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1. DEFINITIONS H, air entry value of ¥
Ry iritial value of H

Infiltration is the process of entry of water into the Ho Arecgure head at z = O
85il through the soil surface, Hf srescure head at the wettin_ front in Jreen end ampt”s
S2il surface -~ plane: horizontal or inclineq, asnroxizate solution
= toncave or convex, combination, I cumtlative infiltration
= cavity: sferical or tubular. 1, cuaulative infiltration with pon
Source of water - covers the whole surface, i hydraulic conductivity K('S')
= only a part /paint, 1line,../ .—_Zi hydraulic conductivity at the initial soil water content 9,
Solutions: one dimensional vertical . K, saturatad hydraulie conductivity
horizontal / = absorption/ L, depth of the wetting front
two and three-dimensional 51 'S sorptivity

q flux

This introduction is restricted to the one-dimensional vertical qp infiltration rate with DBC

infiltration through the horizontal plane. Soil will be Qg effective rain intensity

considered as inert to water /no shrinkage, no swelling/, . 9, flux at 2=0, i1nfiltration rate

L % constant infiltration rate for DBC, theoretically at t —>eo
{ K, , KB approximates of K.
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9y1  infiltration rate at t=I, usually at t = 1 min : 3+ ROLS OF INFILTRATION
95 ‘rain intensity
t time A. In hydrology: Infiltration divides the precipitation in
t ponding time (a) portion of the surface water excesa:
2 vertical coordinate (e1) immediate surface runoff,
;-1,/6,31',& empirical exponents in empirical infiltration (a2) surface storage etc.
aquations (b) portion of water entering the soil;
? Boltzmen’s variable (v1) storage of water in soil porous medivm
& s0il water content (bz) feeding the ground water,
81 initial soil water content
. ‘ (al) ana (bz) supply the river discharge.
GB 80il water content on the soil surface, at z = 0
A saturated soil water content

B. In plent production: Continuous flux of water through
the plant - Discontinuous source of water in precipitation

Soil: stormge reservoir with A.(bl).

C. In environmental prod'action: Water = carrier of polutants.
Rate of transport of polutants from the source of polutants:

by A{81)>> a(b2).

D. In soil hydrology: One of the elementary processes,

A note: Soil hydrology = elementary processes (infiltration,
redistribution, drainege to ground water, upward fluxes,
evapotrans;:iration) + meteorologic situations and processes,
The resulting storage of soil water is classified according
to the degree of the excesa or insufficiency and to the
duration of such a period. The year's and vegetational

period is considered, toa.



4. BOUNDARY CONDLITIONS

Richards’ equation is solved either in the diffusive form
(KQute, 1952)

- _ 0 8T _dK 3t
s P@)Bm] A6 2R {1.1)

or in the capacitance form

Ao IH D [ KT AK(H)
dH TE =§ZZK(H)3¢J > (1.2)

dﬁ-/c(ﬂ-‘- C,, the soil water capacity.

Soil is considered as the semiinfinite column. Richards’
equation is solved far (@) the initial condition; in the

semianalytic and aporoximative procedures:

o =0 t=o0 z >0 (1.3)

In numerical methods H = Hi instead of & = -B{. In the field:

fef=efi(z).

(b) the boundary conditions. We distinguish Dirichlet’s

boundary condition and Neuman’s boundary condition. _
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4.1. Dirichlet’s bsundary condition (DBG , concentration
condition !

Formuleted as either sail water content 4 or the soil

water pressure head H on the boundary:

&= By z2=0 t>0 : (1-4)

Usually: .63 = ."9:I

H=H° 2=0 t>0 (1.5)

(exact))
Field situations; Floods ,
Irrigation: Check-basin irpigation,

border irrigation,

furrow irrigation.
Infiltration tests: Double ring infiltration test,

basin infiltration test,

Note: H = H  (t) is formulated in some numericel procedures,

too, e.g. for infiltration with falling weter table,

Results of the tests and of the theoretical treatment of the
problem:

The so0il water content profile & (z,t) is similar to pichn-like
flow (atep-like profile), especially in eands. Inclination of
the wetting front in clay increases with time (Fig.l' data
from Haverkamp et al., 1977). If ©{ increases, the r.ate or

advance of the wetting front incresses, too.
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Cumuletive irfiltrotion in time I(t) is steep at short
time, after long time I(t)ia & straight line (theoreticalty
at t “>uo) - Infiltration rate q  decreases firat rapidly with
time, at t = 0 is 9,00 . After long time, dqofdt ~> const.,

theoreticelly lim q (t] = Kg. Constant rete q, is denoted
t >o0

sometimes q (-Fig.z). The ghape I(ﬁ), q,(t) depends upon

the hydraulic charascteristics of the s2il Kfej,ds(ﬂ) and upon
&%, ﬁ@‘ With the increzse >f Bi the rate E decreases (Fig.J ) -
light cley, Pralip, 1957). When H_ > 0, and the depth of water
on the surface increases, the infiltretion rate q, increases,
too (Fig.4, light clay, Philip, 1958).

The process ran be partitisned into matric and zravitetisnal
csmponents, Tir.5 (Kunze, Fielsen, 19£2). The =atric farces have
the Cominent infivence ot the early stage of infiltration, thre
arevitatisel foree st large time. The relative 3diffarence of
thie position of thu wetting front betwean the horizontal end

vertical infiltration inecr:-ses with time.

4.2. Neuman’s boundary condition (N3C ) flux condition )

On the boundary z, instead of the s2il water content

(ar Jresgure head ) as in DBEC, the flux q, is defined. Either

q, = canst., or qo(t):

9.= —:D(O')%E——f-k(&) 220 150 *.5)

ar

o= —K(H)2E ck(p) am0 >0
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Field situations: Rain infiltratisn.
Irrigetion: Sprinkler irrigation.
Infiltretion tests: Asin simulators.

Since the infiltration rate q, can be under certain
circumstances lower than the rain intenszity q,» we have to
use in the diecussion ttese terms with the strict meaning:
4, - rain intensity ( = flux from the atmosphere),

9y - infiltration rate (flux through the soil surface)..

4.2.1. q. = const.

Two classes of problems of rain infiltration exist, if

q,, is the rain intensity:

Ao 0 <gq /K <1 and  q = q,

The boundary condition ia@.5). The profile ot the soil
water content is in Fig.6, the soil water content at the

surface-06 increeases with time, approaching 65 in 94 = Ké@b).

B, qers > 1
B.1. Time interval 0< t< Yt 9% =4,

The boundary condition is in the form of NBC:

i,c*'b(a-)%%:,& K#) ~2=0 o<ctg t,.,- (16)
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The s15il water cintent at the surface 83 increases with

time, reaching &, =0 st ponding time t = tp (P‘ig.T).

