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1. INTRODUCTION
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for the velocity and the position, and the derivation of the second-order scheme is
identical (1} In order to fix the notation, we indicate here the important steps in this
derivation. We want to solve the dimensionless system:

g{(r,v,t)+v-—';{(r.v,r)+E(r.V.:)-:—;f(r.v,:) =0, (1a)
v-1~:=f°f(r,v.:)dv-1 (1b)

for periodic boundary conditions in r (the different symbols have their conventional
meaning). We split Eq. (1a) and solve, for the first half time-step, the free streaming
term. .

o .Y
at T a=0 @

and for the second half time-step we solve the acceleration terms:

‘g—{"‘ E{r, f)"?‘{""-' 0. ' &)

A formal implicit solution of Eqgs. (2)-(3) is given by the following sequence of shifts
of the distribution function [1];

fHe, ) = fr(x — v duf2, ¥), @
e =fAmv—Exd) 5
FA e, ) = f**r — v di2, v), ®

where ¢ is the time-step, and the superscript a denotes that the quantity is calculated
at a time-step ¢ = n Ar. The electric field in Eq. (5) is calculated from J*r, v) of
Eq. (4)and used in Eq. (5) to oprate the shift. The formal solution given in Eqs. (4)(6)
is equivalent to a second-order scheme in dr {1]. We note that the successive shifts
can be starded in either x or y for Eqs. (4) and (6), and in either v, or v, for Eq. (5).

The solution of the Viasov equation has thus been reduced to the interpolation
problems given in Egs. (4)-(6). A study of the interpolation of finther and v directions
has been given for the one-dimensional case in [1]. The generalization to two dimen-
sions is straightforward. In [1], 2 Fourier interpolation scheme was used for Eq. (4);
this, hawever, requires an execution time proportinoal to N* {where N is the number
of poinls), which increases the computational effort when a large number of points is
used, or when working with dimensions higher than one. In orqer to minimize the
computational effort we use, in our case, a cubic spline interpolation [4) where the
number of operations grows with N only. Whether fin Eq. (4) is interpolated in the
x direction or in the y direction first is immaterial. The interpolated values f*(r, v)
are then used to calculate the electric field E(r, 1), used in Eq. (5) for the shift. This is
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started in either the v, direction or the v, direction. A cubic spline interpalation is
once more used to calculate f**(r, v); the distribution function is finally shifed, as in
Eq. {6), to obtain f*+r, v, 1). It should be noted that periodic boundary ccnditions
are used in space, while the distribution function f is assumed to be zero for
|v| > Vmax .

3. NuMEerICAL REesuLTs

A rectangular mesh will be used to r:present the r-v phase space with the compu-
tational domain

-R2{(|’,V)|D-€X§_L=,Og_}'gL,.lel "-<‘ Vsmn-l”,] ‘~<-. Vyuux};

where L, and L, are the spatial periodic lengths in the x and y directions, respectively,
V: max 20d ¥, max are the cutoff velocities for v, and v, , while N, , N, , 2M_, and 2M,
designate the numbers of mesh points used along the directions x, y, v, and v,,
respectively,

The numerical results described below are intended to demonstrate the accuracy,
the efficiency, and the stability of the two-dimensional splitting scheme; comparison
with the previously reported results using Hermite polynomials expansion [2] will be
made to demonstrate the economy of the present scheme in terms of computational
effort.

The first example shows the recurrence effect of the free streaming equation, when
the electric field in Eq. (1a) is neglected, i.e., when solving Eq. (2) alone. The results
in Fig. 1 have been obtained by plotting on a logarithmic scale ths absolute value of
the density

o) = [~ e, v 0)dv ™

~\

TIME T

Fic. 1. Time evolution of the density pir, ¢) at positions x = 0, y = 0 (curve a} and x = I /4,
» = 0 (curve b), for the free streaming case, and for the initial conditions in Eq. (3).
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at the respective positions x = 0, p = 0 (curve a), and x = L./4, y = 0 (curve b).
The initial value of the distribution function is given by:

flr, v, 0} = fi(v)(A, cos kx 4+ A, cos k, ), (8)
withAd, = A, =005 L, =L, =4nm hence k, =k, = k = 0.5 and
So0) = (1/2m) 44w, (9)

The solution of Eq. (2) is given by:
fr v t) = f(t —vt, v, 0). (10}

Equation (10), combined with Egs. (7) and (8), leads to the following expression
for the density:

plr, 1) = e 724, cos kox + A, cos k, ¥). an

Numerical calculation of Eq. (7), on the other hand gives the following expression
for the density

