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2.1

2. THE FROZEN MAGNETIC FIELD CONDITION

2.1 HMathematical Background

Consider a loopx which bounds an open surface .T, located in » magnetie
field B(x ,t), as shown in Figure 1. The magnetic flux through this surface

is {1)

e [rae
and becausa %B = 0, the l'rli magnetic flux is obtained for any surfacas
bounded by o{_’ We shall take advantage of this freedom in the choice of

f later on.

Fig. 1

Now imagine that the loop 1s moved by some arbirrary velocity field
¥(x,t) (which, at this point in the discussion, is not tied in any way to
the physical motion of the plasma in which B may be imbedded), In other
words, each length element dt of the loop moves at ite own velocity, the
result being that the loop as a whole may be displaced while, at the same
time, it is deforsed. We want to calculate De,/Dt, the rate of change of
the magnetic flux which occurs, both as a result of this motion and de-
formation and a8 & result of the time varisbility of B itself, The ratas
produced by thase two effects can be calculated separately and then added,

Congider just the rate of change, (do.ldr.)l, produced by the temporal

variarionof B. Thia rate is evaluated with the loop and surface 1w a

al

e

fined position and is given by

ds 4 a8 &3]
(a‘:*).'?ff-‘-"—'laf‘—’
y

>
Hote that the assumption that the lurt'acefi. fixed means that the limits

of the surface integral are independent of time. It is for this reason that
the tice derivative may be moved inside the integral eign. Since Bis s
function of space as well as time, while the intagral is a function of time
only, the time derivative must be written as a partisl derivative vhen it

is placed inside the integral sigo.

We tum now to (d..ldt)z, the rate of change of magnetic flux produced
by the motion and deformation of the loop. This rate is to be gvalusted
under the sssumption that B does not change with time. Since 0- 1s the same
for any surface, fbounded by ot we now choose 8 surface such that the vector
dixidt is mormal to the surface at each point along I. Furthermore, as
shown in Figure 2, the magnitude of this vector 1s the area awept ocut by the

leagth elemmnt di in the time increment dt. For the element showm in the

Zigore the motion leads to a change in magnetic flux in the amount -B.(dMcVdt),
the negative sign indicating that, with the direction of ¥V shown, the flux

decreases. By integration around the loop, the net rate of change of the flux

A
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due to the motion and deformation of tlic 'oop becomes

( )_* ! v &)

which, by cyclic permutation oftthe vectors in the scalar triple produck

&nd by subsequent use of Stokes' theorem may be written

( § Le(VxB) = - J_gx(!u_g_) s 4)
{

We may now ldd the rates in (Z)Yand (4) to obtain the total rate of

change of the ugnatic Flux:

DO
an ” (5)
t ) (dt ) - o - (v B)] +ds

This result is sometimes referred to as the "changing flux theocrem.” I
reality it is not restricted to the magnetic field B but is valid for aay
divergence-free vector field. 1In ordinary hydrodynamics for example, B
is replaced by the velocity vector, 2, and the equation then forms the Basis
for Lord Kelvin'a theorem of frozen vorticity in an ideal fluid,

For ocur purposes, we may now replace aB/at by ~YxE in accordance w_th
Faraday's law so that

De

- - [ iewaas - - § vt ©

vhere the last member again follows from Stokes' theorem, For nonrelativistic
motion, the quantity E+VxB = E" represents the electric field in a frame of
reference moving with the local velocity V relative to the laboratory frame
{in which the electric field is E). Thus we may finally write

Dé )]
. "
il {.E_ dt

If E" = O or, more generally, if E' = =V#(r,t) where ¢ ia an arbitrary

potential, we find the frozen-flux theorem:

a3

- o e m——

2.4

De, (8)

This taeorem, expressed by Equation (B), states that the magnetic flux
th-ouga the loop remains frozen at its initial value as the loop moves and
delomms in a generally nonsteady manner in s magnetic field that ia alsc
tine variable, in general.

