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1. INTRODUCTION

One of the most efficient ways of accelerating charged particies is to exploit the very
larg=s electric field associated with a longitudinal electrostatic wave.

Huving the phase velocity and the accelerating field the same direction, it ia possible
at least in the principle, to "phase-lock™ a beam of injected particles and to accelerate
them to very high energies.

To sustain a longitudinal electrostatic wave a "plasma” is necessary, so that the crucial
point is how 1o produce large amplitude electrostatic waves in a plasma. The large electric
fielde associated with laser beams offer an immediate candidate but there are two problems
to be considered.

1) Electromagnetic waves are tranaverse;

2} A plasma ia not transparent to signals below the plasma frequency w,: while this is &
aatural resonance frequency, it is also a cut off frequency for any transverse electro-
magnetic perturbation. In nature ionosphere offers an example of this phenomenon.
It is known that the index of refraction N{w) is given by (unmagaetised, isotropic,
cold electron plasma)

1/32
N(w):(l—g-é) Pt Areine ()

’ m,

where n, is the density of free electzons and e,m, the electron charge and mass. For the
joncsphere n, =~ 10* - 10% ¢m™* corrisponding to w, =~ 6-10° — 8. 107 rad -s~". The
ptesence in the ionosphere of several layers of plasma with varying density makes also
N dependent on height. We can study the electron density at various heights by means
of the pulses of radistion transmitted vertically upwards. According to the dependence
of dectron density on height, a pulse of a given frequency w enters the layer without
reflection if wy > w,(hr). When the density is large enough to make wy = wy(hr), the
index of reflection vanishes and the pulse is reflected.

As a conclumion, in order to achieve a longitudinal wave excitation in plasmas we must
fitsl of all penetrate the plasma with e.m. transversal waves and subsequently transform
them into longitudinal wave. This is achieved in the Beat Wave Accelerator.



At this point the following question rises spontanecusly: why a plasma accelerator?
Well, let us immagine to create an electtic field by means of a dielectric filled plane
capacitor to accelerate charged particles. The acceleration increases as the potencial
between plates increases. But an intrinsic limit exists because of the dielectric rigidity.

If the electric fieid overcomes dielecttic rigidity breakdown and " perforation” of di-
electric occurs. On the contrary, breakdown can not occur in a fully ionized plasma: it
¢an support ultra-high fields. For a plasma & limit to the field also exists, as shown by
Dawson (1959). Its expression follows from Poisson’s equation:

V.E~kE = 4xen, {2)

where n; is the density perturbation.
The maximum feld in & cold plasma obtains when n; ~ n,, so that: (k ~ w,/c)

4nn el
wyfe

For n, =~ 101%cm™?, we have eE™® ~ 1G¢V jem. In conventional accelerators we have
lower acceleration gratients (eE™** ~ 20MeV /m) so that with plasma based accelerators
high energies can be reached in much shorter distances. In the following we shall give

a fluid description (forced oscillator equations) of the plasma accelerator based on the
concept of "ponderomotive force” which we introduce first for completeness.

CEM.’ —~

= muw,c = /n, (eV/cm) {3)

2. THE PONDEROMOTIVE FORCE

A charged particle in an electromagnetic wave essentially oscillates in the direction of
the E Reld {figure 8 motion). If however the field envelope haa s spatial gradient it can
exert a longitudinal {direction of wave propagation} force on the particle known an the
ponderomotive force.

Consider a cold, collisionless electron-ion plasma. For this system we write the fol-
lowing Lorentz-Maxwell equations:

a5 — -
ma—:T" = guE + !‘—?ﬁ‘,xﬂ {motion)

8% + ¥ (ralia) =0  (continuity)
t
VvE=4qu,n, , V-B=0 (4)
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where the o index varies on the fluid species (a=e,i} and Fal7,t) is the velocity field, E
and B are electric and magnetic fields, n, is the number density field, ¢, in the electric
charge. Here we used the fAuid derivative § = § + 5. V.

