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1. INTRODUCTICN

Magnetohydrodynamics 18 the study of the motion of an
electrically conducting €luid in the presence of a wagnetic field.
Pluid wmotions affect and aze affected by electromagnetic forces,
there being a complex interaction between the two. This is largely
brought about by the Lorenz (or j x B force), Paraday's Law of
induction, and Ohm'a law. Solar magnetohydrodynamics is the atudy of
magnetohydrodynamica as it applies to phenomena obaerved in the Sun's
atmosphere and inferred to operate within the solar interior. These
Lecture Notes are an attempt to summarize a number of aspects of
solar magnetohydrodynamics, selection simply being a reflection of
the author's personal preferences and interests. No attempt will be
made to be exhaustive in discussing our subject; that would be
impossible. Rather, a tutorial style outline of the various topics
will be attempted, indicating here and there where the reader may
explore further should he or she so desire. Nonetheless, a broad
listing of references will be given, including original articles as
well as reviews and monographs) in this way the reader may be
suitably guided through our subject and protected from the author's

* A Berjes of lectures preeented at the Spring College on 'Cometary
and Solar Plasma Physics' (Editor B Buti), at the International
Centre tor Theoretical Physice, Trieate, Juna )987.

short-comangs

It is convenient to begin with a brief survey (a "Cook's tour")
>f the sclar observations, turning thersatter to the basic squations
>t wmagnetohydrodynamics. T™his ordering of material is entirely
appropriate, because it is the cbservations which stimulate and guide
the efforts of tha theorist. Indesd, aw E N Parker has ocobserved,
Left to Tis or her own devices the theorist, though fully armed with
all the pelevant equations and laws, would almost certainly fail to
dredict the complex array of phenomena that the 3un in fact displays.
“The fundamental equations of Physics may contain all knowledge, but
they are closs-mouthed and do’not voluntesr that knowledge™ (Parker
1979; Preface).

Within the framework of wstellar physics the Sun is a rather
srdinary star., Ite magnetic field is weak - too weak to ba detected
at stellar distances - and its phenowsna relatively placia,
Yonekhelems, the Sun provides us with a "Rosetia stom”, the clue to
Jnderstarding stellar wagnetism. This is because the Sun is the only
star we can view in detail, and in detail the Sun reveals a marked
Jeparture from placidity. In this detail we cbserve the physice of
stellar structures in operation, and sc we may test and amend our
theoretical concepts and understandings. An understamnding of solar
physice, then, will ultimately lead to a greater understanding of
stellar physics, especially 1in our conception of the physical
procasses that underlie the basic physice.

A study of the Sun, then, provides a guide to the basic physical
procmenes that are likely to operate in stars alsoc. In turn, a study
>f the stars aids our understanding of those very basic physical
~oncepts. Por it is only in the stars that we are likely to see such
concwpts tested in physical ranges bayond the narrow confines of the
solay plasma, and only by testing In extremis are we to gain any
confidencs 1in our understanding of the basics of sclar and stellar
phymsics. A etudy of both solar and stellar physics, then, is
necemsary if we are to be confident in our understanding of

nydromagretism. To this may be added cur knowledge of hydromagnetics



under laboratory conditions - very different from the stellar extreme
— and in the solar system (planetary, magnetospheric, cometary, etc.)
plasma, all coupled with numerical simulations in accessible paramter
regimes, We have remarked above that, viewed as a star, the Sun is
Bomewhat mediocre and placid in 1te displays, vet viewed in closer
detail a remarkably complex and intriguing demonstration of physical
phenomena becomes apparent. T™he clue to an understanding of this
intricacy undoubtedly resides with the solar magnetic field. Devoid
of a wagnetic fileld the Sun would indeed be placid., It would mo
longer possess sunspots in ites visible layers; it would possess mo
hot corona {or, at least, the corona would be a pale shadow of itms
actual Belf), no flares, no prominences, and ne high-speed solar
wind., The perfect sphere, unblemished by magnetiem, of the medieval
and ancient philosophers would be the repultl

Magnetic fields, then, are the caume of a majority of solar
phenomena. The premence of the field leads to a complex interactiom
with the plasma motions, a diversion of energy from one source to
another and with it a dieplay of "molar fireworks"|

2. SOLAR PHENOMENA

The Sun may be viewed as a sphere (Blightly cblate, in fact) of
radiue R = 6.96 x L0%km, within which nuclear energy is converted
into radiation ard then, in an outer layer, into convective motions,
where 1t is finally radiated away or briefly satored 1in the
atmosphere. We will consider the variocum regiong in turn, beginning
with the convection zone. Excellent summaries of the various solar
properties and phenowena may be found in Eday {1979), Noyes {1982),
Priest (1992,1983) and Giovanelli (1904).

2.1 The Convection Zone

The convection zone extends to a depth of about 2 x 10%m below
the surface of the Sun. A precise value for the depth is, of course,
uncertain and, until recently, rested solely on a parameterized model
of convection, namely the "mixing length theory". However, recent

ajvancee in heliossismology have provided an independent assessment
of the depth, and the result is broadly in agreesent with mixing
length estimates. (Aspects of helioselsmology will be discussed in
Section * .

Within the convection zone motions are ordered on a number of
distinct scales. The smallest scale is that of the granules, Granules
reside at the top of the convection zone, in the layer where the
atmosphere is wost strongly superadiabatic. They have a typical
scale of 10%m, velocities of 1-3 Xme~ !, and a characteristic
lifetime of some 8 minutes. These values, however, provide only a
rough guide to granules. Indeed, very rece t results from Space Lab
2 {Tltle 1987) reveal a range of sises for granules stretching from 2
x 10%m to a few x 10%km. Granules are cheerved to "explode”, 1.e.
to expand outwards and ultimately fade from view. Such “"exploding”
granules influence their nelighbours, possibly terminating a
neighbouring granule's 1life. Shock waves and sound waves are
generated by such processes.

The nex: convective pattern in scale up from the granule is the
measogranuviatisn. Mesogranules have mmaller velocities {(~ 0.1 kma 1)
and a dimenston of typically 5-10 x 10°km, Beyond this scale is the
supergranulation. Supergranvies have a scale of some 3 x 10%m,
velocities of § lms™' and lifetimes of about 1 day. The reason for
emergence of these particular scales is believed to reside 1in the
various depths at which H and He, the two principal cases in the
solar plasma, are ionised. Hydrogen becomes almost fully ionised
within asbout 10%km below the solar surface; helium becomes 90%
f2ingly- and doubly-ionised at depths of 5-10 x 10%m and 3 x 10%%m,
respectively.

A fourth scale of convection is the giant cell, with a typical
size of 3 x 10"xm and welocity of 0.05 kme™: and a long lifetime
(about one year). The existence of such giant cells is not firmly
established,

It is amusing to contrast these scales with terrestrial
ones. Whereas velocities of the order 1 kms™! or leas are small in



solar terms (the sound speed in the photosphere is about 10 kms™ > -
gee Section 3.1}, they are large in humsan experiances; 1 kms™' is
about 2000 miles per hour, which is almost a factor of ten larger
than the greatest wind speads ever recorded (some 240 mph on Mounkt
Washington, USA). Similarly, the Earth could comfortably be lost in
a supergranule and a city like lLondon or Trieste in a granulel

2.2 Global Modes of Oscillation

It is a resarkable fact that the Sun oscillates globally; t™w
amplitude of these global modes are very low but, encouragingly faor
solar physics, it has proved possible to wmeasure the spectrum of the
Sun‘s oscillations to a high degree of accuracy. The wodes of
oscillation are of intrinsic 1interest but gain considerably in
importance when one considers their abilities as seismic indicatoxs.
As T.G. Cowling resarked in 1953, the solar physicist would give wuch
to be able to see beneath the photospheric layers; this is now all
but possible, thanks to the progress in the new field of
helioseismology (the "shaking sun”). Recent advances have lead to a
determination of the run of sound speed with depth in the Sun, and
also a wmeasure of the solar rotation. Such rasults prowmise much for
our future understanding of the internal workings of the Sun.

The modes of oscillation are principally classified into p-modme
or g-modes. The p-modes are sound waves trapped within the Sun and
are driven by pressure forces. The g-modes are driven by buoyancy
forces. What mechanism generates the waves and why p-modes have
a peak in their energy spectrum at about 5 minutes is not yet clear.
A precise identification of g-modes 1s alsc presently uncertain, and
a well established oscillation with a period of 160,01 min is of
uncertain origin {though presumably a g-mode).

A convenient representation of p-modes is to plot thedr
frequency against horizontal wavenumber, The result is a parabolic
dependence, a natural consequence of wave trapping within a
stratified atmosphere.

We return to a more detailed description of helioseismclogy in

Sectzon #®, Pull discussions are avallable in a mumber of recent
reviews, ircluding Deubner and Gough (1984), Christensen-Dalsgaard et
al {1985) a~d Brown, Mihalas and Rhodes (1986),

2.2 The Sclar Atmosphers

Above <he convection gone is the solar atmosphare, which extends
far out 1irto space and ultimately interacts with the Earth, The
solar atmosphers is traditionally divided into three reqgions. The
first is t-e photosphere, which is the layer in the Sun from which
the Dulk of the visible light smanates. ‘The photosphere is a thin
layer of sams 500 km thickness. Its temperature is about &000°K,
decl-ning az its top to some 4000°K; this is the lemperature minimum,
since beyond this layer the temperaturs clisbs higher. The gas
dens-ty in -he photosphers ism some 10 ‘kg m ? (= 10 "gm cm™ ?).

T™he region imssdiately above the temperature sinisum is the
chromosphe®. Within the chromosphere, tha temperature rapidly rises
thromgh the (ransition region (a +thin boundary layer with steep
temperaturs gradients) and finally reachas some 2 x 10°°K. wWe are
now in the corona. The corona is an extremaly tenucus though very
hot region. The cause of such a high temperature is not yet clear,
though it seems likely to be intimately connected with the presence
of a magnetic field (see discussion in Section ).

wWhile it is a convenient and common practics to divide tha solar
atmosphere into the varicus layers mentioned above we should stress
that such & division is in fact only broadly approprimte: tha solar
atmosphers Ls a very dynamic one and furthermore is highly structured
as well a» stratified. The cause of much of this inhomogenelity is

the presencs of magnetic Field, to which we now turn.

2.4 Magnetic Pields in the Sun

At ome¢ time it was commonly thought that magnetic fields were of
secondary Interest, except perhape in such locations as sunspots. It
is now incwsasingly apparent that, on the contrary, the presence of
macnetic fleld is crucial to an understading of so many solar

[



phenomena . The fact that the Sun has & magnetic field wan
established by Hale (1908), wvhe first succeeded In measuring ithe
field strength in sunspots by using the' Zeeman effect. Sunspoly,
then, are regione of strong magnetic field. ‘They possess £eld
gtrengths in the range 2000-4000 G. Sunspots appear as dark patchen
in the visible light from the Sun and in fact correspond to (00l
reqions of the photosphare, their temperatures at 4000°K being Imome
20% cooler than thelr surroundings. Spot ‘Aiameters vary from a fiews x
107k to a few x 10°km. Sunspots consist of an umbra, which is :bhe
inner and coolest part of the spot, surrounded by a penumbra {(vnich
is at a temperature intermediate between the umbra and lbhe
photosphere). Though often considered to be in a momewhat gulet
state, recent high-resclution obmervations (Title 1987) ravedl
sunspote to be rather dynamical in form exhibiting a varieyy of
oscillations amd waves.