In Figure 2, ve show two 1oop..xl(3) and ‘{2(8) , which initially
(1 e., at time t = to), are linked by th.e sane bundle of megnetic field
limes, defining m magnetic flux tube. We also imagine a large number of small
losps, ar3(t1), -’l’,‘(to),..... all located on the surface of that tube and
therefore each li<king zero magnetic flux. As these loops are moved to
new mositions by :he velocity field ¥(r, t), at the same time being deformed
in vartous vays, the frozen flux theorem (8), 1f valid, would indicate that
at aoy later time each loop still links the mame flux as it did inicially.
In oter words, the loops I3(:). d:(t)..--. are all located on the surface
of a Ilux tube at any later time t and the two loops 9{-1(” and ‘;Cz(” still
lirk zte same amywnt of flux as they did initially, Thus ie appears as if

the estire origiaal flux tube has been moved with the velocity field ¥V (x),¢),

8

Fig. 3
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2.5

undergoing various deformations in the process. This is one posaitle way
of interpreting the implications of Equation {8). Furthermore, if the cross
section of the flux tube is made vanishingly small, it then appears aa if
the individual magnetic fiald lines themselves ara moved by the velmeity
field V{r,t}, as 1llustrated in Figure 4. 1In thia manner, the frormm-flux

theorem is seen to be equivalent to a frozen—field line condition.

3

[[r

4¢

Fig. 4

We may ask in what circumstances, i.e,, for what fields Eand 3, it is

possible to find a velocity field ¥, such that
ErEtya--un ®

which 18 the basic requirement for the frozen Flux theorem to be valid.
As 1 seen from (9), such s velocity can be found, provided the eleciric

field component, if any, along B can be expressed as

Ei=-fievy 10)

We may then write

¥ = (E+99)3/8% + ¥ (z, 08 an

shaze VH(_g,r.) is an arbitrary velocity component along B. The perpendicular
component
V= (E+94)xB/n2 (12

is referred to as the "fleld-line velocity” or the “flux-transport” velocity.

Objections ars sometimes raised to the concapt of moving field lines
and it is clear that, unless the condition (10} is satisf{ed, such objec-
tione are valid., Evan when (10) is satisfied it 1s a watter of personal
zaste whether or not one wants to think about phenomena in terms of moving
field lines. Those who do not like this concept may simply think of the
selocity '!.I. as having the property of moving a set of points originally
located on & fleld line in such s manner that st sny later time they remain
Llocated on & field line. There is no need to conclude that it {s one and
che same field line that has moved, However, in this paper we find it con-
renient to adopt the concept of moving field lines. For example, consider
“he vacuum electromagnetic field shown in Figure 5. It consists of & con-
stant electric field l.‘ai_ at right sngles to s hyperbolic magnetic field,
3 = kiyfrxf), where & 1s & constant, and it satisfies the condition (10)
with ¥¢ = 0. We shall think of the magnetic field lines in this configura-
ion a9 moving with !1 in the manner shown, the result being the transport
of magnetic flux across the separatrix lines (y = +x)} from c.lh@md @mto

cell!@and@vith accompanying reconnection of magnetic field lines from cells

Om:l@u they reach the X-type null in the field at the origin,



As an illustration of the role played by the term -¥¢ in (12), consider
the case of an {dealized plasma discontinuity such as a shock or rotational
discontipuity which has uniform (but different) magnetic fields on its two
sides and a nonvanishing magnetic field component normal to the discontinuity,
as 1llustrated in Figure 6, In the so-called deHoffmann-Teller frame of
reference, the discontinuity is stationary snd has zero electric fields on
both sides. However, within the structure of the discontinuity itself an
electric field E = -4 = -;(aolan) normal to the layer is usually prasent.