B.2 Time t)tp

The boundary condition is in the form of DBCyr i+ .

either no runoff of excess water

h=h(¢)y 2=0 t>t, 1)

or full runoff of excess water

G = b 4 =0 t—>t}‘ 8
or H-‘-‘O

Time of ponding tp separates from the rain the effective rain
which can ceuse the immediate surface runoff, The greater is
the rein intensity, the shorter is the period without ponding
end t decreases (Fig.8, Rubin, 1969).

4.2,2, i_(_‘_)_ o

Note: Infiltration with DRC (from the ponded surface with

H >0 ) can be formulated as infiltration with the f£lux
boundary condition and with qP/KE-a-.o when the non-infiltrated

excesa water flows away (full runorrll The ponding time t, for Zf(t)
is obteined from two equalities (Kutilek, 1982, Peschke and

Kut{lek, 1982 , based upon the development of Mls ;19680 and
Kut{lek | 1980);

- 10 -

t Tx
. ff"f(f)d'i =fb (f)d,t

2 (%)= (%) (r10)

whera qp is the infiltration rate with DaC (= ponded surface
with B -> 0). Graphicel demonstratisn is in Fig.8. When

9, = const., and q /K, > 1, we get

T
t, = t)dt
Ln P !21’( ) (1-11)

see Fig.8.
The infiltration rate q, at t >t is qp (T) with
T=1t - (t.,J - tx)' i.e. the q curve is shifted by (tp - tx).

Effective rain rate is
e = z,._(i) ~ (z) (122)

The relatisns bgtween the infiltration with DBC and NBC as
discussed above in eq{I.9) to(112 ) are valid if the soil
surfece is not affected by the rain in a different way from
the ponded type of infiltration. The sealing of the surface
due to the kinetic energy of rain drope is not considered,
As it follows from the development, the ponded infiltration

test with DBC should offer sufficient information for the



-11 - -

determination of the reinfall infiltration (with NBC )
provided that the sealing by rain does not exist.

Graphicel illustrations for rein intensities closmer to
reality and to the hydrological practice ere in Fig.9
(pescrke, Kutilek, 1982 ).
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5. CLASGES OF SOLUTIONS
5:1. Physically based solutions

The solution of the Richards” ejuation (1) to the initial
and boundery conditions(43) and{1.4) is searched and the form
I{t) or q,(t ) is preferred.

Philip’s (1957) procedure starts with the solution of the

horizontul infiltration and the result is corrected with
regard to the gravitational term, Fig.% 1ie instructive. The
solution is based on the similarity solution of the one-dimen-

sional absorption of the gravity-free Eq.(ﬂ), i.e, of

s 7 Pe
it i ] (@)

for conditiona(43) end(14). Solution of .;q@.l_'p is the first
Btep of the solution of Eq.(’l.l) and it has the form (Fig.lo)

£y (fafi) =?’ﬂjt% (124)

The cumulative voluge of water thus infiltrated is

L0
T, - 2,05 t)as (115)
%
When the term sorptivity S (Philip, 1957) is introduced
+ .
57 f’U (&)t (t-26)
e

4
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we get
/2

L =5t (17)
1

AB L-'.q.@.l}) is equsl to Eq.§4) when the grovitational term

DK [94, is introducea, tha.solution(f.14) haa to be corrected

by the term y and
L =4 ¥ 1.18
T }, ( )

where again y (t,rﬁ-) . However, the solution allows to obtain
the mpproximate of y only, denoted here ¥, end y =/?1 +tu

where Y is the errsr of approximation and
Sl R PR RUPE S (t29)

with transformations snalogic to@-H). The final solution

of (l.‘l) has the form of a time serie solution
% 32
wlot)=p gt gt oy

In analogy to(4.15) and (117) Philip obtained

% /s 4’}

3
T=8$,8 1Ayt #Agt Fer Ayt + Kt gy

The laat term expresses the flux at.-6-= 61, since
.
(e
((6--8; ) tn -—.(A,a&= L) Kt gy
° %
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Parlange“s (1971 ) approach was different. He integrated

in the first step the equation of continuity, the result was
combined with the Darcy-Buckingham equation, integrated egain
end this first approximate Z, was used in the next secand 8tep etc,
The method was modified by Cisler (1974) end by Philip and
knight (1974):
Philip QQ?;‘;) first discussed the flux concentration
relation (uorel-Seytoux, 1971)

i

. Iz

f%@“)oc@. Zs @)

4.

1

in various types of the unsaturated flow processes and for
the envelope of possible solutions;
(a) the linear soil, D = const.,

(b) soil with Dfo-) according to Diree O -function.

Further on, Philip and Knight ( 1974)have proposed an
iterative scheme fdr the solution of the horizontal infiltration

( ebsorption)with sorptivity expressed as

6= |+
-y

4

B, 1,
(6 -64) D (%) dﬁ:]/z
(1-24)

. hM)
The index n denotes the n-th approximate, F, is & priori not

known except of linear so0il end Dirae J:function s0il. Generally,

F (D, <, o, &o) + For the solution of the vertical infiltration,
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they started with an analogic development as for absorption
and finally they obtesined & relatively laborious iteration
acheme, The principle disadvantage in spplicationa is that
I(t) is not explicitly formulated.

Parlange et al. (1932)1!"? utilized all tools up to now

developed in the sclution of the vertical infiltration. The
procedure wes extended to the ponded infiltration (Parlange
et al., 1955) and modified (Haverkamp and Parlenge, 1987).
The description of the sglution of the "double integration
method” will be subdivided into 5 steps:

1st step: Richerd’s eq. with a changed dependent variable is
integrated. The explicit expression for z is obtasined and
the flux concentration ratio is introduced.