Consider the propagation in the plasma of an electromagnetic wave with a space-
and lime-dependent amplitude. Assuming z as the direction of propagation we consider

I

the one-dimensional case, that is all quantities only depend on 2, and not on z,y (i.e.
V= 33’;), Then, writing the vector potential of the wave as:

Alz,t) = A,(z,t)expli(kz — wt)| (5)

where A = {A,, A,,0) and A,(z,¢) is & complex amplitude and separating the equation
of motion into longitudinal (z) and tranaverse components we have:

dvas _ 9  qa._ <

Moy = ~fag, + [5x{VxA)|, (8)
Giar _ 9204 _ oy Y

e [Fax(VxA)| L N

In this geometry it is:
[Fax({TxA)|s = Gay - ‘:—: , [Fax(TxA) L = - (5, - T)A
20 that eq.n({7) gives:

dv, _ fa dA
dt  mae dt (8)

wkich is immediately integrated into:
Fai = - S (9
so Lhat the longitudinal equation becomes:

dvay _ 9 g2 @ on_ 9%
my dt = ~fa 9z - zmacz azlA = —¢a 9z + lfal (]0)

where

3
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The concept of ponderomotive force is conveniently introduced for cases when the
wave amplitude A, is "slowly varying®, that is when

L gl
|A,| at

50 that the wave field is a low frequency envelope modulating & high frequency (w)
oscillation. Then the ponderomotive force fp  is deficed as the average value of [ in a
wave period T = 2r/w:

—{a) ~
= >= - —_—
Ine=</a dmawic? 9z

-

T
[ Tatetrit = _ % dan, (1)
O

Ouly for the came of a ciscularly polarized wave it is f,y, = J. Some considerations follow

frem (11).

1) Given the mverse dependence on the particle mass the ponderomotive force on ions
is much smaller than on electrons. Consequentiy on the electron timescale (w,,!)
the ions can be considered immobile {cold plasma): only the electrons are initially
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displaced by fm, and a longitudinal electric field is consequently generated by the
charge separation. At later times {~ w;'] ion motion has also to be taken into
account.

We remark that we used the following method to find an expression of the pondern-
motive force. Initially, a tranaverse e.m. wave field only exiats: the plasma density
is unperturbed (n = n,) and the x-component of both electric Reld and fluid velocity
are zero. At this order of approximation the net force on the plasma is abeent: in
fact, the oscillating factor in ©q.(5) gives & sero-average force on the plasma particles.
At the next order the effect related to the slow-varying term A,(2,t) is irtroduced,
8o that a radiation pressure acts on the plasma. As a consequence, the plasma s
perturbed. That this nonlinear force has a non- serc-average is casily seen from (11)
where the square of A, ia present. Thus, we note that there are two time-scales in this
description: a fast-time scale (¢ ~ w™') and a slow-time scale (¢ > w™'). Evidently,
ponderomotive force, longitudinal plasma motion and scalar potential appear on the
siow-time acale. This is referred to as "low-frequency plasma response”.

3. Itis possible to write the ponderomotive force in terms of a " penderomotive potential®

dnL aa [, = Venp with

2

—
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where E in the transverse wave electric field (E ~ ¢ A)

(12)

3. BEAT WAVE MECHANISM

In the Beat Wave Accelerator (BWA), an proposed by Tajima and Dawson (1079),
the longitudinal field associated with the plasma wave is generated "beating” two e.m.
waves (hereafter referred to as pumps) of frequencies and wave-vectors

W) —wy =, k.-k::k,:? (13)

{resonance conditions)

where (w,,k,} are the frequency and wave-number of the excited plasma wave.

This resonant excitation of a plasma wave is & three-wave process (Raman forward
decay) where eq.5(13) can be considered {multiplied by #) as the laws of energy and
mementum conservation for the two incoming photons and the genersted plasmon. This
process is best understood in terms of the ponderomotive force associated with zhe beat
wave and a simple fluid model for the plasma.