In this case too, the condition (10) 1s satisfied and the field line velocity
!1 given by (12} 1im identically zeru, not only on the two sides of the

layer where E = D but also in its interior where E = -%¢, Thus the field
lines may be thought of as being entirely at rest in the de Hoffmann-Teller

frame,

, =
//j

NNy
NN

Fig. 6

Finally, we emphasize sgain that up to this point no connection has
been mad2 between the field-line velocity !.L and the perpendicular com-
poient of the actual plasma velocity, ¥y assuming that the electro-
vagnetic flelds we have discussed occur in an electrically conducting
flaid. In the wext section, we shall argue that they are sometimes but
by no weans slways the same. For example, in the case of the discontinuity
shawn In Figure 6, the two perpendicular velocities are the game and equal
to rers en the two sides of the layer. However, in its interfor the field
1ise velecity 1s zero while the plasma velocity component perpendicular

to B is mot.

J-
o




2.9

2.2 Ohm's Law

The simplest version of Ohm's Law in a moving fluid states that the
eleciric current density, 1, in proportional to the electric field, E',
measured in the frame of reference moving with tha fluid velocity v. In

other words,

1= cE's o(Esym) )

where 9 is the elsctrical cosductivity (sho/w)., If we now let ¥V = ¥

(and therefore E" = E') in (7) we arrive at the result

P ae_d2q. (1)
T g dds
"
The magnetic flux is seen to become frozen into the moving fluid in the limie

Doy J 1

o+ = , It is also frozen in regions where J=0, and it tends to become un-
frozen in regiona where 1 is large.

In practice, the frozen flux condition is slmost never precisely satis-
fled. A useful criterion by which one can judge how well the flux is frozen
is obtained by comparing the term ov x B to the term] in Ohm's Law, If we
denote by "o"o and L the characteristic values of velocity, magnetic field,
and scale length in a fluid flow, snd 1f we estimate § as Bofuol. in accordance

with Ampere's law, wa find
w3 o8
- 'oh’“o - "owol'
The dimensionless group R. - uoovol. is called the magnetic Reynolds number.
{When the Alfven spaed Ypo " IDI/;E is used instead of v,r the so-called
Lundquiet number, § = uolJv“L, is obtained.) If Ru ie large, ss 1is often

the case in cosmic applications, on account of large values of L and vo, then

the frozen magnetic field condition holds to a good approximation. However ,

2.10

nete that even if the overall scale of a problem is large, the plasma
g=owerry mmy, and often does, rearrange itseif in such a way that narrow
regions of high current density are formed, The R- value based on the
thickneas £ ef such layers rather than on the overall scale L may then
become of order unity., In other words, the plasms finds a way to break
the frozen flux condition locally, This is what is believed to happen in
the vicinity of the X line of a reconnection configuration. It 1s useful
te lefine a resistive lmgth'% H (uo‘?"orl such that the magnetic
Reyanlda number based on 1\' is equal to unity,

Figur= 7 shows a loop -t- ABCD in the inflow region of & stesady-ntate,
two-dimenslonal reconnection configurstion whers the flow is associated

with a uniform electric field -Eo' The segment AB of the loop where the




magnetic field is lo and where the current den: ity is negligibly smwall is
being carried towards the orfgin with speed Ve The electric field 1is
given by Eo = voBo' The segment CD of the loop 1s located along the X line

and therefore 1s stationary, Thus the area bounded byxdecreases with

time and the associated rate of change of magnetic flux in the loop 1s

L a_yB b {15)
where b 1s the length of the segwent AB, The magnetic flux does not escape
#cross AR beczuse j=0 go that the frozen field cond ition holds there. Instead

it can be considered as leaking acroas the X line vhere j = oE, 8o that
- ll-d!.--!!b (186)
o °

We conclude cthat the amount of flux reconnected per unit length.of the X
line is simply Bo = vo'o' Thus En is a measvre of the reconnection rate. A

nond imensional expression for this rate is the Alfvén number

M, =-2. ._2° (17

2,3 Generalized Ohm's Law

In & collisionless or nearly collisionless plasma, the simple form of
Ohm's law used in the previous section iz not always adequate. For this
reason ve novw introduce a generalized version of Ohm's law which is valid
in a plaspa consisting of electrons (subscript e) of charge e, and one kind
of lons (subscript ) of charge Ze, The momentum equations for these twa

species are

iy
=4
2% ( *tyy 3!1)- - 2By 40 Ze(Btv 5B)- na (y -y RIE (18)

