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ABSTRACT

—~

A nenlinzar evelution equation for elliptically polarized
Alfven waves Ln & hot plasms 1s simply derived using Lagrangian
fcramlism. This vector equation reduces to the derivative nonlinear
Sdnr;dlnger equation for parallel propagating circularly pol..uued
waves. For safficiently oblique propagation, it reduces to the Kdv
equation for the oblique fast Alfven wave, and to en apparently new

awilucion equation for obliquely propagating slow Alfven waves.
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derive contains the others as limiting cases.
The equations governing one~dimensional waves propagating slong the x—axis

in & quasineutral two-fluid plasma with fipite ion-inertia dispersion are:

dp ‘V‘ - 1
et P 0 R ()
dv, I 3 (Bi

T:l o [F +P) » Bp=Y = const. (2)

dﬁl Bx a;.I.

et 1T r 39
aiy w1 We 3 .cBx - B
T B - B - 3 (e ox <) )

vhere dfdt = (3/3t + Vg 3/33) , B = (By.Be), VL = (Vy,Vz) and p, V, n ace
the mass density, velocity and particle density. Y is the ratio of specific
heats, which is essumed to be the same for electrons and ione. The ion—inertia
term in (4) stems from the dispersive Oha's law. Electron inertia has been
neglected since it unnecessarily complicates the algebrs without materially
changing the results. However, for transverse or alwost transverse propaga—
tion, finite electron inertias cannot be neglected,

By introducing Lagrange variables (t,,x,) (1)-(4) can be reduced to:

2
2%y 2 By -7
-;?Z.+G_ET[-2_+P°U J=0 (5)
and
a2 + azh 3(éx = 11)
S - A — . 6
32 (k1) YO X ae?ag o ()
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Whers U= 0o/p ., €= Vpcocos 8, €= [dxo =y [ opix. A=Vaay,
V: - n.!lho., s P = C:I(V: couz 8) , By = eBy/mgc , Co = [x(Te + Ty )/mi]l/2,
§° = B, (cos 8, £in 8, 0} and B is normalized to By cos Gw. For Cog = 0,
thess equations reduce to those of KarpmanlC except for the electron
inerzia term which we have neglected. The coupled set of equations (5) and
(6) Jdescribes the full nonlinear evolution of obligquely propagating fast,
intermediate, and slow waves with ifon inertia dispersion. When dispersion is
neglac-ed, (5) amd (6) describe nonlinear MHD waves. We can recover from
(5) sn&k {6) wmoar of the published fluid theory results concerning the weakly
nonlinear Alfven waves in various limiting cases.

Te make our point, we lcook for stationary sclutions of (5) and (6) of
the Eo-m £ (E-C, €Z); € here indicates s slov time varistion. On using the

boundazy conditioms, U =1, By = Bo ain 8, By = 3U/dn = 351/311 =0 ac

n2(Eg) ==, (6) gives
-1 - B!
bal-0-8)-t(any -—5) (N

vhere B = TC:[(': cos?8) , O e Byo/Bx = tan 9 and i, = By ~ Byo , 5; = Bz.
{The case 8 = | should be Lreated separately, since in obtaining (7), we )
assummel that |(¥1)]| << 8~1 , which is not a good spproximation for 8 = L.}

By mubatituting ©7) into {6}, and taking the slow variations of only the

linear terms, we obtain the following 2-vector equation

a F 2 A 32
}‘_l“','(;':ij"ﬁ[zl(bi -62)]*'1'3"‘:‘3‘(2:';1)'0 , ®)
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where ;1 = (0, iy-re, Bz) . Now by defining bs = by t ibz , (8) can be

-

tewricten as the following two differential equations,

r—' m}—“btibz-ezbt]*uabt-o H (9)

which have the form of DNLS equations. For @ = 0 , (9) gives the evolution

of purely right hand (-) and left hand (+) circularly polarized Alfven wavesb-9,
For 0 # 0, each component of (8) resesbles a DNLS equation corresponding to
nonvanishing boundary conditions (i.e., B)a # 0)8,1]1 bur the physics tnvolved
1s quite different since (8) 1s not restricted to circular polaritatiom. To

make this point more transparent, we write (5)-(7) in a nonsysmetric form,

namely

98, . R

'a‘“" 7 (- a)an['y (62 + 3 By + 3 512) + £5,2)

3%s :

-3t (10)
and

as, N

‘—(,—; an (B (3 (e8y + 3 8)2)) + 3 —L -0 . ()

Por 85> By , B, , according to (10), 3/3g ~ (82/2) (1-8)~! , which when

substituted in (11) immediately leads to:

an
- X (2 B!__l (12a)

and

- . 1z .
whera 337 = ()3 + 82/2) . This 1a the well known KdV equation, but it ia
worth noting that the wave is elliptically polarized and not linearly
polarized, since Bz 0. Fora nondispersive medium, (12b) indeed leads to
tha linearly polarized fast MHD wave which MVB‘l wich the phase speed, Vp =
Va (1 + k222/202) , vhere Vp 1s obtained from the linearized version of (10)
and (11) assuming (kA/8)2 << | . Howsver, (l2a) clearly

shows thst, for the fast mode, B; 1s not negligible aven for weak
dispersian.