2nd step: In the cumulative infiltration I =.I z d-6 the
previous expression (lat integral of Richarde’ eq.) is
substituted, D(® )is subdivided into two dsmains: 1. domain
with D{@ ) continuous. 2. domein with D defined by the Diare
F;runction. This expression is tranacribed into ssturated
conductivity and the water entry value H, is introduced here.
3rd step: In the previoua expression e difficult solvable
integral occure. It is treated now by & shape factor, This

parameter occurs together with FG&) when the relative con=-

ductivity ie related to the relative sorptivity. After substi-

tution of a new varieble in the relative sorptivity and
derivation, the integrnl from the 2nd step is integrated,
4th atep: The correction owing to the saturated zone at the

eurfece is performed by Durcy’s law,

-1F -

Sth stepr The eguation iu rewritten to Aivsncisnlecs tipms
and I is obteined a2z a function inter alin af Qe Aftar
derivatisn, rearrangament and integration, the firal eolution

is obteined with the shape feetor from the jird step equal unity:
i t] = Ko (#;, —Ha ) (% —%)
[I' £ ]“’ ‘

2o ~Ks

S 2, Ks (B = %) AZ},E&__.‘_@
4 (ks ~ K ) 2o = Ks

(4.25)

Ke (Hy ~Ha )& ~52)

=(£a"k&‘)(/<3 “'K'ti)

s¥r1k, #, (8, —5) i
29~ K¢ ) (K K¢ ) “-2)

| SRLk (H=2Hha )5 —Fc
Ty &
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5.2. Approximate solutions

“hen the convergence or Eq.ﬂel) is considered, & simple

Philip“s Blgebraic equation fPhilip, 1957) is abteined
L

/3
I =8t +ALt
(4.27)
where A includes theoretically A5, K; and the trunecation error.
Philip (1969 ) has shown thet A is related to K, generally
/(8‘/3 <AX 2’/& Ko . However, for large time A —> K-

In the method of Green and Ampt {1911), the soil water

content profile is simplified to the step-like profile (F:Lg.ll)
with Hf acting as the accelerating force an the wetting front,
with (Nemnn. 1976)

He B
s L
bR JROn L P
Bo

#.
b=t f‘&, rO-LB k(h)
;o % 0 Ks

o K (1.29)
0

48 the whole step-soil water profile is the saturated dmain

of the so0il, infiltration is solved by the application of

Darey ‘s law:

z /( /,l - #‘_f 'I-LJ’-
Af (’!-JO )
Here, KA is the approxtmate of KS' KA:: xs.
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Philip (1957 and 1973 Yhas shown that the atep-like profile
is exasct when DO ia the D:.rae 8 J—functmn) and then K = K

3°
As g (t) and Lf(t.) tco, q (_t.) is expressed as
di/at, I = L, (& - ¥;)» and after integration
" » ~ .
with

(4. ) (H,~ Hy) (40, )(ﬁ,—ﬂf)("'”)

since for horizontal infiltration I = St]'/ 2 with

%
\9:[,—2@4(#0—@)(4}-'9{)] ()

eq.@-Bl)can be transcribed to

Kt=2T ———/&Z‘M ZIK’*] (134)

or

T
T=K, ¢ +,a,£,,[¢+7_] (o

v A= (W, =Hy )% -, ).
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Sels.Emnirical equations

The empiricsl relations were proposed for the gradusl
dazcrease of the infiltration rate q, with time t:

q,(t) as the hyperbole:

Kostiakov's equation:

—al
jo h— c,! t (4'36)
L = =" 4 (137)

where C,, of are the empirical coefficients, €y should equal
9,3, the infiltration rate after the first time unit, usually
at t =1 min, 0 < o< 1. The equation is not amppropriate to
the descriptisn of infiltrotion at large time as 9, >0 at
t >0 . To overcome this incovenience, Mezencev (1948 )

proposed the shift of 9, axisa:

n

%
2=Cp * Gyt (139)

74—
r=¢tr -—f—-—-Cgf( )

7

where C,, 03,/1 are empirical coefficients, For t—> a0 is

i

(1.39)

Cy > Q,.» the constant infiltration rate, when the quasi-steady
infiltration is reached. Theoretically v_ = K. (C, + c)
should equal q_,, the infiltration rete after the first time
unit and O <f/3 < 1.

W,

-20 =

Zxponential decay of q,(t):

Horton”s (1940 )equation:

Fo=Cy + Oy g (- )
Leth e de [rmenfpt)] o

where C,, C. and 7 are empirical coefficients, At t = O has

~ Ga0)

9, @ final value, in contradiction to the thzory of flow in

porous media. For t —oo0 ig 04 ~» q,, and c,; = K_) is frequently

auppoaed,

Decay of 9, with I:
Holtan’s (1961) equation:

£
Jo=Co(W-I)+C, (t42)

where C, CT, £ are empirical coefficients, Cq = q . W is

" 80il water storage mbove the impeding layermé is not

integer, most frequently £ > 1,
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Field infiltration tests are routinely performed (double
ring, or basin teats). The solutions developed for the
Dirichlet’s boundary condition are applicable and the solutions
in the fofm of the algebraic equations are prefered for their
simplicity. The set of the experimental data I(t) is fitted
to a certain infiltration algebraic equation and the parameters

of the equation are obtained,

Questions:

1. Which of the algebraic equation ig the most appropriate?
How to interprete the perametera? How to predict the infiltra-
tion for the initial and boundary conditions different frog
those in the experiment?

2. What can we gain from the infiltration test? Is there

an inverse solution of infiltration?

-2 -

de How to apply the results of the inriltration tests
in thé runoff hydrology and in azronomy?
In spite of separate discussione of the problems, the

mutual linke are clear and cannot be omitted.

1. TSSTING OF ALGEBRAIC INFILTRATION SQUATIONS

1.1. Methodology
Criteria:
1, Time 8tability of parameters.
2. Physical interpretation of parameters.
3. Applicability of the equation to the extrapolation ( to time
limit different from time intervel of the meaaurement).
4. Applicability of the équation for prediction of infiltration

when the initial or boundary conditions pre changed,

Detailed studies ware performed and the algebraie equations

were tested on generated and experimental data I(t ) obtained

for lizht cley and sand (Kutilek et al., 1967, Haverkamp et al.,

1987). Iwo procedures were applied:
I the firet frocecty re

A lme satability of parameters and their applicability
to extrapolation was studied by the modified method of the
moving averages: The limiting time of convergence tliln of Eq.
(1.21) VW8E computed. The time interval 0, t)iny ¥as divided

into 40 equal time ateps At and the corresponding I, was

computed for each time atep ace, to iy. (1.21). From this basic
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set {Ir(t)]‘, the subset of the first five time steps {Ir(} i@i
was separated and on the data the examined equations were fitted.
The evaluated parsmeters correspond to the average time t = 2,5
of the examined interval <O,54"t,>. The procedure continves by
ineressing the subset to {Ir(t )}Ti with t = 3.5 and 20 on up to
the full set of {Ir(t )} containing all 40 date regularly distri-
tuted in time <0, t;; > . The parameters belong now to t = 20.
The subseript 5i means that we have started with the initial