'y

v
N e S S S T

@her2 zi and Eg are the stress tensors, By adding the two equations, making
wse of the condition of charge quasineutrality, njz =n, well an the

defimitisn of t3e currenmt density, § = (nize_\h - nee!.), the relation

=n u‘ 1 batueen the collision times T lnd Tags and by

Y
*™ e
seglectirg Ielli compared to unity one obtaina the total momentum equation

n
o(Frva)--s+a 20)

shese p som, Ysy, and P =P + ze. If Equation (18) is msultiplied by
hh’ and (19) by elne and the latter is subtracted from the former, then
meg_ecting terms of order nel"j_’ we obtain

ncz

(u-w xB) - § - (21)

LR
R FIQv +v) - L v-g +
Ted

i.e., noting that v, =y - J_Inee

B

E+vrBe jf1+ nle lx!..n_lé. y.:! + 2y
e

whene o = neez-r!_.lue is the conductivity.

Bquatien ©2) is the generalized Olm's law. 1In addition to the terms
(E+%3) and } /o which already appeared in the simple Ohm's law (Eq. 13 ),

we hmra the following new terms: the Hall tern d x Bfn_e, the electron

prasaure term (V. P )In e and the electron inertis term L j_ + (v + vj)] In e?,

The ratic of the various terms on the right-hand side of Eq, (22) to
the t2mr v *B on the left may be estimated by use of a characteristic

spakial gcale L and temperal scale T, and by assuming the characteristic

A
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velocity to be of the order of the Alfvin speed:

T .
Toal T 9

el 3y hy a
V’! - L » 1 » 1 )
Il':.ln..l ‘LC . ?
T AT {25)
!
ne? | A A
B[ LT, (26)
|2 ge4v + vi)
|“ .2 - 1! !1 | A 2
L] -~ e (27
lu=s| L?

where lr' A’_, and R. are the resistive length, the ifon inertial lesgth and
the electron inertis) length, respectively, defined by

Ay = Yugov ) (28}

[ Te?
A 1Iu°n Z

i (29)
¥ xoocy an

Also, lili and R, are the ion and electron gyroradii. Note that the estimstes
(llu!l.)z and (l!.l'.ll-)2 in (24) and (25) come from the collisionless off-diagonal

finite-larmor-radius (FLR) tarms in the ion and electron atress tenaore.

The internal length scales 1'. 11. l" .'l.i. and RL- of tha plassa can
be used to astimate in what circumstances the various terms on the right-
band side of the generalized Om's lav (22) may become important, All terms
are negligi>le vhen L is much greater than all the i{nternal plasma scales,
Note that tya inertial length and the gyroradius are comparable when the
particle kisetic prassure and the magnetic pressure are comparable. The
electron scalas lengths ara alvays much smaller than the ion ones. Typical
values at tas asrth's magnetopause are l.—l i, .\1- 50 km. The relative
sire of lr and li’ say, depends on the conductivity. For sufficiently
large electrical conductivity, o, we find l‘_«l1 » Por sufficiently small
d, the ineqamlity reverses so that x!» 11.

The #lectron-ion collision time Ty ™Y result from regular collisions
or from interactions of the electrons with fluctuations in the electro-
magnetic fisld gensrated by microinstabilities in the plassas. In a

collision-frae plassa such as exista in the outer magnetosphers, the latter




nmechanisa is the only possibility of generating a finite value of o, There

is ongoing debate concerning the role of microinstabilities and the assocciated
effective conductivity ¢ in unfreezing the magnetic field at the X line of

a reconnection configuration in the magnetosphere., As mentionad above, guch
unfreezing could also ba produced by tha other terms on the right-hand side

of Equation (22), Let us examine this posaibility in detail, By uee of

Equation (22), the rate of change of flux, Equation (6) with ¥V = y may be

written
D 4 1 1
N 4 (Bv>B)dt = - £ 2 = - nf;-gj - { E;J_*_'_l + §;:;_"'£g‘__'-
£ R X L &
i { n.:z [ 5% * Ty + ] - G
-]