Introducing the isotropic plasma dielectric constant (from (1)}

W
E=l‘~‘:§ (l‘)

and taking into account {11) and (i2) we gei:

- 2
Tre=(e-09EE2 = (-l <> (15)

This (noclinear) force moves the electron in the longitudinal {beat propagatiosn) di-
reclion opposite to the gradient (¢ < 1) uantil the restoring force due to the immobile
(wp >> w,,) iona equals the ponderomotive force, thus establishing plasma oscillations,

\.Lf =

i.e. density perturbations én with an associated loagitudinal electric field E,. The max-
imsm amplitude of such a field in a cold plasma is given by (section 1):

. M
Bt = e (16)

and wave-breahing occurs for E, > Emee,
Tae phase velocity vy of the plasma wave is:

=Y _wi-w  dw
A il vyl A

where v, is the group velocity of the pump and we used the conditions w; = wy, ky = ky
(ie: wp << wy wy; k, << ky,k3). For propagation in an unmagnetised plaama it is:

(1)

Ve = el — W)V |, = ‘-"-'%“2 (18)

and then

v, =e for wyfw, << 1 (19}

The conditian (19) has to be associated to the resonance conditions {13} for efficient
acceleration: in this case in fact the beat wave and the plasma wave move in synchronism
through the plema and the plasma field E, can thus trap and sccelerate & beam of
particles injected (at the end of the beat pulse) with velocity vy i.e. with an initial
energy:

1w,

mu"‘b-rﬁclu = mlc’(l - ”:/C’j"lﬁ = (M'V) (wj

2w,
4. BWA THEORY IN FLUID DESCRIPTION

a). Equations and solutions (linear treatment).

We assume s coid isotropic plasma of classical electrons and an immobile, neutralising
ion background and we look for the plasma response to an incoming wave (pump) on a
timescale that ignorea ion motion. Assume two linearly polasised pumpw of amplitude
E,  and E,, propagating in the s-direction:

Ei(2,t) = E,; coa(k;z — wit) (5=1,2) (21}

The sum of the two is the " beat wave”:

E(l. ‘) = E°| cos(k z — w.t) + E,g coa(kyx — w;ll

Consequently:
_ 2 )
<E>= 5}_;_51 + Eo1 Eqs con(k,s — w,t) (23)
and
w) [EY  E,E,
= ——Z |ZeT | Zo1803 -
$ne=-—% [m‘ t g conlks —w,t) (23)



where the average was made on T’ = 2x /w with w = (w) +wq)/2, ELp = EJ, + EX, and
Wy = W — Wy, k, = k. - kg, with w, << wy, Wz and k, << k|,k’3.
From (15) we obtain:

Fug = t""—'él:ﬂQ:El',""ain(k,z — ) (24}
where we have used uhw; = w? - w? ~ w? and we have introduced the quiver velacity:
ek, .
2y = = 1,2
voy = 222 (= 1,9) (25)

Denoting with ¢ the ambipolar potential associated with the charge separation due
to the ponderomotive effect on electrons, ie. E, = ~¥ ¢, the fluid model equations are
(low-frequency ptasma response):

a d
m, (8_5 + v.a) ve = —¢E, + Fyr "motion” (26)
a g
;" + a(n.v.} =0 "eontinuity” (27)
V.E, = 4xe(n, — n,) " Poisson” (28}

where v, is the longitudinal electron velocity and n, the perturbed electron density.
Linearizing the equationa for:

n(nt)=n,+n(z,t) ; vz,8) =v(zt) (29)
we have the system:
Mmoo = —eE, + Fyyp (30)
o n = (31)
2% = —txen (32)

Making use of {24) this system can be written as:

v o .

S e = ﬂtes;m)i cosfk,z — wyt) (33)
82 (4 0 k. L

70 +w n = - Zetle2 ’( E"‘") ke coa(k,z — w,t} (34)
a1

a‘: +w €= gﬂ;ﬁ'lw: sin(k,z ~ w,t) (35)

where:

€= By/ B (38)

The resonant condition of these "fotced harmonic oscillator” equations are exactly the
conditions (13) (w, = wy, k, = k;) corriaponding to the solution:

-6 ~

_VYotVor BE . Vo1Voz eEDe

. = o sink, t— ——!——! kpz — wyt 37
viz,t] = - sinkyz sinw, sinfkyz — wyt) {37)
EM‘I E
nozth=- Yor¥er ZZe @ sinkyzsinw,t — Yorber ¢ k’”'lmn(k,: ~ wyt]38)
4 m, wl’ 4 m.
els,t) = E;'.l:i‘ﬁ conkyzsinw,t + u""ﬁw,t conlkyr — wyt) (39)

These represent the sum of a stationary wave and of a plasma wave of growing am-
plitnde, The ratio of the stationary to the growing wave amplitude ia (w,t)~' and the
plasrma wave can therefore be taken as the "secular™ solution to the problem for w,t >> 1.

b . Reiativistic saturation.