The distribution and number of sunspots present in It lve
photosphere at any one time wvarjes on an approximately 22 'yeiar
magnetic cycle (the Hale cycle). with sunspots occurring in bipolar
pairs. If in the northern solar hemisphere, the leading spot in much
a bipelar pair is almost always of the mame polarity, the tollowiing
spot having the opposite polarity. Bipolar pairs in the southern
hemisphere have the opposite ordering of polarity to their northern
cousins. Thie general polarity ordering ‘i3 reversed half-way through
the 22 year cycle.

In addition to the cbmerved cycle of polarity 1n bipolar gpatrs,
the aistribution of sunspots is found to form a "putterfly diagram”
when the latitude of formation of spots is displayed as a function of
year: for example, at the beginning of a cycle spot pairs formial: an
average latitude of 28°, this falling to about 12° after 6 yearsliand
to about 7° after 11 years - see Pigure 1. It 18 an aim of
hydromagnetic theory to explain puch intriguing observations.

The 22 year magnetic cycle recorded over this century suggests a
clock-like mechanism driving the solar cycle. In fact, this 8 not
the case. The Sun departs radically from such cyclic behaviour in an

unpredic:able fashion. By a careful analysis of historical records
of sunspots - which in fact go back to Galilec's famous eighting of
sunspots with his newly developed telescope, and back to
pre—Christian times with Chinese records — it is now clsar that in a
mumber cf perlods in the past the Sun has been virtually devoid of
sunspots (Eddy 1976). A notable example is the so—called Maunder
Minimum (1645-171%), which incidentally coincided with some very
cold winters in Purope and North America - with the River Thames
freezing over and permitting ice fairs to be held, The connection
betwean solar activity and terrestial weather patterns 1is not yet
clear, though intriguing clues are smarqing.

Sunspots and pores are not the only sites of magnetic field in
the photosphere. However, until recently it was believed that
magnetic fields outside of spots were very much weaker than those
within spote. There are good reasons for expecting this to be so
but, remarkably, the Sun has chosen 1instead +to form Thighly
concentrated magnetic fields in regions devoid of spots. These are
the inteénse magnetic flux tubes, which have field strengths cof about
1.5kG (compared with about 3G in sunspote). Thus, 1in this respect
intense tubes and Bpots are simllar. Intense flux tubew, however,
are confined to diameters of only 100-200 km, and are therefore to be
ilisted as one of the smallest structures in the solar atmosphere.
There umportance, however, 18 not to be under—estimated. This i
because intenme flux tubes provide a natural channel — electrodynamic
link - between the photosphere and chromosphere/corona. Flux tubes
are genmerally located in the downdraughts of supergranules, the
regions where several supargranules come together, The tubes are
buffeted and generally shuffled around by granules which border and
press in on them. The result, then, 1s one of a complex interact
betweea intense tubes and the sea of supergranules and granules in
which they reside.

Both intense tubes and Sunspots are presumably rooted deep
within the convection zone. Indeed, it is the interaction of solar
rotation (which, incidently, i@ Aifferential, being slightly slower



near the poles than the squator) with deeply buried magnetic field
lines that results in the formation of bipolar pairs. Precisely how
the field couples into the deep interior is not clear. Currently.
there is much support for the suggestion that a reservoir of magnetic
field existas at the base of the convection zone, some 2 x 10%m below
the photosphers. The manipulation of the solar field to produces the
Hale cycle is commonly believed to be a dynamo process (see reviews
by Moffatt 1978; Parker 1979; Cowling 1962). but no self-consistent
numerical simulation is yet able to satisfactorily reproduce the
observed magnetic signatures (Gilman 1982). The field styength of
magnetic fleld buried below the convection zone is very uncertain.
Eptimates range from 10°G to 10%G, but we will have to await Further
developments before this range can be safely narrowed.

Returning to the photospheric level, where the field strength is
some 1.5KG in intense tubes and 3kG in sunspots, we follow the Field
higher intc the soclar atmosphere. Gravity strongly stratifies the
relatively coel photospheric and chromospheric gas, so there i1s a
substantial fall off with height in the gas density and pressure. &
magnetic field is in some ways like a balloon; it possesses a
mechanical pressure and thus responds to changes in pressure on its
boundary (see Section 2 for a more detalled discugsion).
Consequently, isolated tubes and sunspots expand with height and
ultimately fill the whole of mpace aa they ilnteract with neighbouring
tubes and spots. Thie occurs slightly above the temperature minimum.
The bulk of the chromosphere and all of the corona is thus filled by
magnetic field, It turns out that the magnetic field declines slower
than the plassa‘'s gas pressure, so the chromosphére and coropa ars
largely dominated by magnetic forces which shape, guide and control
gas motions in these regions of the solar atmopphere, Inhomogeneities
in this region of the solar atmosphere are therefore not unexpected,
with the presence of magnetic field providing the cause.

Before continuing on with our brief survey of the solar
atmosphere it ia 4instructive to Compare solar magnetic field
strengths with those eptimated elsewhere in the cosmos. The galactic

field strength is about 107%G) the field of the Earth is about 4 G,
zhe field of a housshold bar sagnetic is 10-100G) the field in
intense tubes and sunspots is 1.5-3kG, which is comparable with the
field used in medical applications (nuclear magnetic rescnances)) the
fied in a _arge industrisl magnet is 10%G) and finally the field in
a neutron star 1 10°°-10*2G. Magnetic effects genarally scale as
=he square cf the magnetic £ield strength - see Section 3.1 - mo this
sange in fleld is squared) from 10 12 to 10%* 13 vast indeed!

Contimiing our survey, we note that the chromosphers is a very
dynmmic paxt of the solar atmosphere. Granulas generally lie below
-t = Sut moowtheless influence it through the sound and shock waves
zhey generate. The dJdissipation of such waves 18 an important
-ngrec¢iant in the heating of the chromosphere. Supergranules may
actually peretrate to these relatively high levels, with velocities
of maveral kms~ ! (much higher than the 4 10m™* they possess in the
photoapharic layers). One of the moat intriguing features of the
chromcaphere is the spicule. Spicules have been seen for over a
century, They appear as pencil-like jets of gas shooting out of the
chramcaphere with velocities of about 25 Xms ™' and rising to heights
vabove the photosphere) of 10%%m. They give the appearance of a
wheatfield hilowing in the summer wind. Spicules are evidently guided
by the chromospheric magnetic field since the field is sufficiently
strong at <his level in the atmospheres to resist motions transverse
to 1it; motiens are consequently parallel to the field lines. (3ee
Section 2 for a more detailed discussion of the mechanics of magnetic
tvields and flows). How spicules are generated 1is not presently
cleaxr. It is a prejudice of the author that they are driven from
Melow, in the photospharic intenss flux tubes (Roberts 1979 Hollweg
-1 -3

The irhomogeneous nature of the chromosphere induced by magnetic
1ields and their concomitant spicular motions is further accentuated
by hbrils. Pibrils - seen best in H, wavelengths - ars aligned with
magnetic fislds, forming long sinucus curves; they give the
chromosphers a resssblance to the shape of iron filings near bar



magnets. H, fibrils are cbhesrved to support wave motions.

Continuing upward into the solax atmosphere we finally come |to
the corona, The cCorona was first detactedlas a faint halo in eclipse
photographs (as early as 1851). It is ddminated, both mechanically
and thermally, by the magnetic field. Wheke the magnetic field bendo
back and returns to the solar surface, the coronal gas is trapped iam
coronal loops abound, Such loope way be as long as 10%m and the :gais
within them 1e typically at A temperature of 2-3 x 10°%K. Groupimgt
of such loops, above sunspots vieible in the photosphere, are
referred to as active reglons. e field strength in coronal loope 1k
presently uncertain, though entimates bOF 1-100G are reasonaile.
Regions whers the magnetic fleld lines are no longer re-entrant but
instead stream out into space are called coronal holes. They are a
1ittle cooler (at about 1.5 x 10°K) that 'active reglons, and arelthe
source of the high-speed sofar wind. THe high-speed solar wird ie
born in coronal holes and ultimately fFlbws out past the Earth, | at
sowe peveral hundred km per sec. The acceleration of the solar wind
in coronal holes is not yet fully understood.

The agency responsible for the heaﬂinq of the corona, both In
active region loops and coronal holea, 1is not yet clesirly
entablished, though 1t 1s becoming increasingly apparent that
magnetic effects are crucial., We return to this topic in Section .

One other feature of the coronha that we should mention iu  the
prominence. Prominences are dense, codl condensations ewbedded in
the corona and supported by magnetic fidlds. The magnetic field is
additionally able to thermally isolate the prominence matter. "This
is because electrons are tied to the sirong magnetic fields, /A4 a
conaeguence thermal conduction across madgnetic fleld lines in coronal
conditions is severely reduced, with conduction along the magne:ic
field dominating.

This concludes our brief survey of ' the observational aspects of
the sclar atmosphere and interior. Purther details of the wvarious
topica mentioned above may be pursued i the general references 'cited
earlier. A number of topics will be discussed in greater detail in

the subsequent text, including

(1) MHD waves in uniform media and magnetic flux tubes)

solitons

(11) causes of fine structure in the photosphere

(111) Coronal loops, their thermal structure and stability

{iv) toronal heating

(v} Helioselemology.

mo begin, howaver, it 1s necessary to introduce the system of
equations on which our physical arguments are based. To this we now

turn.

3. TME PQUATIONS OF MAGNETOHYDRODYNAMICS

It is not possible in a lecture coursa this brief to derive the
equations of magnetchydrodynamics (MHD, for short). Rather, we will
present them as a natural addition to the usual equations of £1luid
mechanics (gas dynamics) supplemented by Maxwell's equations of
alectromagnetiom. More detailed derivations and discussions are
readily available; see, for example, Boyd and Sanderson { Y.
Roberts (1967), Cowling (195 .19 ), Parker (1979) and Prisst {19982).

The solar plasma — regarded as a continuum £luid - obeys the
usua . equation of continuity (mass conservation) and the ideal gas
1aw. PFor a fluid of gas density o, pressure p, temperature T and
velocity ¥ we have

20 4 aiv =0, 1
at v (1)

and

P-'E’D'?- (2)
n

where kg (= 1.38 x 10°%* in m.X.s. units, and 1,38 % 1071® in c.g.s.
units) and m i3 the wean particle mass, We are adopting the m.X.s.
system of units. However, it is sometimes convenient to follow the
standard solar practice of quoting numerical values in c.g.s8. units
with magnetic fields in gauss (G}.



The equation of conservation of momentum may be written in the

form
o [::;'l-z.grad]g--qradpi—pg +1x 8+ puvly, (31

which differs from the usual fluid equation onhly in the addition of
the Lorenz (or 1 x PB) force. This addition has, however, an
important consequeance because it links the fFluid motions ¢ to the
magnetic field. In equation (2), j is the current deneity and B ime
the magnetic (induction) field; the gravitational force i g and im
aspumed constant. Viecous effects are represented through the
kinematic viscosity v.

