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ABSTRACT

A generalised energy principle is devised for arbitrary macnetic
confinement schemes having anisotropic plasma pressure that are two
dimensional or three dimensional in a unified treatment wit: the
requirement that the rotational transform be finite. The minimisatior.
of this energy principle is demonstrated to yield geametric compohents
of the MHD force balance relation that vanish in the equilibriue
state. M literative procedure is applied to advance the Rwrier
amplitudes of the inverse geametric coordinates and of a poloidal
angle renormalisation parameter wntil a minimum energy staze is
reached. An application to an EIMO Snaky Torus configuration in the
helically symmetric limit is carried out. The conditions that a hot
electron layer induces a local magnetic well that extends to the
plagna edge are determined.

INTRODUCTION

Inverse Fourier moments mangnetohydrodynamic (MAD) equilibrium
codes have become extremely useful tools for the generation of MHD
equilibria with finite rotational transform.!-? They are particularly
useful for the camputation of guantities that need to be evaluated on
the flux swfaces such as the coefficients for transport and stability
analysis. This is because the calculations are carried out in anon-
orthogonal magnetic flux coordinate system (p,8,4) where p is the
variable that identifies the flux contours, and 8 and ¢ represent
angular variables. Inaccwracies introduced by the interpolation fram
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gecmetric grid to the flux surfaces do not thus arise in these
coordinates.

In this work, we introduce a generalised energy principle and
Cemonstrate that its minimisation yields MAD equilibria with aniso-
tropic plasma pressure for magnetic confinement schemes that are two
dimensional (2D} and three dimensional (3D). These serve as models for
Gevices with awiliary heating systems, particularly those that rely
cn an energetic trapped population to provide plasma stability such as
the EIMO Snaky Torus. We consider a pressure tensdr that has only
diagonal elements and we invoke the vanishing of the MHD force balance
relation along the magnetic field lines to show that it reduces to

F=- TS Vp +KxB )
vhere we define the effective current density as K =97 x {oB) ad the
anisotropy factor is o = 1/uy + (pJ_-pI)/Bz. To obtain By. {1}, we
have made use of Ampére's Law. Also, the parallel pressure p; and
the perpendicular pressuwe p are functions of p and B. In 3D, in
rinciple, the pressures can vary fram field line to field line on a
flux surface as well, but for simplicity such a dependence is ignored
here,

MAGNETIC FIELD GEOMETRY

[ntroducing the magnetic flux ccordinate system (p,8,9) with
condizion Bs%p = 0 and noting that v+B = 0 implies that the B field
can b2 expressed in contravariant representation as

B=Ve xT¥ + ¥ = V8, (2)

where 2x¥{p) and 2nd(p) are the poloidal and torcidal magnetic fluxes,
raspectively. The variable 8+ is that particular choice of poloidal
ale that straightens the magnetic field lines. It is related to the
optimal poloidal amgle 6 of the equilibrium calculation by 62 =

8+h(p,0,4), where A is a periodic renormalisation parameter.?® As a



result, the magnetic field components in the contravariant rearesen-
tation are

O O 3)
g 20
and
p =2
75 (r a¢) {4)

where 1(p) = ¥'/8' apd primes indicate the derivative of a flux
surface quantity with respect to p. For 3D and axisymmetric svstems,
Yg denotes the Jaccbian of the transformation from the cylindrical
coordinates (R,$,2) to the flux coordinates. R is the distance of any
pint in the plaswa to the major axis, Z is its distance fram the mid-
plane, and ¢ is the geometric toroidal angle. For systems with helical
symmetry, vg denotes the Jaccbian of the transformation From the
rotating Cartesian coordinates (X,Y,4) to the flux coordinates.”'S
Here, X and Y have the same interpretation as R and %, respectively,
with the axis of symmetry corresponding to the major axis ard ¢ = hz.
The helical pitch is h and z is the distance along the axis of
symmetry.

ENERGY MINIMISATION

The total energy of the system is defined as

B p
= ax [ (53
W= [ff x[M+“,”]

where the parallel pressure is expressed as

= M(p)(gf]r 1+p(p,B)

B
Pr (e B) 400, BT (63

The aciabatic index I' is chosen as 5/3 which makes W positive definite
and thus quarantees that the minimum energy state corresponds to an
MDD equilibrium, The energetic species contribution to the ressure
P(2,8) is the source of the anisotropy, and <p(p,B}> = [[dodevgp(p,B)
dewtes its flix surface average. A variation of W is carried out with
respect tc an artificial time parameter t, The invariants of the
problen are the mass function M, the magnetic fluwx functions ¥ and @,
and the flex coordinates pso, and §.