A nonknear cakculation of the growth rate including the effect of relativistic mas
variazion (Rosembluth and Liu, 1972) shows that £ cannot increase indefinitely as shown
by ec.(39) but, because of relativistic detuning (v, changes) of the harmonic oscillator
equation (35), saturates at

£maz = (%ov..v..z) " {40)

The >lasma wave growth occurs in the puise of the beat wave: the breaking limit (40)
combiined with eq.{39) gives therefore a limit for the pulse duration, that is:

Toump < (0. 32«:,)‘ (l_’gi:_’ﬂ)‘llsm "

which is in the nanosecond region per [aser pumps. For { ~ rpym, the longitudinal field
has reached its maximum amplitude and particles injected at thia time with the right
energy (q.(20)) can be accelerated. The maximum energy gain (¢ = €mqs) in the BWA
schere in {Tajima and Dawson, 1979):

2
Wines = 2€mas (“ﬁ) (MeV) (42)

Wy

with the time and length to reach this energy given by:
w,

tepr = e:E:- = _‘(”o/“%): (43)

4c
Ly = etogp = —(wofu,)? (44)

Wy

Since Wpye ~ 0! and Wi flops ~ /Mo, the higher the final energy desired, the slower
the gradient in the simple BWA Scheme (Beat Wave Dilemma).
“This intrinsic difficulty can e solved in the surfatron scheme (Katsouleas and Dawson,
1983

An a conclusion we give Lhe estimates for Conventional, BWA and Surfatron Acceler-
atora (A = 1 micron, n, = 10'* cm™?, B = 50 KG, £ = 0.5):

CGONVENTIONAL 1 TeV in 50 km

HBWA 1 TeV in 600 m

SURFATRON { TeVin60emx20m

<1 -



5. SOME IMPORTANT PARAMETRIC PROCESSES RELATED TO BWA (INSTA.
BILITIES)

One of the approximations in the model presented so far has been to consider the
tranaverse field {beating "pumps”) as unchanged as it travels through the plasma. A
more complete theory would have to consider the effecta of plasma motion oa the field
such as Raman cascading on plasma density perturbations: put in other words in a
plasma the fields have to be self- consistent solutions of the Lorents-Maxwell system and
a "given” pump can only be taken as an initial or boundary value for the finai solutian.

The excited plasma wave, when it reaches large encugh amplitudes, can also drive
other plasma inatabilities. The model presented can therefore only be considered as a
sero-order solution to the problem: other effecta, such aa the three-dimensional nature
of the beam entering the plasma (Fedele et al. 1988), the optimisation of the frequency
mismatch w, = bw, (Tang et al. 1985, Noble 1985), the role of plasma noise and ion
motion on wave saturation (Horton and Tajima 1983) as well as the role of pump-driven
and plasma-driven parametric instabilities {Fried et al. 1976) have to be considered for
a better understanding of the BWA scheme.

Here we shall give a brief summary of some parametric instabilities thought to be
relevant to the BWA,

Consider a large amplitude wave {electromagnetic or electrostatic) of wavelength A,.
incoming in the plaama, as a pump, toward & density perturbation. For instance, suppose
that the last has wavelength X, = & A,. This perturbation will be & unidimensional lattice
for the pump. So it will produce a partial reflection and the incoming and reflected waves
will generate a stationary wave with maxima corrisponding to minima of perturbation.
Consequently a ponderomotive force will appear because of the interference envelope.
It will push the electrons toward lower intensity field regions, corrisponding to higher
deasities. Thua the density perturbation will be enhanched where it was aiready higher
and this fact will produce, in turn, an increasing backscatiering which, in turn, will
intensificate more and more the density perturbation and so forth. This phenomenon
is enhanced when the density perturbation corrisponds to a piasma eigenmode {plasma
oxcillations).

We will give some examplea about these kind of processes:

a). Stimulated Brillouin Backscattering Inatability (SBBI ).