Tive deta of the set, the number of data in the subsets has been
increased gradually each time by two. Each subset denotalby the
subacript ni conteine therefore n initial data from the start of
infiltration while ( 4o-n) final data are still lacking in the
subset. After the full set {Ir(t)} has been reached, the proce~
dure continues by cutting off the firet data and this subeet is
denoted by {Ir(t)}39f, then the subaet {Ir(t)}37f is obtained
by slicing off two initial data from the previous subset and so
on up to the last five time steps. The subséript nf means thet the
final n terms are included in the subset, while (40-n) initial
date from the full set amre lacking. If follows from the procedure
that t is not a reel time. When the method was applied to the
experimental data, the number of time stepa was reduced to

the number of measured cumulative infiltration data at the esqui-
distant At intervals,

Parameters of the infiltration equations in the time span

0< t <20 represent the situation when the measured datm st

the initiel atage of infiltration are used for the extrepolation
towards large time. Paremeters in the ranze of 20 <_t_< 40 model

the conditions for the extrapslation from the later measured dmta

-..4_.

towarde zero time. The method offerz the information, too,

on the differences in the parameters of the infiltration
equations when eithep only the start values op only the final
values of the infiltration tests were svailable for the Titting
procedure,

Tha degree of the instability of o certain perageter ¢
in time is characterized by the meximum relative diffarence
1n the whole spen ot t, J= (Cxax ~ Cipn /CMAX where the
suffix MAX denotes the maximum and KI¥ denotas the minimum
value of the daragater C in eonsideretion, When the applicability
of equatiosng to the extrapolation in time is mutunlly compared,
the value or 19€n each of the paremeters of the tested equation
is considered as the main criterion.

In the first lecture, we have a2ntioned parameters which
are frequently identifieq either with the hydraulic character-
istics or with certain fluxes in the 8oil, a8 e.g,: £g» S, or
21. The axponents in the empirical equations of the hyperbolie
type are comparable to the theoretical value 1/2 5f the first
term in Eq.(]uz%). In order to demonstrate the degree of
inaccuracy in the physical interpretation of the parameters,
especially when dealing with a non-complete set »f exﬁerimental
data, the maximum error £ was evaluated, There is no need
to emphasize that a Physically based sarameter should be astable
in time ang independent from the number of data in the evaluated
8et provided that the reference d;ta are free from errors, The
loweat value or £ 1in each of'the parameters of the physically
derived equations is the additional criterion for the selection

of the most 8ppropriate equation for the evaluetion of infil-
tration.
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The number of data in the regression eralysis is
gradually changed snd the time atability together with the
theoretical error of parameters is studied in the model which
repreasents the fitting procedurs ond extrapolation of the
limited number of the field infiltration data.

The values of paremeters are datarmined fromw the subsets
;_Ir(t )}n by the leest squares regression analysis,.

In the second type of procedure, the precision of the

cumulative infiltration was selected as the criterion of the
suitability of the equation, It was expressed in terms of the
variance between cumulstive infiltration values obtained for
the reference solution Ir and those calculated with the

”~
algebraic equation I

N A
E, Lo~ 11)1_
ﬁ_(I): = N"1 (2.1)

where N is the total number of points for the generated data,
N = 200 . The equations are anelyzed by the fitting the
equation on the reference data for graduslly increasing time
pseriods up to tlim' starting at very short times. For the
precision criterion (72 < 0.005 was selected, taking 03(1)

of the numerical simulstion as the threshold value.

1l.2. Results
_—

Kostiakov’s equation

Both para.;zeters n Eq. ( l..}ﬁ.)and (1.37)are strongly
time dependent, eee the values of % in Tuble 1 and their
values are decreasing with the increese of the average time t
es demonstrated in Fig.l. The inctances with a roughly con-
stant value of C, at the starting period of infiltration
could exist, see th: curve Cl(i-) for sand in the interval
of t <10,

The exponent oX when extrapolated to t - O is approaching
the theoretically predicted value 0,5 in clay only, while in
sand this tendency does not exist, C, should theoretically
equal to 21, the infiltration rate at the first time unit,
here at t = 1 min. There is a non-unique relationship or
01/21. In clay, Cllfl-< 1 all over the teated time range
:hile in sand 01/21 >lfor 0<Ct< 18 end Cl/ﬂl > 1 for
t > 18. Assuming the theoretical equality ¢ = 21, the
maximum error was high, see the Table 1. Since the time

dependency of both parameters, o and Cl ie strong and ams

their beheviour in time ig urpredictable, the Kostiskav's

equation is not suitable for th: extrapolation towards t = 0,

The tecting hae confirmed thet €, end o are fitting para-

meters only end their value depends in additon to so0il

and test conditions upon ths number of data in the set {I(t)}‘.
Sometimes, the equation I(t. ) linearized into the loz-log

form and tren the linear regression analysis is performed,
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The reaults of this type of fitting are prercented in Fig.1,
tos. Owing to the linesrization, the wei_ht of parameters has
becn cheanged end the dotted curves demonstrate the alteration
of peremetars. At t = 20 & strong einpularity has appesred,
The relative time stability of (31 in the interval O<-t.;.< 20
is exceptional., The linearization does not contribute to the
increase of the time 8tability of the parameters and our con-
clusion on non-suitability of the equation for the extrapelation
towards :-= 0 kepps valid. We heve mentioned esrlier that this
equation ia mathematically not eppropriate for the extrapolation
towsrds great time.

A good precision in I is reached at short time, where
the equation cen be uted for interpolation between the meazured
data. For medium and long time, the precision is very poor and
the equation is not appropriate even for interpolation.

The equation is not appropriate for the prediction of
infiltration when &; or H, ara different from the values at

the time of the experiment.

Mezencev's equation

The increase in the number of parameters to three in
Eqs (1.38 ) and (}.39)'resu1ts in the expected lower variation
of parameters with time, see the Table 1 and in the lowering
of -values comparad to the 1ﬁfvalues in Kostiakov’'s para=
meters. In spite of this relative increase of the time
stebility, the veslues of 15L1n C, and 03 are still relatively
high. In mddition to it, the character of the time dependence
of C](__t-) is dissimilar in clay and eand, and so is CI,LT) ’

see Fig.2,
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Tghe value of the exponentﬁ is at the short time t close
t2 the théoretical value 0.5 fér both soils and then i} riges
tlowly with the incresse in t. This indicates an improvement
with regerd to the Koatiskov’s equation. When Cqy 18 related
t> gy, the error £ in Cyy i obtained. It rises from very
low values of 2% in clay and 0.5% in sand at the shaortest time
t to 13% in clay end 3. in sand for the full set of the data,
i.e. at t = 20, and ends with meximum values shown in Table ]
at the largest t, In apite of improvement in comparison to
£ostinkov’s equation the error is still high. The identification
of C, with the saturated hydraulic conductivity Ky leads to
8 high error at the short time t. With the increase in T, the
error decreases but even for the full set of data at t = 20
when we assume that the infiltration rate is close to quasi-
~ateady conditions, the error in C, ia still high. It means
that the extrapolation of infiltretion data to large time in
order to obtain the estimste of K, is erronesus.