Tha current density ] and the wmagnetic field B are related by
Ampere's law:

#1 = curl p, (4
where u, (= 47 x 107’ in mk& units) is the permeability of fres
Bpace. In writing equation (4), we have neglected the usual
electromagnetic displacement current, assuming it to be much smaller
than curl P; electromagnetic waves are thus ignored in MHD. Equation
(4) is supplemented by the requirement that the fleld 8 be solanoldal
(no monopoles):

div B = 0, (5

Faraday's law of induction relates the electric Zield E to
changes in the magnetic field:

op

ot = - curl E, (4]
The eleciromagnetic part of the system is then completed onoe we
relate ] and E. This is done through Ohm's law, written in the form
appropriate for a moving conductor:

1~-oE +yx®), (7
whers o is the electrical conductivity of the gas. This form of
Ohm's law is a simplification but for many purposes it is quite
adequate,

The system of equations (1)-(7) is completed once we specify how
enerqgy exchange takes place. In many examples it is convenient to

ammuse this to be Iseniropic, in which cass we have
2 4y, qraap = 2B [!9 + ¥, grad ] 3
ot ¥.q P o lat ¥ 9 Pl (8)

for adiabatic index y. The incompressibie extrems, correspording to
large sousd speed, follows formally by letting ¥y - w. However, in
e regicns of the Sun, especially in the corona, thermal conduction
ard radiation are important and squation (9) is modified to allow for
such effects., We write (ses, for example, Priest 1982)

P .u—ﬂ[lﬁ+.nd]
ac Y9rMp - B (R4 y.graap

- (y-1) [aiv(wr-d'n - P'UTY + 4 9% 4 u]. (9

whete x is the coefficient of thermal conduction along tha magnetic
field (it peing assumed that conduction <yose the field is
negligible). Q(T) is the optically-thin radiative loss function (a
¥nown, but relatively complicated, function of temperaturs T), 3 1%
is tae usual slectrxmagnetic joule heating, and H represants a
mechanical heating term. The precise form of H is uncertain since we
4> not yet know the agency responsible for heating the corona.
Eguation (9) will be discussed further in Saction .

Equations (1)-(7), with (0) or {9), provide ths usual system for
MHD. Their implications in a variety of circumstances of interest in
aslar physics will be outlined in the subsequant text. A number of
ganexral features, however, may be discussed immediately.

3.1 The Mechanical Effect of the Hagnetic Pisld
Wa may eliminate explicit mention of j in the somentum equation
{3) by notimg that

1% B =~ graa [—li] + -4 (p.grad)p, (10)
W, iy

which follows directly from elementary vector identities and use of
®quations (%) and (5). Thus, the effect of the J x B force may be



viewed as made up of two contributions. The first term on the rhoht
hand side of equation (10) may he compared directly with the gas
pressure gradient, ' -grad p, which also arises in the 'mowonbum
equation. Thus, one effect of a magnetic field 1s to impart to [Hthe
gas an additional pressure force p,, namely B2/2k,, which augments
the gas pressure. The cowbined pressure terms may thereforn: 'he
written in the form

pl'-?+p"-l?+_zﬁ§" 10.11)
where pp denctes the lotal (gas plus magnetic) pressure, Of courss,
the magnetic pressute p, (= B%/2i,) 18 not related to the gam demally
p in the way the gas pressure 1s but,’ nonetheless, relation (11)
tells us the magnetic fields have associated mechanical pressuren aund
these preesure fortes (strictly, their qradients) interact | with 'the
fluld motions. Thi* magnetic pressure BY/2u_  acts (sotroplcally i{i.e.
is the same in all directions).

The second térm on the right-hand side of equation (19) 1s
associated with a tenslon force, BY/u, per unit area, and thie acts
parallel to the maynetic Field B. 1In this respect, a magnetic |fleld
line is 1like an lelastic string and if "twanged” (bent at |mome
location) it responds 1like an elastic string and springe !'deck,
vibrating as a wave. Waves, then, are to be associated with magnetic
fields, both through the tension force and through the, magnet Lo
premsure force. Wives are discussed in Section 4.

The association of a magnetic pressure p, with a wagnetic (field
leads naturally to;a comparison of that pressure with the ambien!: ;a8
pressure p, The rutlo

g~--SMMDKISGTS . __P (12)
magnetic pressure B*/Zu,

is called the plasma bela. It providea a convenient guide ian to
whether magnetic 'effects are weak (corresponding to B larqge) or
etrong (1if B is small).

The value of A varies from region to region in the Sun. |lfor

sxtple, in an intense flux tube snbedded in the photosphere we have
B = 1.5%G (= 0.15 tesla, since 1G = 10°* tesla), which gives a
magnetic pressure of (0.15)%/¢(er x 1077) newtons m ¥ in c.g.s.
aniks, this is simply

pi/an dynes.owm™?, with B in gauss.

Thus, a fileld of 1500 G gives 9 x 10° dynes.cw ?. This is roughly
somparable with the ambient gas pressure in the photosphare, some 2 x
10® aynes cw %, Thus, in an intense flux tube the plamma beta 18 of
srder unity. In other worldl, the tube is neither completely flacid
(B »> 1) nor rigid (A8 << 1) but instead i® in rough balance with the
gas pressure; both the magnetic pressure and the gam pressure are
important in an intense flux tube.

Outside of an intense flux tubs or sunspot the magnetic field is
wery much woaker {perhaps a few gauss) and so f is very large; the
magnetic field is consequently at the mercy of any gas pressure
wvariations and so is largely manipulated by the hydrodynamics. By
contrast, high in the corona A is generally swall. Por example, for
a coronal field of B = 10G we get a magnetic pressure of about 4 dyne
e %, to be compared with a coronal gas pressure of 0.1-1.0 dyne
om 2.

Another way of looking at these aspects of the magnetic field is
to introduce the sound and Alfven speds, defined by

A i
welal B g
(Bop)z

In the abserce of a magnetic field the sound speed c, is the speed
with which compressions or rarefactions in the gas are propagated.
The Alfven speed v, is the speed with which a distorted magnetic
field line propagates to distant parts. Roughly, the Alfven speed is
that speed which we would expect from the formula for tha sound speed
Af we simply replaced p by the magnetic pressure B2y, and choose an
effective "y of 2. Alternatively, thinking in terms of an elastic
string for which the speed of propagaticn im ( tension/density)*/2 we
have a speed {{BZ/p_)/p.)*/? for a tension force of B*/j,.



The sound and Alfven speeds are related to the plasma bota

since the adiabatic index y is generally closs to 5/3, P provides ar
estimate of the ratio of the sound speed squared to the Alfven spied
squared.

To 1illustrate the magnitude of Cp and v,, we note that in the
photosphere p w 2 x 1077 gm o ® 80 with p = 2 x 10% dynes cw™® and ¥
= 5/3 we obtain cy w 1.3 x 10°cma™ w 10kms™*) since A » 1 in an
intense tube, we have v, » 10kma . In the corona, at a temperature
of 2 x 10°K, the pound speed climbs to about 200 Jam s~ ! ana the
Alfven speed to roughly 10 kms '. These values are far in excess of
those expected under terrastrial or lahoratory conditions. Estimates
of the Alfven speed in the Earth's core give vy @ 1loms '3 in mercury
at room temperature in & field of 1 kG we get vy m T cmut, to be
compared with a sound speed of c, = 1kms '. Generally, them, the
sound speed exceeds the Alfven speed in laboratory and terrestrial
circumstances (i.e. A »» 1), whereas in the solar atmosphere (he
ordering is generally reverasd (i.e. g < 1).

3.2 The Induction Equation

Just as the current density ] can be eliminated from the
momsntum equation by invoking Ampere's law, the electric Eisld E can
be eliminated by combining Ohm's law (equation (7)) with Paraday's
law {equation (&£)}). The result is

L]
;'E = curl{¥y % B) - curl({ncurlp), (1)

where n = (u,0)"' is the roesistivity (units: m?s™'). Assuming n to ba a
constant, we may further reduce equation (14) with the solencidal
constraint imposed on B, the result being

a8
5;‘ - curl{yxB) + nv*s. 115)

Zquation (i5) is generally referred to as the Induction Equation. It
Tepresents an important summary of the slectromagnatic interaction of
a flow v and a magnetic field B.

8.2.) Decav of magnetic field To understand the induction equation
suppose first that ¥ = 0. Then, in the ablence of any flow, the

magnetic £i8ld in a conducting fluid satisfies
]

- = netp,
at ?

(18)

which we recognise to be the diffusion {or heat conduction) equation.
“t follows, then. by analogy with the diffusion of heat, that each
eomponent of the magnetic field B diffuses through the plasmsa. Any
“roagularities in B are smoothad out through the action of diffusion;
ihe magnitule of B at any given location will decline in time.

The characteristic time-scale, Tairgr DY which irregularitiss in
The fisld are removed is readily estimated from (16):

;;:;; -9, te Tayp - I:If - oL?, (17
vhare L 18 the smcale of the irregularity in the magnetic field, In
solar conditions L is expected to be rather large and so Taiee 18
sathar long and magnetic fields can only leak away veary slowly in the
solar plasma. This contrasts sharply with laboratory conditions,
vhere L is small and Taifr Correspondingly short. Por example, in a
m radiue ephers of mercury (for which n ~ 8 x 10%cm®s !} the
CiE€usion (decay)time is about 1 second. In a sunspot, howsver,

with

N ~ 1003 ¥ 2ogty—i (10}

(the molecular value in a fully jonized plasma with temperature T;
aee, for emample, Spitszer 1962), estimates of Taier 9ive several
hunsdred years, as firast pointed out by Cowling (19 ). The diffusion
time for the "global* field of the Sun 1s much longer, about 10*
years, and that of the galaxy is longer still. By contrast, the



aecay time for the Earth is about & x 10% years, much ghorter than
for the larger astrophysical bodies and much shorter than the age of
the Earth (some #.5 x 10® years). Consequently. the Earth's magentic
field cannot be promordlial but must be regerneated by electromagnetic
forces (dynamo action); any initial field would have long age decayed
away, unless maintained by flows (v # 0). in the Sun's case this is
not Bo clear; a solar primordial fleld would Btill be around, Other
aspects, however, suggest that a aynamo operates 4n the interlor of
the Sun also.

The above estimates suggest that for most DUrposes we may pafely
ignore diffusion, regarding the plasma as perfactly conducting (i.e. N
-9, g - o). However there are important exceptions, notably where B
changes rapidly, and in such circumstances magnetic reconnection may
occur, a process that depends upon Taygf being {looceely} of order
unity, rather than very large, at least in Bsome part of the plasma.
Magnetic reconnection is treated elsewhere in these Lecture Notes -
see the contribution by Sonnerup.

we should note that the process of #ield daiffusion 1B not an
entirely passive one, even if there is no flow {¥ = 0). piffusion of
the field results in chmic heating 3%/0, which 18 of order ne?/p Lt
However, this 18 generally amall (because L is large), except in

regions undergolng magnetic reconnection.

n The general estimate of
diffusion provided by equation {(17) 1ie adequate for moBt purposes.
However, it is of interest to examine the dAiffusion process in
greater detall for a region of rapid change in magnetic field, such
as in a current sheet or magnetic flux tube.