In the SBBI processes a large amplitude e.m. wave (w,, k,) decays in another e.m.
wave (wz, k3} and a iono-acoustic wave (wy, k;). This instability has the following growth
rate:

/3
2 o -
1, ~ 1.6x10** (-1) st (45)
Te

where o, is the normalised pump amplitude (quiver velocity) and 44 = wo/wy. For
a, ~ 0.1 and 4, = 100:

1y = 2.6210'357 1,
The influence on the beat wave mechanism is not yet well known.
b). Stimulated Raman Backscattering Instability (SRBI).

In the SRBI processes the e.m. pump (w,, k,) decays in another e.m. wave (w3, k)
and s electron pisoms wave (wy, k). The growth rate is:

10'% a,
e ™~ ) i1 (46)
o ",‘

Fora, ~0.1 , 4 ~ 100:

7y ~ 103871,

c,. Pussma Decay [nstability (PDI).

In the PDI processes a large amplitude electron plasma wave (w,, k,} decays in an-
ather electron wave (wj, k3 ) and & iono-acoustic wave (wi, k). These processes represent
excitation mechanisms for iono-acoustic waves. The growth rate is:

o
(]
T = ” w, (47)
For a, ~ 0.1, y4 ~ 100, A, ~ Lum:
To ~ lol’,—l

d]. Filamentation Instability (Fi}.

To describe this process it will be useful Lo refer to an example. Consider in & plasma
an ion density perturbation perpendicular to the direction of propagation of an e.m. wave
incoming in the plasma. The latter will propagate along constant density lines. But the
index of refraction ia larger in the depressiona of density and smaller where the denaity
is higher. On the other hand, it is known that the e.m. radiation prefers to propagate in
the regions with high index of refraction. Thus it will concentrate greatly in the density-
depressed regions (filamentary structure). The filamentation leads to an instability. In
fact, the flaments introduce a ponderomotive force (like in the self-focussing of beam
laser of finite diameter) that acts in such a way that there is a self-focumsing for each
of them. So that a (urther new radiation remains trapped which in turn produces an
additional ponderomotive effect and so forth.

The growth rate is given by:

T = %ao {48)

For 44 = 100, A, = lgm:

7, ~ 5x10'%!

6. MICROWAVE DRIVEN RESONANT EXCITATION OF PLASMA WAVES

The difficulties associated with the use of high intensity laser pumpe (in terms of cont,
time, techaology and competing instabilities) have stimulated the proposal for different
schemes far plasma accelerators. Chen et al. (1985), for instance, suggest the use of
electron beams to excite the plasma wave and Formisano et al. (lD&h suggest the use of
microwave (uw) pumps instead of lasers for scaled experiments based on recent rewults
by de Angelis et al. (1086) who have shown that resonant excitation of large amplitude
plasma waves (> 10*V olt/cm) is possible through the beating of two microwaves of nearly
equal frequency in an "open resonator” filled with plasma of subcritical density.



Given the lower power (~ MW} and larger pulse widths (~ usec) of the present
generation of uw generators with respect to lasers an immediate consequence of the
scaling will be a less efficient acceleration; the advantage on the other hand is to make
experiments more affordable (in terms of cost, time and technology) so that, while the
ultimate goal for media accelerators rests with high intensity laser beams, it could be
worth to test the basic theories with scaled experiments. It should also be mentioned
however, that the yw range can also offer possibilities that are out of the laser range and
that yw technology is in rapid expansion so that a full investigation of schemes in the
millimetric wavelength could prove useful not only for scaled experiments but also for
alternative solutions to some of the problems in media accelerators.

As an example we mention the possibility of power flux confinement. Consider the
pump intensity I, = P/A where P is the power in the pump and A = w R? is the focussing
area: for lasers typically it is R ~ 10A, where ), is the plasmon wavelength whereas for
#w it is posaible to scale at R < A, and regain part of the loss due to the lower power.
In fact, if A, is the pump wavelength (~ 1 mm), it is possible to take

Wy
R~2A, = A.;;; (49)
and since w,/w, >> 1 is & necessary condition for efficient acceleration we can have
R << A, with & corrisponding gain in pump intensity. All the effects of strong focussing
can be generated and studied in the pw regime much better than in the laser regime.
One of the effects is the generation of radial fields: & recent calculation (Fedsle et al.,
1986) in cylindrical coordinates for a gaussing pump profile given( Jer &_.F,,.L;) 4

E.(r, 2,t) ~ 6-}% exp(-202/RY)[1 - wtsin(kyz — w,t)| (50)
E.(r,z,t) ~ exp(~2r’/ R*)w,t con(k,2 - w,t) (51)

where:
§ = %volllog (52}

for the radial and longitudinal electric field components.

