—' V>0
and X=X, =X,>(C - Then, substituting into the right-hand part of
Egn(34) the solution of Egn(33), its modulus squared in the "weak
interaction" approximstion being given by Eqn{41), and taking into
account the fact that = (- V3~
equasion for &, (hereinafter the index *1* is omitted):

s We come to the following

/s z
g :2: __’:2} N o— — eh:gz- }4(*’{
2t X s Dx¢ t) (43
O Al VT ok el thoths ey
2X1C£?X¢ /\gx" Cﬁxz
-_J- 2v _@f‘k\/)kzﬂ Xz - (w—kV)k.’th" s;‘nc[o (
threclx, 44)

Analysing the source for éaqs , We can see that it is nonzero
only during the soliton collision, until their interaction lasts, -
during the time interval Af‘-uﬁ(ﬁ?ﬂfz)/@lqkﬂf)- After that it tends
exponentially to zero again while the solitons move away from each

othe-,



other,

In Egn(#41), the terms oscillating at the freguency ¢ in the
course of time may be singled out. The last term in Egn(4”) which,
in its turn, corresponds to the conventionally periddic of the "bound"
state formed by the solitons, is responsible for then. Bviidentle, the
oscillating character of the source for ¢/l 'may be revsalel if

At > w™!

We investigate the IAW radiation in two cases: first, we considex
the case of the cellision of solitons with greatly idiffering amsplitu-
des. Then we'll investigate the space and time distriibutica of the
radiation field at the collision of solitons with nearly egual ampli-

tudes,

Thus, we assumwe for definiteness that K}z>ka‘ t« Then we obtain
for 5/75 H & (x, 1‘): = & (('— (x r) + oY " k, t‘) )
G = ard‘d(sﬁb,(x-vfﬂ\'o))_ a?afg. (5l (x5 't"-:*l‘re))

,

chzvk, (x z ¢ Xa) ]
X S.n(‘(ﬁu "“'0(",.{‘)4—‘,0 ) ;

45
yo' - cma:’”“
iote that in our calculations we restrict curselve: ho the terms of

the order of & .

As Eqn(45) shows, &Ny represents a sum of stwo terms. “he
first term corresponds to the radiation propagating at the ionic sound
velocity ( Cs=1 in dimensionless units) along X-axii in the positive
direction, and the second term - to that propagating :in the nezastive
direction. Thus, we have obtained a physically reasomable pattzrn:
ionacoustic waves are radiated during the soliton collision in the
course ol time equal to the time of the solitens passzage throush each
other, i.e. to the interaction time A €. = 7/2K,V ((Kq3> i<, )

Naturally, the spatial width of the radiated field Lrcalization will
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squal the time interval 4afﬁt multiplied by the IAW velocity.
Since in the case under consideration W%,V |, the radiation fi
represents packets of rapidly oscillating waves, i,e. trains propaj
ting at the lonacoustic veloclty to the left and to the right. Eqn'
confirms, as well, the conclusion drawn on the basis of numerical «
culations 8 +that the greater the amplitudes of the interacting
litons differ, the shorter is the radisted sound wavelength., We ob
She total energy removed in the form of radiated IAW: /= % gzk’“;;

Now let us consider the case of the collisien of solitons witl
7ery close amplitude values: 1K1'Kil/qﬁ|“'e<<1. It has turned oul
that in this case the firat term in Eqn(44) makes the prineipal coi
sribution to the radlation, which pointe to the fact that in this
case the radiation is due to the accelerated motion of solitons du-
ring their cellision. Other terms in Egn(44) give spatially locali-
zed plasma density perturbations "Breaking out" during the sgoliton
collision and exponentielly attenuating with their gradual separat:
{while the solitons move away from each other). We obtain a rather
awkward complex expression for &/7g . For the times 1>X, /v , i.(
when tae sclitons have already separated after their collision, anc
the action of IAW aspurce has stopped, the expression for 6775 is
simplified:  8As(x,6)= - 8€V 3Ky (G¥(x,+) + G (x ¢ )
o= it [0 §-2% 2V ez )

chiaeviirts §2) Fthipgv(nre = 52) th2gv(xgtr X=)
(46)
The analysis of this expression shows that the radiated IAW P

Fagate in both directions from the colliding solitons in the form .