Consider an initial distribution of magnetic field Bo(x);, in a
cartesian coordinate system Xyz. We take

BD, ® >0,

B (%) = (19)
-Bo, x < 0,

giving a Step function representation of a reversing field (such as
the "taoh' function). We may suppose that B remAlns in the
z-divection for all time. Writing B = B(x,t)3, we see from aquation
(16) that B(x.t} patisfies the one-dimensional diffusion equation,
namely

%‘Q -n ﬁg . (20)
Our problem is to solve equaticn (20) subject to

B(x,t = 0) = B (X). (21)

An equation such as (20) is most conveniently sclved by uas of
ite Groen's funclon, glven by (Morse and Peshback 19 )

G(x-8,t) -_J_ﬂm-Ll;_l.f. . (22)
b ot
(amre) "

The Green's function satisfies

86 _ o 220 - s(u-8), 23
at N axd { ) (23)
where 8 is the Dirac delta functlon.
The general solution of equation (20) now followa as
-
B{x,t) = I das G(x-l.t)B(l.O). (24)
—;
Applying equation {24) to the initial profile (19) gives (after
ecaluation of some inktegrals)

(25)

B(x.t) = uoe:fl i B

(ant)
where erf is the error function {Abramowite and Stegun 1967) defined by
x z
exf x = 1[ e as. (26)
v

Jhe error function has the properties that erf(0) = 0 and erf{tx) =
31) while for x amall, erf(x) ~ 2/vm X. These properties readily



allow us to sketch the field strength B(x,t), showing how the iniktial
step function (19) is diffused away.

The timescale for diffusion follows immediately from equation
(25) as

T - X (27)

aLEf an '
showing a variable timescale; cosparing with relatien (17), wve see
that the effective lengthscale is also variable, L ~ i x. Thus
aiffusion is very rapid near x = 0, where T, . is small, axd wery
8low at large tx. The reason for a variable lengthscale 18 that
there i3 no natural lengthscale in tha initial field configuration.
In other words, there 18 no imposed means of measuring a unit of
length save that defined, instantaneously, by diffuaion,

EBxapple 2 ; Piffusion of a Flux Tube
Consider now the diffusion of a s/ab of magnetic field, ir. which

Bo' I%x| « &,
B (x}) = (28)
0, x| > a.

The Blab (or "top hat”) provides a one-dimensional cartesian version
of a flux tube. Equation (22) provides the appropriate Green's
function and equation (24) givea the evolution of B{x,t = 0) = B (x).
Evaluating the integrals, we fimd

B(x,t) # B exf|—-A=K H; + orf| 8K (29)
vr (ant) Hnt)

80 that the slab‘'s sharp corners at x = ta are rapidly smoothed out

and spatial symmetry is maintained (i.e. B(x,t) = B{-X,t)).
Considering the field at x = 0 we pee that the central fisld

B(0,t) declines 1like t™*/? on a diffusion timescale of Tgepe = a%/4M

Zaﬂo
~ - aB t - o, {30}

n(nt)"

2B
B(x=0,t) = —2 erf &
Vv (ant )%

e effective lengthecale i L = 4 a, i.e. % of the slad widtn,
A cylindrical fiux tube can be dealt with in much the same
fashion, trough a Green‘'s function appropriate to polar coordinates

im required. Consider, than, the diffusion of a tube’ lo(r)i. where

!o' r «a,
By(r) = (31}
Q, r o> a.

‘The &iffusion equatlon in polar coordinates (r,e.x), with 8/80 =
a8z = 0, in

o . ql2%8 . 3 2], (223

wrict we nead to solve subject to B(r.t = 0) = B,(r). The solution
cf ecusticn (32), equivalent to squation [24), is

B{r,t) = r dae G(r,s,t)B({s,0), (33
[+]

where the Green's function G(r,s,t) for equation (32) is (mee
Carlalaw aml Jasger 19 , p.260)

Sir,at) = o8 up[— “-'-*'3-1] 1.,[-2‘:,; . (34

for modifisd Bessel function L.
It follows, then, that the field strength B(0,t) on the central
auin of the tube is

B{O,t) = B2 r ..‘.z/"lt as
ant
afi- el ]
Thus, the central field declines like t~! (compored with ¢t /% jn a
mlab) on a time-scale of T,ire = 87/4n, the characteristic length L

being half the radius of the tube,

2.2.3 The frozen flux theorew Returning to the induction equation



(15), wa consider the effect of the flow on the magnetic field,
Ignoring dlffusion of the field by setting n = 0, we have

at
Additionally, we recall that div B = 0. Equation (36) is precisely
in the form of Helmholtz's theory for the behaviour of vorticity u =

- curl{y % B). ' (361

curl ¥ in a flow, and an analogous result holds Eor the behaviour 'of
B and v. 1In the form expressed hy AlEven (1943), we may state that
in a perfectly conducting fluid (for which n = D) magnetic field
lines move with the fluid; the field lines are frozen into the fluid.
In other words, motions along the field do not change it, motions
transverse to the field carry the field with them. A proof of lthis
theorem may be found ln any of the cited general texts on MHD.

In general terms we mWay assume triat Erozen f£lux conditions
pertain in the solar Atmosphere, with the exception of 1in ‘the
vicinity of the site of reconnection. By contrast, 1in laboratory lor
terrestrial circumstances this is not nonﬁnny the case. An estimate
of the relative pizes of the terme in the induction equation (15) may
be given as followa, The timescale T, for advection of fleld by the
flow, as described by equation (36), is

Tagy = 3 . €27)
for a medium with characteristic scale L and velocity V. This As *o
be contrasted with the timescale Tqief fOr diffusion of magnetic
fleld (pee eduation (17)). The ratio of the diffusion time to :the
advection time defines the magnetic Reynalds number, Rye of the  flow:

T i oLt
Rmaﬂ .-_'L..i_.-unqbv.-h‘f, (287
Tadv w n

In astrophysical circumstances the general largeness of LIapd V
ensure that the magnetic Reynolds nunber R i8 large. Por example,
in the accretion disk around the auspecited black hole of Cyg X-1 the
magnetic Reynolds number is at leapt 10*°; in the galactic disk it 18

of order 10%; in the solar convection zone Ry ~ 10%; in Jupiber's

core %, - 10%) and in the Earth's core R, ~ 5 ® 10%,  (See also
Zeldotizh, FRummaikin and Sckoloff 3993.) Only in laboratory
circumsicances do we generally expect to find Ry, less than unity,
though at the site of reconnection 1t is also small. In numerical
pimulaticns Ry 18 generally conastrained to be moderate, 10%-10* may.

3.3 aavection of Magnetic Pleld

The general conclusion to emerge from the above entimates of Ry
1a tim=- in astrophysical plasmas the field is "frozen into the Flow".
To a aigh degree of accuracy, aiffusive effects are of secondary
importance to the overall structure of a field; only in the removal
of sma’l-scale magnetlc ptructures {where the effective L is very
much -educed) embedded within a flow is the effect of diffusion
impo-tant .

2% explore further how a magnetic field is manipulated by & £flow
we comsider the xinematical solution of the induction equation for a
perfact conductor (n = 0).

;wm;_mmm

suppose at time t = 0 the flow

= (vouinkx,o.-vokzco!kx), z2 <0, - ¢ X ¢« ™, (39)
is “svitched on" in the presence of a magnetic field BE. The
question 1ei what happens to the magnetic field 1f the flow (39)
man-pulates it according to equation (36)?

wWe note that the flow (39) is incompressible, i.e. aiv v = 0,
and Bas a spatial scale of order K~!. The flow rises at x = O (the
cell centxre}, Flows to the left and right and finally descands at x =
& mvk. The pattern is 2m/k perlodic.

o solve equation (36) suppose that B = B(x.2,t)T, 1.e. Buppose
that the field remains vertical at all times. Then the solencidal
cors—raint {div B = 0) implies that B = B(x,t). substituting in the
inducklon equation yields

28 - =} = O.
oy + pos (B v, 8inkx} (40}



This squatioch may be solved by the method of characteristics. The
solution satisfying the condition that B(x.t = 0) = B, is (Parker
1963)

-kv_t
But [}

B(x,t) = -

. {41)
cos® dkx + e *KVobpin? Lxx

Thie example conveniently 1illustrates the behaviour of the
convective flow (39) in expaliing magnetic Held in regions that are
updraughts, and concentrating magnetic field in regions where there are
downdraughts. To see this more clearly, sat x = O in egquation (41)y
in an updraft, we have

B(x,t) = B o *Vot, (42)

indicating an exponential decay of the magnetic field. By contrast,
at x = n/k (a downdraught) we have

B(x,t) = B e Vo, (4]

and the field is concentrated exponential fast. The timwmecale for
the process of concentration 18 evidentally (kv ) ', i.e. the
advection timescale (37) with L = k™%,

As a numerical illustration, consider supergranules (see Section
2.1) with v, = 1 Jom #™! and 2n/k = 3 x 10%km. We fina

Tagy ~ 10%s,

indicating a concentration of magnetic field in the downdraughts
between supergranules on a timescale of about 3 hours. Since
supergranules have lifetimes much longar than 3 hours, they are
lixely to be efficient at concentrating magnetic field 1in their
downdraughts. Granules, toc, are able to concentrate field and do o
on a timescale of 160 s (for v, = 1 km 87 ', 2n/k « lo%m).

The above considerations suggest that the magnetic field at the
surface of the Sun will be arranged not in a uniform distribution but
in the form of local concentrations. Indeed, this 1im precisely the
case as determined from the observations which indicate a large
number of isolated intense flux tubes with kilogauss fields (wmee

Section 2.4). However, an explanation of this observational fact
cannot rest wsolely on thae above Ammonstration of advective
concentration. This 1s becausse the concentration of magnetic field
by advection is limited by:

(1’ the back-reaction of the field on the flow, which
ultimately modifies the flow and its abllity to
concentrate the field)

{i1) the requirement of trangverse pressure balance which
limits the magnetic pressure to the confining hydro-
static pressure.

Ir practice, +then, we may expect that the process of
concentration of field by advection operates up o a rough
equipartion with the dynamical pressure of the convective flow, 1.e.
we sxpect a concentrated field B with strength given by

B N ! pvt. {44}
Zp: 2
Por p m 107" gmcm ¥ (the gas density in the photosphers) and v ~ 10°
cms™ we get B » 10gauss. This is well below the cbesrved 1.5 XG
field strengths and so other esffects must be sought for explaining

the concentrated field in the photosphere, We return te this topic
in Secthon 6.

4. MHL MRAVES

We have pointed out in Section 3.1 that there are two
characteristic speeds in MHD, the sound speed Cq and tha Alfven speed
Vp: In a medium with gas density Py, and pressurs P, ®ubedded in a
magnetic fileld of strength B, thesa speeds are

% z |
o B
s " l): L lu p-] “
o o0

for adiabatic index y. (We shall usually take y = 5/3.) Precissly
how thess speeds enter into a description of the ability of a
hydrowmagnetic plasma to support waves 18 the topic of this section.



There are a number of reasons for studying the properties of WD
waves. Pirstly, there is increasing evidence that hydromagnetic
waves occur in a wvariety of astrophysical plasmas, including the
magnetosphere and magnetotail (see the review by Southwood and Hughes
1983}, in cometary talles, and in the solar atmoaphere. Indeed,
bearing in mind that a magnetic flux tube is essentially an elestic
tube, it would be surprising if the many examples of such structures
in the solar atmosphere - the sunspot, the intense flux tube, the H,
£ibril, the coronal loop, etc. - were not capable of supporting MHD
waves, though we should caution that no unambiguous identification ie
yet possible. There is, then, an intrinsic interest in the study of
the properties of MID waves, especially their properties in a
magnetically structured medium such as a flux tube provides.