Notice that as R is made smaller the radial field increases: this could be advanta-
geous as particles are pushed towards the axis where the accelerating field E, is higher.
The problem of betatron oscillations and of strong focussing in general can be carefully
inveatigated in the uw range.

In conclusion, we report for completeness the main results from the cited work of de
Angelis et al. (1986) on microwave driven plasma waves,

Consider (Fig.1) an open resonator of length 2{ with spherical copper mirrors of radiua
R, enclosed in a plasma chamber teansparent to microwaves with plasma of sub-critical
denaity for the incoming radiation: microwaves from a generator coupled to the left mirror
(grid). The Reld distribution in the cavity has the typical caustic shape with maximum
focusing at the center

aW? = AU(R, - )]''?  "focusing area” (53)
The field is fairly uniform between —zp and +125 (Raileigh distance) where
zr = rwl/X  "Raileigh distance” (54)

In (53) and (54) A is the pump wavelength,A = (A1 + A3} = g for the two beating
pumps case.

A~

The beat amplitude grows {because of multiple reflections in the cavity) and so does
the resulting ponderomotive force on electrons so that the driven plasma wave will also
grow until relativistic saturation or collisional saturation, depending on the pump ampli-
tude.

There are two relevant timescales in the problem: the resonator saturation time rg
{tim= for the pump field to reach its maximum amplitude) and the plasma wave saturation
time 7,.

These depend on the resonator dimensions, on the generator characteristics and cou-
pling and on the plasma parameters and are determined as:

TR= %‘;fi . 1.=18(63/K)"7 (s5)

where
u:w‘,/)\; ) V=‘/IR ’ w,:%(w|+w3} (56)
«= %|0.2(w,/10")'“ +ITP (s7)

where [T|? is the t-ansmission coefficient of the mirror grid and

K = 130107 (Pyw(T|) w707 (58)

whers Pyw is the generator power in kilowatts. The above results are given for a choice
AX/ay = 0.1, that is wy/fw, = 10.

The generated plasma field has a radial and a longitudinal {resonator axis) component
and its maximum amplitude will be e(r.).

An estimate of the maximum field on axis (r = 0) gives:

€rnaz = 4.75; %ITI"X + :—l! -2(1- %e"‘)’] (39)

where x= 1, /75.

As an example consider the NRL gyrotron {Read 1985) with /,=120 GHs and Pxw =
107 coupled to a resonator with /=10 cm and w, = 2}/ (ie. p =2, v =2.8) and &
transmiasion coefficient [T'|?=0.1. Thia gives:

f21= 100 GHa, w,=T7.2x10"" sec ', A;=2.6 mm,
wy=6.9%10'" sec ! n,=1.4x10'? cm~?, z5=3.6 cm,
T5=26 ns, 1,=27 N8, €ma,=0.01

corresponding to & maximum longitudinal field {on axis) of 1.3x10* volt/cm, which is an
interesting level for scaled experiments on the physics of the BWA scheme as suggeated
in a forthcoming paper (de Angelis et al. 1987). Coupling to high power microwave
devices such as the cyclotron autoresonance maser (Pxw = 10%) or free electron lasers
[Prw = 10%) would of course produce even higher field levels.