We conclude that aimilarly to Kostiakov's equation the
paremeters C,, C;, C, and (3 cannot be interpreted physically,
they are fitting parameters oniy and their behaviour in time
is not predictable. The equation is not suited for the extra-
polaetion,

When Eq.{1.38 ) was modified by putting C, = K_, the maximum
[ =

al

error of the remaining coefficients C,y snd /5 has increased

ang their time inatability has increased, too, see the Tabvle 4.
On the other hand side, the precision is remarkably good

in the full time range, eee Table 2.
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The equation is therefare well sujted for the interpolation
between the measured data. However, owing to its empirieal
character and lack of physicel memning of the parameters,
the equation cennot ba used far the prediction of infiltration
when either;ei or Ha are changed,

Horton’s equation

In gpite of three parameters existing in Zqs (i.40 ) and
(1.41), the time dependence of all three coefficiasnts 04, C5
and 7/'was the strongest of all the tested equations, as it
followa from Table 1. The value of all three parameterg decreases
with time ?: 8ee Fig.l. Here, the parameters were cealculated
exeeptionally in units of cn and hours owing to the exponential
form of the equation. The coefficient C4 is eometimes identi-
fied with the saturated hydraulie conductivity. It is instructive
to see that the maximum error in 04 exceeds the errors occuring
in parameters of all other tested eguation. All parameters
have the character of fitting parameters only,

The Horton’s equation is the least appropriate for the
extrapolation of the measured data in time and none of its
toeflicients can be interpreted Physically, The precision is
acceptable only for short time where the interpolation leads

to errors below the chosen threshold value{Tab | JZ)-

Green and Ampt“s equation

A8 it follows from Fig.4, the coefficients K, and A
.ot Eq. (1.35) are time dependent, Ky rises with t, 1 decreases
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with the ircrease in ?-and the chenge is maps cignificant at
the short time t.. The time dependency according to values of 2}’
in Table 1 is less strong than found for parametera of the
pure empirical equations.. However, the maximum error in K.,
related to the saturated hydraulic'conductivity is atill high,
It decreaser with the increcse of time t but even at the';argest
Z-its value is 2,5 in clay and 13% in sand, Thie cutset represertes
the aituation when only the final values of the infiltration
test are evaluateu. For the full =t of I(t)}, the error is
higher end it is 287 in clay and 13% in sand, The physical
nature of the relationchip ot K, to K cannot be found and the
determination of the Batureted conductivity from K, is not
feasible. The serameter 1 should have the physical meening, too,
but its value is egain not constent in time andif we assume
(:G's - -ﬁ{) 83 a constant, then Hf. should change up to 25%.
Ve confirm thereforz tlat in spite of ths physicel derivation
of 23. (1.;5), the coefficients hehave like fitting parameters
anly. Or, in other wards, the assumptions and approximations
applied in the derivetion of Eq. (1.35) were of such en extent
trat the physical reelity wae overshadowed by them and the
parametera of the final equation behave consequently like
empirical coefficiants.

Owing to still hich values of l}'in the parameters, the
equation is not appropriate to tha extrapolation in time,

On the other hand side, the precision criteria 5;2(1 )
in Table 2 demonstrate that the equation is appropriate for

the interpolation of experimentel deta, ‘When either-oi or Hb
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are changed, the resulting values of:“ rcﬁ or Ap are altered,
tas, @ it can be expected from the fitting character of
perameters. The equation is therefore not appropriste for
the prediction of infiltration when the initial or boundary
conditions differ from the conditjons at the time of the

axperiment.

Philip“s algebraic equation

Both parameters 3 and A in 2. ( 1.27) are time dependent,
5 decreases with time T andA increases with it (Fig.‘j) » The
maximum relative differance d’of S hes substantially decreased
when compared to ’bo’ of the perameters in the earlier discussed
equations, see Table 1. Thus, the time stability sf S is higher
than in other parameters, However, the time dependence of the
perameter A is significantly greater than that one of 5, ses
the higher value of ’bvof As

At the initisl stage of infiltration, the velue of S ia
close to the theoretical value of the sorptivity 5, aa it ie
anticipated and with the rise of t the value of 5 is deviating
from S;. The maximum error £ in S is found at the largeat
time -{, i.e. when S is evaluated from the subset where the
data at the early stage of infiltration ape missing. Since the
initial data are ususlly not available for the Titting
procedure, the error in the time range_t_kv 20 is decisive for
our conclusion on the applicability of the equation. For our
soile, the error is in ranges 5% to> 10% in clay and 9% to 16%

in sahd, respectively,
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The error of the pérameter A incresses with time T, too,
reaching the maximum value alove 50% at the largeet time T if
(Az + ki) i=s considered as the reference level. Thie increpse
of the error with time t is 1n accordance with the exbected
increase of the truncetion error with time. Since the saturated
hydraulic conductivity K, is frequently amssumed ts be Eimply

related to A bya = "'K.':. the dependence af the correction factor

‘m upon? is plotted in Fig.6. A simpie relationship between A

and K; was not found, m is not only time dependent, but it is
strongly related to the hydraulic characteristics of the soil.
Its dependence upon the initisl soil water content was obtained,
too, see Fig.7, where the error in S andA is shown 88.8¢
depandent, too. If we take K = 3/2 A (Ioungs, 1968, FPhilip,
1969), the maximum-error in the estimation of K is 32% in clay
and 14% in sand. The upper boundary of the range of m value is
above 2/3 even in the initimlly dry sand and when thre initial
82il water content rises, the value of m growe far above 2/3
in both s0ils even for t = 20, i.e, for the full set of the data.
It can be concluded that the S term is anly approximating
the real sorptivity 51y its maximum error would not exceed
15% and when the 1(t )data from the early till medium time
of infiltration are evaluated, the error would be below 5%.
The coefficient A keeps the character of the fitting perameter
and its relsation to K cannot be predicted without a significant
error,
The precision criterion is satisfisd for short and medium
time. In this range, the interpolation of experimsntal data

by Philip“s equation is therefore applicable,
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Tha predictive agplicebility of the equation is better
then with tha earlier equations but the results sare atill or
low eccuracy, especially due to the unknown dependence of A

upon fe-i and Ho.