Ml M1
pe.)= Y Y flx—uv.ty—rv,10)do. dv,, - (12)
=M, jmm M, ‘
7 M=) M-
= Ab‘, A”r Z Z fo(”:. , vv,)(A:l cos(kpx — (i + §) k, do, t)
dmm My fm—M,
+ A, cos(k, y — (f + P k, dv, 1)), (13

The right-hand side of Eq. (13) is the sum of periodic functions of time which results
in a quasi-periodic behavior for p(r, 1) instead of the exponential decay given in
Eq. {11). In the present calculation k, = k, = 0.5, ¥V;wax = ¥, max = 4, and
M, = M, = 8. The early parts of the curves in Fig. (1) show the exponential decay
in time, as predicted by Eq. (11), followed by the recurrence effect; for a square matrix,
like that in the present case, the predicted recurrence time is Ty = 2xf(k dv) = 23.56,
and the numerical results presented in Fig. [ agree very well with this value. The
calcuiations were done using a value of 4¢ = {/8. If, instead of Eq. (8), we use the
following initial condition

Fe, v, 0) = f(v}(1 + A, cos kx + A, cos ky) (14)

{where f(v} is given in Eq. (9)), we get, instead of Eq. (11}, the following expression
for the density

P 1) =1 4 e A, cos kx 4+ A, cos ky), (1%5)

-
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Fic. 2. Time evolution of the density pir, 1) at positions x = 0,y = 0 (curve a) and x = L4,
¥ = 0 {curve b), for the free streaming case, and for the initia] conditions in Eq. (14),

Numerical calculation, however, gives the same expression for the density as in
Eq. (12), provided p(r.¢), in the right-hand side of this equation, is replaced by
{p(r, £} — 1). The results jn this case are shown in Fig. 2, where the absolute values of
p(r, 1) are plotted on a logarithmic scale against time, for the positions x = D,y=20
(curve a), and x = L[4, y = 0 (curve b}. The parameters are the same as in Fig. 1.
As can be verified from Eq. (15), loglp| =0 as t — @, and the curves Fig. 2
tend asymptotically to 0, in agreement with Eq. (15). A recurrence effect oceurs at a
recurrence time Ty = 23.56. ! :

The full curve presented in Fig. 3 has been obtained for the linear Landau damping,

by solving the linearized form of Eq. (1). The initial condition was, for the liacarized
part of the distribution function

Hrv,0) = Afo{(¥) cos kx cos k., (16)

with A, = 0,05, k, = ky = 0.5, and fi(v) as given in Eq. (9). While the full curve
has been obtained with the scheme of interest here, the dotted curve has been obtained

L0 [E.. 105,054

TIME T

_ Fi6. 3. Numerical solution for the lincarized 2D Viasgy equation. Full curve: direct integration
in phgse space; Dolted curve: the distribution function is first transformed in velocity space using
Hermite polynomials expansion,
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using the Hermite polynomials expansion of the distribution function [2], and is
given here for reference. With both methods the Fourier mode E;,(0.5, 0.5) of the
x component of the electric field £, and the Fourier mdoe £,,(0.5,0.5) of the y
components of the electric field £, are present, at ¢ = 0, and decay exponentially in
time while remaining exactly cqual to each other. The dotted curve has been obtained
with a mesh of 8 x 8 points and 40 x 40 polynomials, and necessitated a coinpu-
tational time (CPU time} of about 250 min using an IBM 370/155; a time-step
dt == 1/16 was used because the code was found to be numerically unstable for larger
values of Ar. The full curve was calculated using the same initial conditions (Eg. (16))
that were used for the dotted curve, and the calculations were carried out up to the
same maximum time (t+ = 18.75); meshes of 8 x 8 points in configuration space
and 32 X 32 points in velocity space were used, so that the dimensions of the matrices
were approximately equal to those previously used in the case of Hermite polynomials
expansion. The execution time in this case (CPU time) was about 67 min compared
with 250 min for the Hermite polynomials expansion (using the same IBM machine),
An important part of the economy in execution time is due to the fact that the caicu-
lations were made with a value of dr — 1/8, without any numerical tnstability
appearing. We note, however, that 4r has been increased oaly by a factor of 2, while
the actual decrease in computation time is by a factor 250{67 =s 3.7. Furthermore,
the present calculations give wfwp = 1.675 and y/wp = 0,400 (where w and y are
the real and imaginary parts of the frequency, respectively, and wp is the plasma
frequency), in much closer agreement with the theoretical values (w/w, = 1.682,
y/wp = 0.394) than the values obtained using the Hermite polynomiais expansion (2]
(wfewp = 1.58, y/wp = 0.35).