The soliton solutfon of the KdV equation (12b) is:

By (%) = 2 seen? (3 [WT-T)]IH o, umn
vhere T = (f - M) , M is the speed of the nonlinsar right hand polarized
(fast) wave, Simce M and (1-8) have to have the same sign, for 8 <1,
Eq. (18) yields a zompressive forward propagating solitary wave whereas for
B>1 it gives & rarefactive backward propagating wave.l4 These correspoad
to fast (BCl) @end slow (B>1) MHD waves in the MHD limit.

If we define the ellipticicy by

minor axis of the oval made by B
Pe 3

|ujnr axis of the oval made by ill

then according to Zqs. (12a) and (13),

P ~%22- [u-a)/u]”z . (14)
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Note that the ellipticity 1s independent of the strength of dispersion and is
the same for forward and backward propagating waves.

The slow mode (i, ~ Q) , according to the linesrized solutions of {10)
and {11} , has the phase speed ¥V, = Vp (1-%132/262) cos 8 . 5o for 6 sauf-
ficlently large, V4 << ¥4 , so that and the nonlinear coupl'ir;g between the
slow and the fast Alfven modes should be rather weak, which is reflected by
(12a,b). On che contrary, for parallel and quesiparallel propagation, the
nonlinesr coupling is an essential feature, since the two modes propagate
almost with the same speed and hence interact with each other for a much
longer Lime.

For i, (<4 i; , we see from (10) and (11), neglecting the slow variation

of By for 8 sufficiently large (3/3¢ << (6%/2) ¥/am) ,

;B2
By """ m "W@ ¢ (5

which when substituted into Eq. (l1l) gives a linear differential equation,

B 22 B,

which confirms that the slow Alfven wave does not stecpen to second order., .
However, since according to (I5) Ey # 0, like the fast wode, the slow made
is also elliptically polarized. Similar conclusions were drawn by Kawaharal2,
However, if @ im so large that ﬁy bS] E,z , then from (15),

i! - [x (1"5)/92] Bz/In ead (11) reduces to

- 2 -
a8, A aza; . a2 (1-8) Oslz -0

—_—+ . 17)
W 49 gn2 202 n? ¢
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This & a modifbed version of the KdV equation 1n-uh1ch the nonlinear term
depenes on the dispersive scalelength. It is not the modified ¥dV equation
discussed by Kabutani and Kmuhaulz-”. which has cubic noglinearity and
which describes the evolution of the density and not of By a9 in (17).

lo far wve have discussed the csse with houndary condition Bja 5 By (new) =
Bo sia 8 but (02a,b) easily incorporate more general boundary conditions.

In faat we can even leave bim unspecified; in this case & reduction of (5)

and (4), similar to the one that ylelded (8), gives

lﬁl 1 3 2 2 22 .
ﬁ'*r{l—_gyﬁ[ﬁ (br - bre)] +-2-'—n,—[e, x51}=0 (18)

where ;1 is ttm same as in (8). For right hand and left hand polarized wave,

(1B) eiaply reduces to

by 12 2 2 43 a%s
"aT"’ Py El-ﬂ) Ty [17'1 ([ht‘ = Ibt.lll t‘i_ n? =0 * (19)

These ejuations can trest outgoing plane wave boundary conditions for which
Ichikews et al.% obtained spiky solitons for the case of parallel propagation.
In dexiring (9) mnd (19), we have not made any harmonic expansion of the
field variables. Consequently, unlike the nonlinear Schr;diager equation,
which dascribes the modulation of the smplitude only, these equations give the
modulstion of the complex field, i.e., of both the smplitude and the phase.

In summary, we emphasize that equations (5) and (&) express all the infor-
matior contained in one-dimensional, two-fluid theory with finite ion inertia
dispession. Findte electron inertia dispersion can esasily be added. Expressing
two—fBuld theory in Lagrangian foram permits a straightforward and transparent

derfivetion of the model equations for weakly nonlinear dispersive waves. When
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the "quasi-static” approximation (7) is valid, thé sound mode 1is decoupled

from the two Alfven modes, and it 1s possible to obtain a “Vector DNLS" equa-
tion, (B), which describes two nonlinearly coupled Alfvén waves which Propagate
in the same direction at oblique angles to the aVeTage Or upstream magnetic
field direction. The vector DNLS equation reduces to the ordinary DNLS:
equation for circulariy polarized, parallel propagating Alfvén waves for either
vanighing or nonvanishing wave amplitude at infinity. Az sufficiencly oblique
propagaction angles, the Vector DNLS equation reduces to s KdV equation, ()2a,b),
for an elliptically polarized fast mode wave (when £<1), and an appsrencly new
nonlinear equation (17) for an elliptically polarized interwediate mode wave
whose nonlinear term depends upon the dispersicn, Subsequent yesesrch will

report on anslytical and nuserical solutfons of the Vector DNLS equation,
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