Three parameters equation of the Philip“s type

As the increase of parameters leads to their higher
stability in time, it is instructive to test the three terms

ejuation derived from the time-series solution, Eq. (1.21):

~ 7% %
_1_=C:gf‘ f'C'?f f'C;o'f ('2_2)

With CB' Cg, Cm approximating the exact parameters Sl, Az, A3
in iq. (1.21). As at t,;, denoting the time o the end of the
convergence of Eq, (1.21 )is dv/dt w0, we get from the second

derivative of Eq. (2.2 )the approximation
£ %o
7 3 Cfa (2.3)

and approximating sgain qo(tlim)g—-l(s we obtain the astimnte
of KS' densted as Ks

kg =V3(:8 Cfo * C"? (2.4)

The time dependence of the coefficients Cas c,J and Cm

of Eg. (2.2)dif1’ers from the parameters in the previously -
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discusued equations by the increased time stebility, see the
distinet deereasse in 7/Q'in Table 1.

The theoretical error of the parameter Cy is aubstantially
depressed and the identification of Cg with 5, offers a very
good estimate of the sorptivity, much better than in the orevious
two-terms equation. The accurecy of the estimate increases when
the early stn~e of infiltration is svaluated and evan for the
full set of {I (t)}, the error in clay is negligibly small and
in sand it mekes abaut 1% (Fig.B). The error in Cg is in the
tolerable ranges and only the error in ClO for send it comparsble
to the earlier discusse? parameters. Generally, the errors of
coafficients found for send are up to approximately one order
higher than in clay. Judging from the time dependence of the
coefficients, see Fig.8, the equation is better suited for the
extrapolation towarde large time than towards t = 0, However,
even in the sets {I(t)_}r where the early readings of the data
are lacking, the estimate of Sl from c,3 is atill very good end
the error in C9 and Cl:) is distinctly lower then in all other
equations,

¥hen the estimate of the hydraulic conductivity K. CEq. (2.4))
is evaluated in sur model of the extrapolation, we find that
its time stability is very high, the value of w’is comparable
to the maximum relative difference of Cgy ise. the time stability
is similar to the atability of the sorptivity estimate. The
meximum error reaches 9% in send at low.{ while in clay the
maximum error is found at large t and its value is by one order

lower than in aand(Fig.9). We recommend to evaluate K. from
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the full set of'{I(_t) 5 date in order to minimize tho error.

Further on, a study was performed on the role of the
initial soil water content &; upon the error in K.. Similarly
to the time dependence, the relationskip of the error to the
value {k/8z wes not unique for clay and sand and it depends
additionally upon the hydraulie cherecteristics of the soil
(Fig.lo). ~hen ®;/3¢ » .75, the error is distinctly decreasing
with the increase of &{. When the maximum relative difference
of K. was evaluated for the variation in.og, we obtained 0,242
for sand and 0.039 for clay, respectively. We can assume
therefore that the initisl soil water content variation does not
influence essentially the estimate »f the saturated hydraulic
conductivity,

The proofs on a grod accuracy in the estimation of the
aaturated hydraulic conductivity have eliminated the necessity
of the extrapoletion of the memsured data to the non-defined
estimate of the quasi-steady infiltration rate,

The precision criteria ;n Table 2 show that the equation
is of high eccurecy and it is spjlicable for the 1nterpolation

of the experimental data in full range of time.

Parlanges” equetions

In the Perlanges’ equatisns (1.25 ) end(1.26 ) the time
stability ot H, was tested by moving averagee when the remaining
hydraulic characteristies of the s5il were taken constant. The
velue of ﬂ?’Table 1 ie very high as the errors of all approxi-

metion steps are included here. The physical interpretation of HA
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is therefore questionable end H, should be considered as
a fitt{ng parametéar.

The precigion criteria (Table 2) demonstrate high
accurecy of' the equation in full range of time. The equation
is spplicable for the interpolation of the experimental data.
The extrapolation beysnd the measured dat2, especially towards

t = 0 is leasible.
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2, WHAT CiN W2 CAIN FROM THo INFILTLATION TiiT?

It has been shown in Chapter 1 that the majority of
algebraic infiltration equations behave like empirical squations
with fitting character of their parameters. dxceptions:
Lorptivity 5 can be estimated from Philip“e alpebraic two-terms
€q.; with better accaracy from th: three-terms equation of
Philip's type and from Parlange’s equation,

Saturated hydraulic conductivity Ks cen be estimated from the
three-terms eq. of Philip’s type and from Parlange s eq.

When estimated From Philih's A parameter in two-terms eq.,
the poasible inaccuracy is.great.

However, for modeling in the soil hydrology, irrigation
and drainaga, far runoff hydrology, the knosledge of the soil
water retention curve H(bﬂ and of the unsaturated hydraulic
conductivity function K(8) is indispensable. Even the pre-
diction of infiltration at varigble-ﬁi is jmpossible without
knowled.e on Héb), Kcoj. The methods of their determination up
to recertly developed are reetrictive far the routine use, If
the characterictics ere measured on undiaturbed core samples,
the representativeness of the sample is questionable and the
data thus obtained are not applicable directly to the salution
of the flow problems in the Field or in the catchment., The other
option is to measure the values of H and & during a well defined
flow process in the field experiment on a small plot equipped
with the adequate instrugentation, The estimation of the soil

hydraulic characteristics has been described in the literature
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(2.5 Hillel et el., 1972, Nielsen et al., 1973, Jones and

Vapenet, 1984, Green et al., 1986)L Trece methods have two

pmain disadventages:

1. Zxpensive equipment. A skillad tachnician or researcher
is required for the operation of the instrumentation,

2. Time consuming srocedure »f one single experiment on one
single plot.

The space variability of soils anéE; their characteristics
brings about the questisn on how to sbtain greater number of
data in the field or in the wetzrahed during a short time period,

The idea of the estimation of the soil hydraulic chearacter-
istics from a simple field experiment is therefore attractive
and very actual. The djuble ring infiltration test ig the
example of cuah a simple srocedure.

In the first attempts, the analytical solutions together
%ith & certain degree of aporoximation were used. s.2s the
relation K(H) was prescribed by the- exponential form and when
the Green and Ampt”s ( 1911) approach was applied for the
evaluation of the i:‘.:iltratian test, K(H)was estimated. Or,
the soil water diffueivity DGQ-) in the exponential form is
searched from the sorptivity term &, However, the thaoretical

error in the applied approximatisns can be non-negligible

( Kutflek and valentovs, 1985).