Finally, Figs. 4-6 show the results obtained when solving the full nonlinear Viasov
equation, using the same initial conditions that were used for Eq. {14). These con-
ditions were also used when solving the full nonlinear efuation using 2 Hermite
polynomials expansion with meshes of [6 x 16 points and 30 x 30 polynomials,
as reported in [2]. For the present calculations we use a mesh of 16 x 16 points in
configuration space and a mesh of 32 x 32 points in velocity space; the dimensions
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Fia. 4. Plot of the logarithm of the fundamental mode | E,{0.5, 0t for the solution of the non-
linear Vlasov equation, using the initial condition in Eq. (14),



TWO-DIMENSIONAL VLASOV EQUATION k4|

=1
k]

] ) )
[:] [v] 3

LOG. Jg,, 11,0

]
-~

1
(-]

o
ot
3

TIME T

Fl_c. 5. Plot, on a logarithmic scale, of the magnitude of the mode £,(1, 0) which is excited when
solving the full nonlinear equation. The dotted curve corresponds to the curve obtained in {2) by
expanding the distribution function in velocity space using Hermite polynomials,
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FiG. 6, ) Plot, on a iogarithmic scale, of the magnitude of the mode £,,{0.5, 0.5) which is excited
when solving the full nonlinear equation. The dotted curve corresponds to the curve obtained in
{2] by expanding the distribution function in velecity space using Hermite polynomials.

of the matrices are thus approximately equal to those for the Hermite expansion
method. Tt took about 90 min of execution time, with a time-step 4¢ = 1/8, to pursue
the calculations.up to 1 = 10.0, using an IBM 370/168. -

One expects linear Landau damping to dominate at the carly evolution of the system,
and, in agreement with this, the two mdoes E,,(0.5, 0)and E,(0, 0.5), presentats = (,
were found to decay linearly and 10 remain exactly equal to each other, uptot = 10.0.
Figure 4 shows the plot of | E,,(0.5,0)| on a logarithmic scale. The numerical values
of wlw, and y/wy are 1.42 and 0.154, respectively, which agree fairly well with the
theoretical values of 1.415 and 0.1533, respectively. The corresponding results reported
in [2]), when using the Hermite polynontials expansion, necessitated an execution
time of almost 4 hr, using the same |BM machine, with a time-step 4t = | 116 (larger
values of At resulted in numerical instabilities), The fundamental mode in that case
decayed linearly [2], with wfwp = 1.48 and pluwy = 0.158, and, hence, had a behavior
almost ideatical to that observed in Fig. 4.

Figure 5 and 6 show the higher modes E,(1, 0), and £,,(0.5, 0.5); the amplitudes
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of these modes are found to remain at least two orders of magnitude smaller than that
of the fundamental £,, mode. Furthermore, these 1wo modes were found to be
identical in behavior to the two modes E\,(0, 1} and E,.(0.5, 0.5), respectively, The
dotted curves in Figs. 5 and 6 show, for comparison purposes, the results previously
obuainec using the Hermite polynomials expansion [2). For the higher modes, as can
be seen, small differences exist between the curves obtained by the two techniques
discussed.

4. CONCLUSION

In the present work, we have compa;cd the resuits obtained for the solution of a
two-dimensional Vlasov equation, using two. different splitting schemes: one in which
the equation is integrated in phase space, by treating the convective term and the
acceleration term separately, and another, previously reported in [2], where the
equation is first transformed in velocity space using Hermite polynomials expansion.
The present results show that for the range of parameters used, the method of direct
integration in phase space is more accurate and more economical than the method
previously reported in [2]. Most of the economy is due to the fact that the presently
reported results were calfculated with At = 1/B, while for the method reported in [2],
the calcuiations were done with 4¢ = 1/16, since higher values of 4¢ were accompanied
by naumerical instabilities. What advantage this method may have in other parts of
the parameter space (especially for very small values of the wavenumbers) is still to
be investigated; we note, however, that the method has been recently extended to a
three-dimensional magnetized plasma {6], with a time-step At which can be of the
order of !, which makes it even more advantageous than was reported in [2],
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