Aded to an intrinsic interest in the study of hydromagnetic
waves ia an interest in their possible contribution to the heating of
the corona. Sound waves are now ruled out as an explanation of the
high temperature corona, leaving MHD waves as a poasihle mecharismy
we return to this aspect in Section 7. We should adad, too, that MHD
waves are of much current interest in the heating of laborztory
plasmas (Bee Appert et al 1984).

4.1 waves in a Uniform Medium

To begin our investigation of MHD waves it is convenlemt to
consider fFirst their properties in a uniform medium. Though of
limited direct application, the study of a uniform wedium 18 a
necepsary preliminary to an understanding of waves in magnetic flux
tubes and other structured media. Consider, then, the equatioms of
idoal MHD, which follow Erom equations (1)-(8) with viscous amd
diffueive effects neglected (i.e, v = n = 0); we will also lijnore
gravitational effects to begin with. Our equations are simply

0 4 atv pv = 0
at i !

B
p[—‘! + y.q:aa]y - - qran[p + 3-1-] + (B.grad) —
at 2y, Ho

[-:; + z.graﬂ] [—:,7] -0,

-]
---: curl(y x p), div B = 0. {46)

we cowider the equilibrivm state

B=B83% P=P,. P =Py (47)

representirg a uniform gas (constant P, amd p,) within vhich 1s
ewbedded a uniform magnetic field B_§. The cartesian coordinate
pystem xyz is oriented with the gz-axis aligned along the equilibrium
field.

It wyv be noticed at this earlier stage a significant difference
between the problem of waves in a magnetic atmosphere and that of
sound waves (the non-magnetic case): the presence of a magnetic
field intoaduces a preferred sense of direction, namely that of the
field itmelf, Thus, we may anticipate that magnetic waves are
anisotroplc in the manner in which they propagate, a property in
contrast to sound waves in a uniform mediun which are isotropic.

In ivvestigative wave wmotions we perturb the equilibrium state
{47) and consider how auch perturbations behave. Rastricting
attention to wvery small amplitude disturbances, we may linearize
equations (46} aout the equilibrium state (47). write

P=3 4P, P=Do+ P, B=BE+tB. V=Y. (48)
for pertarbations p,. p,, etC. assumed small (squares of
perturbatSons are neglected). Then, diacarding the suffix "1* on the
perturbations, we have

%ﬁ +p =0, (49)

for the Yinearized equation of continuity; we have written

v, Bv, &%
A=divy =- %4 ¥4 &, (50)
ax oy 8z

for velocity v = {vx.vy.vz).



The momentum equation yields

p—’!--grmgl.i--nﬂ-a-n-—. (51)
° [T

where

B

Prepeite, (52)
im the perturbatlon in the total pressure (p + B?/2u ). MNotice the
anlectropy arising in the momantum squation.

The issntropic (adjabatic) snergy equation yialds

P = cZpr, (53)
Just as for the usual sound waves. The sound speed {1in the
equilibrium state) is defined in squation (45),

Finally, the induction equation gives

2.8 Az + B A (54)
at o ° pz *
on hoting that div p = o.

Pollowing Lighthill {1960), we may introduce the variable

av
r--;: . (551

Then, after some manipulations, we may recast our equations entirely
in terms of [ and &

2
-;t—ﬁ = (e} + vi)via - vivir, (56}

2 2

ﬁt—E - cl -:-;e ; (57)

Added to equations (56) and (57), we may show that the
z-component of vorticity (i.e., the componant of vorticity in the

direction of the applied magnetic field) satisfier a wave eguation,
hamely

bl ST L (591}

vhere

N, ¥
-5, —X _ 5, 59
wg = p.curt y &~ o (59)

Equations {56)-(39) completely describe the perturbation in that
the three components of y, nasely v, vy and v, way be deduced from
A, T and w,. It is apparent from the above equations that the system
(56 )-(581 splite into two independent classes: dSisturbances described
by (56) and (57), and those described by (58). Hence, in the
presence of an applied magnetic field the component of vorticity in
the direction of that field is propagated one-dimensionally with the
Alfven speed v, this is independent of the behavicur of & and I.
T™he property of one~dimsnsional propagation of the z—component of
vorticity 1is in contrast with that of sound waves in the absence of a
fis d: Eor sound waves (with B, = 0) vorticity is conserved, not
Propagated.

Turning now to equations (56) and {(57). we may esliminate I to
attain

-g:‘} - (ck + vyt ga + clvivt [ﬁe] =- 0. {60)

4.1.1  Alfven Waves One solution of eqguation (60) 18 A = 0, i.e.
dkv ¥y = 0. This 18 not a trivial solution but in fact corrssponds to
the Alfven wave. An examination of equations (43) to (54) raveals
thatp-pr-p-r-vs-l‘-o. Thus, in an Alfven wave thers is
ne perturbation in density, in gas or magnatic pressure, and there is
ne flow along the applied magnetic field., The perturbation in the
field and flow are perpendicular to the applied field and, in fact,
aps propagated one-dimensionally with speed vp: In an Alfven wave,
the compoments v, Yy B, and By sach msatisfy the one-dimensional
wave aquakion:

2 2
ZEEE- 3



for ¢ any cone of Vo v+ B, or By

The Alfven wave, then, ia simply like a wave on an elastic
string. It involvee no compressions of the plasma and, since Pp = 0,
the wave is driven purely by tension forces.

If we introduce a Pourier representation for wave motions by
writing

Aut-X. 1wtk XK, y-k
t _1:)_%9( o KyyKyT)

RN (62)

for frequency w, wavenumber k = (kx.ky,kz) and constant wave
amplitude "o‘ we pee from equation {(61) that

w? = x2vi = x¥vl con?e, (63)

where 6 1a the angle between the wave vector k (of magnitude k = (k2
+ %} 4+ x2)*/%) and the applied field B,. Equation (63) im the
dispersion relation for Allven waves. Comparing equation (63) with the
dispersion relation for a sound wave in the absence of a magnetic
field, namely

w? - xZcl, (64)

we see the highly anisotropic nature of the Alfven wave.

4.1.2 Magnetoacoustic waves Consider now 4 # 0. Introducing the

Fourier representation
A = Aoei('ﬂt"! r)

into equation (60) we obtain (on noting that 82/at? - —u?, 92 . _x?)
the dispersion relation for magnetoacoustic waves:

w® - (cg + vi)u®k? + clvik?xl = 0. (65)
Again, we obwserve the anisctropic nature of this equation, with
solutions evidently depending upon the angle of propagation ®. 1In

the absence of a magnetic field (when Vap = 0) equaticn (65) yields

the yaual Aispersion relation (64) for sound waves (a8 well as ¥ =
Q).

Equation (65) is evidently quadratic in w®. Consider its
solutior. For fixed k but varying angle 8. When © = O, we obtain

w* = k'cf and u* = Xxiv, (66)

when 6 =~ n/2, we obtain

w' =0 and  wt - X%l + ¥ (s7)

The two solutions of equation (65), ordered in the magnitude of
w/k, are referred to as the s/ow magnetoacoustic wave and fast magneto
—acoustic wave, respectively, They are compreasive (i.e. 4 2 0, p #
0, p # 0). The slow wave is highly anisotropic; 1like the Alfven
wave, it 18 unable to propagate across the magnetic field lines, 1.e.
w! =~ 0 for & = "/2 (k, = 0) in both the slow wave and the Alfven
vave,

The fast wave 1is only mildly anistroplc. It propagates at all
angles ©, being fastest at right angles to the field (at & = m/2)
when its phaso-apeed w/X reaches (c: + vi)"/ %, For propagation along
the magretic field (i.e, Bt @ = 0) the fast wave has a phase-speed
equal to the larger of Cy and v, ,

The distirctive features between the slow and fast waves may be
traced o the behaviour of the gas presisure p and maghetic pressure
Py which together make up Py In the slow wave the gas pressure is
out of phase with the magnetic pressure (i.e. PPy ¢ 0), becoming
exactly out of phase (and therefore nullifying one another) when 6 =
T/2. In the fast wave, however, the gas and magnetic pressures are in
phase (i.e. PPy * O) and pyp reaches a relative maximum at 6 « /2.
The fast wave at an angle & = /2 corresponds to compressions and
rarefactions of the magnetic field with no bending of the field lines
(i.e. B, = BY = 0, B, # 0), and therefore no tension forces; the wave
is purely a response to presaure forces,

Finally, it is of general interest to examine the behaviour of
the magretoacoustic waves in the low—p extreme. Thie is of
particular interest for coronal applications. Examining the
Aispersion relazion (65) in the circumstances Vp *? Cyq, we see that



the lsaf wave has

w® w Kivy, (&8)
and the siow wave gives

w? w kicl = k;c:, (69}
whers the magnetoacoustic cusp speed Cp is defined by

2ok

of = cz :vi ) (o
{The cusp spesd Cp arises in magnetic flux tubes too., We note that
it is both sub-sonic and sub~Alfvenic.) Hence, in a low—0¢ plasmsa ihe
fast wave 1s essentially 1isotropic, propagating with the Alfren
speed, HNotice that relation (68) is quite distinct from that for an
Alfven wave, relation (63), which is highly anistropic. The slow
wave, however, gives sssentially one-dimensional propagation of sound
waves. The magnetic field lines are so strong (Lf O << 1)} that sound
waves are forced to propagate one—dimensionally along tha almost
rigid field lines, a result in nice contrast to the upual throe—
dimensional behaviour of sound waves.

The generally anisotropic nature of MHD waves poses an amusing
question for music lovers listening to their favourite orchestra
Playing in the solar atmosphere! In a solar amphitheatrs with a
vertical magnatic field, where should one it in order to most enjoy
the mueic? Presumably on a line perpendicular to the orchestra
(reqarded as & point source), for then one would receive only the
fast wave. But those with unusual mumsical tastes might prefer the
seats in “the gods", and receive the double benefit of both fast und
8low sounds] Alfven waves, of course, are of ho cConcarn since theay
are inawdible.

4.2 Waves in a Magnetically Structured Mgdium

Since the molar atmosphere - and for that matter many other
astrophysical plasmas - is structured by magnetic fields 1t 1im

impartant to understand the behaviour of MHD waves in a non-uniform
medium. Unfortunately, magnetic structuring introduces a number of
comglaxities some of which is still under active investigation. So
an exhaustlve discussion of tha various modes and their Properties is
not possible. Instead, we will be content to outline the genearal
equations and present their sclution in a number of simple
circmstances.,

We consider an equilibrium state of a unidirectional magnetic
£ield B, (x)f. the magnitude of which varies in a direction
pPerpendicular to the field., We assums that the pPlasma‘'s temperature,
prezssure and dendity are similarly structured; this stucturing in
plasma properties may be as a result of the magnetic field or quite
independext of it. The equilibrium state, then, 13 one of constancy

of total pressure:

¥ x
P (x) + -—;u = cohstant. {(71)
o

In general, than, the sound wspeed Cg and Alfven speed V) are
funccions of x|

e Bz %
Cgix} = [Ml v vp(x) = [._E(i] . (72)
pox) Boo(x)

Consider isentropic (adiabatic) perturbations of the aquilibriom
(71). Por simplicity we restrict attention to motions in the x-z
plane, taking Vg O and 3/8y = O, This eliminates the Alfven wave
from consideration. It is convenient to work in terms of Vy: the
componant of the valocity ¢ = (vy.0,v,;) perpandicular to the applied
magnetic field, and the perturbation in the total pressurs, Pp: The
linearized equations of 1deal MHD may be written down fFrom systen
{46), much a= was done for a uniform medium but taking account of the
non-uniformity in p.(x). Poi{x) and B {x). Aftear some manipulation we
obtaln

[/
-oF = 0,VEF - notch + vhia, (73)
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p°[at‘ YA 5gt|Vx axat | A
and
f':'! =ci 2 (75)

el oz

with pp. I and A defined as previously.