Since we do not know a priori the function D@?] which is
searched, we cennot prediet the most suitable approximation
of sorptivity. The degree of accuracy of various sproximations

iz in Pig.11 wken Dﬁpv) is modelled by

D=w ,af(/.w) | (2.5)
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where 0(,/5 are empirical parameter:. The tested equations are:

Philip“s (1955 Japproximation

4 7
:Z;-_{ f;«z -'9’4;) 2(%) A -
by

(2.6 )

Parlange ‘s (1971 ) first agproximation

By %
s =E€£(ﬂ‘%)b(*-)df7 R

Parlange s (1975 ]aecond approximation
F

6 8 %
$= (&g-ﬁ:;)fl(a)aw @-%)W)MYG-B)
.-9'.': —

e .

1

From the_Philip and Xnight’s r1974 \eq. (1 24) is ir F(ﬂ-)

eme)or 7%
ﬁ’/ F() d'a:] (2.9)
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However, D(B—) is not krown and thus FEGJ) is unknown, too.

Sometimes, the aesumptions are made on D = const., or

3(8') = Direc § ~function. For linear soil is then

(@ -ty ) d
I= /:Z. D flff,[ (mm'fc[ﬁ‘-&)/(o- 9}5,& 17 )

end for soil with D(—O) expressed by Dirac J -function where

Fe(6- 6‘)/&- -9 ) i
T

§=fefo-2.) f 20446 | -

In spite of exactness of equations (2.10), (2.11), they become

7

approximative when the mppropriate D(&-) is not epplied. Fig.ll
demonstrates that the frequent simplification of (2.9) to
(2.11) leads to & maximum error of 25 to 30% in majority of moils,

Summerizing the epproaches of the approximative-analytical
charecter we find that the complete estimate on soil hydraulic
functions of soils from the infiltretion test has not been
found yet. The degree of inaccuracy in preacribing the aimple
algebraic form of the searched functions can be high.

Parallal ts the approximetive-anslyticel type of the
solutions, the combiration of the analyticel models of the soil
hydraulic functions with the numerical solution exists.

It has been rirat proposed by Haverkemp et sl, (1979).
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They estimated &Esj by the optimization of the exponent b in

the Muslem’s (1976)model of relative conductivity Kr(o'),

using the measured:@(ﬁ) function end the cumuletive infiltration
I(t), where t is the time. However, the Kép) capillary model ia
less sensitive to the change in b than to the variation of other
peremeters in the-ﬁ(H) function (yogel et al., 198?).

An improved method ( Lir et al., 1987) is based on the
eensitivity analysis of K(«e-) relative to & {) and of the
Richards” (1931) equation relative to -64?) and K@%)(gir et al.,
1985, Vogel et al., 1985). For the procedure, the routine
laboratory and field equipment together with the microcomputer
facilities are needed, only. The infiltration rate is measured
by the double ring method, the depth of wetting immediately
after the infiltration test is obtained gravimetrically by
sampling the soil with the auger or, alternatively, a more
sophisticated method can be applied, The soil water retention
curve has to be determined on the undisturbed 80il sample by

the routine procedure in the laboratory.

We define:

1. The small scale functions which are obtained on the un-
dieturbed soil samples of the vilume approximately 100 ch.

2. The large scale functions which are reflected by the in-
filtration test performed on the area of about 0,1 m? to
1 w° in the field.

J+ The capillery model which is bosumed to be valid in both,
in the small scnle as well as in the large scale functions
(item 1 and 2). The general shape of the basic function
AB(H) is therefore kept in both scele functions and only

& 8light deformation is allowed.

.

For the s=olution of the ocne—dimensional infiltration of
water in the soil, the Richarde” (1951) equations is mpplied
in its cepacitance form, eq,l(l.z), with the boundary
conditions {3) and f4).

The infiltration is numerically simulated by the impliecit
final differences wethod. Thue, the dutn Iy(t) end ey (z','t)
are obtained, the subscript N is far the numerically simulsted
data.

For the numerical solution of Eq.(l.E), the hydreulic
functions &(H) and KG&& are needed and they are the matter of
the optimization.

The s0il water retentiosn curve is expressed by the equation
of van Genuchten (1978) modified by Sir et al. (1985) to the

form

4
IS (22)

withm =1 - 1/n, o{>0, n> 1, and @ denoting the modified

effective soil water content

-4,
=2 ~ & (2.23)
M @ '

which slightly differs from the commonly defined@ affective
eoil water content By
6~3"%
e A4~ (2.14)
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where €, is tha 1:~mu'.dua].,19"s i3 the saturated soil water
content, o,
-allowing &, p 95. The physicelly real part of -9(}1) is limited

by & € <4, 04 . The greater flexibility of the Eq. (2-12)

substitutes &;, allowing a8, <0, ©7 eubstitutes 8z

with . to the experimental data is demonstrated in Fig.12..
The introduction of & admits to identify the analytical
expresaion (2.1.?.) with soils where the air or water entry
velues exiat. The terms &, n, 6;, 67 in kq. (2.12) end (2.13)
are fitting parameters only. The mutual conversion betwreeﬂca./a

and &4 is
&

Bh = B 19:9 ~Fn £
= + e (2.15
£ &éw -4, & -4 )

When iq. (2.12) is applied to the Mualem”s (1978 )capillary
model, the relative hydraulic conductivity K. = x(o)/xs is
obtained by

/
L] A - (7-% /mb)% *
Ky @e)zﬁ d/_(/__.ﬁ.g //m)"ﬂ/

L =/ (2.16)

a=(1~-4¢
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The exponent b is taken as b = O.S(Hualem, 1978).

The detailed analysia has shown that the cepillary model
of the relative hydraulie conductivity is very sensitive to
the value ot o, (Vogel et al.,, 1985). As 9« limits the physical
validity of Eq.(z.:z)md since K; tronsforme K to the unsaturated
hydraulic conductivity, the porameters o&, 8, and K... are defined

B8 optimization parameters. Let us note that the shape of the

A(H)function ic relatively less sensitive to the alight

veriation of ©, and go is the relation C(H).

The values of optimalized parameters S eé and K, are
sbteined from the conditions (2.1?) and (2.18). The best
coincidence between meatured end simulated cumulative infiltra-
tion as the function of time is expreased by the condition
(2.17). The agreement between measured and eimulated value from
the point of view of the position of the wetting front is

3uarant$i by the condition (2.18).

[Tg (t) ‘-IN (t')_]f; min. (2.17)

[%E _ ""SN] 2 __, min. (2.18)

Iy are the velues of the numerically simulated cumulative

infiltration end Ip are the experimental datu, Zg is the depth

of wetting front and z gis the experimenta%.one, Zgpy I8 the humerical

one., _25&9_,"9“" S eemol, D> A ;'9"‘
When 4 is altered from B5 to ¥, und the remaining

parameters in E3. (2.12)are not chenged, we get for INl = IN2
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different moisture prafiles with K.p = K5, see the Fig.l13,
This ir; why z,, was introduced. It reoresents simply the soil
water content profile.