vhere the loop xll showvm in Pigure 2. The right-hand portion of this loop
is carried with the plasma towards the X line; the left-hand side 1s locatred
along the X line. It is at rest because the plasma has no velocity com-
ponents v, and vy at that location. At the right-hand part of the loop, al:
of the integrends on the right-hand side of (31) are negligibly small ao
that the field lines there are carried with the plasna in a frozen manner
towards the X line.
Let us now look at the contributions to the line integrals from the

portion of theatllong the X 1ine. A nonzero contribution from at least

one of these terms 1is naeded in order to allow reconnection and the sssg~

clated transfer of the fiux scross the X line to occur,

ey
in

2.16

(2] "nless 0= = the resistive tern will give a contribution.
(bl The Hall term will not contribute because (4 x3).dt=0 on tha
X line(which either has B=0 or 1f BF0 is 1rgelf a field

line).
(¢ For a two dimensional configurstion (%‘E 0) the electron pressure

tensor term becomes

(32)

[l S as e 3]
.

y=0
where £ is the length of the loop along the X line. Thua, only
off-diazonal terms in the electron pressure tensor, caused by
®o-callad finite Lamor radius (FLR) effects can contribute. As
zention2d slready, it is expected that the length scale for
such efZects is of the order of the electron gyroradius.
(d) The electron inertis term contsining Y#/% 18 expected to
be negligibly small unless the cerrent is changing rapidly.
(e} For a two-dimensional symmetric c-onfigurll:ion, the electron
inertis term containing $-(4v + v]) can be ahown to yield
B
| m 1
e q. . L] 13
-Im!‘i‘.’*!l)“""n—e—;fjlpat (33)
e
which sgain vanishes for the time independent case.

We sem that in the absence of a finire effective conductivity o 1t
ie very difficult to allow flux transfer seross the X line. Only FLR effects
of the electrons are capable of achievi.xlag this in s steady two-dimensional
Gtometry. In three dimensional cases the electron inertia terms may con-
tribute also. 1In either case, the effects operste in a cylinder around the
X lime of diameter comparable to the electron inertial length or electron

gyroradius. Anotter way to look at this iz to combine vxB + 1x8/n_e

26




2.17

to form v _xB so that

?F.-‘--i%‘E‘).ﬂ--éidl+};i_.!.:'.ﬁ

= Bl a9
- { e [ﬁ- + V(fv + \_ri)]uit

.
from which it is seen that for 0 + = the magnetic field is froze: in the
electron gas until scale lengths of the ordar of l. or ILL. have baen pro-
duced at the X line,

The Hall current term can serve to unfreese the magnetic field from

the ion gas, i.e,, from the bulk of the plasma, at distances comparsble

to 1\1 or RLI avay from the X line. This is not immediately apparent since

2.18

in the simplest field model showm in Figure 3 the current | and the length
slement di ars parallel so that 1xB-d% = 0 everyvhers. What is expected
t> ‘wppen is that the ions approaching the X line are brought nearly tc a
hal: at s éistance of order Al ot By, from that line while the electrons
cincinus towsrd that line at the field line speed loll. The result of

tiis differential morion is likely to be the forsation of Hall current

loops, dps 1o the xy plane as fllustrsted in Pigurs 8, Danoting by !1 the
sagnetic fisld in the xy plane, it is seen that 1g%B- 41 18 now different
from serc for any segment of the loop aligned with . Purtharmore, the
direction of dy™® is the same as that of the reconnaction electric field
as expected.

Note that 3, bas several further effects: (a) ir induces a magnetic
fiedd compoment I‘ along the ¢ axis as shown in Figure 8; (b) the sssociated
terw 1.xzB_ laade to the formation of a Hall electric field E, 1o the xy
plame as well as to an extra force component which should produce an increassd
plasma pressure on the x axis near the X 1ine; (c) the force 1“*_5_1 will also
geerste a plaama flow in the negative 2 direction, as shown in the figure.