Far a fixed boundary calculation in the 3D case, we obtain

aw
ac * ™ J//dededery 22 - I/ 1dodeasrs SE - ffapanagr, 22 =
where
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whizh can be readily demonstrated to correspond to the /gRV$ x vz . F
cylindrical MHD force component,

2 az Y 3R B?
Fz = — [ovgp? (g2~ 4 ge°° o
27 3 Y 3 TR g \PL* zuo)]
a 3 3R 2
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* 5y [orameiet_ 4 M;] o [Regtey + _,] (9)



which can be readily demonstrated to correspond to the vg RYR x ¥4 « F
cylindrical MHD force camponent, and

B = q:’[a(UB ) _ 0leBy)

28 "'"a'&:""] 0o

which corresponds to the -/gd' B x ¥p « E/B? force component. Tha
toroidal and poloidal magnetic fields in the covariant representation
are By and By, respectively. In the 2D helically symmetric case,
an expression identical to By. (7) is obtained, but with R repiaced by
X amd Z replaced by Y. The MHD forces in this case are

3 23X 18y g2
= — [o/gB® (BO__ - BéY) + _ __ (pg + —_}
Fx = 38 [ 28 A~ 30 AT - ]
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which corresponds to vq¥Y x V¢ + F/h and
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which corresponds to /g¥¢ * 9X « F/h.

After expanding each of the terms of By. (7) in a Pourier series,
the Fourier amplitudes of R, Z and A (of X, ¥ and A in helical Sym-—
metry} are advanced iteratively following a path of steepest descen=
until the force amplitudes vanish within some tolerance level.? An

equilibrium state that is achieved following the procedure ouzlined

zan be diagnosed by evaluating the radial component of the force
salance relation {1}, namely Fp = /gvg@ x ¥4 + F, or

5
Fp= -2 {
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vhere B, is the radial magnetic field in the covariant representa-

rion.

An algorithm to determine the rotational transform that corres—
ponds to a prescribed effective current can be included by noting that
i1 the equilibriun state F = 0 so that the vector K satisfies the same
properties as the current density j in the isotropic pressure limit,
nawely that X « ¥p = ¥ + K = 0. Thus, in analogy with the scalar
pressure case, we define the effective plasma current as

1 1
L) = — I fdededpyg(K-v4) = = J/ded¢{aBg) {14)

Expanding By, we can obtain an expression for 1{p)} that corresponds
to a prescribed I(p).5 A natural choice for stellarator configurations
that have no induced currents is I(p) = 0.

FPPLICATION TO STRAIGHT ELMD SNAKY TORUS®

As an application, we consider an EIMO Snaky Torus configuration
in the helically symmetric limit with zero net plasma current within
each flux surface. The diameter of the plasna is chosen as 0.46 m and
the helical pitch is such that 1/h = 0.375 m. To model the hot elec—
tron population that is required for gross plasma stability, the
mressure moment p{p,B) is expressed as



Bu(e) L
= (15)

Plo.B) = p (o} [

where By is the minimum value of B on each surface, Phipl is
chosen as Gaussian with halfwidth A centred about a flux surface near
the plasma edge, and the integer L is the anisotropy parameter. This
is an appropriate model for a distribution of energetic trapped
particles, We specifically concentrate on determining the conditions
that are required for hot electrons to induce a magnetic well on the
outermost flux surfaces in the absence of thermal plasma pressure. The
flux surfaces, the mod-B contours, and the hot electron pressure con-
tours are shown in Fig. 1 for a sequence of equilibria with variable
A, L = 8 and zero thermal pressure. The radial extent of the energetic
electron layer broadens and its peak moves slightly towards the magne-
tic axis with increasing 4. The flux surfaces and the mod-B contours,
on the other hand, are not drastically altered. To guarantee that the
local megnetic well generated by the hot electrons extends o the
plasma boundary, the hot electron beta {Bn) contribution must in-
crease fram Bn = 0.7% for 4 = 0.1 to B, = 1.2% for A = 0.2 to
Bn = 1.5% for & = 0.3. The differential volume profiles that corres-
pond to each of these cases appear in Fig. 2. The central regior has a
magnetic hill which reverses to a well in the region of energetic
electron pressure. T obtain equilibria with finite thermal pressure,
we tailor the M{p) profile so that the resulting pressure gradient is
concentrated in the region of magnetic well of Fig. 2. The absence of
a source of free energy in the region of magnetic hill should reduce
the risk that MHD instabilities would destroy the configuration.

SUMMARY

A generalised energy principle has been developed for manetic
confinement systems with finite rotational transform, the minimisation
of which yields MHD equilibria for 20 (axisymmetric and helically sym-
metric} and 30 configurations that have anisotropic plasma pressure in
a unified manner. Confinement schemes that rely on auxiliary heating
methods to generate populations of energetic particles can be as a

result self-consistently investigated and evaluated. To cbtain MHD
equilibria, a steepest descent procedure is implemented that iterati-
vely advances the Fourier amplitudes of the inverse geometric coordi-
nates and of a mloidal angle renormalisation parameter A until the
minimum energy state is reached.

This procedure has been applied to an EIMO Snaky Torus configura-
tion in the limit of helical symmetry. The corditions that a trapped
hot electron layer can develop a local magnetic well that extends to
the plasna edge are investigated. A hot electron component with a re-
latively modest energy content (Bp < 1.58) is demonstrated to pro-
duce swch a well in this model. Bjuilibria with finite thermal
pressure should have thermal pressure gradients localised to the
regyion of magnetic well to avoid large scale MHD instabilities.
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