Introducing the Pourier representation

1{wt-k
VX, 2, t) = Vy(x)e ¢ zz)‘

(76}
for frequency w and wavenuwber k, along the applied field, we may
eliminate v,, =ay, from equations (73)-(75) and obtain a pair of
ordinary Aifferential equations for pyp(x) and v (X)!

a ip (X))

;‘l‘ - (kIviix) — w¥)v,, ()
av 2.2 -l

(kZck - u?) "X - . 10 “_‘gz"-(’“ W) ) (18)
ax polw) (CEtx) + vR(X))

We notice immediately an unusual feature of equation (78},
namely that it is singuiar at wf = k;c.}.(x). Recalling the definition
of the cusp Bpeed cCp {Bee equation (70)), we ldentify this
singularity with the alow magnetoacoustic wave. In fact, the
presence of a singularity in equation (78) is associated with the
existence of a continuous spectrum, the so-called cusp continuum, The
existence of such a sinqularity implies that in ideal MHD the slow
magnetoacoustic wave in a non—uniform medium exhibita a complicated
temporal behaviour which is not describable in terms of simple normal
modes.

I1f we now eliminate Pp between equations (77) and (78) we obtain
a mingle ordinary differential equation for vg:

4, |PatX)eg(x) + VA(XIHKRFCHX) - w¥) vy

ax (xIcgix) ~ w¥) ax

- P (XNKEVE(X) - w¥)uy. (79)

Bquation !79) is the basic eguation we require. It has been
Aiscussed by a nuwber of authors (e.qg. Goadbloed 1971, 1981, 1904
Roberfs 198la, 1984, 19685; Rae and Roberts 1982}, If three-
dimensional wawe propagation 1s allowed for (l.e. if ):Y ® 0, VY ® 0),
then w~e still obtain a second order differential equation but its
structure is more complicated than that in equation (79). In
partieular, in addition to the cusp continuum the three~dimensional
equat .on possesses an Alfven continuum associated with a singularity
at w®¥ = kivi(x). This continuum, too, is associated with the non-
existence of normal modes attached to the Alfven wave. The two waves
that possess continuoua spectra, namely the slow wave and the Alfven
wave, are the waves that are unable to propagate across the field in
a un-form medium. The £ast wave, which propagates wore or less
imotropically in a uniform wmedium, does not possess a continuous
spectrum and instead discrete frequencies — normal modes — arise.

fhe signaficance of a continuous spectrum 1s most readily
brougnt out ir the /ncompressible case. With ¢y - =, equation (79)
reduces to

av.
A lokivg - o *af’ - pXE(RTE - Uiy (e0)

which possesses an Alfven continuum. This equation 1is analogous to
that arising in a cold plasma (Uberoi 1972) and the significance of a
contfnuous spectrum was made clear by Barston (1964) and Sedlacek
{1973). Applications in wagnetospheric physics have bean made by
Southwood (1974) and Chen and Basegawa (1974). The topic has been
of wspecial {interest to solar coronal physics because of the
possibility of coronal heating, as stressed by lonson (1978). An
analysis of equation (80) from A Laplace transform viewpoint has been
recestly giver by Van Abels-Maanen (1980}, Ras and Roberts (1981) and
Lee amd Roberts (1885), following on from the earlier analyais of the
cold plasma case by Sedlacek {1971). The general topic of continuous
spec-ra in mathematical physica, with applications to waves in fluld



and MHD systems, has been Adiscussed by Adam (1986). Find.ly, we
should mention the extensive interest in laboratory ! plasma
applications; ses the recsnt reviews by Goedbloed (1984) iand; Appert
et al. (1984).

4.3 Surface Waves

As a first application of the general equations for ML wWaves in
a structured magnetic medium, we consider the inCompresmibie case
governed by equation {80). Suppose the equilibrium consizte of a
step function in B (X), defined by

By x>0,
B,(x} » {91)
X < 0,

representing a region of rapid change in the magnetic fiell. The
denaity p (x) and the Alfven speed v)(x) may also be in the iform of
step functions:

p.- X » 0, Vi,o x» 0,
Polx) = valx) = Io(e2)
Por x ¢ O, vio, X O,

On either side of x = O the sedium 18 uniform, so aquat:.on [B0)
applies with vi(x) constant in X > O and in x < 0. Thue, iniwither x
» 0D or x < O we have

aty,

pre ASE R L)

in asdition to w® = k*vi(x) in each of x > 0 and x « O.

[n a uniform (P = Pg: B, = By) and urbounded medium, as
discussed in Section 4.1, the only acceptable solution »ff | equation
(82) is vy, = 0, a trivial solution. In & uniform medium the
appropriate solution is, in fact, w® = k;v:, with v, # 0; this is the
limiting behaviour of the slow magnetoacoustic wave when &, ' = {see
equation (65)),

Returning to equation (02) we note that an approprizus solution

L ’ x» 0,
vplx: = x x (83)
a_e ’ X < O,

where we have supposed that k, 1s positive and imposed the
requirement that v!(x) is Dbounded at te. Thw condition of
boandedness Tules out the axponentially growing solutions of squation
182). In equation (83), a, and a, are arbiirary constants.

To complete the solution we require matching conditions acrose
~he interface x = 0, It is nacessary that Vx (the normAl componant
of wvelocity) be continuous across x = O, 8o g, = a,. A second
boundary condition is that Py, the total pressure perturbation, de
conthlnuous acroces X = O, for otherwise there would be unbalanced
forces ak the interface. We may ses this condition from a
ma-hematical viewpoint too if we observe from equation (90) that the
-eTm in { } brackets must be continuous) for 1f it ware
discontinsous, then its dsrivative (formed on the left-handside of
"§0)) would involve Dirac delta functions, which are evidently not
Sresant on the right-handside of (00). Hence, in the incompressible
case we require that

av
Pl REVALX) - u®) ?: be continucus across an interface. (94)

Substitution of equation (83) into the boundary condition (B4)
7ielle

3 x 3 t ]
w® = k3 Po"A * Po%he -k;-—-?—'—" t By) . (9s)
Py + Py Bolpg + pg) '

This is the dispersion relation for hydromagnetic surfece waves. They
ars non-dvspersive, the phase speed uw/k, of the wave being independent
af wavelength or frequency.

The surface wave on A magnetic intexface is quite distinct from

the Alfven wave of a uniform medium. A surface wave is confined to



the interface on which it propagates; it propagates along the
interface, disturbing the surrounding medium only slightly {1t
penetrates a distance k;‘ either side of the interface). Its phase
speed, w/k,, i8 intermediate between the Alfven speede of the two
reglons,

Surface waves are alpo possible in a compressible medium though
their structure is wore involved. However, the phase-speed of a
surface wave 18 Btill intermediate between the two Alfven speeds,
though in the compresaible case two surface waves are possible
(Roberts 1981).

4.4 Waves in a Magnetic Slab
As a second application of equation (80) we consider the waves
in a maghetic slab, extending from x = -a to x =~ a, and defined by

o, Ixjra, ber 1 2,
R (x) = Po(x) = (86)
Bo' Ix| < a, Por I%f < a.

Again, equation (82) is applicable though now one cannot discard any
solutions within the slab. Thus, we take

-R,x
age ' %X 0,
v (X) » ja_ coshk,x + a,sinhk,x, Ix} « a, (e7)
| & ¢
aae T, x ¢ O,

for arbitrary constants o, o, G, and a,. The appropriate boundary
conditions are (again) that v, and Py (equivalently (84)) are
contihuous across the interfaces at x = %a.

It is evident on geometrical grounda that we may discuss
separately the cases o, = 0 and ¢, = O, {If this simplification is
not observed it in any case emerges from the full analyeis.) Setting
a, = 0 is equivalent to looking for modes of oscillation that do not
disturb the centre of the slab: v, = 0 at x = 0. Such modes are
sausage waves, See Figure . Correapondingly, setting o, = 0 (for

a_ # D) gives modes that disturb the central axis of the slab in a

2
serpentine fashion (Figure y) these are the kink waves.
Application of the appropriate boundary conditions on X = a

gives, for the saussge modes, the dispersion relation

2 xivy
w® - Ta - (e0)
1+ ED tll'lhk:l

whers v, is the Alfven speed within tha slab. The dAispersion
relation for the kink modesm is

x2vi
£-A (89)

wt - 5
-2
1+ [Pol coth kK a

These relations are sketched in Pigure .

we see from the dispersion relations (€8) and (89) that the
wave‘s phase-speed, w/k,, 18 reduced below the Alfven speed within
the slab as A -onsequence of the inertia of the surrounding field-
free atmosphere. Wave propagation is rendered dispersive, with the
phase-speed Wk, of the wave depending upon the wavelength and
frequency of the wave. In the limit of k& »» 1, corresponding to a
wide mlab (or, equivalently, wavelengthe much shorter than the alab
width), both the sausage and kink modes have the same phase-speed,

namely

T _.’:_9:5- "'& (90)
ky Pot O

We recognise this to be the phase-speed of a surface wvave at a single
magnetic interface one side of which 1is field-free (cf. edquation
185)). Fhysically, thie is as one would expect; for in a wide slab
the two interfaces (at x = $a) are so far ssparated as not to have
any influence on one ancther, and therefore the phase—speed of the
wave B that for an interface one side of which is field-free,

In the opoosite limit of kj,a << 1, corresponding to a plender



slab of field (or, equivalently, to wavelengths that are much longer
than the width of the slab) the sausage mode has phase-speed given
approximately by

i"; -y - : [g:] vy ixgla, X al < 1. (91
In writing squation (91) we have selected the wave propagating in the
direction of the magnetic f£ield (the positive z-axis), correspomling
to choosing the positive root for w/k,. Alsc, we have allowed for
the possibility that k, may in general be negative, which pequlres
that ks be veplaced by |K,| in dispersion ralations (88) and (@9}.
We return to the approximation (91) in Section 4.7.

Pinally, we note that all of the above formulation wmay be
generalized to include the effacts of compressibllity. The wain
conclusions that smerge from such an analyeis (see Roberts 1%91b;
Edwin and Roberts 1982, 1983) are: (a) the sausage wmode's Maxime
speed, v,, in an incompressible medium is reduced to the cusp spaed
Cp (see equation (70))r (b) in addition to the surface modew, body
waves wmay also propagate along the elab which acts as a wavwe gquide
for thewm. Thelr speed is between Cp and cg, the sound speed in the
alab. (c) waves may also leak from the slab and propagate away as
sound waves (see Spruit 1982, Davilla 1985; Cally 1985, 1986).

4.5 Guided Waves in a Coronal Field

As our last application of equations (79) and (80) we tirn away
from the incowmpressible case (eqn (80)) and consider wmodes given by
equation (79). We are particularly interested in applications to the
corona, which is generally a low-g plasma. We therefore consider the
extreme of ¢y ~ 0 (& cold plasma).