Thiw flow 1s the macroscopic manifeststion of principally the gradient drift

of ions as they anter the region of nonuniform magnetic field nesr the X line.
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STRUCTURE OF RECONNECTION BOUNDARY LAYERS IN
INCOMPRESSIBLE MHD

b.-J. Wang and B.U. 0. Sonnerup (Dartmouth College,
Hanover, NH 03755)

An analytical model is presented of the exit flow
regions of magnetic field reconnection geometries when
the reconnection rate is small. The incompressible MHD
equations with nonvanishing viscosity and resistivity
are simplified by use of the boundary layer
approximation and the conditions are derived under
which self-similar solutions of the resulting equations
exist. For the case of zero viscosity and resistivity, the
structure of such self-similar layers is obtained in
terms of quadratures and the resulting flow and field
configurations are described. Symmetric solutions
relevant to reconnection in the geomagnetic tail as welli
as asymmetric solutions applicable to the magnetopause
ore found to exist. The boundary layer structure in
Petschek's reconnection in the geomagnetic tail as well
as asymmetric solutions applicable to the magnetopause
are found to exist. The boundary layer structure in
Petschek’s reconnection model appears as a special
case. The analysis may also apply to shear layers
observed at magnetic separatrices in recent computer
simulations by Biskamp and by Lee and Fu. The nature of
the external flow and fields which should be matched to
these boundary layer solutions is discussed briefly.

Recornnectic, s Bourdary Layers

/. Infroductiorn

Patschek s reconnectior model:

! 1a) for E°=O

&) for £,#0

.

:

Currerd /%erq @

.
Y

8,

* The reconnechor layer consists of fwo
Rarrow wedges bournded by Rifvers waves
(dashed! /ines) 1n which plasma anda
réconnected nmagmetic fField Flow away
fromn the recommnection hime with the

Rifvéy, speed ,B,/Vigs .

* When the reconnectior: electric field, &, ,
Vanishes the wedge angle ofso goes fo zerg
and! the geometry reduces b that of a thin
Current layer with uniforr but eppositely
directed wmagnetic Fields on 1#s Fwo
Srcles  ona with wvo plasma  flow.

Mo i s e -



¢ In Pelscheks Geomietry , the

Fflow wedges
contarrn Q@ unifory) flow wirh sSpeed

= £o z &8

Voud = 2° & So

owh 8yus Ve

This Fflow 15 at right angles h the magnetie
field By , i the out-flow wedges . As

E, 20, B,,)~P0 too, 1 Such a manrer thaft
Eo (B, remosns constant . The wedge angle

/s of the order of B8,,:/8, and thus varishes
as £,—» O.

We have examuined the structure of the
Flow and magnetic Ffield 11 the outliow
régions under more general asswunptions
tharn those employea by Refschek,

* We have assumed

. Steady twodimensional reconnectior

2. Incompressible rMHD Flow

Ao

2. The Boundary Layer ARoproxirmatsor

Y QF, /B

L8 £ SNV fGuconnacton

2" %‘t Layer
L

- >

2 L ’
dy > § and a‘i" ~NT (Seors,/96/ ;
(asser and Szabo, 97)
L

Y Componrent of momerrtun eguaﬁbn
reduces to:
2
3 =
P* buy = B

d.e., the Sum of plasrma pressure and
rmagrietc pressure 1s Constant across the
layer.