two pu_ses, each of them representing the alternation of compressis

(ﬁns)o) and rarefaction (8/7,(0) regions. The forcfront of esch pu
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is formed by the compression wave immediately followed by the rare-
faction region. Such a radiation pattern may be visually exp_ainec
if we compare it with the process of IAW radiation by the so_iten

at its accelerated motion in the inhomogeneous plasma &nd renind thet
the acceleration of each soliton in the process of collision changes
its sign once,

Here we should mention, as well, the IAW radiation by sc—callec
"pulsating” soliton., The thing is that the system of two solitons
with different amplitudes being at rest with respect to one anosher
may form a bound state localized in space and oscillating at the ve-

locity defined by the difference of the squared amplitudes of the
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where qp are the coefficient rapidly decreasing with the growing
@p=0.017, |api>|q,. .
The losgs of pulsating soliton energy by IAW radlation equals, in the

number 04, =1.894; O, = =1.470...,

average, epproximately Jifccziﬁ;* during the pulsation period.
4, Alfven wave generation by the Langmulir soliton

Nonlinear propagation of HF waves in magnetoactive plasma, in
contrast to the isotropic one, is accompanled by the perturbation of
both plasma density and magnetic field, In this section we'll show

that a packet of Langmuir potential HF waves in the form of a soliton

solitons, Such a bound two-soliton state is called “"pulsating solitcno” may generate a LF vortex motion in the wagnetoactive plasma, which

/12/- is radiated ln case of the packet nonstationary behaviour in the form
2 ) ) .
The squared modulus fEJ of the pulsating soliton may be written of the transverse eigenmcdes of magnetoactive plasma-Alven waves,

as Tollows: The norlinear dynamics of Lengmuir waves in the msgnetoactive

3 .
IEi%= 45;’(1 A I“kox-s.—ﬂzw‘.t)
chk.x

- plasma has teen investigated in many papers /H3-15/. The frequency
Ko DX .
7 Cg?kgx '—gSrﬂlajvt

of these waves is close to the plasms frequency, and therefore, they

(a7) are sensitive to the LF plasma density variation &/7 caused by

Coumparing (47) and (37}, one may see that Eqn(47) describes a "auper- the force of HF pressure. In the weak external magnetic field

position" of two solitons with equal (in the present case ~ sero) ve— (w; «w;e) the frequency of these waves equals

locities and different amplitudes. It is localized within the spatiel

2 2
B 3 2,1 Wae k_-t_)

L = anP(?'+ 7 Qizb) 1“2 Wz ra?

ZW, « 1AW radiation by such a pulsating soliton is similar to the (48)

region with the width of 17/kb and pulsates with the frecuency

process of acoustic wave radiation by a solid periodically changirg where C‘%e and LL%Q are electron cyclotron and plasma frequen-

(ts she , - : o .
195 shape with the volume remsining unchanged, in & liquid or in & cies, 25 - Debye radius, #; - wave vector component normal to

zas. In the wave zone [x)|S>af~1/k, the density perturbation the magnetic field.

has a form typical for the radiation:

oo A% the ZF motion caused by the force of HF pressure, electric
. ) 2,2 2 )
5/?5 (X>Q r): 2—5, _%:L _S Qo sm‘?w,/v[z‘_ X)
» T

currenks may be induced, Hence, L¥ perturbations of the magnetic
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Iield may arise side by side with LF density perturbmtion. Due to
the dispersion singularity (the last term in (47) is sma’l), the
former meke a negligible contribution to the nonlinear Cymarics of
HF waves (for instance, to the solitary wave formation), fowever,
as it will be shown below, the generativn of LF magnetic Field is
of independent inbterest: firstly, a packet of potential Langmuir
waves may generate vortex perturbations, and setondly, &t the non-
stationary behaviwur of HPF wave packets, LF perturbdaticrs are ra-
diated in the form of Alfven eigenwaves,

Let us consider plasma with the equilibrium denzsity warying
along the external magnetic fieid 8:(0, o, 55) . We mssum: that the
characteristic inhomogeneity lerngth greatly exceeds Ithe geale of the
localization of HPF oscillations. Neglecting plasma drift due to the
inhomogeneity (Uy<Cy,Cy , where Uy is the ‘drift velecity, Cs
and CA ~ lonacoustic and Alfven velocities), we also assume that
all If values depend on one coordinate Z . We represent the elect-

Tic potential of the Langmuir wave in the form

Pz £ A(,2) eAP(IRE—iwe) v .