Setting p, = 0, c, = 0 and ¢y = 0, equation (79) reduces to

:; {potl) vi %‘l] ~ P XNKIVA - w¥ v, {92)
Furthermore, since the equilibrium ie one of constancy of total
pressure {(see equation (71})) and we have set P, = 0 we are

conmidering a uniform magnetic field B, = B.Z. The density, however,
may vary from place to place and therefore the Alfven speed vA{x) -
ncj(uopou))‘f" is a function of location X. The produce p (X)vA(x)
18 a constant and so aquation (92) reduces further to

ﬂ" + —_wt x2 o (93)
- vy = 0.
axt viixy E[X

In & uniform medium (1.e. & medium with p_(x) constant) equation
(93) immediately yields the dispersion relation

W = (kg + Kg VR, (94)
for vx(l:l @ le(—tk*x). Thia 1s simply the low B8 limit of the
general Adispersion relation (65) for magnetoacoustic waves in a
uniform medium, specialized to two-dimensional modes with kv - o, ki
= xI + ki. If follows, than, that equation (93) describes the
behaviouy of fast magnetoacoustic waves in the low g limit.

Por a non-unlform squilibrium, consider the density distribution

[ IX| < &,
Pyl x) = (95}
P x| > a,
vepreserking a region of constant density p,, contained in -a < x «
a, surrcunding by a gas of constant density p,. Just as with waves
in an isolated magnetic slab (Section 4.4), we may discuss sausige
and kink modes separately, Consider first the kink mode, which
patisfies equation {93) with

vy (%) = o Cos nx, (96)
whare
n? -:‘i-x;. (97

and v, 1s the Alfven spesd within the density inhomogeneity ( (x| «
a). The constant o, is arbitrary. The transverse wavenumber n is
#till to be determined (by relating w to X,) and so n® may be
nagative (i.e¢. nm may be imaginary).



In the external reqion (|x| »a), the solution satisfying the
imposed redquirement that x tend to rero as (x| - o is

Vaix) = oo™, 198)
where
mt - xd - v—”—: . £99)
Ae

The Alfven speed in the environment 18 vy, = B /(k,pe)Y/%. MNotice
that

PoVA = PeVhe - (DO Y
In selecting the solution (98) we require m » 0, and mo the
frequency w 18 restricted to lie in the range

wh o xdvk,. (101)

In imposing condition (101} we are demanding that the waves withinb
the coronal inhomogeneity (|x] ¢ a) are evanescent outside (that
inhomogeneity. It is poseible, of course, that wave propagate
outeide the inhowogeneity, and theh the solution (98} 1ip
inappropriate; inetead, we would connider outwardly propagating
waves, with the coronal inhomogeneity acting as a generator of \such
modes. In such a circumstance the frequency w or the wavenumber ky
would be complex; these are leaky waves, discussed in detail by Spruit
(1982), Pavilla (1985) and Cally {1986).

Continuing with our discussion of quided {non-leaky) waven, we
now impose the boundary conditions across the sides (x = #a) of the
8lab, As with an isolated slab or a single magnetic interfase we
require that vy be contipuous and also, from equation (92), Ithat
dvy/dx be continuous. These two conditions imply the dispexsion
relation governing fast kink modes in a coronal magnetic alab (Edwin
and Robertes 1982):

tan na = %‘ . : (1029

The reatriction m > 0, imposed by the requirement of evanesTance

‘4

ir te enviromment of the coronal inhomogeneity, limits the frequency
w to a maxisum of kgvu { for lg‘ » 0), In fact there is also & lower
limized o w, imposed by the dispersion rslation itself. This is
bacaise equation (102) implies that n® » 0 (for real w, X ). To see
this suppose that, on the contrary, n® ¢ 0) write n? = W%, for N »
o, Ihen we may take n = iN. But, according to eguation (102), iN tan
i = w > 0; 1.e. ~N tanh MNa » O, wvhich j}s a contradiction.
Thersfore, n® » 0, Hence, Bolutions of eyuation (102) lie 1in the
range

Ko ¢ W € KyVpu. (103)

It follows, then, that for guided waves to occur we must have a
¢ Vpa- Since the field is uniform, this corresponds to Py * Py
Thue. reglons cf high density (low Allven speed) provide wave guides for
the opropagation of fast magnetoacoustic waves under coronal (jow p)
candPtiors.

It is an interesting observation that relation (102) for kink
wawes 8 dentical to that found in terrestrial selsmic studies where
it cescribes Love waves (see Love 1911). Fast kink waves under
carotal conditions may therefore be termed magnetic Love waves (Eawin
anfl wberts 1902).

The behaviour of sausage modes is similar to the above, and the
gowrenirg dispersion relation is

tar na = — 1, (104)

with frequencies again restricted to the range (103). The sausage
modes have an analogy, too, this tims with sound waves in ocean
laye-s vh_ch were extensively investigated by Pekeris (1948}, It is
convenient, then, +to refer +to sausage waves in a coronal
innomogeneity am magnetic Pehkeris waves.

The effect of a finite sound speed may also be incorporated intc
the analysis of magnetic Love and Pekeris waves. The dataills are
cong_.derably more complicated, but may also be worked out for
Cyliadrical tubes. Past modes are still guided by regions of low



Alfven speed though, additionally, slow waves arisa - essentially,
the one-dimsnsional propagation of sound in a strong field poinbed
out in Section 4.1.2. Details are discussad in Edwin and Roberts
(1982, 1983, 1986a), and in Cally (1985, 1986).

™e tesults of this section have a number of applications. PMor
example, they may be applied to the coronal fast puslations that have
been recorded in radio wavelengths for many years now {see the review
by Aschwander (1997), a detailed application requiring a discussion
of the impulsively gensrated fast waves (see Roberts, Edwin and Benz
1983, 1984). Also, such an application ofcers the poasibility of
using coronal oscillations as a diagnostic of in situ conditions 1im
the atmosphare, in particular a possible determination of the
uncertain magnetic field strength in the corona (Roberts 1986; Edwim
and Roberts 1386b), Pinally, we should mention that similar results
apply to current sheets, which are also capable of guiding fast
magnetoacoustic waves. An application of such properties in current
sheats han bheoen gqiven by Edwin, Roberts and Hughes (1986), who
advance a new explanation of Pi 2 pulsations based upon the
properties of impulsively gensrated fast waves.

4.6 Slendar Plux Tube Theory

The properties of sagnetoacoustic waves in magnetic slabs or
flux tubes are complicated by tha finlte size of the slab or tube,
which renders wave propagation disparsive. However, in the limit of

a thin slab or tube, corresponding to |k ¢ 1, the dispersion

|
z
relation is much simplified, Por example, in an imolated magnetic
siab of width 2a we showed in Section 4.4 that, to lowest order (as
kza - 0), the frequency of the sausage mode is given by w ~ kovpi if

Ccompressive effects are included this result is changed to

-u~ ~
Xz Gy (105)

It 18 natural to ask whether these results could not have been
derived directly, assuming ab Initic that the slab (or tune) ie thin.
This ie in fact possible and provides us with the sienzer flux tube

egwations,

Conmicer the sausage (surface) mode in a magnetic slad (or
tube]}. Wa regard the slab asr slmply an slastic mdimm of cross-
sectional aread A(£,t) and we assule that wotions within the slab are
predominactly longitudinal (i.e. vp 3> v,). Also, sinc ethe wlab is
thin, varlations across the slab ars small, with pressurs p, density
# and velocity v, being functions of ¢ and t (but indapendent of x).
“ha equation of continuity for an elastic tube (slab or cylinder) is
simply

-‘-m{--——‘ pvh-o, 106 )
& [-; 3 (

vhere we kave written v » v, for the flow welocity along the tube.
™e ecuation of momentum for the longitudinal componant is
Lo P ﬂ] - -2 107
p[at 2z oz ! ( !
we mAy not.ce that no contribution here arises from the ] »x p force,
mince on the axis of the tube the longitudinal component of that
force must be zero (the ] x B force being perpendicular to H).
Acrogs the tube pressurs balance is maintained instantansously, so

that the total (gas plum magnetic) pressure squals the esxternal gas

pressure:

p+-l'—-n . (108)
2|.°

Here B(z,t) is tha longitudinal component of the magnetic field;
there is aliso a transverss componsnt but this is very much less than
B and in zarc on the axis of the tube. The external gas pressure
rolZ.t) is tho pronnure calculated on the (moving) boundary of tha
tube.

Disturbances are again assume isentropic (equation (8)), which
for a longktudinal motion yields

PPy gyl . !9+v!9]. (109)
at ax p lat az



Finally, we may relate the magnetic field B(z.t) to the cross-
sectional area A(Z,t) by the comdition of flux conservation
{esssentially div B = O combined with the ideal induction equation},
viz,

BA -~ BA, (110}
where B, and A, are the undisturbed (constant) values of the field
and tube area.

The system {106)-(110) provides the slender flux tube equations.
They may be derived directly from the full MHD equations by employing
a Maclaurin expansion for the fluld and magnetic variables (Roberts
and Webb 1978). More intultive approaches are also possible (Parker
1974; Defouw 1976). We should note that the system is nonlingar amd
furthermore may be readily generalized to include additional effects,
such aE gravity (Section 5) or non-isentropic behaviour.

Consider firt the equilibrium state. With v = O and 8/8t = 0O,
system (106)-(110) reduces to

Pg ¥ —B:— bl {411}

o 2]10 LN
for external uniform gas pressure D,.

We may readily linearize our equatione about this equilibrium,

the result being

oA an av #v 2p
p + A Ripa 2 ap -4 QU
o at o ar & P00 az * Po g 8z
{112)
BO 3
p+;-n-n., P = CgP. BA°+B°A-0,
0

for sound speed cg = (ypojpn)‘/‘. flere p, p. B, A, 7y and v denctes
the perturbations.

In order to solve equations (112) some constraint on m, must be
imposed. This may be done by requiring that n, satisfy the usual
wave equations in the fleld-free environment of the tube.

Alternatively, we may argue that the tube wave disturba the

envirsoment of the tube only slighly (recall that the modes discussed
in Sestion 4.4 are aNsumed evanescent and therefore decay to zaro in
the tibe's snvirorment} and so to a first approximation we may set g
-

Aopting the aspumption that m, = O (=0 that the external gas
pressars is taken to be the undisturbed pressure, Pg}. W& way reduce
equation #(112) to the wave equation

x 2.
3t—!-°i§;‘£- (113)

where tre cusp speed Cp (defined in equation (70)) may also be
exgremsed through

We thus obtain the dispersion relation

w? = KZCE. {115)

in agresment with the wvalue (eqn (105)) deduced from the dispersion
re ation for a finite silab in the limit k,a - 0. The incompressible
limit (c, - m, p = 0) of equations (112) and (11%) yields w? = xivp.

It is clear from the above that the cusp speed Cp plays an
importank role in describing the sausage mode in a magnetic flux
tube Por this reason it is commonly referred to as the tube speed.
An estimate of its value in the photosphers may be of value. The
soind and Alfven speeds in an intense photospheric flux tube are of
orle- 9kms ' which implies that cq ~ skms .

we should note, too, that the kink mode may also be described by
a alender tube theory (ses Spruit 1991 a,b).

rirally, we point out that dispersive effects, such as displayed
in equation (91) and its cowpressible squivalent, may be incorporated
by removing the assumption that n, =~ O. If, instead, we retaln m,

tren system {112) yields (Roberte and Webdb 1979 Roberts 1981b)
z.
v _ a2 atv . _1 %" (116)
at’ izt o, 9zt



Determining m, from the gas dynamic equations for the field-free
envirorment, coupled with the assumption of zero dJdisturbance at
infinity, finally leads to a dispersion relation of the form (91} in
the incompressible limit we obtain eguation (91).