X Component becomes:

> 2 9 o -t By , +J MW
LYoty TFak feOyl T EHMoy
V;scos:fg



o OF % Jow becormes:
- - L 28

t- electrical conduet: i/:'{y

¢ Mass and Fflux comservatior

?_..Ui ?_U..'I =
X +3y o

98x , 28

ax

ag"‘o

We introdduce a Stréam Furnctiomn V¥ ang a

magreriec vector potential (0,0,R) So thay

Ve P¥eZ 8

-..-?ﬂ-!i"

In termas of Vand B we ther fihra the

Foltowing two eguatiors Wheh describe Flow
ana field 1mn the layer :

WY, - %Y,

Yy e T4 Ay

==L dBmx) i+ -
g‘?z"( +I‘$f (ﬁyﬁ‘y Hxﬂw)-f (P“éy)y

= £ - L
=£, ;r,c""yy

Subscripts denote partio/ derivatives .,

] El'r'o’— I:S O(z‘-;z)

4\

3. Self ~Siimilar Boundary Layer Structuras

. ) "
* The Simwularity variable /s: 73(;'5/”.,)( é':L- )

The ofther variables must have the forrm :

N

¥ =748 fu)
A=(£)8,8 Fu)

P} =

Bt o Eey(E)F

V(%y)= (f) P (7) %

> where

sy =/ Eme

v = B, 7o
T, = const,

K, = Consé,

{ p, = Const.

G, = censt,

Substitutrors iote boundary layer eguations
/éads fo Comsistency reguirements:

m=drn-/
Q@ =20-n)

r = 3n-2

} n remains arbitrary !

The two bowndary-layer equations reduce
te the followiing parir of ODESs :



' ¥. Structure of MNMondissipative Layers

12 »” L 12 >3 ” / / ~ i
f-/:-;;ff = =5 FF "“/('o"',':;,;"é;ﬁ-(l’f)

£r-fr' = 5’ + ;; E’;. é— V2 (P,.,;,“,::,;,x’;,;,) ¢ The egquations reduce to the forvrm
P 2 2 y_ " -
where Ra* = (f_)x %ﬁ Rors ’(aTS)j"QGS 4L 7= 7 i (60 FF") -,
o F'E-fF'w E,frn (& =21)

and éi = v‘.‘% f’ . Without Joss of generality

%% ¢ o solve these equarions , /et
we. may choose U F+f

= and Yz uv = g2 r?
é. = -/_E...."../ Vs F-Ff } . —
ra v 8
¢ Zn derrs of these nrew variables the two

So that E, =2/ . e see that the width of EQuations become (after Siago/e rearrangements):

L4

the recomnection layer , & s proportional uv'= é—v Y+ (1-r)c,

to the recennection electric field E,, Y-auy' = 2vu'-vy's %E—;

“ “ - : . W= zY- '{.:
Wher the reduced Reyrmolds numbers Re”™and The se¢cend equarion gives li‘){ ’ o
R,: are /Orge , e, for jorge Conductivity Uvazgy - 5°
and Sman wviscos/ty, the dissipative terms L ve multiply the firgt equation by UV =Y
In fhe two ODEs way be odropped. The price and make use of these expressioms For UV’
parc) For this Simplification 1I's that the anad UV , we find (using also ¥Y*s qu (2v'?))

Structure of RIfvér unves carror be resoked:
.ewf.:.:ayi_'r‘ ‘
CRARNCLINF ROVE RN Gl A4

Rifvér waves will then appear as discontinufies.
WM—

L



* This 15 @ limear no»homajeneous

G.
orsh-order

cdifferential é‘;uahor) For Y'T with Yas the
indepenc/ent variable , JES Sotwiior i

v'=22/CivI" +Kx Y+ Yn2 )

where C = tonst of integratiors, One further

M tegration gives
w
2 AR Ay w

(2)

:.-7-70

Finally, we forw the ratio of the two e s (x)

uv'e yav _ Y2 - L':;/n
“v " vau "V Em G(y) (3)
vs:ng (7)

This may be reorranged /v

oy _ -
dq " U F6+) o = V‘z(h‘é')

d _dV_ gy [ t__ L 3_ Y i-6
Thus « vV T ";'[au /r6” Y i+ 6

Swbstitute the expression (3} For G and integrate :

v
oy

+
v YWVCWIT 7+ 72 4)

nlg]

J— -

b f¥) < 25

Az

0,

L. vabions () and(v) are the 9en¢r-a/ Solvtior

of the nond/iss;patne case (r [Paramertr; e

ferm : Choose a value of Wy Frnd 9 Bona (2)

Anc/ ULV From (4); Find U and V separately

And wse U=F+f , VuF-F .