(£9)
where we can write the following equation for slowly varying function

/13,157

2 P 2 .
il L 20 ltjoc 41
27 T Y57 f?w"ezz’?z? ~ Ll - sz).}& cz(j:fgﬁ,] -0
E0)
tw .
3::331’ *kz@wpe%— Waee Kk,

¢ 2
=3,/3 K 1) K 4
P27 * (2 5t~ 2 )i0my wi  (52)
and AHC?) describes the profile of plasms inhomogeneity. Assumi
thet Zhe velocity of HF wave packet displacement is much below the

lonaceustic velocity, we obtain for &7 /J16/:

da__ _KYE

% 76771, Te
(53)

Then Eqn(50) has a solution in the form of acceleratedly movi

soliton /5/ : )
— e - F(t
M= oy sech 2-20€)

(54}
PEL: 4
where Af= 6‘59’?‘5’7?.7;/(’(7‘:,) )29 » 8nd the coordinate of the solit
centre -E-(,f) is defined by the equation

= z2 9 &n(z)
E(t)= ~qUu,e L )
() FUresz he [e:3@)
(55)
From the equations of magnetic hydrodynamics for the transver:

LF pertirbations of the magnetic field 873, » we obtain the equat:

fa 2 _ ? r-a e (k ] 7
D7t 4 22 By= "2 I
Z BT e Wpe DEDZ (56,

Hence, the source of SB.L ls the so-~called nonstationary pondercms
tive ferce /1'?/. Here we present a general expression for the pond:

romotive force of HF guasimonochromatic electromagnetic field
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— ~twé
E’-— o £G4, E’)e l.,.g,c, acting in the celd ccllisionlesa magnetoscbive

plasma /1 ’?/

= ier /V(E..ﬁ Sap)En El+ (Byxzot 2 _B;EE EX )b+ j
+1-61'_j— {‘J%?((E-I)EXWI.‘E ) * ,‘DTEL‘:"E(S,?J VE# C.C (57
Here (/g\)n,p_: €.p 1is the dielectric tensor, (I)wp = Sup
unit J-tensor., Note that the most frequent mistakes were made by
various authors just at the determination of the "nonstationa-y" ract
of bhe ponderomotive force (the last two terms in Eqn(57)).

In our case, when g—_—_ VP, it is just the nonpotentiality
of the nonstationary ponderomotive force (the last tera zn (57))
which causes the arisal of Alfven type LF perturbations in the mag-
netoactive plasma,

The solution of Bqn(56) in the dipole approximation (i.e. neg-
lecting the change in the scliton veloecity during the tioe AE/CA ,
V31 e«(.,\ f’18/) if the following:
= “‘z?(fz) f(ikz’)é. sechZ-7) , 3 Kkl kr’“)

G~ ZU0D Sim . e a7 % e Cf
x(G"@&+ G~ (2,+)) (58)
vhere Gt = Fg)Z@)[f L (A 1Y N e S A 10) /3

The first term of this expression represents the magnetic fiell

-

perturbation localized within the region of soliton and moving with
the latter., It corresponds %o the bending of the magnetic induction
lines. The subsequent terms describe the momenta of Alfven pertur-
bations propagating to the left and to the right of the soliton as

the velocity CA » Evidently, their existance is due to the acce—

lerated soliton motion,

y — 28 -

Lot us consider the case of the sguare~law inhomogeneity

Z

shz)= 7 -E; . hccording to (55), the soliton will accomplish
the pgcillatory motlon ab the frequency &/, =\/7_'%t€ ¢ One may

choose

Z(t)= -

S

o,
(59

where U/, is the maximum soliton velocity. We obtain from (58)

the expression for the space and time distribution of the magnetic

field pertarbation in the Alfven wave:
= f ) Ml wll (G hey+ (s, 0)
G = Sin 20t 7 -?E.—ff-))[tdii%___‘im—fﬂ%ﬁ (60)

As we should have expected, the perturbation distribution is
of periodic chatacter with the spatial pericd #C4 fl)y . Outside
the points 7<=12 C{t‘} the field drops to zero at a distance of the
order of the soliton width Af, , i.e. the radiation front width
is determined by the soliton width,

Now we estimate the energy removed by the radiated Alfven wave,
Using (59) we obtain the expression for Poynting'a vector averaged

over the scliton oscillation period:

'CA_( )(lae wl ) g
é"" (61)
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