4.7 3Solitons in a Maghetic Slab

We have seen in the previous sections that waves in a magnetic
slah are disperaive, The dispersion is such that any initially
generated sausage wave tends to spread out as it propagates. Now tha
theory presented so far is for linear motions, whereas for nonlinea
motions it is well known that sound waves tend to grow in amplituie
and form shocke. These two eaffects, the tendency to form grow im
amplitude when nonlinearities are accounted for, and the tendercy to
spread out when dispersion of a linear wave is included, are opposite
to one another. The possibility arisss, then, that the two effects
may achieve a balance and out of that balance a nonlinear wave of
perwanent form be permitted, If such a wave is sufficiently robust
that on interaction with waves of similar form but perhaps differemt
amplitude 1t is able to emerge easentially unchanged, we refer to
such a nonlinear wave as a soliton.

The nonlinear equations that solitons cobey are of particular
mathematical eslegance, the mors 80 as wethods have recently bean
developed that permit the exact aoliton of a number of these
equations. Perhaps the best known example is provided by the
Korteweg—de Vries squation, which is of the form

LA . S ' L e (117»
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The nonlinearity in equation (117) im in the term v dv/3z, while the
term 23%v/3:® describes dispersion. The linearized form of eguaticn
(117) yields a dispersion relation of the form

""xz_k;' (118 )

The Korteweg—de Vries equation occurs in a wide variety of physical

systems including water waves in a channel (see, for exampls, Laab
1960).

It is natural to enquire whether a similar nonlinear equation
exists that describes the (weakly) nonlinear behaviour of the sausage
vave in a magnetic slab. The dispersion is somewhat different to the
k*-type possesssd by the Korteweg—de Vries equation, being of the
form (91). It 1is necessary to determine what partial diffsrential
operators correspond to a dispersion relation of the form { 91). In
fact, a general recipe exists for answering this quastion (see
Whitham 1974) and gives rise to the Hilbert transtorm. To be specific,
in a compressible flux tubs with sound speed Cg and Alfven speed a
the dispersion relation that generalizes equation {91) is

W= K,Cp ~ akgikyl. Ikgal << 1, (119)
where
]
i [Pal iy
o= & Cp.
2 [pﬂ va T (120)

(The sound speed in the envirorsent of the slad is also assumed to be
Cg-) The coefficlent a is a measure of the dispsrsion in the wave.
Zquation (119) reduces to (91) in the limit Cy ~® {for which Cp -
"A)'

Pollowing Whitham's recipe, it is shown in Roberts and Mangeney
(1982) that equation (119) corresponds to

oy v, a2 1 vst) 4.
at+%az+uaz'r|-—:“ e. (121)
-

If now we allow for weakly nonlinear terms and "uploy the slsnder

flux tube equations (Section 4.6) we may cbtain {after much algebra)
the desiced result:

oMy, 2 v, @ ¥BE) gy -
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here the nonlinear coefficient 8, is given by

Bo = 1 vitack + rLvpcel e vh) n23)

The integro—iifferential equation (122) is an example :of' the
Benjamin-Cno equation (see Benjamin 1967) Ono 1975) Ablowidit. and
Sequr 1981, Matsuno 1984), Its occurrence in a magnetic aldb' was
first determined 'by Roberts and Mangeney (1982). Details 1of the
calculation are #iven in Roberts (19¢5); Bee also Merzliascy and
Ruderman (1985). |The case of a cylindrical flux tube is of incprest,
too, and gives rise to a different /integro-differential wuzition
which we record here for reference (see Roberts (1985) |for a

derivation)
2., AV Wy o 02 —_ve.t)as .o, (124
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for constants o' and A.

Returning tP' the slab geometry we observe that an exact mxilui:ion
of equation (122) is (see Benjamin 1967)

we, t)-'-— (125)
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wharse Y, is the smplitude of the wave, 1 ie its characterietlr length
scale, and u the speed of the d4isturbance. These gquantilitledn) are
related by

u-cptdagy, ..;::o . £126)
Solution (12%) is the single soliton wave; it propagates with impesd u
{in excess of the tube speed cy) and resembles a “swollen knee .cap“,
a symmetrical ewelling moving without change of shape along tinel #lab.

whether such sclitons can actually arise in solar phokospheric
flux tubes 1B not clear and must no doubt await the roxpected

developments 1in high resolution observations. One possible
candidate, however, is the spicule (see Section 2), which is known to
propagate, with little change of shape, along magnetic structures in
fhe chromosphers and coroha, It would be a nice marriage of
wonlinear theory and fine scale solar observations if the spiculs
iurns out to be a solitonl

5. THT SLENDER PLUX TUBE EQUATIONS IN A STRATIFIED KNTHOSPHERE

We have discussed in Section 4.6 how longitudinal motions in &
slender magnetic flux tube (cylindrical or slab geomstries} way be
descrived by a simplified system of equations, Those equations may
be generalized to include the effect of stratification, introduced
Lhto an atmosphere by the presence of gravity. The sain changa is in
-he longitudinal equation of momsntum (ses e&qn {107)} which now
acquires a body force -pg, for constant gravitational acceleration g
‘= 0. Z7T4Xms = for the Sun's atmosphere).

‘The slender flux tube equations for the wsausage mode in a
stratified medium are thus

_am.'.a_m [ﬂ;vﬂ]q‘ﬂ_m.
t oz
(127)
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A derivation of these equations direct from the full MHD ones is
given in Roberts and Weblb (1978).

A full discuesion of equations (127) is outside the range of
these lectures (mee Spruit (1981b), Thomas (198%), ard Roberts (1986)
for much a discussion). Instead, ws shall briefly outline their
consequences for wave propagation in an isothermal atmosphere. The
instability associated with a superadiabatic atmosphers is described
in Sectlon 6.

Consider, first, the equilibrium (v = 0, 8/8: = 0) form of
equations (127), We have



i)
Po(E) = —p,le)g, PlE) + —:;—-—-- Pelz), By(z)A (z) =0, (128)
L]

where a dash (') denotes differentiation with respect to hight =.
The magnetic field strength B,(z) ims a function of height, the tube
expanding in response to the decline of the external gas pressure,
Pe(Z), with height. Outside the tube we suppose the atmosphere to be
in hydrostatic equilibrium, so that

Pz} = “pglelg (129)

for external gas density Pel ).

Introducing the i1deal gas law {see equation (2)) into our syestem
finally permits a determination of the run of pressure, density, etc,
with height. TFor an J/sothermal atmosphere, for which the pressure
scale-height A, = kgT /gm is a constant in the gas of temperature T,
we obtain

-8/ ~%/A
Polz) = py(oje 9, PolZ) = pyf0re  °,

2/2A -z/2A (130)
A(E) = A (O)e °, B,(z) = B,(O)e °,

whére z = 0 is an arbitrary reference level. Thus, the magnetic
field declines half as fapt as the gas pressure. It Ffollows Evom
equations (130) that the Alfven speed va in the tube is a constant.

We may perform an analysis of the linearizred form of equations
(127), for equilibrium (130). We assume that 7, = Du(z) for all time
t. After some algebra, we obtain (Rae and Roberts 1982)

29 _ o200, g29.0 131

2z " O 4 tOQ O (131)
where G is the tube spéed (& constant) in the isothersal atmosphers
of the tube. The quantity Q is given by

—-2/4A
Q(z.t)-e” Se(z,t), (132)

and the frequency 0 is given by {Defouw 1976)

ni-[ﬁ-l]f‘.-[ﬂ-l]z_ﬁ_ £=-, (133)
4 vial 2« B*%“:

for plasma beta defined 1in equation (13}).
Equation (131) is of the Klein-Gordon type. It possssses a
simple dispersion relation, namely

w? = xcf + 0¥, (138)

which genaralizes relation (115) to which it reduces if g=0 (Au -
@ o - 0). It follows from relation (134) that sausage waves in an
isotherma: flux tube ponueas a frequency cut-offy we must have w > 0
for propagation.

The cut—off frequency N is Close to the usual acoustic cut-off,
Cgr2h,, Provided y = 5/3. Taking Cg = v) = 3kms~' and A w 125 km
as typica. of photospheric conditions, we obtaln a cyclic frequaency
osanr of about 4.8 mis, which corresponds to a period of roughly 210a.
Bowever, 1f conditions in the photosphere cause y to depart strongly
from 5/3, we find that the cut—off is substantially reduced (and the
period correspondingly increased).

Sausage waves in a wmagnetic flux tube may be responsible for the
genaration of spicules (e.g. Robarts 1979; Hollweg 1982). The
presence of a cut-off frequency implies that, if impulsively generated,
saupage waves will propagate with a wve front moving at the tube
speed cn and trailing behind it a wake which oscillates with the
period 2nf0 (Ras and Robarte 1982). The &«ffect of such a wake, whan
shoCk waves are formed, on tha transition region has bsen explorad
mumerically by Hollweg (1982), who demonstrates 1ts potential for
forming spicules,

Fimally, we note that kink modes in & stzatified flux tube may
also be 1investigated by a slender flux tube approach (see Spruit
1991a,b). The kink mode also satisfies a Klein-Gordon equation; the
spesd of the kink wve, given in equation (90), is slightly slower
than the sausage speed. The cut-off frequency, however, 1is wuch
-ower than the adiabatic (y = 5/3) value for the sausage mods, being



about 1.4 wmiz (7008 period). ‘This suggeste that kink modes are
likely to be readily generated in the sclar atmosphere (Spruit 1981
a,b},

6. THE CAUSES OF PINE STRUCTURE IN THE PHOTOSPHERE

We have pointed out in Section 2 that magnetic fField in the
photospheric layers im almost solely concentrated into intense flux
tubes or into sunspots. Intense flux tubes are on a scale of 10%xm,
at or below the limit of present telescopic resolution. Why does the
Sun apparently prefer to arrange the available magnetic Fflux,
supplied from deep within the soclar interior, in a concentrated
rather than diffuse form? A partial explanation is to be found in
the ability of convection motions, such as Bupergyranules and
granules, to expel maghetic field from the interiors of cells,
forcing the field to find residence in the corners between convective
cells where downdraughts exist.

The elementary calculations cutlined in Section 3.3 demonstrate
such effects. However, such a calculation cannot be pushed too far
because it ignores the back-reaction of the magnetic field on the
flow. While the field is Aiffume Buch a back-reaction im negligible
but as concentrations of field build-up this effect becomes
correspondingly more important. Roughly, we may expect that
advection 18 able to concentrate magnetic fields up to an
equipartition with the confining dynamical preasure, Bo that

;'fo -3 pyiut. (135)
With p. = 1077gm cm™® and |y| = 10%m 372 (= 1 Xm s~ ) we obtain (in
cge units) BY/8m ~ 500 G”, giving B ~ 10%gauss, This is far short of
the required 1500 gauss residing in intense Flux tubes, and so
addition effects must be sought to explain their fileld atrength.

A poesible explanation lies in the €fact that intense tubes
reside in the strongly superadiabatic part of the Sun's atmosphere,
the top of the convection zone {(Parker 1979). The effect is moBt
conveniently demonstrated using the slender flux tube equations of

Section 5, but allowing for a non-isotharmal atmosphere.