The starting values of the parameters 'efn' 4 are taken
from the evaluation of the 80il water retention curve of the
undisturbed sample of the s>il. The starting velue of £ 1is
estimated from the field infiltration test either by £q. (2.4)
or by K.= 1.5 4, .Fg_-("-l}) '

In the optimization process, the variation of parameters
K; and €z is limited by Kg ¢ (KS> and .egé (.eé> where
<{K;> and Lo denote the range of physically acceptable
values. The value of 7 iz subdued fully to the optimization
with the only one restriction,o-;n 2-&§ The remaining parameters
of the hydraulic functions of the soil, n, €, 8, o« are
kept unaltered and numeric‘ally equal to the velues obtained
from the 85il water retention curve of the undisturbed core
sample.

“hen the first set of IN('I;) data is obtained by the
numerical simulation, the correction of the starting Kgy is
obtained by (Vogel, 1985 )

- ty
2

IN = IE (2.19)

6ee Fig.14. Vogel obtained Zq. (2.19) from the linear scaling
of the Richards” equation (_1.2).
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For the corrected K., the position of the depth of the

wetting front Zge i2 checked by the exp:rizental value z

T
s

If zoy > Zgpy the value of-eé should be increased and vice versa
and the procedure of the numerical simulation ehould be repeated
again. However, according to our experience, the correction of
-aa owirgg to the distinct inequelity in zg hag not besn usually
needed. When neither 4, nor K elteration lead to the equality

of I.N(t) and IE(t), the increase of ©, is required.

Practical procedurs;

l. Undisturbed soil semple is taken in the field. The initial
80il water content -e'i is determined together with the: soil
water retention curve in the laboratory. The eset of experi-
mental data {-Oa @I)j is fitted to the Eq. (2.12)a.nd the
perameters are evaluated,

2., Double ring infiltration test is performed and the set of
E I{t)] date is fitted to the Eq. (2.2}, From the evaluation
of the parameters, K. is estimated according to Igq. C2.4)
and e smooth line IE(t) is plotted.

3. The depth of the wetting front 25z is determined after
infiltration by sempling the soil with the auger and using
the gravimetirical method, The time related to Zep is the
time of the end of the infiltration test,

4. The infiltration is simulatee numerieally accordircs to (1.?),
(1.3) and (1.4), wsing the hydrewlic funetisne abtaired
from the axparinents, see itowe 1 upd 2, The sumeriesl

procedure sffers (I..(t)} onc the suil water content
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profiles 'eﬁ(z,'t) from which the position of the wetting
frow z., is read at time corresponding to the time of the
end of the field infiltration test,

5. Optimization sccording to Eqs.(?.l?) and (?.18) is performed,
A3 a useful tool, Eq. (2.19) should be mpnlied.
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d¢ APPLICATION OF INFLLTRATION TaSTs IN RUNOEF MYDROLOGY
AND AGROMOLIY

The applicetion is linked to the problem of the com=_
bination of two different scale domains. Infiltration test’ ‘
is performed on the area of 10° m2, the integgbs& of agronomy
and runoff hydrology starts at the area of ~ 106 mz. The
heterogeneity of the lerger area, when defined by functions
obtained on small area is to be found, defined and then
operated with., The toosls of geostatistics, scaling methods
etc. will be used as it will be shown later on in the lectures

on spatial varimbility.
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Table 1. Evalustion of maximum differences of parameters T}L and
of their errors £, eventually

Bquation aof

Parameter difference, ¥
Clay Send
Kostiakov
o 0.297 0.425
¢ 0.603 0.18
dezencev
g 2.163 0.190
C, 0.344 0Q.258
cJ 0.371 0,163
clu=c2+c3 0.371 0.044
Mezencev with 02=KS
A 0.289 0,248
ClM=5§c3 0.691 0.090
Horton
P 0.926 0.924
C4 0.502 0.401
C5 0.768 0.777
Green-Ampt
K 0.172 0.122
;f 0.261 0.237
Philip
5 0.292 0.143
A 0.251 0,226
J-paremeters,Philis”s type
Cy 0.006 0.942
Cg 0.038 0.153
Clo 0.070 0.400
KE 0.009 0,054
Parlange

Maximum rel.

Reference
charocter-
istics

0.%
9

Maximum error,

Clay

0.376
0.671

0.216
0.484

0.615

0.636
3.090

1.135

0.365

0.101
0.594

0.206
0.038
0.065
0.008

Sand

G.534
Q.131

0.278
0.330

0.048

0.575
0.133

0.785

0.208

0.160
0.578

0.042
0.189
0.425
0.091
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Table 2. Precision of the cumulative infiltration in tarms

of {rz(i )
CLAY

Time range th 1
squation of:

Kostiakov $.92-7
Mezencev 6.58-12
florton 1l,22-4
Green-Ampt 5.42-10

Philip 2 para 1,3E-10
3 para (pnilip) 8.2z-11

Parlange 8.2g-8
SAND

Time range [h] 0.05
Kostiakov J.05-4
Mezencev T.93-8
Horton 9.42-4
Green-Ampt 2.28-7

Philip 2 para 1.62-6
3 para(?hilip) 4.6E-9
Parlange 9.1:3-6

1.3i-5
8.4E-10
6.0:2-4
4.25-9
1.62-8
4.25-10
1.3e-7

0.1

l.34-3
6.0E-7
1.8:-3
1.72-€
l.23-5
T+.53=7
2.53-5

1,85-3
9.25~7
5.82-3
3.95-6
1.82-5
6.1z2-8
2.1E-6

120

£.5C-3
7.6L-6
1.13-2
3.1e-5
1.4E-4
3.0E-6
5.82~6

0.3

1.4g-2
1.38-5
Ded~3

J+82-5
2,92-4
5.22-5
1.22-4

130

2,1E-2
2.68~5
l.6e8-2
1.02-4
4.9:-4
T.92-5
B.5E-6

0.4

2.Tu-2
2,855
6.4E-3
8.32-5
6.38-4
1.75~5
2,1.-4

200

4.1E-2
6.1Z-5
2.1Z-2
20454
1.25-3
9.2E-4
l.1g-5

0.5

4.43-2
%.0u~5
7.75~3
1.55-4
1l.28-3
9.2E-4
2.4E-4

250

6.9E-2

‘l.22-4

2.58-2
4.6E-4
2,23-2
2.02-3
1.22-5

0.667

8.02-2
9.75=5
9.5.-3
3.02-4
2.42-3
B.0:i~-4
3.1=2-4
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