* Me may remove the constamt € From (Y and (4)
By the Yrawnsformatiorn

Y= o)y 5 e Ic,".?

te get a discriminant of the Form

Fo . KO/,C,n

L

HY) = /7174 K ¥ +
e s

The properties of the Solution Gre determined
principally by the properties of H(Y),

* & different regions i the l?:n plane as
Shewr in Frg. 1.

* W =0 at center of Symmeatric layer

» Y= Fof20 af Alfven waves
%, B, Frrite af Wifver wave

p< 2 o< &/ s
. < ] , s . .k
i<n<2 Yi,Bx thfimite — Cnergy Finite
O>n>2 Enecreov [Pl te
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HT) =217 KT A

Y=0 ARlifver waves
H=0 Centerof fayer

IADM UPAY

3ADM VDAY

8ty

e
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5. The C. 2 n=l/z

* The boundary layer thickness is independent
of x .

* Rnalytical Solutiorns{ &, =-/ Say):

F = A, Coswr? +ﬁ.¢s:‘nd7 _’{0,194'%'4, =°?2' ”
f = q, ces %n + 4, ,S;'no(? a,"-*t):"-‘\ﬂ,!*”:’ﬁ

or
F= R3e%] +5, e % _’{

’ [
a; ’?y-ﬂhrf.?s - -;
f= a e*l +a, ey

= He

For example , for a Symmetric lager with <, =0 ;
F’- - Cos -27
F=- S:hiz

* Halw effect for this example :

.

Alfvern, waves at ? =2 g'

8, = -28, f‘ ' l/f_.s‘th.?t?
Y = -2y f,/g cos 21
@, == UBoAs £ cos4p

Hall currends along
Stream/ines : F:'g, 3

Closure on RIFvén
wave .

Ao = \/M"//‘/onez AN

20,
8. Exterral Freld andg Flow

* Unperturbeqd cese,re., £, =0:

Yord Bo are paralle! and,in Phe simplast
case, may be choser as porential Fiel/ds
I a wedge reégion of angle &, KBt y =0
we they have

‘vxl-"?
Bk ™ Yo

for 9’""’”’L

2-r7

, e 5 B2 2
and Px) = Prrogn * 32 [ St _ ]

i Subalfvenic wnperturbed flow = Ay, >0

Superalfvenie -4 ~w~- D <O

Ex/ n=/ gives @ =W  Pepschek’s case
£x2  »n=% gives 6= fr  Cose discussecs in

Sectron § and Fi19.3
The unperturbed geometry 15 Shown

" ng. 9q .

* Perfurbed case , se., E, nonzero butswall;

V Qualitative behavior )5 Shown in Fi3.96,
vV Quantitaltive analysrs i's not yet comiplere,

e -
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Y This 15 a Simngular per}arba;‘/j"n Probrery
large perturbations i VB occur
everr Wher &, 15 Smal,

V' This effect /eads 7o the Formarion of
‘:-f__epara:‘rfbr layers 0, a»n effect rthat has
beeon observed 1 Simsulations ('e.g,J
Lee - Fu 1986 ; Biskanyp,1986 ) and has
beers explamed by Soward - Psest 7198¢)
a;f;c/ Schineller - 8irpm (/9?7) .

YV The preseat analysis caw clescribe
ot only the reconnection layer i
Fig. 96 but the separadri layers as
well. (Rs a Simple 1Wustration , »0te thaf
Ffor o, =0 Field/ives ane Streamlrves
can be inferchamnged, e.g9. 1 Fiyl 3)

7. Conclusior

* Generalizatior fo Patschek'’s recor:ecton
bounclary layer has beers fownd.

' New Solutions correspond to Cxtermial

‘Weelge " fretd ana Flow.

Generally they Show Strong Ffeld - algrec/

flows 1 the boundary Jayer

v Separatrsx- /ayer' Solwtirons car alsc be
pRroc/uwced, At

7 -" ® E.

22,
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