Tn Fif- 2 3 #a rerelbc ane Seven, for e a/roﬁ-ou and Carw ;.,u.u-&-r‘s,

fov s fherat
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equat fong are:

Aasuming for che two pumpa:

¥ .y + 4. ) ‘1) E ¢ -r?/?
Ile = =¥ (ed ‘NL g 55 r,z,t) = Eoe cos (ka - .,,Jt) (&)
(=12
%% AELURCAS SL R t2) tae resuiting Field (beat-wave) {g:
—rleZ
9% = 4men (1) £ (r,z,6) = 2E e cos(zbk - thw)cog(k z - w t)
P Q o o
(%)
where v and n are the (first-order) electron velocity and density pertucha- = Es(r.z.thos(koz - moc) .

tien, n_ the unpercturbed density, ¢ the ambipolar notential due ro charge sew
a

bere Ak - 2
paration, E = -V¢  and %, 18 the ponderomotive potential asso:xlated with where = (kl kg)/ﬁ , bw o= (ul - “2)/2’

the ponderomotive force? on electrons: (e
L (ko LS AU Wy T fuy o+ Wz,
€ - 1 Ef
b Pyt T 0 (Efr_) w F ; !
o or W . e k- kl (4 necessary condition {n the Bwa scheme”} the

“amplituce” £ or
bl

where £ is the beat-wave field and ¢ the plasma dielectric. Equations the high frequency wave (uo) {s "slowly" varying in
Ey

Space and time 49d we o

-1
I-) can be written as a ser of forced-oscillator equations: an therefore average on the fast time scale w, to

€8t the pundernnetive force on the time-scale of rphe envelope E :

;J_.ﬂ + wn = - n—u VZQ (c) 2
3e? P m N ’ -1 (<e~> ) 1 (5
. - - € - “s
e A S o SR S ?(7) (1)
2 o
a
»
wE = Do (h) b
L " -QNL wherz, for e Yimanetized case, o= § o uzfm' . Thus:
P o
2 ! )Fz 2,2
3%y 2 L ¥(Te,.) Lo L2 f o -t
- + @y = = NLT (7 N 2 T T ., =~ 3 / cos (z8k - taw) (123
t t | IR w m w"
i e e a

fquations 5-7 are valid in any coordinate svstem., We solve them in

cylindrical cvoordinates {r,z,$) with 2 along the direction of beat propagatior,

i - A3-

e ———— =




and, in cylindrical coordinates:

v - aONL g+ a¢NL H
-’NL 3r 3z !
2
vz - i L a_‘_‘) + ? ’NL
’NL r 3r 3r
iz

This gives, for the density perturbation equation:

1]
a3

+ wln = A(r) + B(r)cos(k,z - w,t)
p d d

3

with:

8€ L2 Y
A(r)-___o (1___r_)e2r/R

. 2 2,2
Ble) = - £, 1+( 8 )(1- L)e‘““‘

2 2
(de} R
¥ >
oy L
kdskl-kz, mdaw_wz' fD- 2‘8—11,,,_'
mu e

The "resonant"” solution uy T kg o= kp is the driven plasma oscillatisn:

n(r,z,t) = A(;) {l-cos w t) + Ei§)sln k zsin w t
w P 2" p P
p P
B
MR stz -w ) .
Y p P
P

an

(14}

(15}

(16)

(17}

{18)

Note ttat the radial density profile is not simply the profile of the pump

intensity,

The equationa for electric fleld components decouple:

2 212

¢ E 8m cw 2,2
Lo, sz - (———E———B— gL e-zr e [l + coal(k,z -« w t)] (19}
w2 pr e 2 d [
ct R
azEz 2 2m czwzkd -2 2/K2
7~ + wE = —E_ P2} 4 et sin(k, z = w,t) (20)
ac L e d d

where 2 i3 related to the square of the quiver velocity 4g = (ezEzluiugcz).

The resonant sclutfons are:

m cw

r -2 2/R2
E (r,=,t) = -4 (—E——jL-) a —— 7T [m t sinfk z - w t) - 2(1 - cos w t)
r © RS p P P p

e

+ 5in k 2 sin w t] 21
p ?
Mt ~2elm?
E (r,z,e) = = —E——E—) ae™*F w t coslk z - o t) + cos k z sln w t] (22)
€ e P P P P P

We otise that the linear growth rate for the longitudinal field, as given
by this linear fluid model, is in complete agrvement with a previous3 nonlinear,
relaciv . stic calculation up to saturation which, of course, 18 not in the linear
theory.

“he presence of radial focusing or defocusing field components can be of
particular relevance to experiments with mictrowave pumps recently proposed9
since tle normalized croas sectional area, n(kpR)z, where the pump energy is

distritited can be made much smaller Ln the microwave regime than in the laser

regime.
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